Investigación Operativa (Grado en Matemáticas)

Descripción

La asignatura estaba estructurada en dos partes: el objetivo de la primera parte (temas 1 a 3) era estudiar el algoritmo simplex para resolver problemas de optimización lineal (al mismo tiempo que se daba una introducción a la convexidad de conjuntos); en la segunda parte (temas 4 y 5) se introducía la convexidad de funciones y se estudiaba la teoría de dualidad, junto con la metodología de Karush-Kuhn-Tucker (KKT). La asignatura finalizaba (tema 6) con la aplicación de la metodología de KKT a las máquinas de vectores soporte.

Tema 1: Introducción a la optimización

Tema 2: Conjuntos convexos

Tema 3: Optimización lineal. Algoritmo del simplex.

Tema 4: Funciones convexas y optimización convexa

Tema 5: Dualidad y condiciones de Karush-Kuhn-Tucker

Tema 6: Máquinas de vectores soporte