Research project granted by the Spanish Ministry of Science and Innovation (grant code PID2019-109387GB-I00)
Main researchers: José R. Berrendero and Antonio Cuevas
(*) Members of the collaboration group / Miembros del equipo de trabajo
In reverse chronological order:
Alessandro Casa (2020). Climbing modes and exploring mixtures: a journey in density-based clustering, co-supervised by G. Menardi and J.E. Chacón.
Beatriz Bueno-Larraz (2018). On Reproducing Kernel Methods in Functional Statistics, co-supervised by J.R. Berrendero and A. Cuevas. Slides from the thesis defense presentation
José Luis Torrecilla (2015). On the Theory and Practice of Variable Selection for Functional Data, co-supervised by J.R. Berrendero and A. Cuevas. Slides from the thesis defense presentation
Alejandro Cholaquidis (2014). Técnicas de teoría geométrica de la medida en estimación de conjuntos, co-supervised by A. Cuevas and R. Fraiman. Francisco Aranda Ordaz prize awarded by Sociedad Latinoamericana de Probabilidad y Estadística. Slides from presentation in CLAPEM 2014
Pablo Monfort (2014). Theoretical and computational contributions to cluster analysis, distribution function estimation and conditional expectation calculation, co-supervised by A. García Nogales and J.E. Chacón.
Barroso, M., Alaíz, C. M., Torrecilla, J. L. and Fernández, Á.
(To appear). Functional Diffusion Maps. Statistics and
Computing.
Preprint
Chacón, J.E. and Fernández-Serrano, J. (To appear). Bump hunting
through density curvature features. TEST.
Preprint
Ramos-Carreño, C., Torrecilla, J. L., Carbajo-Berrocal, M.,
Marcos, P. and Suárez, A. (To appear). scikit-fda: a Python package for
functional data analysis. Journal of Statistical
Software.
Preprint
Berrendero, J.R., Bueno-Larraz, B. and Cuevas, A. (2023). On
functional logistic regression: some conceptual issues. TEST,
32, 321-349.
Paper (open
access)
Chacón, J.E. and Rastrojo, A.I. (2023). Minimum adjusted Rand
index for two clusterings of a given size. Advances in Data Analysis
and Classification, 17, 125-133.
Paper (open
access)
Ramos-Carreño, C. and Torrecilla, J.L. (2023). dcor: Distance
correlation and energy statistics in Python. SoftwareX,
22, 101326.
Paper (open
access)
Baíllo, A., Cárcamo, J. and Mora-Corral, C. (2022). Extreme
points of Lorenz and ROC curves with applications to inequality
analysis, Journal of Mathematical Analysis and Applications,
514, 2, 126335.
Paper (open
access)
Baíllo, A. and Chacón, J.E. (2022). A new selection criterion for
statistical home range estimation. Journal of Applied
Statistics, 49, 722-737.
doi
Cao, R. and Chacón, J.E. (2022). Introduction to the special
issue on Data Science for COVID-19. Journal of Nonparametric
Statistics, 34, 555-569.
Paper (free
access)
Ramos-Carreño, C., Torrecilla, J.L., Hong, Y. and Suárez, A.
(2022). scikit-fda: Computational Tools for Machine Learning with
Functional Data. In 2022 IEEE 34rd International Conference on Tools
with Artificial Intelligence (ICTAI) (pp. 213-218). IEEE.
Preprint
Ramos-Carreño, C., Torrecilla, J. L. and Suárez, A. (2022).
Classification of Functional Data: A Comparative Study, In 2022 IEEE
21st International Conference on Machine Learning and Applications
(ICMLA) (pp. 866-871). IEEE.
Preprint
| doi
Baíllo, A. and Chacón, J.E. (2021). Statistical outline of animal
home ranges: An application of set estimation. In Data Science:
Theory and Applications (A.S.R. Srinivasa Rao and C.R. Rao, eds.).
Handbook of Statistics, 44, 3–37.
doi
Baíllo, A. and Grané, A. (2021). Subsampling and aggregation: A
solution to the scalability problem in distance-based prediction for
mixed-type data. Mathematics, 9, 2247.
Paper (open
access)
Chacón, J.E. (2021). A close-up comparison of the
misclassification error distance and the adjusted Rand index for
external clustering evaluation. British Journal of Mathematical and
Statistical Psychology, 74, 203–231.
Preprint | doi
Chacón, J.E. (2021). Explicit agreement extremes for a 2×2 table
with given marginals. Journal of Classification,
38, 257–263.
Preprint | doi | expository
note (Spanish)
Berrendero, J.R., Bueno-Larraz, B. and Cuevas, A. (2020). On
Mahalanobis distance in functional settings. Journal of Machine
Learning Research, 21, 1-33.
Paper (open access)
| expository note
(Spanish)
Cárcamo, J., Cuevas, A., Rodríguez, L.A. (2020). Directional
differentiability for supremum-type functionals: statistical
applications. Bernoulli, 26, 2143-2175.
Preprint
| doi
Casa, A., Chacón, J.E. and Menardi, G. (2020). Modal clustering
asymptotics with applications to bandwidth selection. Electronic
Journal of Statistics, 14, 835-856.
Paper (open
access)
Chacón, J.E. (2020). The Modal Age of Statistics.
International Statistical Review, 88,
122-141.
Preprint | doi
Cholaquidis, A. and Cuevas, A. (2020). Set estimation under
biconvexity restrictions. ESAIM: Probability and Statistics,
24, 770-788.
Preprint
Cuevas, A. and Fraiman, R. (2020). Nonparametric detection for
univariate and functional data. Journal of Statistical Planning and
Inference, 209, 12-26.
doi
Torrecilla, J.L., Ramos-Carreño, C., Sánchez-Montañés, M. and
Suárez, A. (2020). Optimal classification of Gaussian processes in homo-
and heteroscedastic settings. Statistics and Computing,
30, 1091–1111.
doi
Baíllo, A., Cárcamo, J. and Getman, K. (2019). New distance
measures for classifying X-ray astronomy data into stellar classes.
Advances in Data Analysis and Classification,
13, 531-557.
Preprint
| doi
Berrendero, J.R., Bueno-Larraz, B. and Cuevas, A. (2019). An RKHS
model for variable selection in functional linear regression.
Journal of Multivariate Analysis, 170,
22-45.
Preprint
| doi
Berrendero, J.R. and Cárcamo, J. (2019). Linear components of
quadratic classifiers. Advances in Data Analysis and
Classification, 13, 347-377.
Preprint
| doi | expository
note (Spanish)
Chacón, J.E. (2019). Mixture model modal clustering. Advances
in Data Analysis and Classification, 13,
379-404.
doi
Torrecilla, J.L., Quijano-Sánchez, L., Liberatore, F.,
López-Ossorio, J.J., and González-Álvarez, J.L. (2019). Evolution and
study of a copycat effect in intimate partner homicides: A lesson from
Spanish femicides. PloS one,
14(6):e0217914.
Paper (open
access)
Berrendero, J.R., Cuevas, A. and Torrecilla, J.L. (2018). On the
use of reproducing kernel Hilbert spaces in functional classification.
Journal of the American Statistical Association,
113, 1210-1218.
Preprint
| Supplementary
material | doi | expository
note (Spanish) | SEIO
- BBVA Foundation Award 2022, Best methodological contribution in
the Statistics field.
Chacón, J.E. and Duong, T. (2018). Multivariate Kernel
Smoothing and Its Applications. Chapman and Hall.
Book website.
Cuevas, A. and Pateiro-López, B. (2018). Polynomial volume
estimation and its applications. Journal of Statistical Planning and
Inference, 196, 174-184.
doi
Torrecilla, J.L. and Romo, J. (2018). Data learning from big
data. Statistics and Probability Letters, 136,
15-19.
doi
Aaron, C., Cholaquidis, A. and Cuevas, A. (2017). Detection of
low dimensionality and data denoising via set estimation techniques.
Electronic Journal of Statistics, 11,
4596-4628.
Paper (open
access).
Barba, I., Miró-Casas, E., Torrecilla, J.L., Pladevall, E.,
Tejedor, S., Sebastián-Pérez, R., Ruiz-Meana, M., Berrendero, J.R.,
Cuevas, A. and García-Dorado, D. (2017). High Fat Diet Induces Metabolic
Changes and Reduces Oxidative Stress in Female Mouse Hearts. Journal
of Nutritional Biochemistry, 40, 187–193.
Preprint
| doi
Cárcamo, J. (2017). Maps preserving moment sequences. Journal
of Theoretical Probability, 30, 212-232.
doi
Cárcamo, J. (2017). Integrated empirical processes in Lp with
applications to estimate probability metrics. Bernoulli,
23, 3412-3436.
Preprint
| doi
Cholaquidis, A., Forzani, L., Llop, P. and Moreno, L. (2017). On
the classification problem for Poisson Point Processes. Journal of
Multivariate Analysis, 153, 1-15.
Preprint | doi
Cuevas, A., Cholaquidis, A. and Fraiman, R. (2017). On visual
distances for spectrum-type functional data. Advances in Data
Analysis and Classification, 11, 5-24.
Preprint | doi
Muelas, D., López de Vergara, J.E., Berrendero, J.R., Ramos, J.
and Aracil, J. (2017). Facing network management challenges with
functional data analysis: techniques and opportunities. Mobile
Networks and Applications, 22, 1124-1136.
Preprint
| doi
Berrendero, J.R., Cuevas, A. and Pateiro-López, B. (2016). Shape
classification based on interpoint distance distributions. Journal
of Multivariate Analysis, 146, 237-247.
Preprint
| doi
Berrendero, J.R., Cuevas, A. and Torrecilla, J.L. (2016). The
mRMR variable selection method: a comparative study for functional data.
Journal of Statistical Computation and Simulation,
86, 891-907.
Preprint
| Supplementary
material | doi
Berrendero, J.R., Cuevas, A. and Torrecilla, J.L. (2016).
Variable selection in functional data classification: a maxima-hunting
proposal. Statistica Sinica, 26,
619-638.
Preprint | doi | expository
note (Spanish)
Torrecilla, J.L. and Suárez, A. (2016). Feature selection in
functional data classification with recursive maxima hunting.
Advances in Neural Information Processing Systems (NIPS 2016
proceedings), 4835-4843.
Preprint
Baíllo, A., Cárcamo, J. and Nieto, S. (2015). A test for convex
dominance with respect to the exponential class based on an L1 distance.
IEEE Transactions on Reliability, 64,
71–82.
doi
Berrendero, J.R. (2015). Simulación e inferencia estadística.
La Gaceta de la RSME, 18, 45-65.
Preprint
Chacón, J.E. (2015). A population background for nonparametric
density-based clustering. Statistical Science,
30, 518-532.
Preprint | doi
Chacón, J.E. and Duong, T. (2015) Efficient recursive algorithms
for functionals based on higher order derivatives of the multivariate
Gaussian density. Statistics and Computing,
25, 959-974.
Preprint | doi
Muelas, D., López de Vergara, J.E. and Berrendero, J.R. (2015).
Functional Data Analysis: A step forward in Network Management.
Proceedings of IFIP/IEEE International Symposium on Integrated
Network Management, IM’2015 (ISBN: 978-3-901882-76-0),
882-885.
Preprint
| doi
Muelas, D., López de Vergara, J.E., Berrendero, J.R. and Aracil,
J. (2015). Análisis funcional para gestión de red: técnicas, retos y
oportunidades. Actas de las XII Jornadas de Ingeniería Telemática,
Jitel’2015 (ISBN: 978-84-606-8609-5), 197-204.
Link to the
workshop proceedings
Berrendero, J.R., Cholaquidis, A., Cuevas, A. and Fraiman, R.
(2014). A geometrically motivated parametric model in manifold
estimation. Statistics, 48, 983-1004.
Preprint
| doi
Chacón, J.E., Monfort, P. and Tenreiro, C. (2014). Fourier
methods for smooth distribution function estimation. Statistics and
Probability Letters, 84, 223-230.
Preprint | doi
Chacón, J.E. and Monfort, P. (2014). A comparison of bandwidth
selectors for mean shift clustering, in Theoretical and Applied
Issues in Statistics and Demography (C. H. Skiadas, Ed),
ISAST.
Preprint
Cholaquidis, A., Cuevas, A. and Fraiman, R. (2014). On Poincaré
cone property. The Annals of Statistics, 42,
255-284.
Paper (open
access)
Cuevas, A. (2014). A partial overview of the theory of statistics
with functional data. Journal of Statistical Planning and
Inference, 147, 1-23.
doi
Cuevas, A. (2014). Different perspectives on Object Oriented Data
Analysis. Biometrical Journal 56, 754-757. This is a comment on
the paper “An Overview of Object Oriented Data Analysis” by J.S. Marron
and A.M. Alonso.
Paper (open
access)
Cuevas, A., Pateiro-López, B. and Llop, P. (2014). On the
estimation of the medial axis and inner parallel body. Journal of
Multivariate Analysis, 129, 171-185.
doi
Baíllo, A., Martínez-Muñoz, L. and Mellado, M. (2013).
Homogeneity tests for Michaelis-Menten curves with application to
fluorescence resonance energy transfer data. Journal of Biological
Systems, 21, 1350017.
doi
Berrendero, J.R. and Cárcamo, J. (2013). Reply to Baker (2013),
letter to the editor, The American Statistician,
67, 65.
doi
Chacón, J.E. and Duong, T. (2013). Data-driven density derivative
estimation, with applications to nonparametric clustering and bump
hunting. Electronic Journal of Statistics, 7,
499-532.
Paper (open
access)
Chacón, J.E. and Tenreiro, C. (2013). Data-based choice of the
number of pilot stages for plug-in bandwidth selection.
Communications in Statistics, Theory and Methods.,
42, 2200-2214.
Preprint | doi
Cuevas, A., Fraiman, R. and Györfy, L. (2013). Towards a
universally consistent estimator of the Minkowski content. ESAIM:
Probability and Statistics, 17, 359-369.
doi
Barroso, R., Muñoz, L. M., Barrondo, S., Vega, B., Holgado, B.
L., Lucas, P., Baíllo, A., Salles, J., Rodríguez-Frade, J. M. and
Mellado, M. (2012). EBI2 regulates CXCL13-mediated responses by
heterodimerization with CXCR5. The FASEB Journal,
26, 4841-4854.
doi
Berrendero, J.R. and Cárcamo, J. (2012). The tangent classifier.
The American Statistician, 66, 185-194.
Preprint
| doi | expository
note (Spanish)
Berrendero, J.R. and Cárcamo, J. (2012). Tests for stochastic
orders and mean order statistics. Communications in Statistics
-Theory and Methods, 41, 1497-1509.
Preprint
| doi
Berrendero, J.R., Cuevas, A. and Pateiro-López, B. (2012).
Testing uniformity for the case of a planar unknown support.
Canadian Journal of Statistics, 40,
378-395.
Preprint
| doi
Berrendero, J.R., Cuevas, A. and Pateiro-López, B. (2012). A
multivariate uniformity test for the case of unknown support.
Statistics and Computing, 22, 259-271.
Preprint
| doi
Chacón, J. E. and Tenreiro, C. (2012). Exact and asymptotically
optimal bandwidths for kernel estimation of density functionals.
Methodology and Computing in Applied Probability,
14, 523-548.
Preprint | doi
Cuevas, A., Fraiman, R. and Pateiro-López, B. (2012). On
statistical properties of sets fulfilling rolling-type conditions.
Advances in Applied Probability, 44,
311-329.
doi
Aaron, C. and Cholaquidis, A. (2020). On boundary detection.
Annales de l’Institut Henri Poincaré - Probabilités et
Statistiques.
Preprint | doi
Aaron, C., Cholaquidis, A. and Fraiman, R. (2017). A
generalization of the maximal-spacings in several dimensions and a
convexity test. Extremes, 20, 605-634.
Preprint | doi
Aaron, C., Cholaquidis, A., Fraiman, R. and Ghattas, B. (2019). Multivariate and functional robust fusion methods for structured Big Data. Journal of Multivariate Analysis, 170, 149-161. doi
Bueno-Larraz, B. and Klepsch, J. (2019). Variable selection for
the prediction of C[0,1]-valued AR processes using RKHS.
Technometrics, 61, 139-153.
Preprint | doi
Cholaquidis, A., Fraiman, R., Lugosi, G. and Pateiro-López, B.
(2016). Set estimation from reflected Brownian motion. Journal of
the Royal Statistical Society: Series B, 78,
1057-1078.
doi | expository
note (Spanish)
Cholaquidis, A., Fraiman, R., Mordecki, E. and Papalardo, C.
(2021). Level sets and drift estimation for reflected Brownian motion
with drift. Statistica Sinica, 31,
29-51.
Preprint | doi
Cholaquidis, A., Fraiman, R. and Sued, M. (2020). On
semi-supervised learning. Test, 29,
914-937.
Preprint | doi
Fraiman, D. and Fraiman, R. (2018). An ANOVA approach for
statistical comparisons of brain networks. Scientific Reports,
8, article number 4746.
doi
Fraiman, D., Fraiman, N. and Fraiman, R. (2017). Nonparametric
statistics of dynamic networks with distinguishable nodes.
TEST, 26, 546-573.
Preprint
| doi
Fraiman, R., Gamboa, F. and Moreno, L. (2019). Connecting
pairwise geodesic spheres by depth: DCOPS. Journal of Multivariate
Analysis, 169, 81-94.
doi
González, M., Minuesa, C. and del Puerto, I. (2017). Minimum
disparity estimation in controlled branching processes. Electronic
Journal of Statistics, 11, 295-325.
Paper (open
access)
González, M., Minuesa, C. and del Puerto, I. (2016). Maximum
likelihood estimation and Expectation-Maximization algorithm for
Controlled Branching Processes. Computational Statistics and Data
Analysis, 93, 209-227.
doi
González, M., Minuesa, C., del Puerto, I. and Vidyashankar, A. N.
(2021). Robust estimation in controlled branching processes: Bayesian
estimators via disparities. Bayesian Analysis,
16, 1009-1037.
doi