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por acompañarme. Pero sobre todo a ti, Elena M. P., que te has convertido en un apoyo

indispensable en mi vida y en mi trabajo.

Además, los amigos de doctorado. Los que ya se fueron: Adri, Álex, Diego, Julio
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Abstract

This thesis aims at exploring some advanced versions of the so-called “Delta method”

(Chapter 2), with a particular focus on applications in non-parametric inference (Chapter

3), two-sample problems (Chapter 4) and clustering (Chapter 5). A few global conclusion

and suggestions for future work are presented in Chapter 6. Let us now develop the main

contributions in more detail.

Some context and historical perspective

The classical, elementary version of the Delta method (Rice (1995, p. 149)) is a standard

topic in undergraduate courses of mathematical statistics. The basic idea is to use differ-

entiability techniques to get first or second-order expansions of some statistic of interest

in order to study its asymptotic behaviour; in particular, the classical Delta method is a

common tool to prove asymptotic normality of many estimators.

As it turns out, in many relevant statistical problems, the parameter of interest

can be expressed as a functional φ(P) of the underlying distribution P. In such cases a

natural estimator of φ(P) is just φ (Pn), obtained by plugging-in the empirical distribution

Pn on the functional φ. Such a simple idea was already pointed out by Fisher (1922).

In this functional framework it is quite natural to obtain “functional local expansions”

of φ around P using suitable, stochastic, versions of the classical concepts of functional

differentiation (in Gateaux, Fréchet or Hadamard sense). Such idea was successfully

exploited by von Mises (1947), in a classical paper, later developed in his posthumous

book von Mises (1964). Further earlier developments and applications of these ideas are

due to Kallianpur and Rao (1955) and Filippova (1962). See also the book by Serfling

(2009).

In the 1980’s this methodology based on differentiation of functionals experienced

an additional boost, due to its applications to robust statistics and bootstrap theory.

In the robustness field, the “directional” (Gateaux) derivative of a statistical functional

is interpreted in terms of the influence curve, a measure of the local sensitivity of the

corresponding estimator against outlying observations. Also, the integral of the square

influence function coincides with the asymptotic variance under some quite general condi-

tions. An early, nice account of these ideas can be found in the book by Huber (2004); see

also Hampel et al. (2011). In the bootstrap field, the functional differentiation techniques

provides a simple, elegant method to derive the asymptotic validity of the bootstrap

approximations to the sampling distribution; see, e.g., Parr (1985) for an early example.
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The main research lines, contents and contributions of this PhD thesis

As shown in the previous paragraphs, the differentiation method has a wealth of fruitful

statistical applications. Whatever the application we have in mind, an obvious strategy is

to look for weaker differentiability notions, valid under broader conditions but still keeping

some essentials, such as first-order local approximations and chain rule. One of these

extensions was the Hadamard directional differentiability, introduced by Shapiro (1990).

This notion is defined and commented in Chapter 1, which is devoted to summarize

some important auxiliary tools we use throughout the work; these include as well some

essentials of Empirical Processes Theory and Reproducing Kernel Hilbert Spaces (RKHS).

In Chapter 2 of this thesis we show that a wide class of relevant statistical func-

tionals, defined in terms of a supremum, satisfy Shapiro’s weaker notion of differentiability,

for which the Delta method is still applicable. This result is remarkable, as supremum-

type transformations lead typically to a loss of (most notions of) differentiability.

Some applications of this result are developed in Chapter 3. In particular, we

obtain the asymptotic distribution of the two-sample Kolmogorov-Smirnov statistic, a key

tool in nonparametric statistics, under the alternative hypothesis. Our result improves on

a classical theorem proved by Raghavachari (1973), as we are able to drop the assumption

of continuity imposed on the involved distributions, a condition that has been echoed in

subsequent works in the field. The proof lies on the differentiability of the supremum

functional in the Skorohod space (see Neuhaus (1971) and Seijo and Sen (2011)).

Three additional applications are also included in Chapter 3. First, the asymptotic

behavior of the Berk-Jones statistic is obtained under the alternative hypothesis of un-

equal distributions, thus solving an open problem proposed in Jager and Wellner (2004).

Second, the asymptotic distribution of the statistic for the goodness-of-fit test based on

the supremum metric for copulas is also derived. In particular, if the empirical copula

process is used for estimation, we provide a further extension of the results in Fermanian

(2013). Third, and perhaps, more important, we derive the asymptotic distribution of

the so-called maximum mean discrepancy (MMD), an increasingly popular method to

measure discrepancies between distributions which includes, as a particular case, the ker-

nel metrics based on the distance between the embeddings of distributions in a suitable

Reproducing Kernel Hilbert Space (RKHS).

In Chapter 4 a test for the classical two-sample problem is proposed (i.e., testing

the equality for two distributions based on independent samples of them). This new

proposal for testing homogeneity is based on kernel distances, a particular type of MMD.

The theoretical and practical aspects of this test are analyzed with a special focus on

high-dimensional and functional two-sample problems. In particular, an empirical study

is included to compare the proposed test with other popular alternatives.

Chapter 5 is an application of the main mentioned differentiability result, ob-

tained in Chapter 2, to the problem of uniqueness of the k-means set (principal points

of a distribution). More specifically, it is proved that the uniqueness of the k-means

minimizing set (the set of k-means or principal points) is equivalent to the asymptotic
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normality of the empirical risk statistic used to calculate the sample k-means sets. Also,

a consistency result, adapted to the case of multiple k-means is established in terms of

the Gromov-Hausdorff metric. While the k-means method is arguably the most popular

clustering methodology, the non-uniqueness of the population (theoretical) k-means is a

somewhat enigmatic problem. No simple condition for such uniqueness is available so far

in the literature though the problem has some relevance in order to ensure the stability of

the k-means algorithms (Caponnetto and Rakhlin (2006)) and the validity of the asymp-

totic results on which this method relies; see Cuesta and Matrán (1988), Pollard (1981),

and Pollard (1982). As a consequence of the mentioned asymptotic characterization of

the k-means uniqueness, a statistical test is proposed to check the null hypothesis that the

underlying distribution has a unique set of k-means. An empirical study is also included.

Some publications derived from this thesis

The contents of Chapters 2 and 3 are essentially included in Cárcamo et al. (2020).

This paper was positively reviewed in the mathematical data base MathScinet, [Review

MR4091104] where the reviewer points out

The proposed methodology is interesting and could find a lot of applications since the

supremum norm is very common in statistics to quantify the deviation between an

observed phenomenon and a theoretical model (e.g. the famous Kolmogorov-Smirnov

test). The whole paper is well written.

At the time of writing these lines, this paper has achieved 27 citations in Google

Scholar and 6 citations in the Web of Science database.

The contents of Chapter 4 are included in a paper (under second revision) submit-

ted to the Journal of Multivariate Analysis.

Finally, the materials of Chapter 5 will be included in a manuscript in prepara-

tion.



10 CONTENTS



Resumen

En esta tesis doctoral se han explorado diferentes aplicaciones del conocido “Método delta”

(Caṕıtulo 2). En concreto, se han investigado aplicaciones a inferencia no-paramétrica

(Caṕıtulo 3), a los problemas de dos muestras u homogeneidad (Caṕıtulo 4) y a la

metodoloǵıa de k-medias (Caṕıtulo 5). Finalmente, se presentan en el Caṕıtulo 7 las con-

clusiones del trabajo realizado. A continuación, se desarrolla en más detalle la temática

de cada caṕıtulo.

Contexto previo y perspectiva histórica

La versión clásica del Método delta (Rice (1995, p.149)) es contenido de los cursos de es-

tad́ıstica del grado de Matemáticas. La idea fundamental es la utilización de un desarrollo

de Taylor de primer o segundo orden para determinar el comportamiento asintótico del

estad́ıstico de interés. En particular, se utiliza para demostrar la normalidad asintótica

de un estimador.

Es sabido que en una amplia cantidad de problemas relevantes en Estad́ıstica, el

parámetro a estimar se puede expresar como un funcional φ(P) de la medida subyacente P.

En esos casos, un estimador natural de φ(P) es φ (Pn), obtenido mediante la metodoloǵıa

plug-in, que consiste en sustituir P por Pn, la medida de probabilidad emṕırica, en el

argumento del funcional φ. Esta idea fue apuntada ya en la década de los años 20 del siglo

pasado en Fisher (1922). En este marco funcional, pues, es natural tratar de proceder

mediante el desarrollo de Taylor de φ en torno a P utilizando la noción apropiada de

diferenciabilidad (Gâteaux, Frèchet o Hadamard). Estas ideas ya fueron introducidas en

von Mises (1947), posteriormente recogidas en su obra póstuma von Mises (1964). Como

desarrollos posteriores de esta idea podŕıamos mencionar Kallianpur and Rao (1955),

Filippova (1962) o el libro Serfling (2009).

En la década de los 80, esta metodoloǵıa se vio impulsada, en gran medida, por sus

aplicaciones a la estad́ıstica robusta y la teoŕıa sobre el bootstrap. Respecto a los avances

en robustez, la derivada de Gâteaux de un estad́ıstico se puede interpretar en términos de

la curva de influencia, una medida local de la sensiblidad del estimador ante la presencia

de at́ıpicos. Además, la integral del cuadrado de la función de influencia resulta ser la

varianza de la distribución asintótica del estimador bajo condiciones razonablemente gen-

erales. Una recopilación de estos resultados puede encontrarse en Huber (2004) o Hampel

et al. (2011). Respecto al estudio del bootstrap, la diferenciación de funcionales provee

de una maquinaria simple y elegante para demostrar la validez de las aproximaciones

11
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bootstrap. Uno de los primeros ejemplos puede encontrarse en Parr (1985).

Temática principal, contenidos y contribuciones de esta tesis doctoral

Como se comentaba en los párrafos anteriores, la diferenciabilidad es de gran interés en es-

tad́ıstica. Para cualquier aplicación que tengamos en mente que encaje en el paradigma an-

terior, una aproximación razonable es verificar las condiciones de diferenciablidad (débil),

aplicable bajo condiciones lo más generales posibles; manteniendo las propiedades funda-

mentales de la aproximación de primer orden, como la regla de la cadena. Una noción que

encaja en esta descripción es la diferenciabilidad Hadamard direccional, introducida en

Shapiro (1990). Este concepto es desarrollado en el Caṕıtulo 1. Además, se tratan otras

herramientas matemáticas necesarias para la elaboración de esta tesis, como la teoŕıa de

procesos emṕıricos y los espacios de Hilbert de núcleo reproductor (RKHS).

En el Caṕıtulo 2 se prueba que una clase muy amplia de funcionales, expresados

en términos de supremos, satisface la noción de diferenciabilidad débil introducida por

Shapiro, bajo la cual el Método delta es aplicable. Esto es destacable en tanto a que este

tipo de funcionales presentan, habitualmente, falta de suavidad.

Algunas aplicaciones de este resultado se presentan en el Caṕıtulo 3. En par-

ticular, se obtiene la distribución asintótica del estad́ıstico de Kolmogorov-Smirnov para

los problemas de dos muestras, un herramienta básica de la estad́ıstica no paramétrica,

bajo la hipótesis alternativa. Nuestro resultado mejora sustancialmente el trabajo de

Raghavachari (1973) pues se eliminan restricciones de continuidad que han sido replicadas

en la literatura desde entonces. La demostración se apoya en el cálculo de la derivada de

Hadamard direccional para el supremo en el espacio de Skorohod (Neuhaus (1971) y Seijo

and Sen (2011)).

Tres aplicaciones adicionales de los resultados de diferenciabilidad del Caṕıtulo 2

se incluyen en el Caṕıtulo 3. En primer lugar se calcula la distribución asintótica de

estad́ısticos de tipo Berk-Jones bajo la hipótesis alternativa, es decir, cuando las distribu-

ciones son diferentes. De esta manera, se resuelve una pregunta abierta en Jager and

Wellner (2004). En segundo lugar, también se calcula la distribución asintótica para al-

gunos problemas de bondad de ajuste basados en la norma del supremo. En particular

este resultado supone una extensión de los resultados presentados en Fermanian (2013)

sobre el estimador cópula emṕırico. Finalmente, quizá el más importante de este caṕıtulo,

es el resultado asintótico sobre las distancias de discrepancia máxima (Maximum Mean

Discrepancy (MMD) en inglés). Este método, cada vez más popular para cuantificar

diferencias entre distribuciones de probabilidad, se basa en métricas de probabilidad in-

tegrales. Entre otros casos, se incluyen las métricas de tipo núcleo (kernel metrics), en

las que la discrepancia se mide sobre la bola unidad de un espacio de Hilbert de núcleo

reproductor (RKHS).

El Caṕıtulo 4 se centra en una propuesta de un test para problemas de dos

muestras, es decir, un contraste de hipótesis en el que la hipótesis nula es la igualdad

en distribución de dos poblaciones dadas dos muestras independientes. Dicho test se

fundamenta en el uso de las distancias de tipo kernel, un caso particular especial de
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MMD. Los aspectos teóricos, aśı como las aplicaciones, son desarrollados a lo largo del

caṕıtulo, centrándonos especialmente en datos de alta dimensión y funcionales. Además,

se presenta un estudio de simulación para comparar esta nueva propuesta con las ya

existentes en la literatura.

Finalmente, en el Caṕıtulo 5 se aplica el teorema de diferenciabilidad del Caṕıtulo

2 al problema sobre la unicidad del conjunto de k-medias. Concretamente, se demuestra

que la unicidad del conjunto de k-medias es equivalente a la normalidad asintótica del es-

timador plug-in del riesgo emṕırico, es decir, de la suma de cuadrados dentro de los grupos

promediada. Además, se proporciona un resultado de consistencia, adaptado al caso de

no unicidad del conjunto de k-medias, en términos de la distancia de Gromov-Hausdorff.

Es destacable que, aunque k-medias es uno de los métodos de clustering más utilizados, la

no unicidad de las k-medias poblacionales (de la medida subyacente) es una cuestión aún

por explorar. No se conoćıa hasta ahora una condición equivalente, ni suficiente; tratable.

No obstante, la unicidad supone una cierta garant́ıa de estabilidad de los algoritmos de

aproximación (Caponnetto and Rakhlin (2006)) y la validez de los resultados asintóticos,

como en Cuesta and Matrán (1988), Pollard (1981) y Pollard (1982). Como aplicación

de esa caracterización sobre la unicidad de las k-medias, se propone también un test para

contrastar la hipótesis nula de unicidad de dicho conjunto para la medida de probabilidad

subyacente. Se incluye un estudio emṕırico al respecto.

Publicaciones derivadas de esta tesis doctoral

Los Caṕıtulos 2 y 3 componen el art́ıculo Cárcamo et al. (2020). Este trabajo ha obtenido

una valoración positiva en MathScinet: [Review MR4091104].

En el momento de escribir este resumen de la tesis, este art́ıculo ha sido citado 27

veces según Google Scholar y 6 veces según la base de datos de Web of Science.

El contenido correspondiente al Caṕıtulo 4 forma parte de un trabajo bajo segunda

revisión en el Journal of Multivariate Analysis.

Finalmente, los contenidos del Caṕıtulo 5 formarán parte de un trabajo en estado

de elaboración muy avanzado.
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Chapter 1

Introduction and preliminaries

In this Chapter, we provide a brief introduction to Hadamard directional differentiability

and the Delta method (Section 1.1). Additionally, we offer a summary of the basics of

empirical processes and plug-in estimation (Section 1.2).

The theory of Reproducing Kernel Hilbert Spaces (RKHS) is another important

auxiliary tool in this PhD thesis. Such theory is briefly reviewed (Section 1.3). The results

presented in this Section regarding the integrability of elements of the RKHS and the mean

embedding are extensively employed in Chapter 4. While most of this background is well-

known or can be found in the literature, it is included here to introduce the necessary

notation and make this thesis as self-contained as possible.

1.1 Hadamard directional differentiability and Delta

method

In many situations, it is common to face the problem of estimating a transformation,

φ(θ), of a (possibly infinite-dimensional) parameter θ. Typically, θ is unknown but can

be estimated by means of Tn and φ is a map defined in a metric space. If φ is smooth

enough in a local neighborhood of θ –for instance, differentiable at θ in a precise sense–

the asymptotic distribution of (the normalized version) of φ (Tn) can be determined by

expanding φ around θ and using an invariance principle for Tn in the underlying metric

space. Of course, this is the key idea behind the (functional) Delta method. At this point,

several notions of differentiabilit arise. We start with the notion of Gâteaux directional

differentiability.

Definition 1. Let D and E be real Banach spaces with norms ∥ ⋅∥D and ∥ ⋅∥E , respectively.

A map φ ∶ D Ð→ E is said to be Gâteaux directionally differentiable at θ ∈ D tangentially

to a set D0 ⊂ D if there exists a map φ′θ ∶ D0 Ð→ E such that

∥φ (θ + tn h) − φ(θ)
tn

− φ′θ(h)∥
E

Ð→ 0, (1.1)

for all h ∈ D0 and all sequences (tn)n∈N ∈ RN such that tn ↘ 0.

15
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It is well-known that Gâteaux differentiability is too weak for the Delta method

to hold Huber (2011, Section 2.5). To solve this problem, the directions along which we

approach to φ(θ) in (1.1) have to be allowed to change with n. This naturally leads to

the concept of Hadamard directional differentiability. Shapiro (1990) has been followed

for the next definition.

Definition 2. In the context of the previous definition, we say that φ ∶ D Ð→ E is

Hadamard directionally differentiable at θ ∈ D tangentially to a set D0 ⊂ D if there exists

a map φ′θ ∶ D0 Ð→ E such that

∥φ (θ + tn hn) − φ(θ)
tn

− φ′θ(h)∥
E

Ð→ 0, (1.2)

for all h ∈ D0 and all sequences (hn)n∈N ∈ DN, (tn)n∈N ∈ RN such that tn ↘ 0 and ∥hn − h∥D →
0.

Obviously, Hadamard directional differentiability implies the Gâteaux one. The

only difference between the directional and the usual differentiability is that the derivative

φ′θ is no longer required to be linear in Definitions 1 and 2. Nevertheless, if equation (1.2)

is satisfied, then φ′θ is continuous and homogeneous of degree 1 Shapiro (1990, Proposition

3.1).

Remark 3. If φ is as in the preliminaries of Definitions 1 and 2, and additionally φ is

locally Lipschitz, i.e., there exists a constant C > 0 such that ∥φ(f) − φ(g)∥E ≤ C∥f −
g∥D, for all f, g ∈ D in a neighborhood of each point of D, then Hadamard directional

differentiability is equivalent to the Gâteaux one (see Shapiro (1990, Proposition 3.5)).

Two useful properties of the Hadamard differentiability are established in the fol-

lowing result for posterior use (see (2.1) and Remark 19). The proofs can be found in

Shapiro (1990).

Theorem 4. Let D, E and G be real Banach spaces, φ ∶ D Ð→ E and ψ ∶ D Ð→ E
Hadamard directional differentiable at θ tangentially to a set D0 ⊆ D and κ ∶ E Ð→ G
Hadamard directional differentiable at φ(θ) tangentially to E0 ⊆ E . Additionally assume

that φ′θ (D0) ⊆ E0. Then:

1. φ + ψ is Hadamard directional differentiable tangentially at θ to D0 and φ′θ + ψ′θ.

2. κ ○ φ is Hadamard directional differentiable at θ tangentially to D0 and (κ ○ φ)′θ =
κ′φθ
○ φ′θ.

Furthermore, it is worth mentioning that there exist implicit and inverse function

theorems for Hadamard directional differentiability. These are particularly relevant when

dealing with M and Z-estimators (see A. van der Vaart and Wellner (1996, Sections 3.2

and 3.3)). For a discussion about these properties, refer to Fernholz (1983, Chapter 3).

Finally, the important fact about Hadamard directional differentiability is that it

allows the application of the extended (functional) Delta method.
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Proposition 5 (Delta method). Let D and E be Banach spaces and φ ∶ Dϕ ⊂ D Ð→ E ,
where Dφ is the domain of φ. Assume that φ is Hadamard directionally differentiable

at θ ∈ Dφ tangentially to a set D0 ⊂ D. For some sample spaces Ωn, let Tn ∶ Ωn Ð→
Dφ be maps such that rn (Tn − θ) converges weakly to T rn (Tn − θ)↝T , for some se-

quence of numbers rn Ð→ ∞ and a random element T that takes values in D0. Then,

rn (φ (Tn) − φ(θ)) ↝ φ′θ(T ). If additionally φ′θ can be continuously extended to D, then
we have that rn (φ (Tn) − φ(θ)) = φ′θ (rn (Tn − θ))+op(1).

Remark 6. The detailed proof of Proposition 5 can be found in Shapiro (1991, Theorem

2.1) (see also Römisch (2004, Theorem 1) or Fang and Santos (2019, Theorem 2.1)), but it

is essentially the same one as for the traditional Delta method A. W. van der Vaart (2000,

Theorem 20.8). The key idea is to apply the extended Continuous Mapping Theorem A.

van der Vaart and Wellner (1996, Theorem 1.11.1) to the sequence of functionals defined

by φn(h) = rn (φ (θ + r−1n h) − φ(θ)), n ∈ N.

In the present context, let us assume that θn → θ and rn (Tn − θn) ↝ T , and we

want to determine conditions so that rn (φ (Tn) − φ (θn))↝ φ′θ(T ). As it is pointed out in

A. van der Vaart and Wellner (1996, p. 375), a stronger form of differentiability is needed

to obtain such a “uniform” version of the Delta method.

Definition 7. In the context of Definition 1, we say that φ ∶ D Ð→ E is uniformly

Hadamard differentiable at θ ∈ D tangentially to a set D0 ⊂ D if there exists a map

φ′θ ∶ D0 Ð→ E such that

∥φ (θn + tn hn) − φ (θn)
tn

− φ′θ(h)∥
E

→ 0,

for all h ∈ D0 and all sequences (tn)n∈N ∈ RN, (θn)n∈N, (hn)n∈N ∈ DN such that tn ↘ 0,

∥θn − θ∥D → 0, and ∥hn − h∥D → 0.

If φ is uniformly Hadamard differentiable at θ, θn → θ and rn (Tn − θn) ↝ T , we

still have that rn (φ (Tn) − φ (θn)) ↝ φ′θ(T ); see A. van der Vaart and Wellner (1996,

Theorem 3.9.5).

1.2 Empirical processes and plug-in estimation

Let X1, . . . ,Xn be a sample of independent random variables following the distribution

of P on a measurable space (X ,S). It is frequent for X to be a metric space, a subset of

a topological vector space or a subset of Rd endowed with the Borel topology σ-algebra

S. With this idea in mind, a new measure, called the empirical measure, is built. In

mathematical terms, we can think the sample points as a (random) discretization of P.

Definition 8. The empirical distribution associated to a sample X1, . . . ,Xn from the

measure P is defined as Pn= 1
n ∑

n
i=1 δXi

, where δx is the measure that gives mass 1 to {x}.
The empirical process associated to that sample is defined as Gn =

√
n (Pn −P).
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Given a measurable function f ∶ X Ð→ R we use the following functional notation

for integrals:

P(f) = ∫
X
f(x) dP(x), Pn(f) =

1

n

n

∑
i=1

f (Xi) .

Let F be a class of measurable functions over X and f1, . . . , fl ∈ F , by the multivariate

Central Limit Theorem we have that (Gn (f1) , . . . ,Gn (fl)) is asymptotically normal dis-

tributed with measure and covariance Σ, Σi j = CovP (fi, fj) = P (fi fj) − P (fi) P (fj) =
P ((fi −P (fi)) (fj −P (fj))) (provided that the second moment exists). When the em-

pirical process is considered over the whole class of measurable functions F , the notation

{Gn(f) ∶ f ∈ F} is used. In the following Subsection 1.2.1 pre-Gaussian and Donsker

classes are introduced. The goal of the Donsker’s theorem is making the statement of the

Central Limit Theorem uniform in the class F . In this direction, it is usually assumed

that

sup
f∈F
(∣f(x) −P(f)∣) <∞, for all x ∈ X .

So, the weak convergence of {Gn(f) ∶ f ∈ F} (uniform in F) essentially amounts to state

conditions for the weak convergence in ℓ∞ (F).

1.2.1 Pre-Gaussian and Donsker classes

In this section we follow A. van der Vaart and Wellner (1996, Part 1). Some additional

details, omitted here, can be found there. The starting point for the uniform weak conver-

gence of {Gn(f) ∶ f ∈ F} is determining the candidate for the limit process. By simplicity,

call it GP. By the properties of weak convergence ↝ of random variables, GP must be

tight in ℓ∞(F). Further, by the multidimensional Central Limit Theorem, it is a tight

Gaussian process in ℓ∞(F). At this point, the following concept arises concerning the

existence of the limit GP. Firstly, recall that a process {T (f) ∶ f ∈ F} is Gaussian if and

only if for every finite subset J of F , the vector {T (f) ∶ f ∈ J} is Gaussian.

Definition 9 (Pre-Gaussian class). The class F is called pre-Gaussian (or

P-pre-Gaussian) if and only if there exists a version of GP whose sample paths are uni-

formly continuous P-almost surely respect to the intrinsic pseudometric ρP, defined as

ρP(f, g) = E (∣GP(f) −GP(g)∣2)
1/2
, f, g ∈ F .

Further, any P-pre-Gaussian class is totally bounded respect to the intrinsic pseu-

dometric ρP. Actually, in Definition 9 any p-mean pseudodistance can be taken. The goal

of taking the exponent 2 relies in the fact that, given the covariance structure of GP, ρP
is expressed as

ρP(f, g) = P((f −P(f)) (g −P(g)))1/2 = (P ((f − g)2) − (P(f − g))2)
1/2

f, g ∈ F .

Moreover, if the class F is contained L1(X ,S,P) ≡ L1(P)-bounded, then ρP is equivalent to

the L2(P) semimetric ρL2(P)= (P ((f − g)
2))

1/2
. The process GP is known in the literature

as P-Brownian bridge.
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Note that Gn is linear when acting on elements of F . At this point, it is worth

asking how much of this linearity is preserved by GP. Let us introduce the following

notion of linearity.

Definition 10. If X is a subset of a vector space, a function g ∶ X Ð→ R is said to be

prelinear on X if ∑r
i=1 λi g (xi) = 0 whenever ∑r

i=1 λi xi = 0, for r ∈ N, λi ∈ R and xi ∈ X
(i = 1, . . . , r).

Let {GP(f) ∶ f ∈ F} be a P-Brownian bridge indexed by F . Observe that if

∑r
i=1 λi fi = 0, with λi ∈ R and fi ∈ F (i = 1, . . . , r), we have that

E(
r

∑
i=1

λiGP (fi))
2

= P
⎛
⎝
(

r

∑
i=1

λi fi)
2⎞
⎠
− (P(

r

∑
i=1

λi fi))
2

= 0. (1.3)

From (1.3), and using the Karhunen-Loève expansion of the P-Brownian bridge, it can

be shown that GP has prelinear sample paths a.s. (see the proof of Giné and Nickl (2021,

Theorem 3.7.28) for details). Actually, this is true if F is P-pre-Gaussian (see Giné and

Nickl (2021, Definition 3.7.26, p. 251) and Giné and Nickl (2021, Remark 3.7.27)).

Nevertheless, the existence of GP is not a sufficient condition to derive the weak

convergence of Gn.

Definition 11. The class F is said to be P-Donsker if and only if the process {Gn(f) ∶ f ∈ F}
converge weakly (uniformly in ℓ∞(F)) to GP. The class F is said to be universal or uni-

form Donsker if and only if it is P-Donsker for every probability measure P on the sample

space (X ,S).

At first glance, it might look like previous definition does not give any information.

Several sufficient conditions for the Donsker property to hold are known. Briefly speaking,

this conditions are related to how many balls of a fixed radius are needed to cover a

uniformly bounded class F and how this number behaves when the radius of the balls

tends to 0. Details about these characterizations of the Donsker property are used in

Chapter 5. For further reading see Giné and Nickl (2021), Ledoux and Talagrand (1991),

A. W. van der Vaart (2000), and A. van der Vaart and Wellner (1996), among others. In

Section 4.6, a Donsker’s theorem for particular sets of RKHS is proved. Also, in Chapter

5, devoted to the uniqueness of k-means sets, the Donsker property plays a relevant role

to derive the asymptotics results and a test for uniqueness.

1.2.2 Related topics

In this subsection we just focus on two particular, simple cases, of empirical process in this

work. In the final paragraphs, we outline the plug-in methodology that plays a central

role in what follows.



20 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

Classical empirical process

Usual classes of functions considered in literature are {1(−∞,x1]×...×(−∞,xd] ∶ x = (x1, . . . , xd)
∈ Rd} or {1(−∞,x1]×...×(−∞,xd] ∶ x = (x1, . . . , xd) ∈ Rd}, where 1A is the indicator function of

the set A. Note that P (1(−∞,x1]×...×(−∞,xd]
) = F (x) for any x ∈ Rd,Rd, where F is the

distribution function of the measure P. Analogously, the empirical distribution function

(associated to a sample X1, . . . ,Xn) Fn is defined as Pn (1(−∞,x1]×...×(−∞,xd]
). As the reader

can infer, these classes of functions are usually used to derive Central Limit Theorems for

real multivariate random variables.

In this context, the empirical process Gn takes the following form: Gn (1(−∞,x]) =√
n (Fn(x) − F (x)). Other usual notations are Gn(x) or Gn,x. The class of indicators is

universally Donsker for measures with finite second moment (∫Rd ∥x∥22 dF (x) <∞). It is

also quite common finding that the limit is denoted by BF . The “B” comes from the word

bridge, as this process was formerly known as F-Brownian bridge. With the same notation,

we have that the covariance structure of BF is E (BF (x)BF (y)) = F (x ∧ y) − F (x)F (y),
where x∧y = (min (x1, y1) , . . . ,min (xd, yd)). This notation is extensively used in Chapter

3 since the majority of the situations posed there belongs to this classic framework. For

the sake of completeness, the process B = {Bx ∶ x ∈ [0,1]}, in other words, when F ≡ 1[0,1];
is known as the standard Brownian bridge. Note that BF = B ○ F .

Independent empirical processes

Throughout the former section the focus was on the empirical process given one data

sample X1, . . . ,Xn of i. i.d. following the distribution of P. In the homogeneity problem,

given two unknown measures P and Q, the null hypothesis H0 ∶ P = Q (against the

alternative H1 ∶ P ≠ Q) is tested. Hence, we have two samples: X1, . . . ,Xn coming

from P, and Y1, . . . , Ym, from Q. These samples are assumed to be independent. This

framework usually appears in science when two identical experiments are done under the

same conditions (null hypothesis) and the goal is validating the results. Therefore, this

mathematical scenario is in the heart of science as it provides the necessary tools in a

quite general scenario.

Given the two samples described above, we consider

Pn =
1

n

n

∑
i=1

δXi
, Qm =

1

m

m

∑
i=1

δYi
,

and the respective empirical processes GP
n =
√
n (Pn −P) and GQ

n =
√
m (Qm −Q). Fur-

ther, given that in this problem the interest is focus on discriminating P and Q, the

process Gn,m =
√

nm
n+m (Pn −Qm −P+Q). Provided that the class F is P and Q-Donsker

and that n
n+m

(n,m)→∞Ð→ ξ ∈ [0,1],

Gn,m ↝ G =
√

1 − ξGP −
√
ξGQ, (1.4)

holds, where GP and GQ are independent P and Q-Brownian bridges, respectively; and

independent. As it can be observed, G is Gaussian process with continuous sample paths
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respect to the pseudometric ρ =max (ρP, ρQ) (or other equivalent metric such as the sum

ρP + ρQ), with mean 0 and covariance

E(G(f)G(g)) = ξCovP(f, g) + (1 − ξ)CovQ(f, g), f, g ∈ F ,

with Covν(f, g) = ν(f g) − ν(f)ν(g), ν ∈ {P,Q}.

Plug-in estimation

In statistical problems we often deal with functionals φ(P) of the underlying distribution

P. A natural estimator of φ(P), often called “plug-in estimator”, is just φ (Pn). So, it is

obtained by just replacing P with the empirical probability measure Pn corresponding to

a random sample of size n. The use of differentiability techniques, as those considered in

this work, is particularly relevant analyze how φ (Pn) approximates φ(P).
The plug-in methodology underlies our approaches to the problems we consider in

Chapters 4 and 5.

1.3 Reproducing Kernel Hilbert Spaces

The theory of RKHS is relevant in this thesis, particularly in Chapter 4. This is a

classical and well-known topic; see Janson (1997, Appendix F) for a brief account of the

RKHS theory and Berlinet and Thomas-Agnan (2011) or Hsing and Eubank (2015) for

a statistical perspective. As it can be inferred from the introduction of Berlinet and

Thomas-Agnan (2011), RKHS are important because they provide an environment to

define transformations to solve classical problems in statistics. An outstanding example

is the support vector machines algorithm, a linear classification method where the data

is carried to a space of larger dimension (see Vapnik (1999, Chapter 5)). In this work we

use the same idea, known as the kernel trick, to perform an homogeneity test in the same

way as Gretton et al. (2007) and the references therein (see Chapter 4). But first, for the

sake of completeness, let us remind some important features of these spaces.

Definition 12. Let H be a Hilbert space of real-valued functions on X with inner product

⟨⋅, ⋅⟩
H

. A function k ∶ X ×X Ð→ R is called a reproducing kernel of H if and only if

(a) For y ∈ X , the function k(⋅, y) ∈ H;

(b) Reproducing property: For y ∈ X and f ∈ H, we have that ⟨f, k(⋅, y)⟩
H
= f(y).

If the Hilbert space has a reproducing kernel k, H is called a reproducing kernel Hilbert

space (RKHS in short). To highlight the underlying kernel, we will write H ≡ Hk and

⟨⋅, ⋅⟩
H
≡ ⟨⋅, ⋅⟩

Hk
.

By the reproducing property, every kernel is symmetric and positive definite func-

tion. Conversely, let k ∶ X × X → R be a kernel, that is, a symmetric and positive
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semi-definite function. Let us consider H0
k, the pre-Hilbert space of all finite linear com-

binations g(⋅) = ∑n
i=1αi k (xi, ⋅) (with αi ∈ R, n ∈ N and xi ∈ X ), endowed with the inner

product

⟨
n

∑
i=1

αi k (xi, ⋅) ,
m

∑
j=1

βj k (xj, ⋅)⟩
Hk

=∑
i,j

αi βj k (xi, xj) . (1.5)

The space Hk is characterized as the pointwise limits of Cauchy sequences in this pre-

Hilbert space. The statement of this paragraph is known as Moore-Aronszajn’s theorem

(Berlinet and Thomas-Agnan (2011, Theorem 3)). Additionally, the RKHS Hk is the

completion of H0
k.

Definition 12 is equivalent to saying that Hk is a Hilbert space of functions on

X such that for all x ∈ X the evaluation function evx ∶ Hk Ð→ R, defined for h ∈ Hk by

evx (h) = h(x), is a continuous map (see Berlinet and Thomas-Agnan (2011, Theorem 1)).

Therefore, by Riesz’s representation theorem, for each x ∈ X , there exists φx ∈ Hk such

that for all f ∈ Hk, f(x) = ⟨f,φx⟩Hk
, or just f = ⟨f,φ⟩

Hk
. The function φ is often called

feature mapping. By the reproducing property, we have that φx = k(⋅, x). In particular,

k(x, y) = ⟨φx, φy⟩Hk
.

1.3.1 The mean embedding

A priori, functions inHk do not need to be integrable, not even measurable. Necessary and

sufficient conditions for measurability are provided in Berlinet and Thomas-Agnan (2011,

Theorem 90) when Hk is separable. Given a Borel probability measure ν, typical condi-

tions imposed on k in this context are ∫X
√
k(x,x) dν(x) < ∞ or ∫X k(x,x) dν(x) < ∞.

These conditions, satisfied for the families usually used in Statistics (see 4.3 and Sripe-

rumbudur (2016)), are closely related to Bochner integrability of the feature mapping,

that is ∫X k(x,x)
γ/2 dν(x) = ∫X ∥φx∥γHk

dν(x) with γ > 1. In this subsection we deal with

the weak or Pettis integrability of the feature mapping. Specifically, we stablish an equiv-

alence between the continuity of the integral as a functional in Hk and Pettis integrability

of the feature mapping. From now on, we assume that X is a separable topological space

(metrizable if required).

Definition 13. Let (Hk, ⟨⋅, ⋅⟩Hk
) be a RKHS on X and let ν be a Borel probability

measure on X . The mean embedding of ν is an element µν ∈ Hk such that for all f ∈
Hk, ν (f) = ∫X f(x) dν(x) = ⟨f, µν⟩Hk

.

Note that we are denoting the integral of f respect to the measure ν as ν(f),
as in the empirical processes theory (see A. van der Vaart and Wellner (1996)[Chapter

2.1]). By the Riesz’s representation theorem (Conway (2019, Chapter 1.3)), necessary

and sufficient condition for the existence of the mean-embedding is the continuity of the

integral in Hk. In fact, this statement is valid for every Hilbert space. In a RKHS, thanks

to the reproducing property, we can give additional characterizations. The following

definition has been taken from Pettis (1938, Definition 2.1).
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Definition 14. Let (Hk, ⟨⋅, ⋅⟩Hk
) be a RKHS on X and F ∶ X Ð→ Hk be a weakly

measurable map, that is, for every g ∈ Hk the real function ⟨F, g⟩
Hk

is measurable. We

say that F is Pettis or weakly integrable with respect to a Borel probability measure ν on

X if and only if

1. For every h ∈ Hk, the map

⟨F,h⟩
Hk
∶ X Ð→ R
x ↦ ⟨F (x), h⟩

Hk

.

lies in L1(ν).

2. There exists mF ∈ Hk such that for every h ∈ Hk, ⟨mF , h⟩Hk
= ν (⟨F,h⟩

Hk
).

The element mF of Hk is called the integral of F (with respect to ν).

Remark 15. When F (x) = k(⋅, x) = φx, the feature mapping Definition 14 can be rewrit-

ten as:

1. By the reproducing property, condition 1 is equivalent to Hk ⊆ L1(ν).

2. By the Riesz’s representation theorem and the reproducing property, condition 2 is

equivalent to that the integral ν is a continuous functional on Hk.

By Remark 15, the Pettis integrability of the feature mapping with respect to a

measure is equivalent to the existence of the mean embedding of such measure. Let us

now focus on the properties of Pettis integral to state necessary and sufficient conditions

about the existence of the mean embedding. More specifically, we show that, in Definition

14, condition 1 implies condition 2.

Proposition 16. Let (Hk, ⟨⋅, ⋅⟩Hk
) be a RKHS on X and let ν be a Borel probability

measure on X . The following four conditions are equivalent:

1. There exists the mean embedding µν of ν in Hk.

2. The feature mapping φ is Pettis ν-integrable.

3. Let FHk
be the unit ball of Hk. Then, sup

f∈FHk

(ν(f)) <∞.

4. Hk ⊆ L1(ν).

In any, and hence all, of these situations, ν defines a continuous linear functional on Hk

and

∥µν∥Hk
= ∥ν∥H∗

k
= (∫

X
∫
X
k(x, y) dν(y) dν(x))

1/2

, (1.6)

where H∗k is the dual space of Hk.

Proof. Let us prove the following equivalences: 1⇔2,2⇔3 and 2⇔4.
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1⇔2. The proof of this equivalence is a formalization of the statement of Remark 15. By

definition of the feature mapping φ, for every f ∈ Hk ∫X ∣f(x)∣ dν(x) =
∫X ∣⟨f,φx⟩Hk

∣ dν(x). That is, condition 1 in Definition 14 andHk ⊆ L1(ν) are equiva-

lent. Additionally, for every f ∈ Hk ⟨f, µν⟩Hk
= ∫X f(x) dν(x) =

∫X ⟨f,φx⟩Hk
dν(x), so condition 2 in Definition 14 and the existence of mean em-

bedding are equivalent.

2⇔3. Condition 1 in Definition 14 means that ν is well defined (as a linear functional

on Hk). Additionally, by the Riesz’s representation theorem (see Conway (2019,

Chapter 1, 3.4)), condition 2 in Definition 14 and the continuity of ν are equivalent.

Since ν is linear, continuity of ν and sup
f∈FHk

(∣ν(f)∣) <∞ are equivalent (see Conway

(2019, Chapter 1, 3.1)).

2⇔4. It is clear that, by condition 1 in Definition 14, statement 2 implies claim 4.

Conversely, let us assume that Hk ⊆ L1(ν), which is condition 1 in Definition 14. By

Hille and Phillips (1957, Theorem 3.7.1), there exists h∗∗ ∈ H∗∗k (the bidual space of

Hk) such that for every f ∈ Hk,

h∗∗ (⟨⋅, f⟩
Hk
) = ∫

X
⟨φx, f⟩Hk

dν(x) = ∫
X
f(x) dν(x),

where ⟨⋅, f⟩
Hk

stands for the functional associated with f by the Riesz’s representa-

tion theorem. Such h∗∗ is unique. Since every Hilbert space is reflexive, there exists

h ∈ Hk such that for every f ∈ Hk satisfies h∗∗ (⟨⋅, f⟩
Hk
) = ⟨h, f⟩

Hk
. Then condition

2 of Definition 14 holds. We conclude that h is the Pettis integral of φ with respect

to ν.

Formula (1.6) is just the expression of the norm of µν deduced from the properties of

Pettis integral.

For example, conditions 1-4 in Proposition 16 always hold if ∫X ∥φx∥Hk
dν(x)

= ∫X
√
k(x,x) dν(x) <∞. Indeed, by Cauchy–Schwarz inequality,

∣ν(f)∣ = ∣∫
X
⟨f, k(⋅, x)⟩

Hk
dν(x)∣ ≤ ∥f∥Hk ∫

X

√
k(x,x) dν(x).

Hence, we conclude that there exists µν satisfying Definition 13. In particular, any

bounded kernel trivially fullfills this requirement. This property is known as Bochner

or strong integrability (see Hille and Phillips (1957, Definition 3.7.3))

The mean embedding of ν can be seen as a smoothed representation of the distribu-

tion of ν using the kernel k within the RKHS. This becomes evident when ν is absolutely

continuous with density fν and k is a translation-invariant kernel, i.e., k(x, y) = Φ(x− y),
for some real function Φ (see Wendland (2004, Chapter 6) or Wynne and Duncan (2022,

Appendix A.1)). In this scenario, µν is the convolution of fν and Φ. Additionally, mean

embeddings, also known as “potential functions”, appear in other mathematical fields,

such as functional analysis (see El-Fallah et al. (2014, p. 15)). Furthermore, the mean

embedding plays a crucial role in hypothesis testing based on kernel distances and uniform

kernel distances (see Sejdinovic et al. (2013), Section 4.2, and the references therein).



Chapter 2

Directional differentiability for

supremum-type functionals

The aim of this chapter is to discuss the (directional) differentiability of the supremum

norm –as well as various related functionals that commonly appear in statistics– viewed

as a real functional from the space of bounded functions defined on an arbitrary set or a

measure space. We consider the supremum norm, the supremum, the infimum, and the

amplitude of a real function. The (usually non-linear) derivatives of these maps adopt

simple expressions under suitable assumptions on the underlying space.

2.1 Introduction

The general framework

The supremum or uniform norm has been systematically used in statistics to quantify the

deviation between an observed model and a theoretical one. A well-known case is the

goodness-of-fit problem, where the Kolmogorov distance (i.e., the uniform distance be-

tween distribution functions) is one of the main tools to carry out the testing procedures.

In this context, the prototypical example is the Kolmogorov-Smirnov test in which the

supremum norm between the empirical distribution function of the sample and the refer-

ence distribution function is employed. The sup-norm has also been notably considered

in the literature of almost all fields of statistics such as robustness, density estimation,

regression and classification, among others. The reason for the extensive use of this dis-

tance might rely on different factors: it has a clear and simple interpretation; it takes into

account the global behaviour of the functions; and, in general, it is easy to compute.

The problem under study

Throughout this chapter, X is a nonempty set and ℓ∞(X) is the real Banach space of

bounded functions f ∶ X Ð→ R, equipped with the supremum norm, ∥f∥∞ = sup
x∈X
(∣f(x)∣).

Usually, we will omit the variable x in the supremum, denoting it as sup
X
(f). If addi-

tionally (X,S, ν) is a measure space, where S is a σ-algebra and ν a positive measure,

25
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we denote by L∞(X,S, ν) the set of classes of equivalence of measurable and essentially

bounded functions f ∶ XÐ→ R with the norm ∥f∥L∞(X,S,ν) = ess sup
X
(∣f ∣), where

ess sup
X
(f) = sup({C ∈ R ∶ ν({x ∈ X ∶ f(x) ≤ C}) > 0})

= inf({C ∈ R ∶ ν({x ∈ X ∶ f(x) > C}) = 0}).

Important examples of this general setting are X = Rd or Rd (d ≥ 1), with R ≡ [−∞,+∞] the

extended real line, and X = F , a class of real valued functions. In fact, L∞(X,P(X), ν) =
ℓ∞(X), where ν is the counting measure. From now on, unless specifically mentioned, we

use this space for the sake of simplicity.

For θ ∈ ℓ∞(X), the quantity of interest that we want to estimate is ϕ(q), where ϕ

is any of the following functionals:

δ(f) = ∥f∥∞, σ(f) = sup
X
(f), ι(f) = inf

X
(f), and

α(f) = amp
X
(f), for f ∈ ℓ∞(X),

(2.1)

with amp
X
(f) = sup

X
(f) − inf

X
(f), the amplitude of the function f .

We will assume that θ can be estimated by Tn, a random element taking values in

ℓ∞(X) a.s. satisfying

rn (Tn − θ)↝ T in ℓ∞(X), a. s. n→∞, (2.2)

where rn is a sequence of real numbers such that rn → ∞, T is a tight Borel random

variable in ℓ∞(X), and we use the arrow “↝” to denote the weak convergence of probability

measures. The scaling rn usually goes to infinity as
√
n, but its behaviour could be

different in some examples.

For φ ∈ {δ, σ, ι, α} in (2.1), we are interested in analyzing the asymptotic behaviour

of the normalized estimator of φ(θ), that is, the statistic given by

Dn(φ) ≡Dφ (θ, Tn, rn) = rn (φ (Tn) − φ(θ)) . (2.3)

Background

By the Continuous Mapping Theorem (see A. van der Vaart and Wellner (1996, Theorem

1.3.6)), when θ = 0 (the null function), the weak convergence in (2.2) directly implies that

Dn(φ) ↝ φ(T ). (Note that in this case “↝” is the usual convergence in distribution of

random variables since φ is real valued.) This situation often corresponds to the case in

which Dn(φ) is a normalized discrepancy –usually measured in terms of the sup-norm–

for testing the null hypothesis H0 ∶ θ = 0. In this setting, the limiting behaviour of Dn(φ)
if θ ≠ 0 provides information regarding the asymptotic power of the underlying testing

procedure. The classical result on the asymptotic distribution of the Kolmogorov-Smirnov

statistic under the null hypothesis (see, e.g., A. W. van der Vaart (2000)) is a well-known

example.
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Finding the asymptotic distribution of Dn(φ) in (2.3) when θ is not identically

zero is a more challenging problem. So far, this problem has been tackled generally for

the sup-norm and some particular choices of the function θ. To the best of our knowledge,

the first remarkable result in this direction was obtained by Raghavachari (1973). This

author found the asymptotic distribution of the normalized version of the plug-in estima-

tor of φ(F −G) (for φ ∈ {δ, σ,α}) in the one-sample and two-sample cases when F and

G are continuous univariate distribution functions. (The results in Raghavachari (1973)

have also been summarized in DasGupta (2008, Chapter 26).) Over the years, the ideas in

Raghavachari (1973) have been used and replicated by several authors to obtain different

results in similar settings. A non-exhaustive list of these references is: Álvarez-Esteban

et al. (2012); Álvarez-Esteban et al. (2016); Freitag et al. (2006); Hjort (1990); Schmoyer

(1988); among others. In Genest and Nešlehová (2014), the authors discussed a test of ra-

dial symmetry for copulas in which the key element is the estimation of ∥C −C∥
∞

, where

C is a bivariate copula and C is its survival copula. Dette et al. (2018) used the same tech-

nique to find the asymptotic distribution of the estimator of ∥m1 (β1) −m2 (β2)∥∞, where

m1 (β1) and m2 (β2) are regression functions with parameters β1 and β2, respectively.

The proposed methodology

In all the previous references the same approach has been used to compute the limiting dis-

tributions: the direct probabilistic analysis of the considered statistics. For instance, the

proofs in Raghavachari (1973) are essentially based on a careful analysis of the behaviour

of the empirical process in the set of points around which the supremum in ∥F −G∥∞ is

attained. However, we explore here an alternative, more general, approach. It is based

on the idea that the statistics in (2.3) have indeed the usual form suitable to apply the

functional Delta method. Therefore, in light of (2.3), a direct and intuitive approach to

find the asymptotic distribution of Dn(φ) could be to analyze the differentiability of the

maps in (2.1) and use the functional Delta method. In fact, as it will become evident in

this chapter, looking at the behaviour and analytic properties of the underlying functional

is much more enlightening than working directly with the probability distribution of the

statistic.

Though there are many possible ways of defining the concept of differentiability of

maps between metrics or normed spaces, within this context Hadamard differentiability

is perhaps the most convenient as it is appropriate for applying the functional Delta

method A. W. van der Vaart (2000, Section 20). However, there are many important

maps which are not Hadamard differentiable. Thus, for example, the functionals in (2.1)

are clearly continuous but non-differentiable. Despite not being fully differentiable, we

will show that these maps are Hadamard directionally differentiable. This weaker notion of

differentiability was introduced by Shapiro (1990). Shapiro (1991) and Dümbgen (1993)

(see also Römisch (2004)) independently showed that the Delta method still holds for

directional differentiable maps. Recently, this idea has been successfully exploited in

Beare and Fang (2017) and Sommerfeld and Munk (2018). Fang and Santos (2019) also

illustrate the applicability of the directional differentiability to a wide variety of problems
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in econometrics.

Structure of the chapter

In Section 2.2 we prove that the maps in (2.1) are Hadamard directional differentiable and

determine their derivatives (see 1.1). In particular, this implies that an extended version

of the functional Delta method can be applied for these mappings. As far as we know, in

the statistical community the Hadamard directional differentiability of the infimum under

no additional conditions on the underlying space was first obtained by Römisch (2004,

Proposition 1), after a personal communication of P. Lachout. Fang and Santos Fang and

Santos (2019, Lemma S.4.9), also obtained an expression for the Hadamard directional

derivative of the supremum for continuous functions defined on a compact metric space.

If the space X is endowed with additional structure, then simpler expressions for

the derivatives can be obtained as well as exact conditions under which the maps are fully

Hadamard differentiable. We specifically deal with the case where X is a compact metric

space (Section 2.3), a totally bounded metric space (Section 2.4), weakly compact subset

of a Banach space (Section 2.5), and the union of unit balls of a family of reproducing

kernel Hilbert spaces. We also consider in detail the situation in which X = Rd and the

functions belong to D (Rd), the extension of the Skorohod space in [0,1]d (introduced in

Neuhaus (1971)) to the whole Rd. The space D (Rd) is an important subspace of ℓ∞ (Rd)
as it includes the paths of many well-known stochastic processes with jumps in their paths

such as multivariate empirical and copula processes.

In the following sections we discuss the analytic properties of the functionals intro-

duced according to the mathematical structure of X. Specifically, we show the Hadamard

differentiability of them under a variety of situations, quite common in statistics.The ver-

satility of the proposed methodology is illustrated in depth in Chapter 3, Chapter 4 and

5, where we derive the asymptotic distribution of various statistics with no additional

effort. We base the results on the directional differentiability of the functionals and the

weak convergence of the underlying stochastic processes. Hence, this unifying approach

allows us to reduce a usually difficult statistical problem to a much simpler analytical

question related to the directional differentiability of the corresponding functional.

2.2 A general result

In the next theorem we show that the maps introduced in Section 2.1 are directionally

differentiable at every function of ℓ∞(X), where X is an arbitrary set. In the sequel sgn(⋅)
denotes the sign function:

sgn(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−1 if x < 0,

0 if x = 0,

1 if x > 0.
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Theorem 17. The maps δ, σ, ι and α in (2.1) are Hadamard directionally differentiable

at every f ∈ ℓ∞(X). For g ∈ ℓ∞(X), their derivatives are respectively given by

δ′f(g) = lim
ε↘0

sup
Aε(∣f ∣)

(g sgn(f)), σ′f(g) = lim
ε↘0

sup
Aε(f)

(g),

ι′f(g) = lim
ε↘0

inf
Bε(f)

(g), α′f(g) = lim
ε↘0
( sup
Aε(f)

(g) − inf
Bε(f)

(g)) ,
(2.4)

where, for ε > 0 and h ∈ ℓ∞(X), Aε(h) and Bε(h) are the superlevel and sublevel sets of h

defined by

Aε(h) = {x ∈ X ∶ h(x) ≥ sup
X
(h) − ε} and Bε(h) = {x ∈ X ∶ h(x) ≤ inf

X
(h) + ε} .

Moreover, if (X,S, ν) is a measure space, the result still holds if we substitute the suprema

(respectively infima) by essential suprema (respectively infima) with respect to ν.

Proof. First of all, observed that δ, σ, ι, and α are locally Lipschitz funcionals on ℓ∞(X).
Then, by Remark 3, it suffices to prove that they are Gâteaux directional differentiable.

Let us fix f ∈ ℓ∞(X)∖{0}. We start with σ as the conclusion for the rest of the maps can

be derived from this case. For n ∈ N and each sequence of real numbers (sn)n∈N such that

sn ↗∞, we consider σn(f) ∶ ℓ∞(X)Ð→ R defined by

σn(f, g) = sup
X
(sn f + g) − sn sup

X
(f), g ∈ ℓ∞(X). (2.5)

In order to proof that σ is Gâteaux differentiable, it suffices to show that σn(f, g)→ σ′f(g),
as n→∞, with σ′f(g) defined in (2.4). As it can be observed, sn = 1

tn
in Definition 1. For

ε > 0 and x ∉ Aε(f), we have that

sn f(x) + g(x) − sn sup
X
(f) ≤ sup

X
(g) − sn ε.

Hence, for all ε > 0, we obtain that

lim sup
n→∞

σn(f, g) = lim sup
n→∞

( sup
Aε(f)

(sn f + g) − sn sup
X
(f))

≤ sup
Aε(f)

(g).
(2.6)

Conversely, let us define

h(ε) = sup
Aε(f)

(g), ε > 0. (2.7)

Observe that h is non-decreasing and thus the limit as ε decreases to 0 exists and, by

definition, coincides with σ′f(g). For each m ∈ N, there exists xm ∈ A1/m(f) satisfying

g (xm) ≥ h(
1

m
) − 1

m
and f (xm) ≥ sup

X
(f) − 1

m
. (2.8)
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From (2.8), for each sn, we have that

h( 1

m
) ≤ g (xm) +

1

m

= sn f (xm) + g (xm) − sn f (xm) +
1

m

≤ sup
X
(sn f + g) − sn (sup

X
(f) − 1

m
) + 1

m

= σn(f, g) +
(sn + 1)
m

.

(2.9)

Now (2.9) implies that, for all n ∈ N,

lim
ε↘0

sup
Aε(f)

(g) = lim
m→∞

h( 1

m
) ≤ σn(f, g). (2.10)

The proof corresponding to σ follows from (2.6) and (2.10).

Now, we consider the map δ in (2.1). Assume that f ∈ ℓ∞(X) with ∥f∥∞ > 0.

For g ∈ ℓ∞(X), we have to show that δn(f, g) → δ′f(g), as n → ∞, where δn(f, g) =
∥sn f + g∥∞ − sn ∥f∥∞ and sn ↗∞. First, for ε < ∥f∥∞2 and sn > 2 ∥g∥∞

∥f∥∞ , it is readily checked

that sn ∣f ∣ + sgn(f) g ≥ 0 globally on Aε(∣f ∣). We hence conclude that

lim
n→∞

δn(f, g) = lim
n→∞

σn(∣f ∣, g sgn(f)) = σ′
∣f ∣(g sgn(f)) = δ′f(g).

The proof for ι and α follows from the duality between supremum and infimum and

linearity of differentiation (see Theorem 4).

Finally, the case in which X is a measure space can be treated in a similar way so

it is therefore omitted.

Remark 18. From the proof of Theorem 17 it can be inferred that the (real) limits which

appears in the definition of Hadamard directional differentiability can be computed for σ

and ι in more general contexts. For instance, if f ∈ ℓ∞+ (X), where

ℓ∞+ (X) = {f ∶ XÐ→ R ∶ sup
X
(f) <∞} ,

and gn → g in ℓ∞(X), we still have that

∣σ (f + tn gn) − σ(f)
tn

− σ′f(g)∣ ≤ ∥gn − g∥∞ + ∣σ (
f

tn
+ g) − σ ( f

tn
) − σ′f(g)∣ .

Therefore, the same lines as in the proof of Theorem 17 show that the limit fo the left hand

side when n → ∞ can be computed for σ when f ∈ ℓ∞+ (X) and the value is σ′f(g) given

in (2.4), which is well defined, for g ∈ ℓ∞(X). Further, as in proof of the extended Delta

method (see Proposition 5), the extended Continuous Mapping Theorem (see A. van der

Vaart and Wellner (1996, Th. 1.11.1)) still works in this case because the argument in

the previous proof only depends on the set Aε(f) (those points in X that are close to

sup
X
(f)). Analogously, the map ι is Hadamard directionally differentiable over the class

ℓ∞− (X) = {f ∶ XÐ→ R ∶ −∞ < inf
X
(f)} .
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Remark 19. We observe that δ = σ○a, where a ∶ ℓ∞(X)Ð→ ℓ∞(X) is defined by a(f) = ∣f ∣.
With similar techniques it can be seen that a is Hadamard directional differentiability

and a′f(g) = sgn(f) g + ∣g∣1{f=0} where 1A denotes the characteristic function of the set

A. Specifically, define an(f, g) = ∣sn f + g∣ − sn ∣f ∣ where sn ↗∞ when n →∞. It is easily

proved that an(f, g)→ a′f(g) in ℓ∞(X) when n→∞. By the chain rule (Theorem 4):

δ′f(g) = σ′∣f ∣ (a′f(g)) = lim
ε↘0

sup
Aε(∣f ∣)

(g sgn(f) + ∣g∣1{f=0}) .

Finally, observe that if x ∈ Aε(∣f ∣), then f(x) ≠ 0, so the second term of the sum inside

the brackets of the right hand side of the previous equation drops out.

As pointed out in Section 2.1, Römisch (2004, Proposition 1), provides the same

result as Theorem 17 for the infimum. Obviously, the derivatives of the supremum and

amplitude of a function can be derived from the infimum by duality. The additional

contribution of Theorem 17 is the differentiability of the supremum norm operator, δ;

and the differentiability of the absolute value. Also, the proof we have included here is

slightly different to the one in Römisch (2004). The expressions in (2.4) will be used

throughout Sections 2.3–2.6 to obtain simplified expressions of the derivatives. The key

point is that, under additional conditions such as compactness or total boundedness,

convergent subsequences can be taken from the (maximizing) sequence of Equation (2.8).

Theorem 17 ensures that the functionals in (2.1) are Hadamard directionally differ-

entiable. Nevertheless, in general these maps are not uniformly Hadamard differentiable

(see Definition 7) as the following example shows.

Example 20. Let X be the interval [0,1] in R and we consider the function f ≡ 1. For

x ∈ [0,1] and n ∈ N, let fn(x) = 1 + x
n , g(x) = 1 − x, and sn = n. We have that fn → f

in ℓ∞(X) and it is easy to check that σn (fn, g) = 0, where σn is given in (2.5). However,

σ′f(g) = sup
[0,1]

(g) = 1. We conclude that σ is not uniformly Hadamard differentiable, and

therefore neither are the rest of the maps in (2.1).

Following the same ideas as in the proof of Theorem 17, the following partial result

can be proved.

Corollary 21. Let δ, σ, ι and α be as in (2.1). For each f , g ∈ ℓ∞(X) and all sequences

(tn)n∈N ∈ RN, (fn)n∈N, (gn)n∈N ∈ ℓ∞(X)N such that tn ↘ 0, fn → f and gn → g in ℓ∞(X),
we have that

lim sup
n→∞

δ (fn + tn gn) − δ (fn)
tn

≤ δ′f(g), lim sup
n→∞

σ (fn + tn gn) − σ (fn)
tn

≤ σ′f(g),

lim inf
n→∞

ι (fn + tn gn) − ι (fn)
tn

≥ ι′f(g), lim sup
n→∞

α (fn + tn gn) − α (fn)
tn

≤ α′f(g),
(2.11)

where δ′f , σ
′
f , ι

′
f and α′f are given in (2.4).

In general, the reverse inequalities in (2.11) fail to hold because it is not possible

to control the term (φ(fn)−φ(f))
tn

(for φ ∈ {δ, σ, ι, α}), for all sequences (tn)n ∈ N ∈ R and

(fn)n ∈ N ∈ ℓ∞(X) such that tn ↘ 0 and fn → f .
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2.3 Compact metric spaces

One of the most common occasions when the limit in ε of the derivatives in (2.4) can be

removed is when X is a compact metric space. The derivatives can be characterized by

means of convergent sequences in X as the following corollary shows.

Corollary 22. In the context of Theorem 17, let us further assume that (X, d) is a

compact metric space. The derivatives in (2.4) can be expressed as

δ′f(g) = sup
A0(∣f ∣)

((g sgn(f))▴
∣f ∣) , σ′f(g) = sup

A0(f)

(g▴f) ,

ι′f(g) = inf
B0(f)

(g▾f) , α′f(g) = sup
A0(f)

(g▴f) − inf
B0(f)

(g▾f) ,
(2.12)

where for h, l ∈ ℓ∞(X),

A0(h) ={x ∈ X ∶ ∃ (xn)n∈N ∈ XN such that xn → x and h (xn)→ sup
X
(h)} ,

B0(h) ={x ∈ X ∶ ∃ (xn)n∈N ∈ XN such that xn → x and h (xn)→ inf
X
(h)} ,

(2.13)

h▴l (x) = sup ({lim sup
n→∞

(h (xn)) ∶ xn → x and l (xn)→ sup
X
(l)}) , x ∈ A0(l),

h▾l (x) = inf ({lim inf
n→∞

(h (xn)) ∶ xn → x and l (xn)→ inf
X
(l)}) , x ∈ B0(l).

(2.14)

Proof. We only give a detailed proof for σ because the rest of the cases are analogous. We

consider the sequence (xm)m ∈ N satisfying (2.8) obtained in Theorem 17. As (X, d) is

compact, we can extract a convergent subsequence xmk
→ x in X, as k →∞. From (2.8),

we have that x ∈ A0(f) and, recalling (2.7), from Theorem 17, we obtain that

σ′f(g) = lim
k→∞

h( 1

mk

) ≤ lim sup
k→∞

g (xmk
) ≤ g▴f (x) ≤ sup

A0(f)

(g▴f) . (2.15)

In the other direction, let x ∈ A0(f) and (xn)n∈N ∈ XN such that xn → x and f (xn) →
sup
X
(f). For each ε > 0, we have that xn ∈ Aε(f), for n large enough. We therefore

conclude that

lim sup
n→∞

g (xn) ≤ sup
Aε(f)

(g), for all ε > 0. (2.16)

The conclusion follows from (2.15), (2.16) and Theorem 17.

Remark 23. From the proof of Corollary 22 we see that the result is still valid for

sequentially compact topological spaces. Nevertheless, this extension is not relevant for

the applications considered in this thesis and it is therefore omitted in what follows.

In the following, if (X, d) is a metric space we denote by Cb(X, d) the subset of

ℓ∞(X) constituted by continuous functions. By the extreme values theorem, if (X, d)
is compact, Cb(X, d) = C(X, d), where the latter is the space of continuous functions on

(X, d). We observe that if g ∈ Cb(X, d), then g▴f (x) = g(x) (x ∈ A0(f)) and g▾f (x) = g(x)
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(x ∈ B0(f)), where g▴f and g▾f are defined as in (2.14). If we further assume that f ∈
Cb(X, d), we have that A0(∣f ∣) =M+(∣f ∣), A0(f) =M+(f) and B0(f) =M−(f), where for

h ∈ ℓ∞(X),

M+(h) = {x ∈ X ∶ h(x) = sup
X
(h)} and M−(h) = {x ∈ X ∶ h(x) = inf

X
(h)} . (2.17)

This observation yields the following corollary.

Corollary 24. Let (X, d) be a compact metric space and let δ, σ, ι and α be the maps

defined in (2.1). The maps σ, ι and α are Hadamard directionally differentiable at any

f ∈ ℓ∞(X) tangentially to the set C(X, d) with derivatives, for g ∈ C(X, d),

σ′f(g) = sup
A0(f)

(g), ι′f(g) = inf
B0(f)

(g) and α′f(g) = sup
A0(f)

(g) − inf
B0(f)

(g). (2.18)

If additionally f ∈ C(X, d) ∖ {0}, we have that

δ′f(g) = sup
M+(∣f ∣)

(g sgn(f)), σ′f(g) = sup
M+(f)

(g),

ι′f(g) = inf
M−(f)

(g), α′f(g) = sup
M+(f)

(g) − inf
M−(f)

(g),
(2.19)

where M+(⋅) and M−(⋅) are defined in (2.17).

Observe that M+(∣f ∣) (respectively, M+(f) and M−(f)) in (2.17) is the set of

extremal points corresponding to the sup-norm (respectively, the supremum and infimum)

of f .

The expression of the derivative σ′f in (2.19) for continuous functions defined on

a compact metric space has been previously obtained in Fang and Santos (2019, Lemma

S.4.9). Observe that characterizations in (2.18) are valid even when the function f is not

continuous (as in the more general Corollary 22). Note also that M+(∣f ∣) (respectively,

M+(f) and M−(f)) in (2.17) is the set of extremal points corresponding to the sup-norm

(respectively, the supremum and infimum) of f .

Another interesting question is to find conditions under which the derivatives of the

maps are linear, i.e., the cases in which the mappings are fully Hadamard differentiable.

This kind of results can be traced back to Banach (1932) (see also Leonard and Taylor

(1983), Leonard and Taylor (1985), and the references therein). In these works the supre-

mum norm differentiability was investigated from the point of view of functional analysis

within the space C(X, d), with (X, d) a compact metric space. The following result, a

direct consequence of Corollary 24, provides general outcomes in a different context. We

denote by Card(A) the cardinal of the set A.

Corollary 25. Assume that (X, d) is a compact metric space and let f ∈ ℓ∞(X) ∖ {0}.
Let A0(⋅) and B0(⋅) be the sets in (2.13). For the maps defined in (2.1) we have that:

(a) The map δ is (fully) Hadamard differentiable at f tangentially to the set C(X, d) if and
only if Card (A0(∣f ∣)) = 1 and {lim sup

n→∞
sgn (f (xn)) ∶ xn → x and ∣f (xn)∣→ ∥f∥∞} =

{c}. In such a case, δ′f(g) = c g (x∗), where A0(∣f ∣) = {x∗}.
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(b) The map σ is (fully) Hadamard differentiable at f tangentially to the set C(X, d) if
and only if Card (A0(f)) = 1. In such a case, σ′f(g) = g (x+), where A0(f) = {x+}.

(c) The map ι is (fully) Hadamard differentiable at f tangentially to the set C(X, d) if
and only if Card (B0(f)) = 1. In such a case, ι′f(g) = g (x−), where B0(f) = {x−}.

(d) The map α is (fully) Hadamard differentiable at f tangentially to the set C(X, d) if
and only if Card (A0(f)) = Card (B0(f)) = 1. In such a case, α′f(g) = g (x+)−g (x−),
where A0(f) = {x+} and B0(f) = {x−}.

Note that when f ∈ C(X, d), A0(∣f ∣) = M+(∣f ∣) in (2.17) and the condition

Card (A0(∣f ∣)) = 1 means that f is a peaking function, that is, there exists x∗ ∈ X such

that ∣f (x∗)∣ = ∥f∥∞ and ∣f (x∗)∣ > ∣f(x)∣, for all x ∈ X with x ≠ x∗.
From a statistical point of view, identifying the cases in which the maps are

Hadamard differentiable has two important consequences when the limit in (2.2) is Gaus-

sian: firstly, as the linear derivatives are (essentially) the evaluation at an appropriate

point, by the extended Delta method (see Proposition 5), the asymptotic distribution of

the statistic in (2.3) is normal; secondly, the standard bootstrap for (2.3) is consistent if

and only if the underlying map φ is fully Hadamard differentiable (see Fang and Santos

(2019)).

2.4 Totally bounded metric spaces

If T is a tight Borel measurable map into ℓ∞(X) as in (2.2), then there is a pseudo-metric

on X such that the sample paths of T are uniformly continuous and X is totally bounded

(see A. van der Vaart and Wellner (1996, Lemma 1.5.9)). For statistical applications it

is therefore important to determine conditions under which the derivatives in (2.4) have

similar expressions as those in Corollary 24 when the underlying space is totally bounded.

We recall that if (X, d) is a totally bounded metric space, (X, d) is a compact

metric space, where X is the completion of X with respect to d. Further, the space

Cbu(X, d) of bounded and uniformly continuous functions f ∶ X Ð→ R is isometric to

C (X, d). Indeed, by the extreme values theorem, if (X, d) is a totally bounded metric

space, then Cbu(X, d) = Cu(X, d). Indeed, each f ∈ Cu(X, d) has a unique extension to a

function f ∈ C (X, d). For x ∈ X ∖X, this extension is defined by f(x) = lim
n→∞

f (xn), with

(xn)n∈N ∈ XN such that xn → x. (In fact, Cauchy-continuity is enough to check that f is

well-defined, but uniform continuity suffices for our purposes.)

In this setting, it is straightforward to check that Corollary 22 still holds if we

substitute the sets A0(⋅) and B0(⋅) by

A0(h) ={x ∈ X ∶ ∃ (xn)n∈N ∈ XN such that xn → x and h (xn)→ sup
X
(h)} ,

B0(h) ={x ∈ X ∶ ∃ (xn)n∈N ∈ XN such that xn → x and h (xn)→ inf
X
(h)} ,

(2.20)
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for h ∈ ℓ∞(X). In particular, the following corollary, important for the statistical applica-

tions included in Section 3.4 and Chapter 5, holds.

Corollary 26. Let (X, d) be a totally bounded metric space and let δ, σ, ι and α be the

maps defined in (2.1).

(a) The maps σ, ι and α are Hadamard directionally differentiable at f ∈ ℓ∞(X) tangen-
tially to the set Cu(X, d) with derivatives, for g ∈ Cu(X, d),

σ′f(g) = sup
A0(f)

(g) , ι′f(g) = inf
B0(f)

(g) and α′f(g) = sup
A0(f)

(g) − inf
B0(f)

(g) ,

where A0(⋅) and B0(⋅) are defined in (2.20).

(b) If additionally f ∈ Cu(X, d) ∖ {0}, we have that

δ′f(g) = sup
M
+
(∣f ∣)

(g sgn (f)) , σ′f(g) = sup
M
+
(∣f ∣)

(g) ,

ι′f(g) = inf
M
−
(∣f ∣)

(g) , α′f(g) = sup
M
+
(∣f ∣)

(g) − inf
M
−
(∣f ∣)

(g) ,

where for h ∈ Cu(X, d),

M
+(h) = {x ∈ X ∶ h(x) = sup

X
(h)} and M

−(h) = {x ∈ X ∶ h(x) = inf
X
(h)} . (2.21)

Remark 27. Corollary 25 still holds if (X, d) is a totally bounded metric space and

we replace C(X, d), A0(⋅) and B0(⋅) with Cu(X, d), A0(⋅) and B0(⋅) (defined in (2.20)),

respectively.

2.5 Weakly compact sets

The compacteness assumption on X in Corollaries 22 and 24 could be too demanding in

some infinite-dimensional settings. A simple inspection of the proof of Corollary 22 shows

that a similar result can be stated when X is a weakly compact subset of a Banach space by

using Eberlein–Šmulian’s theorem (see Conway (2019, p. 163)). In such a case, Corollary

22 still holds by substituting the sets A0(h) and B0(h) in (2.13) and the quantities h▴f(x)
and h▾f(x) in (2.14) respectively by

Aw
0 (h) ={x ∈ X ∶ ∃ (xn)n ∈ N ∈ XN such that xn ⇀ x and h (xn)→ sup

X
(h)} ,

Bw
0 (h) ={x ∈ X ∶ ∃ (xn)n ∈ N ∈ XN such that xn ⇀ x and h (xn)→ inf

X
(h)} ,

(2.22)

and

h▴,wf (x) = sup ({lim sup
n→∞

h (xn) ∶ xn ⇀ x and f (xn)→ sup
X
(f)}) , x ∈ Aw

0 (f),

h▴,wf (x) = inf ({lim inf
n→∞

h (xn) ∶ xn ⇀ x and f (xn)→ inf
X
(f)}) , x ∈ Aw

0 (f),
(2.23)
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where xn ⇀ x stands for the weak convergence in the corresponding space. We recall that

if (xn) ∈ B with B a Banach space, xn ⇀ x means that ψ (xn) → ψ(x) for all ψ ∈ B∗, the

topological dual space of B formed by linear and continuous functionals from B to R. If

B = H is a Hilbert space with inner product ⟨⋅, ⋅⟩
H

, by the Riesz’s representation theorem

(Conway (2019, Chapter 1.3)) the weak convergence amounts to ⟨xn, y⟩H → ⟨x, y⟩H, for

all y ∈ H.

In this context, we have analogous results as Corollaries 24 and 26 by changing

the set of tangency points to the space of continuous and pre-linear functions Cbpl(X, d).
Every prelinear function g defined on X (10) admits a unique extension to a linear function

on span(X), the linear span of X (see Dudley (2014, Lemma 2.30, p. 88)). This extension

is given by

g̃ (
r

∑
i=1

λi xi) =
r

∑
i=1

λi g (xi) , with xi ∈ X and λi ∈ R (i = 1, . . . , r). (2.24)

Further, if B is a Banach space with norm ∥ ⋅ ∥, dB, the metric on B, i.e., dB(x, y) = ∥x−y∥
(x, y ∈ B); is the usual metric considered in X.

Corollary 28. Let B be a Banach space and let δ, σ, ι and α be the maps in (2.1). Let

us assume that the set X ⊂ B satisfies the following two conditions:

(i) X is a weakly compact subset of B.

(ii) For each g ∈ Cbpl (X, dB), its linear extension g̃ in (2.24) is continuous on span(X).

Then, the maps σ, ι and α are Hadamard directionally differentiable at f ∈ ℓ∞(X) tan-
gentially to Cbpl (X, dB) with derivatives, for g ∈ Cbpl (X, dB),

σ′f(g) = sup
Aw

0 (f)

(g), ι′f(g) = inf
Bw

0 (f)
(g), and α′f(g) = sup

Aw
0 (f)

(g) − inf
Bw

0 (f)
(g),

where Aw
0 (⋅) and Bw

0 (⋅) are defined in (2.22).

If additionally f ∈ Cbpl (X, dB)∖ {0}, then the derivatives of δ, σ, ι and α are as in

(2.19).

Proof. As in the previous proofs, we only discuss the map σ. Let us consider x ∈ Aw
0 (f)

(defined in (2.22)) and g ∈ Cbpl (X, dB). We consider a sequence (xn)n∈N ∈ XN such that

xn ⇀ x and f (xn)→ sup
X
(f) (the existence of such a sequence is guaranteed by condition

(i) and 2.8). Condition (ii) and Hahn–Banach’s theorem imply that there exists a linear

and continuous map, say g, defined on B such that g = g̃ on span(X), and hence g = g
on X. As g ∈ B∗ and xn ⇀ x, we conclude that lim

n→∞
g (xn) = g(x). This shows that

g▴,wf (x) = g(x), with g▴,wf (x) defined as in (2.23), and the conclusion follows from the

observation at the beginning of this section.

Finally, if f ∈ Cbpl (X, dB), the same argument used before shows that Aw
0 (f) =

M+(f), where the set M+(⋅) is defined in (2.17).
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We observe that hypothesis (i) in the previous corollary is essential to extract

a weakly convergent subsequence in X. We also observe that condition (ii) cannot be

dropped as, in general, the linear extension g̃ of a function g ∈ Cbpl (X, dB) is not necessarily

continuos in span(X) as the following example shows: Let B be an infinite-dimensional

and Banach space with norm ∥ ⋅∥. We consider X = (xn)n∈N ∈ BN, where x0 = 0 and {xn}∞n=1
is a linearly independent subset of B such that ∥xn∥ = 1

n (n ∈ N). It is easy to check that

the function defined by g(0) = 0 and g (xn) = 1√
n

(n ∈ N) belongs to Cbpl (X, dB), but its

linear extension g̃ is not continuous because it is not bounded on the unit sphere since

g̃ ( xn

∥xn∥
) =√n (n ∈ N).

The following proposition provides easy to check conditions guaranteeing that

Corollary 28 (ii) is fulfilled.

Proposition 29. Let B be a Banach space with norm ∥ ⋅ ∥ and X ⊂ B. Let us assume that

one of the following two conditions is satisfied:

(a) There exists x ∈ X and δ > 0 such that B(x, δ) = {y ∈ B ∶ ∥y − x∥ ≤ δ} ⊂ X.

(b) B is a Hilbert space and there exists {xi}i∈I ⊂ X (I arbitrary index set) such that

span(X) = span ({xi}i∈I), {xi}i∈I are pairwise orthogonal and c = inf
i∈I
(∥xi∥) > 0.

Then, for each g ∈ Cbpl (X, dB), its linear extension g̃ in (2.24) is continuous on span(X).

Proof. Let us assume that (a) holds. As g ∈ C (X, dB), the condition B(x, δ) ⊂ X ensures

that g̃ in (2.24) is continuous at x, and, by linearity, continuous on span(X).
Assume now that (b) is satisfied. For x ∈ span(X), we can write x = ∑r

i=1 λi xi, with

λi ∈ R (i = 1, . . . , r). Taking into account that ∥x∥ = ∑r
i=1 ∣λi∣ ∥xi∥ ≥ c∑r

i=1 ∣λi∣, we finally

obtain that

∣g̃(x)∣ ≤ ∥g∥∞
r

∑
i=1

∣λi∣ ≤
∥g∥∞ ∥x∥

c
.

The previous inequalities show that g̃ is continuous on span(X) and the proof is complete.

Closed bounded convex subsets of a reflexive Banach space are weakly compact

(see Brezis and Brézis (2011, Corollary 3.22)). Therefore, the hypotheses of Corollary

28 are general enough to include many infinite-dimensional sets. Thanks to Proposition

29, an important example covered by Corollary 28 is when X is the closed unit ball of a

reflexive Banach space, and, in particular, the closed unit ball of a Hilbert space. On the

other hand, working with prelinear functions could seem to be too restrictive. However,

we point out that if P is a probability measure and a set X is P-pre-Gaussian (Giné and

Nickl (2021, Definition 3.7.26, p. 251)), there is a version of the P-bridge whose sample

paths are prelinear (see Giné and Nickl (2021, Theorem 3.7.28, p. 252)). Such a version

is usually called suitable.

Remark 30. Corollary 25 still holds with the obvious modifications if X is in the con-

ditions of Corollary 28. It is enough to replace convergence with weak convergence and

C(X, d), A0(⋅) and B0(⋅) with Cbpl (X, dB), Aw
0 (⋅) and Bw

0 (⋅), respectively.
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2.6 The case X = Rd and the Skorohod space D (Rd)
Throughout this section X = Rd (d ≥ 1) endowed with de, the metric corresponding to the

Euclidean norm on [0,1]d through a given homeomorphism. Hence, (Rd, de) is a compact

metric space and we can apply Corollaries 22 and 24 in Section 2.3.

Many important stochastic processes take values in the one-dimensional Skorohod

space, D (R), consisting of all the càdlàg functions, that is, right-continuous functions

having limit from the left at every point (continue à droite, limite à gauche). This space

provides a natural and convenient setting to analyze the behaviour of processes with

unidimensional time parameter and jumps in their paths such as Poisson processes, Lévy

processes, empirical processes or discretizations of stochastic processes, among others.

Skorohod-type spaces are usually equipped with different norms to make them separable.

However, we are only interested in a multidimensional extension of the Skorohod space

viewed as a subset of ℓ∞ (Rd) with the supremum norm. The final aim of this section is to

provide alternative expressions for the directional derivatives in (2.12) when the involved

functions belong to the d-dimensional Skorohod space.

The d-dimensional Skorohod space, introduced in Neuhaus (1971) (see also Bickel

and Wichura (1971)) and more recently considered in Seijo and Sen (2011)), is usually

defined in compact rectangles of Rd. We will firstly extend this space to functions defined

in Rd.

For v ∈ {−1,1} and x ∈ R, let

Iv(x) = {
[−∞, x), if v = −1, x ∈ R,
(x,+∞], if v = 1, x ∈ R,

and

Ĩv(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

[−∞, x), if v = −1, x <∞,
R, if v = −1, x = −∞,
∅, if v = 1, x =∞,
[x,∞], if v = 1, x <∞.

We consider V = {−1,1}d the set of 2d vertices of [−1,1]d. For v = (v1, . . . , vd) ∈ V and

x = (x1, . . . , xd) ∈ Rd, we define the v-quadrants of x by

Qv(x) = Iv1 (x1) ×⋯ × Ivd (xd) and Q̃v(x) = Ĩv1 (x1) ×⋯ × Ĩvd (xd) .

Observe that Qv(x) ⊂ Q̃v(x), Q̃v(x) ∩ Q̃v′(x) = ∅ whenever v, v′ ∈ V with v ≠ v′, and

⋃
v∈V
Q̃v(x) = Rd, for all x ∈ Rd. Additionally, for each x ∈ Rd, there exists a unique vx ∈ V

such that x ∈ Q̃vx(x). For instance, if x ∈ Rd, we have that vx=1, where 1 = (1, . . . ,1).
With the previous concepts we can define the quadrant limits. Let us consider

a function f ∶ Rd Ð→ R, v ∈ V and x ∈ Rd. We say that l ∈ R is the v-limit of f at

x if Qv(x) ≠ ∅ and for every sequence (xn)n∈N ∈ Qv(x)N such that xn → x, we have

that f (xn) → l. In such a case, we denote l ≡ fv(x). Additionally, it is said that f is

continuous from above at x ∈ Rd if fvx(x) exists and fvx(x) = f(x). We say that f is

continuous from above if it is continuous from above at every x ∈ Rd.
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Definition 31. The Skorohod space on Rd, denoted by D (Rd), is the collection of all

continuous from above real functions f defined in Rd for which the v-limit of f exists for

every v ∈ V and x ∈ Rd such that Qv(x) ≠ ∅.

When d = 1, D (R) is usual Skorohod space on R. The properties of the multidi-

mensional Skorohod space in [0,1]d shown in Neuhaus (1971) can be extended with no

difficulty to D (Rd). For instance, the elements in D (Rd) belong to D(R) in each coor-

dinate, have at most countably many discontinuities and all of them are of “finite-jump

type”. The fact that D (Rd) ⊂ ℓ∞ (Rd) follows from Neuhaus (1971, Corollary 1.6) by

noting that functions in D (Rd) have finite quadrant limits at infinity points.

Remark 32. We observe that if f ∈ D (Rd) and (xn) ∈ Q̃v(x) such that xn → x, then

f (xn)→ fv(x). This follows from the fact that

Q̃v(x) = {y ∈ Rd ∶ y ∈ Qvy(y) ∩Qv(x)} ,

where A denotes the closure of the set A. In other words, the functions in D (Rd) have

quadrant limits in Q̃v(x).

We are now in position to see how the derivatives in (2.12) look like when X = Rd

and the functions on which they act belong to D (Rd).

Corollary 33. For any f ∈ D (Rd) ∖ {0}, the maps δ, σ, ι and α in (2.1) are Hadamard

directionally differentiable at f tangentially to D (Rd). For g ∈ D (Rd), their derivatives

are given by

δ′f(g) =max
v∈V
( sup
M+

v(∣f ∣)

(gv sgn (fv))) ,

σ′f(g) =max
v∈V
( sup
M+

v(f)

(gv)) ,

ι′f(g) =min
v∈V
( inf
M−

v(f)
(gv)) ,

α′f(g) =max
v∈V
( sup
M+

v(f)

(gv)) −min
v∈V
( inf
M−

v(f)
(gv)) ,

(2.25)

where for h ∈ D (Rd),

M+
v (h) = {x ∈ Rd ∶ Qv(x) ≠ ∅ and hv(x) = sup

R
(h)} ,

M−
v (h) = {x ∈ Rd ∶ Qv(x) ≠ ∅ and hv(x) = inf

R
(h)} .

(2.26)

Proof. This corollary can be proved as Corollary 22 by taking into account Remark 32

and the following fact: As the number of non-empty quadrants of each point in Rd is

finite, each sequence converging to a point x ∈ Rd has a subsequence contained in Q̃v(x),
for some v ∈ V . In particular, for every h ∈ D (Rd), it holds that A0(h) = ⋃

v∈V
M+

v (h) and

B0(h) = ⋃
v∈V
M−

v (h), where A0(h) and B0(h) are defined in (2.13).
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The sets M+
v (h) (respectively, M−

v (h)) in (2.26) might coincide for different v ∈ V .

For instance, when f is continuous, M+
v (∣f ∣) = M+(∣f ∣), M+

v (f) = M+(f), and M−
v (f) =

M−(f), for all v ∈ V , where M+(⋅) and M−(⋅) are defined in (2.17).

We emphasize that gv ≡ g, for all v ∈ V , whenever g ∈C(Rd, de). The following

corollary is important for applications because many stochastic processes that commonly

appear as weak limits of other processes have continuous paths a.s.

Corollary 34. For any f ∈ D (Rd) ∖ {0}, the maps δ, σ, ι and α in (2.1) are Hadamard

directionally differentiable at f tangentially to C (Rd, de). For g ∈ C (Rd, de), their deriva-

tives are given by

δ′f(g) =max
v∈V
( sup
M+

v(∣f ∣)

(g sgn (fv))) , σ′f(g) =max
v∈V
( sup
M+

v(f)

(g)) ,

ι′f(g) =min
v∈V
( inf
M−

v(f)
(g)) , α′f(g) =max

v∈V
( sup
M+

v(f)

(g)) −min
v∈V
( inf
M−

v(f)
(g)) ,

with M+
v (⋅) and M−

v (⋅) defined in (2.26).

If additionally f ∈ C (Rd, de), the derivatives are as in (2.19).

2.7 Unit balls of RKHS

Let Hk be a RKHS of real-valued functions on X . We consider the maximum mean

discrepancy with respect to the class FHk
, the unit ball of Hk

dk(P,Q) =MMD [FHk
,P,Q] = sup

f∈FHk

(P(f) −Q(f)), (2.27)

where P and Q are two probability measures on X (see (4.3) and (4.7) for further details).

The quantity dk(P,Q) is usually called kernel distance (see Definition 49 in Chapter 3 or

Definition 4.3 in Chapter 4). We will restrict ourselves to measurable functions in FHk
.

Assume that P and Q are two probability measures for which their mean embed-

dings µP and µQ exist (see Proposition 16). An important property of the kernel distance

in (2.27) is that it can be expressed as

dk(P,Q) = ∥µP − µQ∥Hk
, (2.28)

(see Borgwardt et al. (2006), Gretton, Borgwardt, et al. (2012, Lemma 4), or (4.7)).

The statistical properties of the estimators of kernel distances are typically ob-

tained by using the representation in (2.28) (see for instance Gretton, Borgwardt, et al.

(2012) and the references therein). However, a more versatile approach is offered in Chap-

ter 4. Thanks to the results in Theorem 17, we can discuss the asymptotic properties of

the plug-in estimator dk (Pn,Qm) in (2.27) using the Delta method (see Proposition 5),

with Pn and Qm being the empirical measures associated with random samples of P and

Q, respectively.
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The following result shows that the mapping σ(f) = sup
FHk

(f) (g ∈ Cb (FHk
, dHk
))

is in general fully Hadamard differentiable at P−Q. At a first glance this could seem

surprising as the supremum is not usually fully differentiable (see Section 1.1). However,

the intuition behind this result is the following: As the kernel distance in (2.27) can be

alternatively expressed as the norm in the RKHS between the mean embeddings of the

corresponding probability measures (see (2.28)) and the norm in a Hilbert space is fully

differentiable, then σ should be also fully differentiable at P−Q. Moreover, taking into

account Corollary 25 and Remarks 27 and 30, the derivative has to be the evaluation at an

appropriate function of FHk
. The previous ideas are formalized in the following corollary.

Corollary 35. Let FHk
be the unit ball in Hk, reproducing kernel Hilbert space, and let us

consider two Borel probability measures P and Q on X for which their mean embeddings

µP and µQ exist and µP ≠ µQ. We consider P−Q as an element of ℓ∞ (FHk
). We have

that the mapping σ(f) = sup
FHk

(g) (g ∈ ℓ∞ (FHk
)) is (fully) Hadamard differentiable at P−Q

tangentially to Cb (FHk
, dHk
) with derivative

σ′P−Q(g) = g (h+) , with h+ = µP − µQ

∥µP − µQ∥Hk

. (2.29)

Proof. We will first check that if hε ∈ Aε(P−Q), where Aε(P−Q) is defined in Theorem

17, then hε → h+ in Hk as ε→ 0, with h+ in (2.29). To see this, we first note that

∥hε − h+∥2Hk
= 1 + ∥hε∥2Hk

− 2

∥µP − µQ∥Hk

⟨hε, µP − µQ⟩Hk
. (2.30)

As hε ∈ Aε(P−Q), from (2.28), we obtain that ⟨hε, µP − µQ⟩Hk
≥ ∥µP − µQ∥Hk

− ε. Finally,

from (2.30) and as hε ∈ FHk
, we have that ∥hε − h+∥2Hk

≤ 2 ε
∥µP−µQ∥Hk

.

Now, we will check that σ′P−Q(g) = g (h+), for g ∈ Cb (FHk
, dHk
). We firstly observe

that h+ ∈ Aε(P−Q), for all ε > 0. Hence, from Theorem 17, Equation (2.4), we have that

g (h+) ≤ σ′P−Q(g). On the other hand, as in the proof of Theorem 17, we can extract a

sequence hm ∈ FHk
satisfying that sup

A1/m(P−Q)
(P−Q) (g) ≤ g (hm) + 1

m . As g is continuous

and hm → h+ as m → ∞, we obtain that σ′P−Q(g) = lim
m→∞

sup
A1/m(P−Q)

(g) ≤ g (h+), and the

proof is complete.

On one hand, a careful glance at Corollary 35 shows that the tangent space is

Cb (FHk
, dHk
). On the other, the sample paths of GP belong to Cu (FHk

, ρP) P-almost

surely. Regarding to Delta method (see Proposition 5, or also Shapiro (1990, Theorem

2.1)), we need the tangent space Cb (FHk
, dHk
) to include the sample paths of GP. The

following lemma gives sufficient conditions for it.

Lemma 36. Let P be a Borel probability measure defined on X and we consider the

pseudo-metric ρP. We have that

ρP(f, g) ≤ (∫
X
k(x,x) dP(x))

1/2

∥f − g∥Hk
, f, g ∈ FHk

. (2.31)
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In particular, if ∫X k(x,x) dP(x) < ∞, it holds that Cu (FHk
, ρP) = Cu (FHk

, ρL2(P)) ⊂
Cu (FHk

, dHk
).

Proof. For x ∈ X , by the reproducing property of k twice (see Definition 12) and Cauchy–Schwarz

inequality, we have that

∣f(x) − g(x)∣ = ∣⟨f − g, k(x, ⋅)⟩
Hk
∣

≤ ∥f − g∥Hk
∥k(x, ⋅)∥Hk

= ∥f − g∥Hk

√
k(x,x).

(2.32)

Therefore, from (2.32) we conclude that

ρ2
L2(P)
(f, g) ≤ ∫

X
(f − g)2 dP

≤ ∥f − g∥2Hk ∫
X
k(x,x) dP(x).

So (2.31) holds. In addition, again by the reproducing property and the Cauchy-Schwarz

inequality

P(∣f − g∣) ≤ ∥f − g∥Hk ∫
X

√
k(x,x) dP(x).

By Jensen’s inequality, ∫X
√
k(x,x) dP(x) < (∫X k(x,x) dP(x))

1/2
. So, if ∫X k(x,x) dP(x) <

∞ then FHk
is bounded in L1(P) norm by the reproducing property. Hence pseudometrics

ρP and ρL2(P) are equivalent. Further, by (2.31), dHk
dominates both pseudometrics.

In other words, Lemma 36 ensures that the Corollary 35 can be applied together

with Delta method and Donsker type theorems whenever ∫X k(x,x) dP(x) <∞.

Union of unit balls

In Chapter 4 a new distance related to kernel distances is introduced: supremum kernel

distance (SKD). Given P and Q probability measures and a family of reproducing ker-

nels {kλ ∶ λ ∈ Λ} (possibly a mixture of parametric families), the SKD is defined as the

maximum mean discrepancy over the union of balls FHk,Λ
. That is

dk,Λ(P,Q) =MMD [FHk,Λ
,P,Q] = sup

f∈FHk,Λ

(P(f) −Q(f))

(analogously to the kernel distance, see Definition 4.4). Further, it can be checked that

identity (2.28) can be extended to this framework as

dk,Λ(P,Q) = sup
λ∈Λ
((dk,λ(P,Q)) = sup

λ∈Λ
(∥µλ

P − µλ
Q∥Hk,λ

) ,

where for each λ ∈ Λ, µλ
P and µλ

Q are the mean embeddings of P and Q, respectively, in

each Hk,λ (the RKHS generated by kλ).

The next goal is to prove a similar result to Corollary 35 for the union of balls.

Just observe that there is not a canonical mechanism of giving a metric to FHk,Λ
such that
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each FHk,λ
is a natural topological subspace. Therefore, Cb (FHk,Λ

, ρ), where ρ is the two-

sample process joint pseudometric ρ defined in Subsection 1.2.2, is the natural tangent

space for Hadamard directional differentiability in the two-sample problem. Furthermore,

let us assume the following tecnical conditions. In what follows, k is a kernel. We use

the standard notation in functional analysis and operator theory; for k1 and k2 positive

definite kernels on X , we denote k1≪k2 if and only if k2 − k1 is a positive definite kernel;

see Aronszajn (1950, Part I.7).

(Dom) Dominance assumption. There exists a constant c > 0 such that kλ ≪ c k, for all

λ ∈ Λ. Further, k is bounded on the diagonal, that is, sup
x∈X
(k(x,x)) <∞.

(Ide) Identifiability assumption. If P ≠ Q, there exists λ ∈ Λ such that µλ
P ≠ µλ

Q.

(Par) Continuous parametrization. Λ is a compact subset of Rd (with d ∈ N) and, for a

fixed (x, y) ∈ X ×X , the function λ↦ kλ(x, y) is continuous from Λ to R.

Assumption (Dom) is necessary for the application of the Dominated Convergence Theo-

rem (DCT) in the proof of Corollary 37. In particular, it implies that for every λ, Hk,λ is

constituted by continuous and bounded functions, therefore measurable and integrable.

Moreover, under this condition the mean embedding µλ
P exists (for each P and λ). In

particular, the supremum kernel distance is well-defined.

Assumption (Ide) entails that dk,Λ(P,Q) > 0, whenever P ≠ Q, i.e., the supremum

kernel distance separates different probability measures. Therefore, dk,Λ in (4.3) is a

proper metric on Mp(X ). Regarding this, we recall that a reproducing kernel k is said

to be characteristic whenever dk(P,Q) = 0 if and only if P = Q, for all P,Q ∈Mp(X ); see

Fukumizu et al. (2007). This is equivalent to “integrally strictly positive definiteness”, see

Sriperumbudur et al. (2010, Theorem 7). Hence, (Ide) could be understood as the family

{kλ ∶ λ ∈ Λ} being characteristic in the sense that for each pair of different measures there

is a kernel in the family separating them. In infinite dimension, necessary and sufficient

conditions for the Gaussian kernel to be characteristic are given in Wynne and Duncan

(2022). From the perspective of computing the derivative of the supremum σ, it essentially

means that derivation is done in a point away from zero.

Finally, (Par) is a technical requirement to derive the explicit formula of the

Hadamard directional derivative using Theorem 17. Further discussion on these assump-

tions related to the two sample test and Donsker property can be found in Section 4.3.

Corollary 37. Let us assume that the family of kernels {kλ ∶ λ ∈ Λ} satisfies (Dom), (Ide)

and (Par). Let P and Q be Borel probability measures on X such that P ≠ Q, then the

mapping σ(ν) = sup
FHk,Λ

(ν) for ν ∈ ℓ∞ (FHk,Λ
) is Hadamard directionally differentiable at

P−Q tangentially to Cb (Hk,Λ, ρ). In such a case, the (directional) derivative of σ at the

point P−Q is given by

σ′P−Q(g) = sup
λ∈Λ0

(g (h+,λ)) = sup
L
(g), g ∈ C (FHk,Λ

, ρ) , (2.33)
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where

h+,λ =
µλ
P − µλ

Q

∥µλ
P − µλ

Q∥Hk,λ

, (2.34)

and

Λ0 = {λ ∈ Λ ∶ ∥µλ
P − µλ

Q∥Hk,λ
= dk,Λ(P,Q)} and L = {h+,λ ∶ λ ∈ Λ0} . (2.35)

Proof. Let us fix g ∈ Cb(Fk,Λ, ρ). From Theorem 17, we have that σ is Hadamard direc-

tionally differentiable and

σ′P−Q(g) = lim
ε↘0

sup
Aε(P−Q)

(g), (2.36)

where Aε(P−Q) = {h ∈ FHk,Λ
∶ (P−Q) (h) ≥ dk,Λ(P,Q) − ε}. For every ε > 0, it is clear

that L ⊆ Aε(P−Q), where L is defined in (2.35). Hence, we have that

sup
λ∈Λ0

(g (h+,λ)) ≤ σ′P−Q(g). (2.37)

Conversely, we consider a maximizing sequence (hm)m∈N satisfying that hm ∈ A1/m(P−Q)
and

sup
A1/m(P−Q)

(g) ≤ g (hm) +
1

m
. (2.38)

Each hm ∈ FHk,λm
(m ∈ N), for some λm ∈ Λ. We consider the sequence (h+,λm)m∈N. Using

(Par), by restricting if needed, to a subsequence we can assume that λm → λ∗ ∈ Λ. Next

we prove the following facts:

(i) λ∗ ∈ Λ0, where Λ0 is in (2.35), and

∥µλm

P − µλm

Q ∥Hk,λm

→ ∥µλ∗
P − µλ∗

Q ∥Hk,λ∗
= dk,Λ(P,Q) > 0. (2.39)

(ii) ρ (hm, h+,λm)→ 0, as m→∞.

(iii) ρ (hm, h+,λ∗)→ 0, as m→∞.

First, (2.39) is obtained by using the representation of the kernel distance as a double

integral in (1.6) (with ν = P−Q), together with (Dom), (Par) and the Dominated Con-

vergence Theorem (DCT). Further, as hm ∈ FHk,λm
∩A1/m(P−Q), we obtain that

∥µλm

P − µλm

Q ∥Hk,λm

≥ P (hm) −Q (hm) ≥ dk,Λ(P,Q) −
1

m
.

Hence, from (2.39) and by taking m → ∞ we obtain that λ∗ ∈ Λ0. The fact that

dk,Λ(P,Q) > 0 follows from (Ide) and the proof of (i) is complete.

To show (ii), using the same ideas as in the proof of equation (2.30) and (i), we

obtain that

∥hm − h+,λm∥2
Hk,λm

≤ 2 −
2dk,Λ(P,Q) − 1

m

∥µλm

P − µλm

Q ∥Hk,λm

→ 0, as m→∞.
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Now, from (2.32) and (Dom), we have that

ρ2P (hm, h+,λm)2 ≤ ρ2
L2(P)

(hm, h+,λm)2

≤ ∥hm − h+,λm∥2
Hk,λm

c ∫
X
k(x,x) dP(x)→ 0, as m→∞.

Therefore, ρ (hm, h+,λm) → 0, and (ii) holds. To check (iii), by (ii), it is enough to see

that ρ (h+,λm , h+,λ
∗) → 0, as m →∞. By (2.39) and repeatedly applying DCT (thanks to

(Dom)), it can be checked that

h+,λm(x)→ h+,λ
∗(x), as m→∞ and for all x ∈ X .

Furthermore, for m large enough, we have that

∣h+,λm(x)∣ ≤ 2 c (∣µP(x)∣ + ∣µQ(x)∣)
dk,Λ(P,Q)

∈ L2(P),

where µP and µQ are the mean embeddings corresponding to the dominating kernel k in

(Dom). Hence, we can apply one more time DCT to obtain that ρP (h+,λm , h+,λ
∗) → 0.

This implies that ρ (h+,λm , h+,λ
∗)→ 0, as m→∞.

To finish, we use (2.38), (i), (iii), as well as the continuity of the functional g (with

respect to the metric ρ) to obtain that

σ′P−Q(g) = lim
m→∞

sup
A1/m(P−Q)

(g) ≤ lim
m→∞

g (hm) = g (h+,λ
∗) ≤ sup

λ∈Λ0

(g (h+,λ)) = sup
L
(g).

The conclusion of this lemma follows from (2.37) and the previous inequalities.



46 CHAPTER 2. DIRECTIONAL DIFFERENTIABILITY



Chapter 3

Asymptotic results for some classical

problems

The aim of this chapter is to apply differentiability results of Chapter 2 to a collection of

classical problems. We use an extended version of the functional Delta method to derive

the asymptotic distribution of many statistics that can be expressed in terms of these

maps. In this way, we provide a simple and unified approach and a suitable framework

to deal with such type of statistics.

Using these ideas, we obtain the following applications that can be divided into

two groups according to whether X ⊆ Rd or X = F (a class of functions):

– Case X ⊆ Rd: In Section 3.1 we extend and give simpler and shorter proofs of the results

in Raghavachari (1973) both in the one-sample and two-sample cases. The exten-

sion is carried out in different directions: Firstly, no assumption on the involved

distribution functions is necessary to derive the asymptotic results. In contrast, in

Raghavachari (1973) the continuity of the distribution functions is required. Sec-

ondly, the results are obtained in a multidimensional setting. We note that the

proofs are very simple (compared with those in Raghavachari (1973)) because they

just rely on the analysis of the differentiability of the functionals and the con-

vergence of the associated processes separately. It should be further remarked that

those works that have used the results and ideas in Raghavachari (1973) were forced

to impose the continuity of the involved functions as an assumption in their state-

ments (see for instance Álvarez-Esteban et al. (2016, Equation (11)), Freitag et al.

(2006, Section 2) or Dette et al. (2018, Assumption 7.4.)). The regularity limitation

of working with continuous functions is not mathematically aesthetic and it is in fact

unnecessary, as we will show in this chapter. The extension of these kind of results

to any dimension is important to include and be able to deal with multidimensional

distribution functions such as copulas, considered in Section 3.2. In Section 3.3, we

apply this technique to solve an open question by Jager and Wellner (2004) related

to the Berk-Jones statistic.

– Case X = F : In Section 3.4 we also derive similar results for the plug-in estimators of

47
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maximum mean discrepancies with respect to a Donsker class F . Other results in a

more concrete context, such as kernel distances (associated to the class of functions

FHk
) and the k-means problem (associated to the class of functions FVk(B)) are

detailed in Chapters 4 and 5.

In a wide variety of situations Theorem 17 and its subsequent corollaries, joint with the

extended Delta method in Proposition 5, provide the right framework to obtain a number

of significant examples in which the asymptotic distribution of a statistic of interest can

be determined with ease. The combination of these results is summarized in the following

theorem.

Theorem 38. Let θ ∈ ℓ∞(X)∖{0} and assume that there exists Tn taking values in ℓ∞(X)
a.s. such that rn (Tn − θ)↝ T , for a sequence of real numbers satisfying that rn →∞ and

a Borel random element T in ℓ∞(X). Then, for φ ∈ {δ, σ, ι, α} in (2.1), we have that

rn (φ (Tn) − φ(θ))↝ φ′θ(T ), (3.1)

where the derivatives φ′θ are given in (2.4). Moreover, we have that rn (φ (Tn) − φ(θ)) =
φ′θ (rn (Tn − θ)) + op(1).

Theorem 38 is still valid for the maps σ, ι and α when θ = 0 as σ′0(g) = sup
X
(g),

ι′0(g) = inf
X
(g) and α′0(g) = amp

X
(g) are continuous maps. Further, for those θ ∈ ℓ∞(X)

such that φ′θ is linear, i.e., φ is fully Hadamard differentiable at θ (see Corollary 25

and Remarks 27 and 30), and when T is Gaussian, we conclude that φ′θ(T ) is normally

distributed.

In the remaining of this chapter, we will apply the previous general result in

different contexts to obtain the asymptotic distribution of several statistics.

3.1 Distribution functions

Let X and Y be two non-degenerate random vectors taking values on Rd (d ≥ 1) with

joint cumulative distribution functions F (x) = P(X ≤ x) and H(x) = P(Y ≤ x), x ∈ Rd,

where ‘≤’ stands for the coordinatewise order in Rd. The goal in this section is to estimate

φ(F −H), where φ ∈ {δ, σ,α} are defined in (2.1).

One-sample case

In this situation we have at our disposal a random sampleX1, . . . ,Xn fromX. We estimate

F −H with Fn−H, where Fn is the empirical distribution function of the observed sample,

that is,

Fn(x) =
1

n

n

∑
i=1

1{Xi≤x}, x ∈ Rd,

and 1A stands for the indicator function of the set A (see Section 1.2.2).
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The problem consists in finding the behavior, as n→∞, of

Dn(δ) =
√
n (∥Fn −H∥∞ − ∥F −H∥∞) ,

Dn(σ) =
√
n (sup

R
(Fn −H) − sup

R
(F −H))

Dn(α) =
√
n (amp

R
(Fn −H) − amp

R
(F −H)) .

(3.2)

When F ≠ H, the asymptotic distribution of the statistics Dn(δ), Dn(σ) and Dn(α) in

(3.2) can be viewed as the limit under the alternative hypothesis of the corresponding two-

sided and one-sided Kolmogorov-Smirnov test statistics and Kuiper statistic, respectively.

In this example, for φ ∈ {δ, σ,α}, the statistics in (3.2) are Dn(φ) ≡ Dφ (θ, Tn, rn)
in (2.3) with θ = F −H, Tn = Fn −H, and rn =

√
n. The underlying normalized process,

i.e., rn (Tn − θ), is nothing but the multivariate empirical process (indexed by points),

Gn,F (x) =
√
n (Fn(x) − F (x)) , n ∈ N, x ∈ Rd. (3.3)

When there is no confusion with respect to the underlying distribution, we simply use the

notation Gn for the empirical process in (3.3), as stated in Section 1.2.1. Remind that the

collection of all indicator functions of lower (hyper)rectangles of Rd, {1(−∞,x1]×⋯×(−∞,xd] ∶
(x1, . . . , xd) ∈ Rd}, is universal Donsker (see Subsection 1.2.2 or A. van der Vaart and

Wellner (1996, Example 2.1.3, p. 82)), the empirical process converges in law in ℓ∞ (Rd).
Recall, also, that the weak limit of Gn is denoted in this context by BF . If d = 1,

the assertion “Gn ↝ BF in ℓ∞ (R)” is nothing but the celebrated Donsker’s theorem

(Kolmogorov-Doob-Donsker-Dudley Central Limit Theorem). When d ≥ 2, BF is also

called a tied-down or pinned F -Brownian sheet based on the measure with distribution

function F .

In this particular case we have that F −H ∈ D (Rd), Gn ∈ D (Rd) a.s., and Gn ↝ BF

in ℓ∞ (Rd). Therefore, as a direct consequence of Theorem 38 and Corollary 33 we obtain

the following result.

Proposition 39. Assume that F ≠ H and let BF be an F -Brownian bridge. For φ ∈
{δ, σ,α}, we consider the statistics Dn(φ) defined in (3.2). We have that Dn(φ) ↝
φ′F−H (BF ), where the derivatives φ′F−H are given as in (2.25).

When d = 1, Proposition 39 improves Raghavachari (1973, Theorems 1, 2 and

3) as here F and H are not assumed to be continuous. If F is continuous, then BF ∈
C (Rd, de) a.s., and the limiting distributions in Proposition 39 have simpler expressions

(see (2.19)). The following corollary provides a multidimensional extension of the results

in Raghavachari (1973).

Corollary 40. In the conditions of Proposition 39, let us further assume that F,H ∈
C (Rd, de) and we consider the sets M+(⋅) and M−(⋅) defined in (2.17). We have that:

(i) Dn(δ)↝ sup
M+(∣F−H ∣)

(BF sgn(F −H)).
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(ii) Dn(σ)↝ sup
M+(F−H)

(BF ).

(iii) Dn(α)↝ sup
M+(F−H)

(BF ) − inf
M−(F−H)

(BF ).

Remark 41. In the setting of the previous corollary, when M+(∣F −H ∣) (respectively,

M+(F − H); and M+(F − H) and M−(F − H)) contains only one point, the mapping

δ (respectively, σ and α) is fully Hadamard differentiable at F −H (see Corollary 25).

In particular, the asymptotic distribution of Dn(δ) (respectively, Dn(σ) and Dn(α)) is

a zero mean Gaussian distribution. The asymptotic variance can be directly computed

from the covariances of BF .

Two-sample case

Here, two (mutually independent) random samples are available, one of size n from F and

another one of sizem fromH. Let Fn and Hm be the empirical distribution functions of the

two samples, respectively, and set N ≡ nm
n+m . The two-sided, and one-sided Kolmogorov-

Smirnov and Kuiper statistics in the two sample case are given by

Dn,m(δ) =
√
N (∥Fn −Hm∥∞ − ∥F −H∥∞) ,

Dn,m(σ) =
√
N (sup

R
(Fn −Hm) − sup

R
(F −H))

Dn,m(α) =
√
N (amp

R
(Fn −Hm) − amp (F −H)) .

(3.4)

In the general setting specified in (2.3), this situation matches to the case θ = F − H,

Tn,m = Fn −Hm and rn,m =
√
N . Hence, we have that

rn,m (Tn,m − θ) =
√

m

n +m Gn,F −
√

n

n +m Gm,H

with Gn,F and Gm,H independent empirical processes. We further observe that if the

sampling scheme is balanced, that is, n
(n+m) → ξ, with 0 ≤ ξ ≤ 1 as n,m → ∞, then

rn,m (Tn,m − θ) ↝
√

1 − ξBF −
√
ξ B̃H in ℓ∞ (Rd), where BF and B̃H are two independent

Brownian bridges associated with F and H, respectively. Hence, Theorem 38 and Corol-

lary 34 directly imply the following result which improves and generalizes Raghavachari

(1973, Theorems 4 and 5).

Proposition 42. Let us consider a sampling scheme such that as n, m→∞, n
(n+m) → ξ,

with 0 ≤ ξ ≤ 1 and let BF and B̃H be two independent Brownian bridges associated with

F and H, respectively. For φ ∈ {δ, σ,α}, we consider the statistics Dn,m(φ) defined in

(3.4). We have that Dn,m(φ) ↝ φ′F−H (
√

1 − ξBF −
√
ξ B̃H), where the derivatives φ′F−H

are given in (2.25). If we further have that F,H ∈ C (Rd, de), then the derivatives can be

expressed as in (2.19).



3.2. COPULAS 51

3.2 Copulas

In this section, for simplicity, we will assume that the involved distribution functions are

continuous. Let us assume that the d-dimensional distribution function F has copula

C and continuous marginal distribution functions F1, . . . , Fd. In other words, F (x) =
C (F1 (x1) , . . . , Fd (xd)), for x = (x1, . . . , xd) ∈ Rd. Let Fn and Fn,i (i = 1, . . . , d) be the

empirical joint and i-th marginal distribution functions of a random sample of size n from

F . The empirical copula is

Cn(u) = Fn (F−1n,1 (u1) , . . . ,F−1n,d (ud)) , u = (u1, . . . , ud) ∈ [0,1]d, (3.5)

where F−1n,i stands for the generalized inverse of Fn,i, i.e., the marginal quantile function

of the i-th coordinate sample. The empirical copula process is defined by

Gn,C(u) =
√
n (Cn(u) −C(u)) , n ∈ N, u ∈ [0,1]d. (3.6)

Empirical copula processes play the same role for copulas as empirical processes for distri-

bution functions and they have been extensively used in goodness-of-fit testing problems

for copulas (see Fermanian (2013) for an overview about this subject).

Several works have been devoted to discuss the asymptotic behavior of Gn,C in

(3.6). For instance, in Segers (2012) (see also the references therein) it is shown that,

under certain not very restrictive smoothness assumptions on the underlying copula C,

Gn,C converges weakly in ℓ∞ ([0,1]d). Specifically, let us assume that C satisfies the

following regularity condition:

Condition 1. For each i ∈ {1, . . . , d}, the i-th first order partial derivative of C,

∂iC, exists and is continuous on the set {u = (u1, . . . , ud) ∈ [0,1]d ∶ 0 < ui < 1}.
If Condition 1 is satisfied, Gn,C ↝ C in ℓ∞ ([0,1]d) (see Segers (2012, Proposition

3.1)), where C is a Gaussian process that can be represented as

GC(u) = BC(u) −
d

∑
i=1

∂iC(u)B(i)C (ui) , u = (u1, . . . , ud) ∈ [0,1]d, (3.7)

with BC a C-Brownian bridge (see Subsection 1.2.2) and B(i)C (ui) = BC (1, . . . ,1, ui,1, . . . ,1),
the variable ui appearing at the i-th entry.

Using Theorem 38 and Corollary 34, we immediately obtain the following result.

Though details are omitted, similar results can be stated for the unilateral Kolmogorov-

Smirnov and Kuiper statistics and the associated two sample problems.

Proposition 43. Let C be a copula satisfying Condition 1 and let Cn be as in (3.5). For

any continuous copula D ≠ C, the statistic

Ln(C,D) =
√
n (∥Cn −D∥∞ − ∥C −D∥∞) ,

converges in distribution to δ′C−D (GC) = sup
M+(∣C−D∣)

(GC sgn(C −D)), with GC defined in

(3.7) and the set M+(⋅) is given in (2.17).
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Remark 44. Let C be a bivariate copula and we consider the survival copula

C (u1, u2) = u1 + u2 − 1 +C (1 − u1,1 − u2) , (u1, u2) ∈ [0,1]2.

The statistics Ln (C,C) has been used in Genest and Nešlehová (2014) to derive a test of

radial symmetry for bivariate copulas. Proposition 43 provides the asymptotic distribution

of such statistic.

3.3 On a question by Jager and Wellner related to

the Berk–Jones statistic

Let Fn be the empirical distribution function of a sample of size n from a univariate

random variable with continuous distribution function F . Suppose that we want to test

the null hypothesis H0 ∶ F = H versus the alternative H1 ∶ F ≠ H, where H is a fixed

(and usually known) continuous distribution function. Berk and Jones (1979) (see also

DasGupta (2008, Chapter 26.7)) introduced the test statistic

R (Fn,H) = sup
x∈R
(K (Fn(x),H(x))) , (3.8)

where

K(x, y) = x log (x
y
) + (1 − x) log (1 − x

1 − y ) ,

for x ∈ [0,1] and y ∈ (0,1). (The values of K(x, y) when x = 0,1 are taken by continuity.)

For each x ∈ R, nK (Fn(x),H(x)) is the log-likelihood ratio statistic for testing

H0 ∶ F (x) = H(x) against H1 ∶ F (x) ≠ H(x). Hence, R (Fn,H) in (3.8) is nothing but

the supremum of these pointwise likelihood ratio tests statistics. Additionally, K(x, y)
is the Kullback-Leibler divergence between two Bernoulli distributions with means x and

y. Hence, K(x, y) ≥ 0 with equality if and only if x = y. In particular, R (Fn,H) =
∥K (Fn,H)∥∞.

Berk and Jones (1979) computed the asymptotic distribution of (the normalized

version of) R (Fn, F ), i.e., the distribution of the statistic under the null hypothesis F = G.

For a detailed proof, see Wellner and Koltchinskii (2003, Theorem 1.1) or Jager and

Wellner (2007, Theorem 3.1). It holds that

nR (Fn, F ) − dn ↝ Y4, as n→∞, (3.9)

where P (Y4 ≤ x) = exp (−4 exp (−x)) for x ∈ R, i.e., Y4 has double-exponential extreme

value distribution, and

dn = log2 (n) −
1

2
log3 (n) −

1

2
log (4π),

with log2 (n) = log (log (n)) and log3 (n) = log (log2 (n)).
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In Jager and Wellner (2004, Question 2, p. 329), it was set out the open problem

of finding the asymptotic behaviour of the Berk–Jones statistic under the alternative hy-

pothesis. In other words, assuming that F ≠H, the question consists in finding conditions

on F and H for which the statistic

Bn =
√
n (R (Fn,H) −R(F,H)) , (3.10)

converges in distribution and, in such a case, identifying its weak limit, where R (Fn,H)
is given in (3.8) and R(F,H) = sup

x∈R
(K(F (x),H(x))).

Here we give a precise answer for the previous question. First, we note that Bn in

(3.10) has the general form of (2.3). In other words,

Bn =Dσ (θ =K(F,H), Tn =K (Fn,H) , rn =
√
n) , (3.11)

where σ is defined in (2.1). As K is non-negative, it also holds that Bn = Dδ (K(F,H),
K (Fn,H) ,

√
n) with δ in (2.1). Therefore, from (3.11) and Theorem 38, to obtain the

asymptotic distribution of Bn in (3.10) it is enough to find the weak limit of the process

Wn given by

Wn =
√
n (K (Fn,H) −K(F,H)) . (3.12)

This result is stated in the following theorem.

Theorem 45. Let us assume that

∫
R

log2 (F (t) (1 −H(t))
H(t) (1 − F (t))) dF (t) <∞.

The process Wn defined in (3.12) satisfies that Wn ↝W in ℓ∞ (R), where

W = BF log (F (1 −H)
H (1 − F )) , (3.13)

and BF is an F -Brownian bridge.

Proof. Using Taylor’s theorem, we have that

K (Fn,H) −K(F,H) = (Fn − F ) log (F (1 −H)
H (1 − F )) +

1

2

(Fn − F )2

F ∗n (1 − F ∗n )
, (3.14)

where F ∗n is between F and Fn. We set

W̃n =
√
n (Fn − F ) log (F (1 −H)

H (1 − F )) . (3.15)

From (3.12) and (3.14), we have that

∥Wn − W̃n∥∞ =
√
n

2
∥ (Fn − F )2

F ∗n (1 − F ∗n )
∥
∞

. (3.16)
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Now, from (3.16) and Wellner and Koltchinskii (2003, equation (2.2)) (see also Jager and

Wellner (2007, equation (9))), we obtain that

∥Wn − W̃n∥∞ =st
√
nR (Fn, F )

= 1√
n
(nR (Fn, F ) − dn) +

dn√
n
,

(3.17)

where =st stands for equality in distribution. From (3.9) and (3.17), we conclude that

∥Wn − W̃n∥∞ ↝ 0. Hence, the processes Wn and W̃n have the same asymptotic behavior

(see A. W. van der Vaart (2000, Theorem 18.10)). Finally, the conclusion follows from

A. W. van der Vaart (2000, Example 19.12, p. 273).

Remark 46. As it follows from the proof of Theorem 45, the process Wn behaves asymp-

totically as W̃n in (3.15), which is a weighted empirical process. Therefore, necessary and

sufficient conditions for the convergence of the process Wn defined in (3.12) are given by

the Chibisov-O’Reilly’s theorem (see Shorack and Wellner (2009, p. 462)).

We are now in position to solve the question proposed in Jager and Wellner (2004).

Corollary 47. In the conditions of Theorem 45, the statistic Bn in (3.10) satisfies that

Bn ↝ σ′K(F,H)(W) = sup
M+(K(F,H))

(W), as n→∞,

where W is given in (3.13) and the set M+(⋅) is defined in (2.17).

Remark 48. Similar results can be stated for the family of test statistics Sn(s) based on

φ-divergences introduced by Jager and Wellner (2007). Details are omitted.

3.4 Maximum mean discrepancies

3.4.1 Definition and examples

Let X and Y be two random variables taking values on a topological space (X , τ) with

Borel probability measures P and Q, respectively. We consider a statistic to measure the

dissimilarity between P and Q (see Fortet and Mourier (1953) and Müller (1997)).

Definition 49. Let us consider a class F of measurable functions f ∶ X Ð→ R. The

maximum mean discrepancy (MMD in short) between P and Q with respect to the class

F is defined by

MMD[F ,P,Q] = sup
f∈F
(P(f) −Q(f)) . (3.18)

To avoid indeterminate forms in the difference between expectations in (3.18), is

it usually assumed that F is a subset of Cb(X , τ). The probability distribution of the

variables is usually completely identified with the MMD with respect to Cb(X , τ). In fact,

if (X , d) is a metric space, then P = Q if and only if P(f) = Q(f), for all f ∈ Cb(X , d) (see

Dudley (2002, Lemma 9.3.2)). However, the class Cb(X , d) is in general too large to deal
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with it, so that suitable subsets are usually employed in practice. Another possibility

is assuming that the functions f ∈ F satisfy that sup
x∈X
( ∣f(x)∣b(x) ) < ∞, for a measurable

function b ∶ X Ð→ [1,∞) such that P(b),Q(b) < ∞. For simplicity, in the following

we will not mention these necessary integrability requirements and we will assume that

sup
f∈F
(P(f)), sup

f∈F
(Q(f)) <∞. When this condition is satisfied, it is said that F is integrally

bounded.

We observe that when F is symmetric, that is, −f ∈ F whenever f ∈ F , we have

that MMD[F ,P,Q] = sup
f∈F
(∣P(f) −Q(f)∣). In other words, the MMD in (3.18) is the

integral probability metric generated by F (see Müller (1997)). In Rachev et al. (2013,

Section 4.4), it is also said that the metric has a ζ-structure (Zolotarev (1983)). In this

section we will also assume that F is symmetric.

Some frequently used probability metrics can be expressed as MMD[F ,P,Q], for

a suitable choice of the set of functions F . In the following examples X and Y are

two random variables with distribution functions F and H and associated probability

measures P and Q, respectively.

1. Kolmogorov metric. This distance is ∥F −H∥∞, which is the integral probability

metric generated by F = {1(−∞,x] ∶ x ∈ R}. Further, it is also generated by the set of

all functions of bounded variation 1 (see Müller (1997, Theorem 5.2)).

2. Lp metrics. For 1 ≤ p < ∞, this metric is defined by dp(F,H) = ∥F −H∥Lp (∥ ⋅ ∥Lp

being the usual Lp-norm). When X and Y are integrable, dp admits the dual

representation (see Rachev et al. (2013, p. 73)) dp(F,H) =MMD [Fp,P,Q], where

Fp is the class of all Lebesgue a.e. differentiable functions f such that the derivative

f ′ satisfies ∥f ′∥Lq ≤ 1 (q being the conjugate of p, i.e., q is such that 1
p + 1

q = 1).

3. Wasserstein metric. This distance is a particular and important case of the Lp-

metric with p = 1. Its generator is also the class FW of functions f ∶ R Ð→ R
such that satisfies the Lipschitz condition ∣f(x) − f(y)∣ ≤ ∣x − y∣, for all (x, y) ∈
R2. By the Kantorovich–Rubinstein’s theorem, ∥F −H∥1 = MMD [FW,P,Q]. The

Wasserstein distance is also known as Kantorovich–Rubinstein distance. In the

context of image processing, this metric is called the earth mover’s distance (see

Rubner et al. (2000)). The importance of the Wasserstein metric, as well as its

relevance for optimal transport problems, has been summarized in Villani (2008,

Section 6).

4. Bounded Lipschitz metric. This metric (see Huber (2011, p. 29)) is the integral

probability metric generated by FBL, the class of functions f ∶ R Ð→ R such that

∥f∥BL ≤ 1, where ∥f∥BL = ∥f∥L + ∥f∥∞ and ∥ ⋅ ∥L is the Lipschitz norm given by

∥f∥L = sup
x≠y∈R

(∣f(x) − f(y)∣∣x − y∣ ) .

5. Zolotarev ideal metrics of order r. For r ∈ N, let Zr be the class of (r − 1)-times

continuously differentiable functions f ∶ R Ð→ R satisfying the Lipschitz condition
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∣f (r−1)(x) − f (r−1)(y)∣ ≤ ∣x−y∣, for all (x, y) ∈ R2. (Here we use the notation f (0) ≡ f .)

The class Zr can also be substituted by the set of functions f having r-th derivative

f (r) a.e. and such that ∣f (r)∣ ≤ 1 a.e. The metric ζr = MMD [Zr,P,Q] is called the

Zolotarev metric of order r (see Rachev et al. (2013) for a general reference and

properties of these distances). Convergence in ζr-metric implies weak convergence

plus convergence of the r-th absolute moment. Zolotarev metrics have been used

in Rao (1997) to obtain a CLT for independent, non-identically distributed random

variables. As mentioned in Rachev et al. (2013, Section 15), the case r = 2 is appro-

priate for investigating some ageing properties of lifetime distributions. In Báıllo

et al. (2019), ζ2 has also been used to generate new distance measures for classifying

X-ray astronomy data into stellar classes. The metric ζ3 has been considered in the

context of distributional recurrences (see Neininger and Rüschendorf (2004a) and

Neininger and Rüschendorf (2004b)).

6. Zolotarev metric of order r in Lp: For r ∈ N, and 1 ≤ p ≤ ∞, the metric ζr,p is

generated by Zr,p, the set of functions f ∶ R Ð→ R for which f (r+1) exists and

satisfies ∥f (r+1)∥Lq ≤ 1, where q is the conjugate of p (1p + 1
q = 1⇔ q = p

p−1). Note that

ζr,1 ≡ ζr+1 (the Zolotarev ideal metric of order r+1). In risk theory, the metrics ζ1,∞
and ζ1,1 are respectively called the stop-loss distance and the integrated stop-loss

distance (see Denuit et al. (2006)).

7. Kernel distances : when the class is FHk
. This distances are treated in depth in

Chapter 4 together with the new proposal supremum kernel distances (SKD) or

uniform kernel distances (UKD). In this second type of distances, the class of func-

tions is the union of unit balls FHk,Λ
.

3.4.2 A general asymptotic result for the MMD

The use of the empirical counterpart of the MMD was already considered in Fortet and

Mourier (1953) and it has been extensively employed in machine learning when F is the

unit ball in a reproducing kernel Hilbert space (RKHS) (see Chapter 4). In Sriperum-

budur et al. (2012), the authors showed the consistency and rate of convergence of some

estimators of various integral probability metrics. The asymptotic behaviour of an esti-

mator of the Zolotarev metric of order r in Lp has been discussed in Cárcamo (2017).

Here we provide a general result regarding the estimation of the MMD. We only consider

the two sample case as this situation is the most frequently considered in the literature,

but similar results can be obtained in the one sample case.

Let us consider X1, . . . ,Xn and Y1, . . . , Ym two independent random samples from

X and Y with probability measures P and Q, respectively. We denote by Pn and Qm the

empirical measures associated with these samples (see Subsection 1.2.2). Given a class of

functions F , the empirical counterpart of MMD[F ,P,Q] in (3.18) is given by

MMD [F ,Pn,Qm] = sup
f∈F
( 1

n

n

∑
i=1

f (Xi) −
1

m

m

∑
j=1

f (Yj)) . (3.19)
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In this section we are interested in the asymptotic behavior of the quantity

Mm,n =
√
N (MMD [F ,Pn,Qm] −MMD[F ,P,Q]) , with N = nm

n +m. (3.20)

We observe that Mm,n is precisely Dn,m(σ) = Dσ (P−Q,Pn −Qm,
√
N) in (2.3), where

the underlying space is X = F . Therefore, from Theorem 38, to derive the asymptotic

distribution of Mm,n in (3.20) we only need to study the weak converge in ℓ∞(F) of the

two sample empirical process Gn,m =
√
N (Pn −Qm −P+Q) (see Subsection 1.2.2).

With all these ingredients, the main result in this section that determines the

asymptotic distribution of the statistic (3.19) is stated.

Theorem 50. Let X and Y be two random variables with probability measures P and Q,

respectively. Let us assume that

(a) The sampling scheme is balanced, that is, n
n+m → ξ, with 0 ≤ ξ ≤ 1, as n,m→∞.

(b) The class F is simultaneously P and Q-Donsker.

We consider the pseudometric ρ on F given by

ρ(f, g)2 = ρL2(P)(f, g)2 + ρL2(Q)(f, g)2, f, g ∈ F , (3.21)

where ρL2(P) and ρL2(Q) are the intrinsic L2-pseudometrics of P and Q respectively. We

have that (F , ρ) is a totally bounded pseudometric space, the functional P−Q belongs to

Cu(F , ρ) and the statistic Mn,m defined in (3.20) satisfies that

Mn,m ↝ sup
M
+
(D,ρ)

(G),

where G =
√

1 − ξGP −
√
ξGQ is defined in (1.4) and

M
+(D,ρ) = {f ∈ F ∶ P(f) −Q(f) =MMD[F ,P,Q]} ,

with F̄ being the ρ-completion of F .

Proof. First, from (a) and (b) we have that Gn,m ↝ G, where Gn,m =
√

nm
n+m (Pn −Qm −P

+Q) is the two-sample empirical process defined in Subsection 1.2.2. Hence, by Theorem

38, Mn,m ↝ σ′D(G). Now, as F is P and Q-Donsker, the pseudo-metric spaces (F , ρP) and

(F , ρQ) are totally bounded, where ρP and ρQ are the natural pseudo-metrics given in

Subsection 1.2.1 (see also Giné and Nickl (2021, Remark 3.7.27)). Further, GP ∈ Cu (F , ρP)
and GQ ∈ Cu (F , ρQ) a.s. Now, as by assumption ∣P(f)∣

f∈F

, ∣Q(f)∣
f∈F

<∞, then we can conclude

that (F , ρL2(P)) and (F , ρL2(Q)) are also totally bounded. It is easy to check that this

implies that (F , ρ) is also totally bounded, where ρ is in (3.21). On the other hand, by

Cauchy–Schwarz inequality, we have that P−Q ∈ Cu(F , ρ) and also that the paths of G are

in Cu(F , ρ) a.s. since ρP, ρQ ≤ ρ. Therefore, the conclusion follows by applying Corollary

26 (b).
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Condition (b) in Theorem 50 is the key assumption to apply the previous result.

In other words, we have to ensure that F is P,Q-Donsker. There are many results in the

literature on empirical proceses guaranteeing that a class of functions is Donsker (see A.

van der Vaart and Wellner (1996)). For instance, it is well-known that the set of indicators

generating the Kolmogorov distance is universal Donsker. The unit ball for the Bounded

Lipschitz metric is Donsker whenever the underlying distribution has some finite moments

(see Nickl and Pötscher (2007, Corollary 5 and Remark 2)). In the same work, Nickl and

Pötscher (2007) showed that bounded subsets of general function spaces defined over Rd

are Donsker under some appropriate conditions. Examples include (weighted) Besov,

Sobolev, Hölder, and Triebel type spaces. Some of these results have been extended in

Sriperumbudur (2016).



Chapter 4

A two-sample test based on kernel

distances

In this chapter, a suitable version of the so-called “kernel trick” is used to devise two-

sample tests especially focused on high-dimensional and functional data. The proposal

entails a simplification of the practical problem of selecting an appropriate kernel function.

Specifically, we apply a uniform variant of the kernel trick which involves the supremum

within a class of kernel-based distances. We obtain the asymptotic distribution of the test

statistic under the null and alternative hypotheses. The proofs rely on empirical processes

theory, combined with the Delta method and Hadamard directional differentiability tech-

niques (see Chapter 1), and functional Karhunen-Loève-type expansions of the underlying

processes. This methodology has some advantages over other standard approaches in the

literature. We also give some experimental insight into the performance of our proposal

compared to other popular approaches: in particular, we have considered the original

kernel-based proposal by Gretton et al. (2007), as well as some variants of it based on

splitting methods, and a test based on energy distances presented in Székely and Rizzo

(2017).

4.1 Introduction

In this section we provide an extended summary including not only the main ideas of this

chapter but, specially, the general setting, motivation and related literature, as well as

the technical tools we use.

The kernel trick and some potential kernel traps

We focus on statistical problems where, essentially, the aim is to properly separate data

coming from two different populations; this is the case of binary supervised classifica-

tion and two-sample testing problems. In such situations, the kernel trick is a common

paradigm. In a few words, the standard multivariate version (i.e., with data in Rd) of

the kernel trick lies in separating the data in both populations using a symmetric non-

59
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negative definite “kernel function”. The values of the kernel can be seen as the inner

product of transformed versions of the original observations in a different (usually higher-

dimensional) space. It is expected that the groups can be better distinguished in the new

final space; see Scholkopf and Smola (2018).

We are particularly interested in those situations in which the available data are

high-dimensional or even functional (thus, infinite-dimensional). In such cases, the strat-

egy of mapping the data into a higher-dimensional space does not seem to be so com-

pelling. Still, the kernel trick remains meaningful in a sort of “second generation” version,

whose point is to take the data to a more comfortable and flexible space. In this new

space, the statistical methodology might be mathematically more tractable, and more

easily implemented and interpreted. To be more precise, a probability distribution P on

the sample space X is replaced with the function

µP(x) = ∫
X
k(x, y) dP(y), x ∈ X , (4.1)

(its mean embedding, see Subsection 1.3.1) in an appropriate space of “nice functions”

defined by means of the kernel k: the RKHS Hk. In this way, the distance between two

probability measures is computed in terms of the metric in the functional space (see also

3.4). As a matter of fact, one of the most appealing proposals in this direction relies on

kernel-based distances, expressed in terms of the embedding transformation µP in (4.1);

see Gretton et al. (2007).

The kernel k involved in this methodology depends, almost unavoidably, on some

tuning parameter λ, typically a scale factor. Therefore, we actually have a family of

kernels, kλ, for λ ∈ Λ, where Λ is usually a subset of Rd (d ≥ 1). For instance, the popular

family of Gaussian kernels with parameter λ ∈ (0,∞) is defined by

kλ(x, y) = exp (−λ ∥x − y∥2) , for x, y ∈ X , (4.2)

where ∥ ⋅ ∥ is a norm in X . Unfortunately, there is no general rule to know a priori which

kernel works best with the available data. In other words, the choice of λ is, to some

extent, arbitrary but not irrelevant, as it could remarkably affect the final output. For

example, very small or very large choices of λ in (4.2) result in null discrepancies, which

have no ability to distinguish distributions. The selection of λ is hence a delicate problem

that has not been satisfactorily solved so far. This is what we call the kernel trap: a bad

choice of the parameter leading to poor results. Although this problem was not explicitly

considered in Gretton et al. (2007), the authors are aware of this relevant question and

uses a heuristic choice of λ for the finite-dimensional Gaussian kernel.

Further, a parameter-dependent method might be an obstacle for practitioners who

are often reluctant to use procedures depending on auxiliary, hard-to-interpret parameters.

We thus find here a particular instance of the trade-off between power and applicability:

as stated in Tukey (1959), the practical power of a statistical procedure is defined as “the

product of the mathematical power by the probability that the procedure will be used”

(Tukey credits to Churchill Eisenhart for this idea). From this perspective, our proposal

can be viewed as an attempt to make kernel-based homogeneity tests more usable by
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getting rid of the tuning parameter(s). Roughly speaking, the idea that we propose to

avoid selecting a specific value of λ within the family {kλ ∶ λ ∈ Λ} is to take the supremum

over the set of parameters Λ of the resulting family of kernel-distances. We call this

approach the uniform kernel trick, as we map the data into many functional spaces at the

same time and use, as test statistic, the supremum of the corresponding kernel distances.

We believe that this methodology could be successfully applied as well in supervised

classification, though this topic is not considered in this work.

The topic under study: two-sample problems

Two-sample tests, also called homogeneity tests, aim to decide whether or not it can

be accepted that two random elements have the same distribution, using the information

provided by two independent samples. This problem is omnipresent in practice on account

of their applicability to a great variety of situations, ranging from biomedicine to quality

control. Since the classical Student’s t-tests or rank-based (Mann-Whitney, Wilcoxon, . . . )

procedures, the subject has received an almost permanent attention from the statistical

community. In this work we focus on two-sample tests valid, under broad assumptions,

for general settings in which the data are drawn from two random elements X and Y

taking values in a general space X . The set X is the sample space, or feature space in the

Machine Learning language. In the important particular case X = L2([0,1]), X and Y are

stochastic processes and the two-sample problem lies within the framework of Functional

Data Analysis (FDA).

Many important statistical methods, including goodness of fit and homogeneity

tests, are based on an appropriate metric (or discrepancy measure) that allows groups

or distributions to be distinguished. Probability distances or semi-distances reveal to the

practitioner the dissimilarity between two random quantities. Therefore, the estimation

of a suitable distance helps detect significant differences between two populations. Some

well-known, classic examples of such metrics are the Kolmogorov distance, that leads to

the popular Kolmogorov-Smirnov statistic, and L2-based discrepancy measures, leading

to Cramér-von Mises or Anderson-Darling statistics. These methods, based on cumula-

tive distribution functions, are no longer useful with high-dimensional or non-Euclidean

data, as in FDA problems. For this reason we follow a different strategy based on more

adaptable metrics between general probability measures.

The energy distance (see the review by Székely and Rizzo (2017)) and the asso-

ciated distance covariance, as well as kernel distance, represent a step forward in this

direction since they can be calculated with relative ease for high-dimensional distribu-

tions. In Sejdinovic et al. (2013) the relationships among these metrics in the context

of hypothesis testing are discussed. In this chapter we consider an extension, as well as

an alternative mathematical approach, for the two-sample test in Gretton et al. (2007).

These authors show that kernel-based procedures perform better than other more classical

approaches when dimension grows, although they are strongly dependent on the choice

of the kernel parameter.
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Kernel distances

To present the contributions of this chapter, we briefly refer to some important, mutu-

ally related, technical notions. As emphasized in Berlinet and Thomas-Agnan (2011),

Reproducing Kernel Hilbert Spaces (RKHS in short) provide an excellent environment

to construct helpful transformations in several statistical problems. Given a topological

space X (in many applications X is a subset of a Hilbert space), remind that a kernel

k is a real non-negative semidefinite symmetric function on X × X . See Section 1.3 for

additional details.

Let Mp(X ) be the set of (Borel) probability measures on X . Under any of the

conditions of Proposition 16, the functions in Hk are measurable and P-integrable, for

each P ∈Mp(X ). Moreover, the function

µP(⋅) = ∫
X
k(⋅, y) dP(y),

(also in (4.1)) belongs to Hk. The transformation P↦ µP fromMp(X ) to Hk is called the

(kernel) mean embedding (see Sejdinovic et al. (2013) and Berlinet and Thomas-Agnan

(2011, Chapter 4), Definition 13).

The kernel distance between P and Q in Mp(X ) is

dk(P,Q) = ∥µP − µQ∥Hk
= (∫

X
∫
X
k(x, y) d(P−Q)(y) d(P−Q)(x))

1/2

, (4.3)

where ∥ ⋅ ∥Hk
stands for the norm in Hk and P−Q denotes the (signed) measure on X .

Therefore, dk(P,Q) is the RKHS distance between the mean embeddings of the corre-

sponding probability measures. Kernel distances were popularized in machine learning

as tools to tackle several relevant statistical problems, such as homogeneity tests Gretton

et al. (2006), independence Gretton et al. (2007), test of conditional independence Fuku-

mizu et al. (2007) and density estimation Sriperumbudur (2011). The key idea behind

this methodology can be seen as a particular case of the fruitful kernel trick paradigm.

Contributions: the uniform kernel trick

We consider a family of kernels {kλ ∶ λ ∈ Λ}, where Λ is certain parametric space. For the

Gaussian kernel in (4.2), Λ = (0,∞), but in general λ could be a multidimensional pa-

rameter, as in the case of Matérn kernels or inverse quadratic kernels; see Sriperumbudur

(2016, p. 1846). Each kλ has an associated RKHS, Hk,λ (endowed with its intrinsic norm

∥ ⋅ ∥Hk,λ
), and the corresponding probability distance dk,λ. For P,Q ∈Mp(X ), we want

to test H0 ∶ P = Q using the distances within the collection {dk,λ ∶ λ ∈ Λ}. The current

theoretical framework does not support the automatic (data-driven) choice of λ ∈ Λ, since

the asymptotic theory is mainly developed for a fixed kernel, corresponding to a specific

value of λ. However, the choice of λ is a non-trivial and sensitive issue with no obvious

best solution, and which might affect the test performance.

There are various interesting proposals to deal with this problem in practice: the

median heuristic of Gretton et al. (2007); sample-splitting and optimization methods in
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Gretton, Sejdinovic, et al. (2012) and Liu et al. (2020); and aggregation methods such

as Gretton, Sejdinovic, et al. (2012). In this chapter we explore an alternative to avoid

making a parametric decision or splitting the data set. Our proposal can be included

within the aggregative methods: we combine the information provided by different kernels

by taking the supremum over the induced kernel metrics. Specifically, we use the quantity

that “best separates” P and Q, that is, the supremum of all kernel distances given by

dk,Λ(P,Q) = sup
λ∈Λ
(dk,λ(P,Q)) = sup

λ∈Λ
(∥µλ

P − µλ
Q∥Hk,λ

) , P,Q ∈Mp(X ), (4.4)

where, for λ ∈ Λ, µλ
P and µλ

Q are the mean embeddings of P and Q, respectively, in Hk,λ.

We call the quantity in (4.4) the supremum (or uniform) kernel distance of {kλ ∶ λ ∈ Λ}.
Also, the uniform kernel trick refers to the overall idea of using (4.4) to eliminate the

parameter in kernel-based statistics. Observe that dk (4.3) is a particular case of dk,Λ in

(4.4) when Λ has one element. Therefore, all the results in this chapter can be applied

for usual kernel distances. In addition, in the family {kλ ∶ λ ∈ Λ} we can include kernels

from different parametric families, which would generate more robust test statistics that

might work well under many types of alternatives.

The supremum kernel distance (4.4) entails several advantages and some math-

ematical challenges: First, the kernel selection problem is considerably simplified and

solved in a natural way. Additionally, the approach is general enough to be applied in

infinite-dimensional settings as FDA. This is interesting since in FDA there are only a few

homogeneity tests in the literature. Some of them have been developed in the setting of

ANOVA models (involving several samples) under homoscedasticity (equal covariance op-

erators of the involved processes) and Gaussian assumptions. Hence, the current method-

ologies amount to testing the null hypothesis of equal means in all the populations; see,

e.g., Cuevas et al. (2004) for an early contribution and J.-T. Zhang (2013) for a broader

perspective. Our proposal is therefore quite related to more general approaches, not re-

quiring any homoscedasticity assumption and still valid for a FDA framework. Examples

of such similar tests are Hall and Van Keilegom (2007) and Pomann et al. (2016), as well

as the random projections-based methodology in Cuesta-Albertos et al. (2007).

The inclusion of the supremum in (4.4) represents an additional difficulty. The

asymptotic properties of the test statistic based on (4.4) are derived by following a dif-

ferent strategy from that of Gretton et al. (2007) and later works. The methodology

proposed here allows us to cope with the supremum and applies directly to the case

of unequal sample sizes. In short, our approach can be described as follows: First, we

consider plug-in estimators of the kernel distances, obtained by replacing the unknown

distributions by their empirical counterparts (see Subsection 1.2.2 for further details).

Then, we use the powerful theory of empirical processes together with some recent results

on the differentiability of the supremum (see Chapter 2) and functional Karhunen-Loève

expansions of the underlying processes. These developments entail several technical dif-

ficulties from the mathematical point of view. However, they are worthwhile since they

allow us to analyze the asymptotic behavior, under both the null and the alternative

hypothesis, of the two-sample test based on (4.4).
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The structure of this chapter

In Section 4.2 we provide some preliminaries regarding mean embedding basics and em-

pirical processes (see also Subsections 1.3.1 and 1.2.2, respectively). While most of this

background is well-known or can be found in the literature, it is included here to introduce

the necessary notation and make the thesis as self-contained as possible. Section 4.3 con-

tains the main theoretical contributions. First, we obtain a Donsker property for (unions

of) unit balls in RKHS that could be of independent interest. We establish the asymp-

totic validity under the null hypothesis of the two-sample test based on the distance (4.4).

The asymptotic statistical power (i.e., the behaviour under the alternative hypothesis of

non-homogeneity) is also analysed. An empirical study, comparing the uniform kernel test

with some other competitors is presented in Section 4.4. In the considered scenarios, SKD

is competitive with other kernel-based methods, especially in the case of heteroscedastic

populations. However, given the limited nature of the study, we cannot conclude that

our proposal unequivocally outperforms existing approaches. Some concluding remarks

are included in Section 4.5. Finally, Section 4.6 collects the proofs of the main theoretical

results.

4.2 Preliminaries

In this section we describe various tools that we use throughout this chapter.

Kernel distances as integral probability metrics

Each P ∈Mp(X ) (Borel probability measure on X ), can be seen as a linear functional on

Hk via the mapping

f ∈ Hk ↦ P(f) = ∫
X
f dP, (4.5)

whenever Hk ⊂L1(P). This condition is also equivalent to saying that the function x ↦
k(x, ⋅) is Pettis integrable (with respect to P) and to the existence of the mean embedding

µP in (4.1) as an element of Hk satisfying, by Riesz’s representation theorem, that

P(f) = ⟨f, µP⟩Hk
, for f ∈ Hk. (4.6)

Sufficient conditions guaranteeing the injectivity of the mean embedding transformation

can be found in Sriperumbudur et al. (2011). Note that in (4.5) (and what follows) we

use the standard notation in empirical processes theory: P(f) (see Section 1.2).

The existence of the mean embedding implies that the kernel distance in (4.3), as

well as the supremum kernel distance in (4.4), are well-defined. Indeed, they are integral

probability metrics ; see Section 3.4.1 (see also Müller (1997) for further details). To see

this, let us consider the unit ball of Hk, that is, FHk
. We have that

∥µP − µQ∥Hk
= sup

f∈FHk

(⟨f, µP − µQ⟩Hk
) (a)= sup

f∈FHk

(⟨f,∫
X
k(⋅, x) d(P−Q)(x)⟩

Hk

)

(b)= sup
f∈FHk

(∫
X
⟨f, k(⋅, x)⟩

Hk
d(P−Q)(x)) (c)= sup

f∈FHk

(P(f) −Q(f)),
(4.7)
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where (a) follows from the definition of mean embedding (4.1), (b) from Pettis inte-

grability, and (c) from the reproducing property (see Definition 12); see also Gretton,

Borgwardt, et al. (2012, Lemma 4). Thus, the kernel distance (4.3) is the integral proba-

bility metric generated by the class FHk
. Therefore, the supremum kernel distance (4.4)

admits the alternative representation

dk,Λ(P,Q) = sup
f∈FHk,Λ

(P(f) −Q(f)) with FHk,Λ
= ⋃

λ∈Λ

FHk,λ
, (4.8)

where FHk,λ
is the unit ball in the RKHS space associated with kλ. In other words, dk,Λ is

the integral probability metric defined through the union of unit balls of the whole family

of RKHS constructed with {kλ ∶ λ ∈ Λ}.
From the characterizations as integral probability metrics in (4.7) and (4.8), we

conclude that dk and dk,Λ satisfy the properties of a pseudo-metric (non-negativeness,

symmetry, triangular property). However, to ensure the identifiability property of a metric

d (i.e., d(P,Q) = 0 if and only if P = Q) additional conditions are needed. It can be

checked that when X = Rd, identifiability is satisfied for the usual kernels (such as the

Gaussian kernel in (4.2)). However, when X is infinite-dimensional this type of results

are more complicated; see Wynne and Duncan (2022) for a deep study of this topic for

the Gaussian kernel (4.2). More details can also be found in Sriperumbudur et al. (2010)

and Sriperumbudur et al. (2011).

Plug-in estimators and empirical processes

A simple and natural estimator of the supremum kernel distance (4.4) can be obtained by

applying the plug-in principle in (4.8). Given two independent samples X1, . . . ,Xn and

Y1, . . . , Ym from P and Q, respectively, we replace the unknown underlying probability

measures P and Q with the observed empirical counterparts, Pn = 1
n ∑

n
i=1 δXi

and Qm =
1
m ∑

m
i=1 δYi

, (see Section 1.2). This leads to the estimator of dk,Λ(P,Q) in (4.8) given by

dk,Λ (Pn,Qm) = sup
f∈FHk,Λ

(Pn(f) −Qm(f)) = sup
f∈FHk,Λ

( 1

n

n

∑
i=1

f (Xi) −
1

m

m

∑
j=1

f (Yj)) . (4.9)

As a supremum over a class of functions is involved in (4.9), the theory of empirical

processes comes into play naturally.

4.3 Main results

In this section we first show that (unions of) unit balls of RKHS are universal Donsker

under mild conditions. This is an important technical result of independent interest that

is the starting point in the proofs of the asymptotic results. We analyze the asymptotic

behaviour of the plug-in estimator (4.9) of the supremum kernel distance in (4.4) and

(4.8). The results are quite general as P and Q are assumed to be Borel probability

measures on a separable metric space. The proofs are based on empirical processes theory
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together with the (extended) Delta method (Shapiro (1991, Theorem 2.1)) and some

recent differentiability results for the supremum given in Chapter 2. This differential

approach differs from previous methods (as those in Gretton, Sejdinovic, et al. (2012) or

Gretton, Borgwardt, et al. (2012)) in which the theory of U-statistics is used to derive

the asymptotic results. Our approach has some advantages: it is applicable to variables

taking values in general spaces, including functional spaces, and the equal sample size

constraint of previous works is removed. Furthermore, the results are applicable in other

contexts (such as tests for equality between two copulas) by just changing the underlying

stochastic process in the spirit of Chapter 3.

Another essential difference between our methodology and other approaches is the

way in which the tuning parameter λ is treated. The asymptotic theory in Gretton,

Borgwardt, et al. (2012) (and other related works) is derived for a fixed kernel, while

the experiments incorporate the Gaussian kernel in (4.2) with a data-driven choice of λ.

As pointed out by the authors, an automatic method for selecting λ is an interesting

area of research with some theoretical implications: setting the kernel using the sample

being tested might change the asymptotic distribution. Regarding this, we note that our

procedure to deal with the tuning parameter λ is fully incorporated in the asymptotic

analysis thanks to the use of the supremum kernel distance (4.4).

The hypotheses

We list some assumptions for later reference. We briefly explain the meaning and impli-

cations of each of them. Remind that k is a positive definite kernel and {kλ ∶ λ ∈ Λ} is a

family of positive definite kernels which might come from different parametric families.

(Reg) Regularity assumption. X is a separable metric space and each kernel is continuous

as a real function of one variable (with the other kept fixed).

(Dom) Dominance assumption. There exists a constant c > 0 such that kλ ≪ c k, for all

λ ∈ Λ. Further, k is bounded on the diagonal, that is, sup
x∈X
(k(x,x)) <∞.

(Ide) Identifiability assumption. If P ≠ Q, there exists λ ∈ Λ such that µλ
P ≠ µλ

Q.

(Par) Continuous parametrization. Λ is a compact subset of Rk (with k ∈ N) and, for a

fixed (x, y) ∈ X ×X , the function λ↦ kλ(x, y) is continuous from Λ to R.

(Sam) Sampling scheme. The sampling scheme is balanced, that is, n
(n+m) → ξ, with

ξ ∈ [0,1], as n,m→∞.

Assumptions (Dom), (Ide), and (Par) were already stated and commented in Section 2.7,

in the context of Hadamard directional differentiability. Assumptions (Reg) and (Dom)

together have important consequences. Firstly, they imply that Hk,λ is constituted by

continuous and bounded functions, therefore measurable and integrable. Moreover, under

these two conditions the mean embedding µλ
P exits (for each P and λ). In particular, the

supremum kernel distance (4.4) is well-defined. (Reg) and (Dom) are also essential to
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show that the class FHk,Λ
in (4.8) is universal Donsker, which is a key point in the proofs

of the following theorems. Furthermore, we also observe that (Ide) is not specifically

required to obtain the asymptotic distribution under H0 in Theorem 52. Finally, (Sam)

is necessary for the combination of the associated empirical processes to converge.

Examples of families of kernels

The hypotheses above can be verified for most families of kernels that are used in practice

by properly choosing the parameter space. The most demanding assumption about the

kernel family is perhaps (Dom). This condition is always satisfied (in any dimension) for

finite families of kernels (i.e., when Λ is a finite set) that are bounded on the diagonal.

In this case, each element of the collection of positive definite kernels is dominated by

the sum of them. In particular, this always ensures the applicability of the results, both

in high and infinite dimensions, since one practical implementation of the procedure is

carried out by choosing a grid of points in the parameter space; see Section 4.4.

When X = Rd, a finite-dimensional space, the usual parametric families of kernels

often generate a nested collection of RKHS; see H. Zhang and Zhao (2013). This means

that for λ1, λ2 ∈ Λ, there exists a constant c = c (λ1, λ2, d) such that kλ1 ≪ c kλ2 (or the

other way around). In such cases, (Dom) is valid for a compact subset Λ of the whole

parametric space by using one of the kernels of the family as the bounding kernel k in

(Dom). Some important examples included in this setting are the families of Gaussian and

Laplacian kernels, inverse multiquadrics kernels, B-spline kernels, Matérn kernels, among

others; see H. Zhang and Zhao (2013, Theorems 3.5, 3.6, and 3.7) and Sriperumbudur

(2016).

Nevertheless, the problem is more delicate in infinite dimension. If X = Rd and

for the usual parametric families of kernels, the best constant c in “inequalities” of the

form kλ1 ≪ c kλ2 depends on the dimension d and blows up when d goes to infinity; see H.

Zhang and Zhao (2013, Theorems 3.5 and 3.6). Therefore, when the domain is functional

(for instance, if X = L2([0,1])), the task of finding a dominating kernel is more involved.

An example can be built when the parameter space

Λ = {m ∈ L2([0,1]) :m absolutely continuous with ∫
1

0
∣m′∣2 < 1} ,

is the unit ball of the Cameron-Martin space associated to the Wiener measure in C([0,1]),
the space of continuous functions on [0,1]. A family of kernels km(x, y) fulfilling (Dom)

and (Ide) can be constructed using Minlos-Sazanov Theorem (see e.g., Wynne and Duncan

(2022, Th. 24)) and relying on ideas by H. Zhang and Zhao (2013, Prop. 3.1) and

Wendland (2004, Chapter 10).

Additionally, we observe that (Dom) is fulfilled for families of positive linear (or

convex) combinations of a finite family of kernels. In this example, the set of parameter

Λ is given by the weights of the considered combinations; see Gretton, Sejdinovic, et al.

(2012). We finally refer to Berlinet and Thomas-Agnan (2011, Chapter 7) and Paulsen

and Raghupathi (2016, Chapter 4) for a wider catalog of families of kernels within this

context.
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A Donsker property for units balls in RKHS

Establishing that a class of functions is (uniform) Donsker has important consequences.

This property is equivalent to having an empirical Central Limit Theorem, which is at the

heart of most asymptotic results in statistics. Therefore, this kind of Donsker-type results

are relevant by themselves and of independent interest. For example, in Sriperumbudur

(2016, Theorem 4.3) (see also Giné and Nickl (2008), Giné and Nickl (2021)) it is shown

that FHk,Λ
in (4.8) is Donsker for some specific finite-dimensional parametric families and

for a suitable subset of Λ. Then, this result is applied to derive asymptotic distributions of

kernel density estimators. In Sriperumbudur (2016), the proofs of the Donsker property for

RKHS unit balls are obtained when X = Rd by direct covering (entropy-based) arguments.

The underlying bounds in these references depend on the dimension d. Therefore, it

seems difficult to extend these Donsker-type statements to the infinite-dimensional case.

However, Theorem 51 below is suitable for the general framework where X might be an

infinite-dimensional space, and thus useful in statistical problems with functional data.

The following theorem establishes that unit balls (and even the union of units

balls) of RKHS are universal Donsker. In the first part of the proof (in Section 4.6)

we use Marcus (1985, Theorem 1.1), while in the second one we show that the union of

unit balls is included in a ball of the space Hk by using Aronszajn’s inclusion theorem

(Aronszajn (1950, Theorem I)).

Theorem 51. Let X be a separable metric space. Assume that the kernel k is bounded on

the diagonal, that is, sup
x∈X
(k(x,x)) <∞, and k(x, ⋅) is continuous, for each x ∈ X . Then,

the class FHk
is universal Donsker. Moreover, if {kλ ∶ λ ∈ Λ} satisfies (Dom), then the

union FHk,Λ
in (4.8) is universal Donsker as well.

This theorem extends Sriperumbudur (2016, Theorem 4.3), where the Donsker

property was shown under more demanding analytical conditions, to any family of kernels

satisfying (Dom).

Asymptotic behavior under the null hypothesis, P = Q

The next theorem provides the asymptotic distribution of the (normalized) estimator of

the supremum kernel distance (4.4) when the two samples come from the same distribu-

tion. In the statement of the following results, GP and GQ are FHk,Λ
-indexed P and Q

Brownian bridges, respectively (see Section 1.2), “↝” stands for the usual convergence in

distribution of (real) random variables, and H∗k,λ denotes the dual space of Hk,λ.

Theorem 52. Let us assume that (Reg), (Dom) and (Sam) hold. If P = Q, the statistic

(4.9) satisfies that

√
nm

n +m dk,Λ (Pn,Qm)↝ sup
λ∈Λ

⎛
⎝
(∑
j∈N
Z2

j,λ)
1/2⎞
⎠
, n,m→∞, (4.10)

where dk,Λ is defined in (4.8), Zj,λ = ⟨GP, φj,λ⟩H∗
k,λ

(for each λ ∈ Λ and j ∈ N) and φj,λ is

the j-th eigenfunction of the covariance operator of GP on H∗k,λ.
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Moreover, {Zj,λ}j∈N,λ∈Λ are jointly Gaussian and for a fixed λ ∈ Λ, {Zj,λ}j∈N are

independent with Zj,λ ∼ N (0, βj,λ), where βj,λ is the eigenvalue associated to φj,λ.

In the first step of the proof of this theorem we use Theorem 51 to derive the

weak convergence of the underlying process. The rest of the proof is rather technical.

The basic ideas are as follows: we use of the Continuous Mapping Theorem to obtain

the convergence of the statistic; subsequently, we apply a functional Karhunen-Loève-

type theorem in the dual space H∗k,λ (Lemma 57 in Section 4.6) to the resulting limiting

process to achieve (4.10). Note that in the family {kλ ∶ λ ∈ Λ} we can include kernels

from different parametric families or mixtures of kernels from distinct families in order to

robustify the test statistic.

Theorem 52 complements in several directions other previous works on this topic,

starting from Gretton et al. (2007, Th. 8). See also J.-T. Zhang et al. (2022), J.-T. Zhang

and Smaga (2022) for more recent references.

Asymptotic behavior under the alternative, P ≠ Q

The following theorem establishes the asymptotic distribution of (the normalized ver-

sion) of (4.9) under the alternative hypothesis of the homogeneity test. Therefore, it

provides the consistency of the testing procedure based on the supremum kernel distance.

Additionally, this result might be potentially useful in order to develop tests of almost

homogeneity, that is, problems in which we are interested in testing H0 ∶ dk,Λ(P,Q) ≤ ε
versus H1 ∶ dk,Λ(P,Q) > ε, for some ε > 0. Analogously, this idea is also applicable to

provide statistical evidence in favor of almost homogeneity when H0 and H1 above are

interchanged. Related ideas can be found in del Barrio et al. (2020) and Dette and Kokot

(2022).

Theorem 53. Let us assume that (Reg), (Dom), (Par), (Ide) and (Sam) hold. If P ≠ Q,

we have that
√

nm

n +m (dk,Λ (Pn,Qm) − dk,Λ(P,Q))↝ sup
λ∈Λ0

(G (h+,λ)) = sup
L
(G), (4.11)

where

G =
√

1 − ξGP −
√
ξGQ,

where G was defined in Subsection 1.2.2

h+,λ =
µλ
P − µλ

Q

∥µλ
P − µλ

Q∥Hk,λ

,

Λ0 = {λ ∈ Λ ∶ ∥µλ
P − µλ

Q∥Hk,λ
= dk,Λ(P,Q)} and L = {h+,λ ∶ λ ∈ Λ0} .

Theorem 53 directly provides the consistency of the homogeneity test based on

the supremum kernel distance dk,Λ in (4.4). We also observe that G is a zero mean

Gaussian process indexed by FHk,Λ
. Further, h+,λ is called witness function in Gretton
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et al. (2007) as the maximum mean discrepancy over FHk,λ
is attained at this element,

that is, P (h+,λ) −Q (h+,λ) = ∥µλ
P − µλ

Q∥Hk,λ
. Therefore, the limit in (4.11) corresponds to

the supremum of G over the set of witness functions for which the value of the uniform

kernel distance is achieved. Regarding the proof of Theorem 53, we mention that the

extended Delta method (see Shapiro (1991, Theorem 2.1)) plays a key role. First, we use

Theorem 51 to show that G is the limit of the underlying process. Later, Corollary 37 to

derive (4.11).

The following result is a direct consequence of Theorem 53 when the family of

kernels has a single element, k.

Corollary 54. Let us assume that (Reg), (Dom) and (Sam) hold. Further, we assume

that k is characteristic. If P ≠ Q, we have that

√
nm

n +m (dk (Pn,Qm) − dk(P,Q))↝ G (h+) , (4.12)

where G is in theorem 53 and

h+ = µP − µQ

∥µP − µQ∥Hk

.

In particular, the distribution of G (h+) is normal with mean zero and variance

Var (G (h+)) = (1 − ξ)VarP (h+) + ξVarQ (h+).

Corollary 54 extends some previous results in which it is assumed that n =m; see

Borgwardt et al. (2006, Th. 2.5), Gretton et al. (2007, Th. 8), and Wynne and Duncan

(2022, Th. 16).

4.4 Empirical results

The aim of this section is to provide some insight about the performance of the two-sample

test based on the SKD in (4.4), both from simulations and real world data sets.

The purpose of these experiments and the methods under study

In the same spirit as Gretton et al. (2006, Section 8.1) or Gretton, Borgwardt, et al.

(2012), we emphasize the interest of a new homogeneity test (based on kernel distances),

suitable for high-dimensional data and not suffering from the degradation of classical

two-sample tests when the dimension increases. Additionally, we show the advantages

of avoiding the choice of the parameters in kernel distances, via our SKD proposal. The

general idea is to check the SKD methodology as an attempt to robustify the test statistic

against bad choices of the kernel or its parameter(s). In this empirical study we compare

the following methods:

– SKD: test based on the SKD in (4.4) with a Gaussian kernel in (4.2).

– GKD: the kernel distance-based test of Gretton et al. (2006) with a data-driven

choice of λ in (4.2) as the median distance between points in the aggregate sample.



4.4. EMPIRICAL RESULTS 71

– GKDSplit: test based on a Gaussian kernel distance where the estimation of the

parameters is done by a splitting method which firstly appears in Fukumizu et al.

(2009). The sample is divided into training and test subsamples to avoid data

influence on the parameter.

– GKDSplitOpt: test based on a kernel distance where the parameter estimation is

detailed in Gretton, Sejdinovic, et al. (2012). The data is divided into training and

test sets. The target parameters are the coefficients of a convex combination of a

finite family of kernels. The weights of the combination are selected to maximize the

ratio between the empirical distance and the standard deviation of the discrepancy.

– ET: the energy test, a popular choice in this type of problems; see Székely and Rizzo

(2017), Rizzo and Szekely (2022).

In our view, the “splitting-based” proposals are based on natural ideas that deserve atten-

tion. Still, there are some open issues to clarify, especially regarding the optimal splitting

of the sample and the asymptotic behavior of the resulting data-driven tests. We hope

that this study could encourage further research along these lines. As for the energy

test ET (Székely and Rizzo (2017)), we have included it in the study because it is based

in a successful statistical methodology, ultimately grounded on the underlying “distance

covariance” association measure; in fact this method has become quite popular in high-

dimensional two sample problems, via the energy package in R. We have considered as

well a variant of this method, which is based on a different distance between the sample

points. The standard statistic in ET is calculated in terms of the Euclidean distance,

which can be seen, by a duality reasoning explained in Székely and Rizzo (2017), as a

distance associated with the Brownian covariance. This suggests the possibility of broad-

ening the choice of the distance to the whole range of the fractional Brownian motion

with Hurst parameter H ∈ (0,1); recall that H = 1
2 for the standard Brownian motion. In

our case, the choice H = 3
4 led to results almost identical to those of H = 1

2 . Perhaps if

heavy-tailed distributions were involved, this new alternative could make a real difference.

The present empirical study is intended as an illustration of our proposal. There-

fore, it is far from exhaustive. A much more detailed experiment, including additional

models and competitors might be worthwhile, but this is beyond the scope of this section.

The models

We include the models in Gretton et al. (2006), based on Gaussian distributions in high

dimension with different means and diagonal covariance matrices. In addition, we also

consider a new scenario with functional data corresponding to trajectories of Gaussian

processes in L2([0,1]). We note that all the considered tests can be applied in the func-

tional setting: GKD, SKD, GKDSplit and GKDSplitOpt are based on the aggregated

matrix (kλ (Zi, Zj))n+mi,j=1, where Zl = Xl for l = 1, . . . , n and Zn+l = Yl for l = 1, . . . ,m. ET

uses cross-distances between the data in the sample space.
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More specifically, our simulation experiments are grouped in three blocks, respec-

tively corresponding to different versions of homoscedasticity (Experiment 1) and het-

eroscedasticity (Experiment 2), plus a functional real data example.

Experiment 1. Different means, homoscedastic case

Model 1.1 White noise. We consider P ∼ N (0, I) and Q ∼ N (µ1, I), where 1 =
(1, d). . .,1)T (the superindex denotes the transpose) and I is the d × d identity

matrix. In this model we deal with two multivariate Gaussian distributions

with identity covariance in large dimension: P is standard and Q has mean

µ1. Hence, Q is a shifted version of P translated
√
dµ units in the direction

given by the vector 1. The parameter µ takes the values 0 (null hypothesis),

0.01, 0.02 and 0.05 (alternative hypothesis).

Model 1.2 Functional data. In this case P ∼ G(0, γ) and Q ∼ G(µ1, γ), where G
stands for a Gaussian process in L2([0,1]). The first parameter is the mean

function and the second the covariance function. Here, 1 is the function iden-

tically equal to 1 and γ (t1, t2) = exp (−0.5 ∣t1 − t2∣). In this model, the “di-

mension” refers to the size of the grid used to approximate the process. The

parameter µ takes the values 0 (null hypothesis), 0.01, 0.05 and 0.2 (alternative

hypothesis).

Experiment 2. Equal means, heteroscedastic cases

Model 2.1 Spread white noise. We consider P ∼ N (0, I) and Q ∼ N (0, σ2 I). The

measure P corresponds to a standard multidimensional Gaussian distribution

and Q to σ times P. The parameter σ2 takes the values 100.01 and 100.02. This

scenario introduces different alternative hypotheses from those in Model 1.1.

In this example, P is more concentrated around the mean than Q.

Model 2.2 Equicorrelated marginals. Here, P ∼ N (0, I) and Q ∼ N (0,Σ), where

Σ = ρ (11T − I) + I, with ρ ∈ {0.005,0.01,0.02,0.05}. This scenario includes

another different alternative from the ones in Model 1.1. In this case, the

difference between P and Q lies on the (linear) dependence structure of the

marginals.

Some technical aspects

Throughout this study we restrict ourselves to the family of Gaussian kernels in (4.2),

where X = Rd or L2([0,1]). In this case, it is easy to show that the kernel distance

dk,λ(P,Q) → 0, when λ → 0 or λ →∞ (and discrete part of P and Q is null). Given two

random samples X1, . . . ,Xn ∼ P and Y1, . . . , Ym ∼ Q, due to the fact that the empirical

measures Pn and Qm are discrete, the kernel distance

dk,λ (Pn,Qm) = O
⎛
⎝

√
1

n
+ 1

m

⎞
⎠
, when λ→∞.
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This means that for small sample sizes, the plug-in estimator of the distance does not

properly approximate its population counterpart. In particular, the maximum of the

empirical distance is usually attained “at the tail”, i.e., on the extremes of the target

interval for λ. This drawback is inherent to the classical kernel distance although it has

not been explicitly mentioned in the literature. Therefore, it is convenient to slightly

modify the kernel to make the empirical distance behave the same as in the continuous

case for small sample sizes. We propose to use a smoothed Gaussian kernel for this

experiments given by

kλ(x, y) = exp (−λ (∥x − y∥2 + 0.1 (∥x∥2 + ∥y∥2))) .

This regularization is common in harmonic analysis to approximate the Dirac delta in

spaces of distributions via smooth functions, called mollifiers. It could be seen as an

ad-hoc correction to improve the approximation of the maximum of the estimated kernel

distance to the corresponding “true” population maximum. The smoothing process can

be eliminated when sample sizes are sufficiently large.

As shown in the literature, a data-driven choice of λ seems to have a good practical

behavior. Specifically, in Gretton et al. (2006) (and in subsequent works), the value of λ

is the median distance between points in the aggregate sample. A theoretical consequence

of this choice is that the asymptotic theory, derived in Gretton et al. (2006) under the

assumption that λ is fixed, does not longer apply to the data-driven case. Still, we include

in our experiments, for comparison purposes, this data-driven choice as it is a common

practice in the earlier literature. Since, to the best of our knowledge, the asymptotic

distribution of the data-driven statistic is not known, we use a permutation test based on

this statistic to obtain rejection regions rather than the other methods (Pearson curves,

Gamma curves and bootstrap for U-statistics) explained in Gretton et al. (2006).

It is worth mentioning that in both tests SKD and ET a permutation procedure

has been used to approximate the corresponding distributions. This is the methodology

used in the energy R-package for the ET test and we have followed here the the same

strategy for the SKD test. Let us recall that our theoretical results provide the asymptotic

distribution of this test, as well as its consistency (see Theorems 52 and 53). However,

the estimation of the quantiles of the limit distribution in (4.10) is far from trivial. As

an additional complication, standard bootstrap approximation fails, as a consequence of

the results in Fang and Santos (2019). This is why the permutation method appears as a

natural choice.

Let us recall that the idea behind the SKD test is to dodge the parameter se-

lection problem by considering “the whole parameter space”. Ideally, for the Gaussian

kernel, an interval of the form (0,∞) could be considered in the SKD. As mentioned

before, the extremes (0 and ∞) are not useful since the distance tends to zero when

the parameter approaches to these values. Therefore, we use a parameter space of the

form Λ = [a, b], with 0 < a < b < ∞. It is important to note that here the values a

and b cannot be properly considered as tuning parameters, since the test is not partic-

ularly sensitive to their choice, provided that the interval is large enough. As we have
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experimentally verified, Λ = [10−4,0.1] is adequate to carry out the test. In practice, we

employ a grid of 11 points logarithmically separated between 10−4 and 0.1. The goal is

to approximate the value of the supremum by the maximum over finite subsets. The

simulation outputs below are based on averages over 200 replications. The permutation

tests for GKD and SKD correspond to B = 5000 permutations. As for ET, we use the

function eqdist.etest of the R-package Rizzo and Szekely (2022). Sample sizes are

n = m = 250 in all experiments. The effect of increasing the dimension d is checked

in the rank d ∈ {205,405,603,803,1003,1203,1401, 1601,1801,2001}. In all cases, the

significance level of the test is set at α = 0.05.

Outputs

Figure 4.1: Performance of the tests under Model 1.1 with α = 0.05. Four values of µ are

shown: 0 (null hypothesis), 0.01, 0.02, and 0.05 (alternative hypothesis).

Outputs from Model 1.1 are displayed in Figure 4.1. Tests calibration, i.e., the

behavior of the different tests under H0, corresponds to the case µ = 0. We observe that

the size of the test is reasonably well controlled by the five tests. Under the alternative

hypothesis µ = 0.01 power curves oscillate slightly and are low. This is due to the proximity

of the alternative hypothesis to the null. When µ = 0.02, we observe that the power of

all methods increases with dimension, with a slightly more pronounced growth for the

ET. This is a kind of dimension blessing observed before for kernel distances in Gretton

et al. (2007, Section 8.1). Note also that the SKD power is a little above the rest of

kernel-based tests (GKD, GKDSplit and GKDSplitOpt). The vertical line in magenta in

the last graph (µ = 0.05) marks the point where the power of all tests is 1. The last tests

in reaching this point when dimension gets larger are GKDSplit and GKDSplitOpt. This

could be an indicator that the splitting methods do not work as well in these examples

where the sample sizes (n = m = 250) are relatively small compared to the dimension we

are dealing with.
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Figure 4.2: Performance of the tests under Model 1.2 with α = 0.05. Four values of µ are

shown: 0 (null hypothesis), 0.01, 0.05, and 0.2 (alternative hypothesis).

Results of Model 1.2 are summarized in Figure 4.2. Test calibration outputs are

depicted for µ = 0. As in the previous example, the second graph (case µ = 0.01) shows a

relatively small power in all cases, since both distributions are very close to each other. A

gain in power is observed for µ = 0.05,0.2. The functional nature of the data is apparent

in the fact that there is no clear pattern of “dimensionality blessing” associated with

the increase of grid size. Indeed, unlike the other examples we are considering, the use of

higher dimensional observations (a denser grid) does not entail a true gain in information,

as grid observations are highly correlated, due to the continuity of the trajectories. ET

obtains the best results under this scenario and SKD is competitive with the other kernel-

based tests. Finally, it is surprising the absence of power of GKDSplitOpt in this model.

Figure 4.3: Performance of tests under Model 2.1 with α = 0.05. Two values of σ2 are

shown: 100.01 and 100.02 (alternative hypothesis).
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The outputs from the heteroscedastic Model 2.1 are placed in Figure 4.3. Here

GKDSplitOpt and SKD behave very well and clearly outperform the other methods. A

plausible explanation for this difference is that the (data-driven) median-based selection

of λ of GKD is not a good choice for the heteroscedastic case when the value of the

location parameter is the same in both populations. This heteroscedastic, same-location,

scenario is also not the most favorable for the ET. Finally, it is noteworthy the loss of

power of GKDSplitOpt from dimension 1601 onward. Again, this might be due to the

small sample sizes in relation to the dimension of the problem.

Figure 4.4: Performance of tests under Model 2.2 with α = 0.05. Four values of ρ are

shown: 0.005, 0.01, 0.02 and 0.05 (alternative hypothesis).

Results of Model 2.2 are shown in Figure 4.4. SKD seems to be particularly

sensitive to dependence since correlations of ρ = 0.05 quickly lead to a power of almost 1.

SKD obtains the best results in this scenario.

A real data example: Barcelona temperatures (1944-2019)

Daily values of maximum temperatures registered at Barcelona airport (El Prat) from

years 1944 to 2019 are considered. The data set consists of 76 vectors of dimension 365,

each of which corresponds to a year in that time period. The daily observations have been

treated as discretization points to include the problem within the framework of functional

data, every year providing a function in the sample. Those observations corresponding to

the 29th of February in leap years are omitted and missing observations are interpolated.

These data are available at https://www.ncei.noaa.gov, the web page of the National

Centers for Environmental Information.

The purpose is to test the null hypothesis that the sample of temperatures from

1944 to 1981 comes from the same (functional) distribution to that of the period 1982-

2019. The rejection of this null hypothesis could be interpreted as a hint of possible

warming in the area. Indeed, we observe that, in absence of any significant climate

https://www.ncei.noaa.gov
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Figure 4.5: Maximum daily land surface temperature measured at El Prat Airport

(Barcelona, Spain) between 1944 and 2019.

change, one would expect that both samples are made of independent trajectories from

the same underlying process.

All the considered tests give a nearly null p-value. This is hardly surprising, in view

of Figure 4.5, where the temperature curves are displayed (the blue curves correspond to

the earlier period). While this is just a small experiment, presented here for illustration

purposes, the results are consistent with those of many other deeper analysis published

in recent years.

Conclusions of the empirical study

In the light of the results, we can conclude that, globally, the supremum kernel distance

test (SKD) performs similarly to the GKD tests in the homoscedastic case, though the ET

test appears to be the winner in this situation. In the heteroscedastic case, SKD obtains

almost the best power results. A more complete study (including the derivation of the

asymptotic distribution for the case of a data-driven selection of λ, the use of Pearson

curves and/or modified bootstrap schemes, . . . ) might be worthwhile in the future. On

the other hand, according to Sejdinovic et al. (2013), energy tests can be expressed in

terms of kernel distances. This idea might deserve further attention as well, in order to

incorporate these “equivalent” kernels to the SKD paradigm. In any case, it is clear that

the present study does not allow us to conclude any obvious superiority (or inferiority)

of none of the considered methods. In fact, the aim of our limited empirical study is to

show that the SKD method can be implemented and it is competitive. This goal has



78 CHAPTER 4. A TWO-SAMPLE TEST BASED ON KERNEL DISTANCES

been hopefully achieved. More definitive conclusions should be reached via subsequent

empirical experiments and, especially, with the use of these tests by practitioners in the

coming years. Software to run the SKD-based test will soon be available as an R-package

called SKD2.

4.5 Final remarks

In this chapter we develop the idea of combining different kernels by using the supremum

of the corresponding distances. In particular, the classical two-sample problem, focused

on high-dimensional and functional data, is considered. Despite the large amount of

relevant literature on this topic, there is still room for improvements, as those provided

here, in the line of obtaining more general results with a different technology of proofs.

The use of differentiation techniques plus empirical processes methods allows us to address

the asymptotic behavior of the test statistics under the null and alternative hypothesis,

including the case of unbalanced samples; see Theorems 52 and 53. A key element in

the proofs is the Donsker property established in Theorem 51, which extends previous

similar results for finite-dimensional situations and could be potentially useful in other

statistical procedures within the RKHS framework. This theorem extends previous similar

results for finite-dimensional situations and could be potentially useful in other statistical

procedures within the RKHS framework. The approach established in this chapter can

also be potentially useful to analyze the asymptotic behavior of data-driven estimators

of the kernel parameters. However, this interesting problem is beyond the scope of this

thesis.

Note that Theorems 52 and 53 are meaningful from a conceptual point of view,

even if the limit distributions are not particularly simple. The mere existence of the limit

(non-degenerate) distributions is a primary guarantee that kernel-based statistics can be

used to derive procedures achieving, at least asymptotically, a prescribed significance level

under the null and providing consistency under the alternative.

In our empirical study, we deal with the complicated structure of the limit distribu-

tion under the null hypothesis by using permutation tests. This is also the approximation

method used in other popular methodologies, such as the energy test (see Székely and

Rizzo (2017) the implementation of this test in the R-package energy). Other alternative

approximation techniques are also conceivable, including truncation in the limit expression

in Theorems 52 plus estimation of the involved parameters.

4.6 Proofs of the main results

We need two auxiliar lemmata to prove Theorem 51. The first result corresponds to

Marcus (1985, Theorem 1.1).

Lemma 55. Let H be a real and separable Hilbert space. Let us consider a linear and

continuous operator T ∶H → Cb(X ), where Cb(X ) is the space of real bounded continuous
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functions on X endowed with the supremum norm. If BH is the unit ball in H, then the

class B = T (BH) is universal Donsker.

We also require Aronszajn’s inclusion theorem; see Aronszajn (1950, Theorem I).

Lemma 56. Let k1 and k2 be two kernels on X . Then, Hk1 ⊂ Hk2 if and only if there

exists a constant c > 0 such that c k2 − k1 is a positive definite kernel (i.e., k1 ≪ c k2). In

such a case, we also have that ∥f∥Hk2
≤√c ∥f∥Hk1

, for all f ∈ Hk1.

Proof of Theorem 51. The first part can be seen as a consequence of Lemma 55. First, by

Berlinet and Thomas-Agnan (2011, Theorem 17), the functions in Hk are continuous. In

particular, using Berlinet and Thomas-Agnan (2011, Corollary 3), we conclude that Hk

is a separable Hilbert space. On the other hand, for x ∈ X , by the reproducing property

(see Definition 12) of k (twice) and Cauchy–Schwarz inequality, we have that

∣f(x) − g(x)∣ = ∣⟨f − g, k(x, ⋅)⟩
Hk
∣ ≤ ∥f − g∥Hk

∥k(x, ⋅)∥Hk
= ∥f − g∥Hk

√
k(x,x). (4.13)

Therefore, as k is bounded on the diagonal, convergence in the RKHS norm entails uniform

convergence. Further, from (4.13) we also see that the functions in Hk are bounded and

hence Hk ⊂ Cb(X ). Now, we can apply Lemma 55 to H = Hk and T = I, the inclusion

map given by I(f) = f . According to (4.13), this linear transformation is continuous. As

BH = FHk
, by Lemma 55, we thus conclude that FHk

= T (FHk
) is universal Donsker.

The second part is a by-product of the first one together with Aronszajn’s inclusion

theorem. According to Lemma 56, we have that ∥f∥Hk
≤ √c ∥f∥Hk,λ

, for all f ∈ Hk,λ and

for all λ ∈ Λ. Therefore, FHk,Λ
⊂ √cFHk

. Finally, from the first part of the theorem, the

set
√
cFHk

is universal Donsker as it is the unit ball of the RKHS generated by the kernel

c k. Therefore, FHk,Λ
is also universal Donsker (see A. van der Vaart and Wellner (1996,

Theorem 2.10.1)) and the proof is complete.

To prove Theorem 52, we need the following Karhunen-Loève-type result for the

FHk,λ
-indexed Brownian bridge.

Lemma 57. Under the assumptions of Theorem 52, we have that:

(a) For each λ ∈ Λ, the FHk,λ
-indexed Brownian bridge GP can be extended almost surely

to a continuous and linear map on Hk,λ. Therefore, GP can be seen as a random

element of the dual space H∗k,λ. For simplicity we also denote this extension in H∗k,λ
as GP.

(b) As an element of H∗k,λ, GP admits the following representation:

GP =a.s. ∑
j∈N
Zj,λφj,λ, in H∗k,λ. (4.14)

In particular, we have that

∥GP∥2H∗
k,λ
=a.s. ∑

j∈N
Z2

j,λ. (4.15)
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Proof. To show part (a), we note that, from Theorem 51, FHk,λ
is a P-Donsker class and

hence P-pre-Gaussian. Therefore, by Giné and Nickl (2021, Theorem 3.7.28), for almost

all ω, the function f ↦ GP(ω)f (f ∈ FHk,λ
) is prelinear and can be uniquely extended to

a linear map on span (FHk,λ
) = Hk,λ. Moreover, this extension is bounded and uniformly

ρL2(P)-continuous in Hk,λ. Finally, we observe that, thanks to (4.13),

ρ2
L2(P)
(f, g) ≤ ∥f − g∥2Hk,λ ∫

X
k(x,x) dP(x). (4.16)

As by hypothesis k is bounded on the diagonal, we have that uniformly ρP-continuous

functions on Hk,λ are also uniformly continuous functions with respect of the norm in

Hk,λ. In particular, GP is almost surely a continuous and linear functional on Hk,λ, and

thus an element of H∗k,λ. This finishes the proof of part (a).

To prove part (b) we first note that, by (a), GP is a Gaussian process in the

Hilbert space H∗k,λ. The covariance operator KGP
of GP is self-adjoint and compact. By

the Fernique’s theorem Bogachev (1998, p. 74), GP is Bochner square-integrable, KGP
is

a trace-class operator and

trace (KGP
) = ∫

H∗
k,λ

∥z∥2
H∗

k,λ
dνGP

(z) = E (∥GP∥2H∗
k,λ
) , (4.17)

where νGP
is the measure induced by the process GP in H∗k,λ. The proof of (4.17) can be

found in Bogachev (1998, p. 48).

Now, by the spectral theorem, there exists {(βj,λ, φj,λ)}j∈N ∈ ([0,∞) ×H∗k,λ)
N

such

that β1,λ ≥ β2,λ ≥ . . .; KGP
φj,λ = βj,λφj,λ, for j ∈ N; and ⟨φj1,λ, φj2,λ⟩H∗

k,λ
= δj1 j2 , for j1, j2 ∈ N

with δi j the Kronecker’s delta. As KGP
is trace-class, we also have that trace (KGP

) =
∑j∈N βj,λ. Additionally,

E(⟨GP, φj,λ⟩H∗
k,λ
) = 0 and E(⟨GP, φj,λ⟩2H∗

k,λ
) = ⟨KGP

(φj,λ) , φj,λ⟩H∗
k,λ
= βj,λ. (4.18)

From (4.18), we have that Zj,λ = ⟨GP, φj,λ⟩H∗
k,λ
∼ N (0, βj,λ) (j ∈ N) are jointly Gaussian

and independent.

To finish this proof of (4.14), by Ledoux and Talagrand (1991, Theorem 6.1), it is

enough to show absolute mean convergence, which is a necessary and sufficient condition.

First, by orthogonality, we observe that for every J ⊂ N finite, we have that

0 ≤ ∥GP −∑
j∈J

Zj,λφj,λ∥
2

H∗
k,λ

= ∥GP∥2H∗
k,λ
−∑

j∈J

Z2
j,λ.

Then by (4.17),

E(∣∥GP∥2H∗
k,λ
−∑

j∈J

Z2
j,λ∣) = trace (KGP

) −∑
j∈J

βj,λ = ∑
j∈N∖J

βj,λ, (4.19)

which is the remainder of a convergent series. Hence, (4.14) holds. As (4.15) follows from

(4.14), the proof is complete.
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The proof of part (a) in Lemma 57 essentially follows from Theorem 51. However,

part (b), where the series representation is obtained, must be discussed. Equation (4.14)

shows the convergence of a series of functional random variables. This result looks like a

standard Karhunen-Loève theorem, but some remarks should be done. The convergence

of this series is in the dual space H∗k,λ, while Karhunen-Loève decomposition is stated

classically on L2-type spaces. In fact, our decomposition in (4.14) can be seen as a

particular case of the results in Bay and Croix (2017). In Giné and Nickl (2021, Theorem

2.6.10) a similar decomposition is shown where the coordinates are deterministic while

the basis is random, which is not useful for our purposes.

Proof of Theorem 52. From Theorem 51, the class FHk,Λ
is Donsker and hence we have

that

Gn,m =
√

nm

n +m (Pn −Qm)↝ GP, in ℓ∞ (FHk,Λ
) . (4.20)

Note that dk,Λ is the metric induced by the supremum norm in ℓ∞ (FHk,Λ
), hence dk,Λ is

a continuous functional. From (4.20) and by the Continuous Mapping Theorem (see, for

instance A. van der Vaart and Wellner (1996, Theorem 1.9.5)), we obtain that
√

nm

n +m dk,Λ (Pn,Qm)↝ sup
FHk,Λ

(GP) . (4.21)

From Lemma 57, the limit in (4.21) can be rewritten as

sup
FHk,Λ

(GP) = sup
λ∈Λ

⎛
⎝

sup
FHk,λ

(GP)
⎞
⎠
= sup

λ∈Λ
(∥GP∥H∗

k,λ
) . (4.22)

Finally, from (4.22) and (4.15) we obtain the representation of the limit as in (4.10) and

the proof of the theorem is complete.

Proof of Corollary 54. From Theorem 51, we have that

Gn,m =
√

nm

n +m (Pn −Qm − (P−Q))↝ G =
√

1 − ξGP −
√
ξGQ, in ℓ∞ (FHk

) . (4.23)

From (4.7), the statistic in the right-hand side of equation (4.12) is precisely
√

nm

n +m (σ (Pn −Qm) − σ(P−Q)) , (4.24)

where σ is denotes the supremum over the class FHk
(see also (2.1)).

Using Lemma 36, it can be checked that the paths of G in (4.23) are a.s. in

Cu (FHk
, ρ), where

ρ =max (ρL2(P), ρL2(Q)) , (4.25)

is the natural L2-metric of G. From (4.16), it can be readily checked that Cu (FHk
, ρ) ⊂

Cu (FHk
, dHk
) and hence G ∈ C (FHk

, dHk
) a.s. To finish the proof it is enough to apply

Corollary 35 together with the functional Delta method (Proposition 5, see also A. van

der Vaart and Wellner (1996, Section 3.9)).

Proof of Theorem 53. The proof of this theorem is analogous to that of Corollary 54 using

Corollary 37 instead of Corollary 35. Details are ommitted.
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Chapter 5

On uniqueness of the set of k-means

The notion of k-means appears, in a natural way, as the solution of an optimization

problem in clustering and location models. It is not difficult to see that this problem does

not have in general a unique solution. In this chapter we address this non-uniqueness issue.

After stating the main definitions, we show some simple examples of non-uniqueness in

order to gain some intuition on this phenomenon. Then, we establish (in terms of the

Gromov-Hausdorff metric) a result of consistency adapted to the non-uniqueness scenario.

We also provide a general characterization for non-uniqueness in terms of the asymptotic

Gaussianity of the empirical risk; this result is, to the best of our knowledge, the first

characterization of uniqueness available in the literature. It relies on some results of

empirical processes theory, combined with Theorem 17 in Chapter 2. A test for the null

hypothesis of uniqueness is derived as a consequence. The final part of the chapter is

devoted to some numerical illustrations, including both Monte Carlo experiments and

simulations aimed at checking the performance of the proposed test

5.1 Introduction

The k-means procedure is one of the most commonly used techniques for finding a given

number of groups in a data set. The notion of k-means is a natural, almost elementary,

idea with a clear interpretation and a great number of relevant applications. However,

despite its simplicity, the underlying methodology still has some extraordinarily complex

challenges associated with it (such as the choice of the parameter k) and many intriguing

theoretical and computational aspects. In this chapter we focus on the problem of unique-

ness of the set of k-means, both from a theoretical and practical point of view. As we

discuss later, determining whether the set of k-means is unique or not could potentially

shed light on possible reasonable choices of the parameter k, or, at least, to avoid bad

choices of k.

In a stochastic context, given a random element X taking values in a separable

Banach space B and a (prefixed) natural number k, the goal of k-means is to find the

optimal set of centers of k groups, say µ1, . . . , µk, such that the expected square distance

from X to its nearest center is minimal. More formally, if X induces the probability

83
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measure P on B (with norm ∥ ⋅ ∥B) and k ∈ N, the principal points or k-means set (of P)

is any subset (of cardinal k) of B minimizing (over all possible sets {a1, . . . , ak} ⊂ B) the

quantity

Φ (P;a1, . . . , ak) = ∫
B

min
i=1,...,k

(∥x − ai∥2B) dP(x). (5.1)

The associated empirical version, based on n independent observations X1, . . . ,Xn drawn

from Pn, corresponds to minimize the expression in (5.1) for Pn, the empirical measure of

the sample given by

Pn =
1

n

n

∑
i=1

δXi
, (5.2)

where δa stands for the unit point mass at a. In other words, we have to minimize the

function

Φn (a1, . . . , ak) = Φ (Pn;a1, . . . , ak) =
1

n

n

∑
j=1

min
i=1,...,k

(∥Xj − ai∥2B) . (5.3)

The resulting optimal values in (5.3) are called the empirical (or sample) k-means.

The k-means procedure plays also a central role in localization problems in oper-

ations research. It can be motivated in terms of the so-called facility location problem:

determine the optimal placement, µ1, . . . , µk, for k facilities in such a way that the average

(square) distance from a random individual to the closest facility is minimal. In statistics

and machine learning, k-means techniques are generally used in clustering (see, e.g., Jain

(2008) for a survey), where the aim is partitioning the space in a Voronoi tesellation of

cells associated with the k-means. Hence, we want to divide the sampling space (or the

sample) into a partition of k clusters. The i-th cluster is constituted by all elements whose

closest center is µi (i = 1, . . . , k).

In addition to the usual and multiple applications of this technique (unsuper-

vised classification, taxonomy, image analysis, information retrieval, market segmenta-

tion, computer vision, astronomy, etc.), the k-means clustering procedure is also used in

quantization: constrain a (possibly continuous) large set to a small collection of values,

the k-centers. In particular, the k-means method is generally used by practitioners as a

powerful tool for summarizing data in cluster prototypes. The group centers provide a

basic representation of the data that is usually very informative. The information con-

tained in the principal points is extremely useful as a descriptive tool as it often allows

understanding the underlying structure of the data and identifying prominent features.

The k-means methodology has important advantages: it is completely general,

applicable to data in normed or metric spaces; easy to interpret and understand; with

a clear population/sampling counterparts; several efficient heuristic algorithms are avail-

able; and with a sound asymptotic theory behind it. In spite of these appealing and pos-

itive aspects, this popular technique also entails some difficulties and challenges. First,

the effective calculation of the sample k-means is a formidable computational (NP-hard)

problem: algorithms have to cope with a non-convex optimization problem in a possibly

high or even infinite-dimensional space. Moreover, the usual algorithms do not guarantee

to reach a global optimum, but rather a local one; see Morissette and Chartier (2013)

for an overview of various relevant clustering algorithms. Choosing of a good value for k
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still receives considerable attention in this field and constitutes an area of active research:

it is difficult to give a clear solution on the choice of the “best” number of groups, k,

whatever method is used. Finally, as we discuss throughout this chapter, the k-means

problem does not necessarily have a single solution in the population version. The lack of

uniqueness might lead to important stability problems of the algorithms, as well as more

subtle issues that can affect the understanding and interpretation of the results.

For many theoretical works involving the k-means methodology, the uniqueness

of the k-means set is imposed as a requirement or a necessary assumption to obtain the

results. Still, it is not difficult to find simple examples where this uniqueness prerequisite

is violated. In Section 5.2 we present some of these examples (which we will use later

for numerical simulations) to illustrate that there are in fact at least two distinct cases of

k-means non-uniqueness that should be differentiated. We also introduce the Hausdorff

metric which is suitable in this context for quantifying distances between sets. Section

5.3 brings together the main theoretical results. We show a general consistency theorem

that does not assume uniqueness using the Hausdorff metric and the Gromov-Hausdorff

distance. We also prove that the uniqueness of the population k-means set is equivalent

to the asymptotic normality of the minimal empirical risk sequence. As an application of

this result, we derive a hypothesis test for the uniqueness of the set of k-means. The proof

relies on a general result on the asymptotic distribution of the empirical risk minimization

over Donsker classes of functions. For this reason, at the end of Section 5.3 we provide

several results that guarantee that the class of functions defining the minimization problem

associated with k-means is Donsker. Some empirical results are included in Section 5.4.

5.2 Non-uniqueness of k-means

In this section we describe the consequences and practical implications of non-uniqueness

in k-means. We also give some simple but illustrative examples of the different cases

of non-uniqueness that might arise. These examples allow us to understand under what

conditions k-means multiplicity usually appears.

We start with some definitions that we use throughout this work. We denote by

SP(k) the collection of all the k-means sets of the probability measure P, that is,

SP(k) = {K = {µ1, . . . , µk} ⊂ B ∶K is a set of k -means for P} . (5.4)

We say that P satisfies the k-means uniqueness property, UP(k), or P ∈ UP(k) in short, if

for that value k the set SP(k) in (5.4) has cardinal one. Therefore, if P ∈ UP(k), there is

a single set of k-means minimizing the functional in (5.1). Historically, this property has

been an initial (and essential) assumption in all significant results that provide theoretical

support for this methodology; see the seminal paper by Pollard (1981) on the consistency

of the procedure and Pollard (1982) where the asymptotic normality of the empirical k-

means is established. This hypothesis has been maintained in all subsequent works on

this subject; see for example Cuesta and Matrán (1988) and Lember (2003).
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However, as pointed out by Garćıa-Escudero et al. (1999), verifying the UP(k)
is a difficult task in practice. There are only a few references related to the uniqueness

of the principal points ; see Li and Flury (1995), Tarpey (1994), Trushkin (1982) and

Zoppe (1997). These contributions usually deal with very particular cases or univariate

distributions which are not too relevant in clustering analysis. In general, it is considerably

difficult to determine analytically whether a given multidimensional distribution verifies

the UP(k) or not.

In the machine learning literature, it is commonly accepted that the lack of unique-

ness is equivalent to k-means algorithms having instability problems. In short, it is ac-

cepted that the existence of a unique minimizer amounts to the stability of the k-means

clustering; see Ben-David et al. (2006), Ben-David et al. (2007), Rakhlin and Caponnetto

(2006) and the overview by Von Luxburg et al. (2010). This is of some practical signifi-

cance since stability might be used for choosing the number of clusters as k can be selected

as the value that provides the most stable results; see Caponnetto and Rakhlin (2006).

However, as we point out below, this equivalence between uniqueness and stability is not

entirely accurate because there are situations of non-uniqueness in which the algorithms

are shown to be stable. This occurs when the different sets of k-means are “separated”

from each other. This idea is elaborated in what follows.

First, we divide the possible cases in which there is no uniqueness in k-means into

two different groups. We use the Hausdorff metric, suitable for quantifying differences

between pairs of sets. We recall that, given two non-empty compact sets A,C ⊂ B, the

Hausdorff distance between A and C is defined by

dH(A,C) = inf {ε > 0 ∶ A ⊂ Cε and C ⊂ Aε} , (5.5)

where, for any set B ⊂ B, Bε = ⋃
x∈B
{z ∶ ∥x− z∥B ≤ ε} is the ε-dilation of B. It is well-known

that if B is a separable Banach space, then

H(B) = {B ⊂ B ∶ B ≠ ∅ and B is compact} (5.6)

is a complete separable metric space, when endowed with the Hausdorff metric dH .

We distinguish two different types of multiplicity patterns, that is, different situa-

tions in which there is no uniqueness in the k-means problem.

– Continuous non-uniqueness, CNU(k): For each ε > 0 and each set of k-means,

K1 ∈ SP(k), there exists K2 ∈ SP(k) such that K1 ≠ K2 and dH (K1,K2) < ε. Here,

every k-means set is an accumulation point (with respect to the Hausdorff metric)

of the set SP(k).

– Discrete non-uniqueness, DNU(k): The set of k-means SP(k) has cardinal greater

than one and there exists ε0 > 0 such that dH (K1,K2) ≥ ε0, for each pair (K1,K2)
of different sets in SP(k).

Whenever P ∈ CNU(k), there are sets of k-means arbitrarily close to each other. In prac-

tice, this is the worst possible situation because it effectively leads to k-means algorithms



5.2. NON-UNIQUENESS OF k-MEANS 87

needing many iterations (and a large amount of time and computational cost) to stop.

This is the case that is often identified by the machine learning community with the in-

stability of the k-means algorithms. In contrast, in the DNU(k) case, there are multiple

but isolated k-means. In practice, when taking a sample from a distribution P ∈ DNU(k),
the algorithms usually approach one of the k-means and converge fast without instability

problems.

We illustrate these two possible situations of non-uniqueness with various exam-

ples. Three of them deal with distributions in R2 to facilitate the visualization of the

probability densities and the associated k-means sets. These examples are also consid-

ered later in Section 5.4 to evaluate the proposed test for uniqueness and our theoretical

results. Simple models not satisfying the UP(k) can be found in any dimension. In fact,

k-means multiplicity could occur more easily in high dimension where geometric intuition

is of little help. In fact, the last example below is infinite-dimensional.

Example 58 (Model C1k2). One of the simplest examples of the CNU case is obtained

by choosing a value of k greater than 1 in a population distributed as a standard bivariate

normal. We consider P ∼ N ((0,0), I2), where I2 is the identity matrix of dimension 2.

When we select k = 2, due to the circular symmetry of the normal density, infinite sets

of k-means appear. It is not difficult to check that these sets are formed by any two

diametrically opposite points on a circumference centered at the origin of radius
√

2
π ; see

Figure 5.1.

There is an obvious symmetry pattern in SP(2) (the class of 2-means sets of this

example): any set of 2-means can be brought to another one by a rotation around the

origin. This pattern is repeated when we choose any value of k greater than 1.

(a) (b)

Figure 5.1: Model C1k2. (a) Density plot and (b) contour plot. The two points in black

are one of the sets of 2-means located on a circumference centered at the origin of radius√
2
π . This corresponds to the case CNU(2).
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Example 59 (Model C2k3). Another example of the CNU case is obtained when selecting

k = 3 with a suitable mixture of two bivariate normal distributions. Specifically, we

consider

P ∼ 1

2
N ((−1,0), I2

25
) + 1

2
N ((1,0), I2

25
) ,

where I2 is the identity matrix of dimension 2.

Here, we obtain infinite sets of 3-means within the case CNU(3). It can be seen

that the sets are formed by two diametrically opposite points on a circumference centered

on the mean of one of the normal distributions of the mixture of radius 0.16 together with

the center of the other normal. The graphical representation of this situation is presented

in Figure 5.2.

Observe that there is an isometric transformation (a rotation plus a reflection),

taking one of these k-means set into another one.

(a)

(b)

Figure 5.2: Model C2k3. (a) Density plot and (b) contour plot. The two sets of three

points in black and red are two of the infinite sets of 3-means of the case CNU(3).

Example 60 (Model C3k2). We consider an example of discrete non-uniqueness. We

select k = 2 in a mixture of three bivariate normal distributions (with equal weights). Let

P ∼ 1

3
N ((−1,0), I2

25
) + 1

3
N ((0,0), I2

25
) + 1

3
N ((1,0), I2

25
) ,

where I2 is the identity matrix of dimension 2.

We obtain two sets of 2-means included in DNU(2) given by {(−1,0), (12 ,0)} and

{(−1
2 ,0) , (1,0)}; see Figure 5.3.

As it can be seen in Figure 5.3 (b), there are two isolated sets of 2-means and one

of them can be transformed into the other one by means of a reflection with respect to

the ordinate axis.
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(a)

(b)

Figure 5.3: Model C3k2. (a) Density plot and (b) contour plot. The two sets of two

points in black and red are the two sets of 2-means of the case DNU(2).

The uniqueness assumption can easily fail in high dimensions. In fact, it seems

easier for the symmetries observed in the above examples to occur in higher dimensions

as the following example shows.

Example 61 (Infinite-dimensional example). Let us consider (B1(t),B2(t)) a vector of

independent and standard Brownian motions on [0,1], and let us fix k ≥ 2. Consider the

random trajectory (t,B1(t),B2(t)) in R3. In this case, there is a symmetry of rotation

around the time-axis (x-axis) and and infinite k-means appear, in further instance of the

continuous no-uniqueness paradigm CNU(k).

It is important to note that in the above examples the multiplicity in the k-means

appears when: (1) the distribution of the population has a certain symmetry; and (2)

the value of k has not been conveniently chosen. In practice, it is very relevant to detect

either of these two circumstances. Symmetries occur frequently in nature and science,

and their understanding has led to significant advances in various fields: symmetries are

fundamental in the standard model of particle physics, quantum mechanics, crystallogra-

phy, the structure of biological molecules such as DNA and proteins, computer vision, etc.

Symmetry also plays an important role in many statistical and data analysis problems.

5.3 Main results

In this section we collect the main results. We show the consistency of the empirical

k-means in terms of the Gromov-Hausdorff metric even in the cases of non-uniqueness.

We also give a characterization of the uniqueness of the set of k-means that we use to
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construct a uniqueness test. This characterization follows from a general asymptotic result

for the empirical risk. Finally, we provide various necessary conditions for the class of

functions defining the k-means risk minimization problem to be Donsker. This last result

is important from a theoretical point of view because it is the basic assumption to obtain

the characterization of the uniqueness property.

5.3.1 Strong consistency without uniqueness

We have shown in the previous section that some simple models might not satisfy the

uniqueness property UP(k). Particularly in the CNU(k) case, the standard k-means

algorithms could show a remarkable instability, providing different outputs, depending on

the initial conditions or failing to fulfill the standard stopping criteria. However, if the

sample size n grows to infinity and we obtain a set of empirical k-means for each n, one

might ask about the “limit behavior” of such sequence of sets. The following Theorem

62 provides an answer. It is an elaboration from some previous results by Cuesta and

Matrán (1988) and Lember (2003, Th. 3.1). Essentially, the result establishes that the

set of empirical k-means always approaches some population k-mean set and, reciprocally,

every population k-mean set is a limit of a sequence of empirical k-means sets. Here, the

results of convergence for sets of k-means is stated in terms of the Hausdorff metric dH
in (5.5), and the Gromov-Hausdroff metric, both defined on the space H(B) in (5.6).

The Gromov-Hausdorff metric (see Burago et al. (2022) for details) is defined by

dGH(A,C) = inf ({dH(T (A), S(C))}) , A,C ∈ H(B), (5.7)

where dH is a the Hausdorff metric in (5.5) and the infimum ranges over all possible

choices of T , S andM, with T ∶ A→M and S ∶ C →M being isometric embeddings and

M is a compact metric space.

We use the following assumptions:

(Geo) Geometric assumption. B is a separable and uniformly convex Banach space.

(Int) Integrability assumption. The measure P satisfies ∫B ∥x∥2B dP(x) <∞ (strong second

moment).

(Sym) Symmetry assumption. For any K1,K2 ∈ SP(k) there is an isometry T ∶ B → B
such that T (K2) =K1.

Assumption (Geo) requires that B is uniformly convex or uniformly rotund; see Clarkson

(1936). This is fulfilled for Hilbert spaces as well as for Lp spaces, with 1 < p < ∞. This

condition is imposed by Cuesta and Matrán (1988) to derive their consistency results.

This assumption entails the less restrictive, but more technical, hypothesis in Lember

(2003, Th. 3.1). The requirement (Int) is necessary for the functional (5.1) to be well-

defined. Assumption (Sym) might seem too restrictive. However, it holds in all examples

of k-means non-uniqueness that we are aware of. It is fulfilled in the examples in Section

5.2 where the sets of k-means present self-similarity patterns easy to formalize in terms

of isometries (translations, rotations, reflections, . . . ).
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Theorem 62. Let X be a random element taking values in B with probability distribution

P fulfilling (Geo) and (Int). We consider the sequence (Kn)n∈N, with Kn ∈ SPn(k) an

empirical k-mean with Pn in (5.2). We have that:

(i) Any dH-adherent point of (Kn)n∈N belongs to SP(k) a.s.

(ii) If additionally (Sym) holds, for any K0 ∈ SP(k), there is a subsequence of (Kn)n∈N,
say (Knj

)
j∈N, such that dGH (Knj

,K0)→ 0, almost surely, as j →∞.

Proof. Part (i) essentially follows from Lember (2003, Th. 3.1). Such result is very

general but quite technical. Therefore, we check all its requirements below. To begin

with, we consider the ordinary weak topology in B as τ in Lember (2003). Then, the key

assumption Lember (2003, Assumption B, p. 29) is fulfilled. This condition imposes that

“every closed ball of B is sequentially τ -compact”. This is guaranteed by (Geo) since, by

Milman-Pettis’s theorem, every uniformly convex space is reflexive and hence the weak

and the weak∗ topology coincide. In particular, the following Radon-Riesz property holds:

if xn converges weakly to x in B and ∥xn∥B → ∥x∥B, then ∥xn − x∥B → 0. As pointed out

in Lember (2003, p. 29), this is another name for the Kadec-Klee property imposed

on Lember (2003, Assumption (2), Th. 3.1). Thus, we can apply Lember (2003, Th.

3.1) to conclude that every subsequence of the empirical k-means (Kn)n∈N has a further

subsequence converging (almost surely) in the Hausdorff metric to some set K0 ∈ SP(k).
Observe that if (Knj

)
j∈N is a subsequence of the empirical k-means converging almost

surely to K0 ∉ SP(k), all subsequences of (Knj
)
j∈N should converge almost surely to K0,

which contradicts Lember (2003, Th. 3.1).

To prove (ii), we consider K0 ∈ SP(k). Let (Kn)n∈N be a sequence with Kn ∈
SPn(k). Using (i), there exists a subsequence, say (Knj

)
j∈N, and K ∈ SP(k) such that

dH (Knj
,K) → 0, almost surely, as j →∞. Now, using (Sym), let T be an isometry on B

such that T (K) = K0. Let us denote by Xnj
the subsequence of data sets corresponding

to Knj
. Since T is an isometry, a sequence of k-means sets corresponding to the sequence

T (Xnj
) is T (Knj

). As dH (Knj
,K)→ 0 a.s., we also obtain that

dH (T (Knj
) ,K0) = dH (T (Knj

) , T (K)) (∗)= dH (Knj
,K)→ 0, a. s. (5.8)

To see (∗), recall that, given A,C ∈ H(B), the Hausdorff distance in (5.5) between them

can be alternatively expressed as

dH(A,C) =max(max
a∈A
(d(a,C)),max

c∈C
(d(c,A))) , (5.9)

where d(a,C) = inf
c∈C
(∥a − c∥B) and analogously for d(c,A). As a consequence of (5.9),

Hausdorff metric remains invariant when the same isometry is applied to both sets. So,

equality (∗) in (5.8) holds.

Finally, from the definition in (5.7) of dGH and (5.8) we obtain that

dGH (Knj
,K0) ≤ dH (T (Knj

) ,K0)→ 0, a. s. as j →∞.

This concludes the proof.
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An heuristic statement of Theorem 62 (ii) could be as follows: a set belongs to

SP(k) if and only if it is the limit of some subsequence of empirical k-means, but not

necessarily a subsequence of the actual sequence that we have. However, if we could en-

sure the uniqueness of the sequence of empirical k-means (Kn)n∈N, a.s., our result would

establish that, the set of all dH-accumulation points of such sequence is precisely SP(k),
the set of population k-means. This situation has been corroborated in the numerical

simulations of the empirical examples in Section 5.4. Intuitively, the uniqueness of the

empirical k-means seems quite natural: by taking a sample, the possible population sym-

metry is broken with probability 1 and there is a single set of k-means. However, to

the best of our knowledge, this “empirical uniqueness” does not seem simple to prove.

It is essentially a matter of establishing the uniqueness of a sample sequence defined in

terms of the ‘arg min’ of a suitable functional. The interesting paper by Cox (2020) deals

with the uniqueness of arg min-type statistics with a especial focus of M-statistics and

maximum likelihood estimators. The methodology in that paper includes differentiability

assumptions which make little sense in the k-means framework. This suggests us that the

full study of affordable sufficient conditions for the uniqueness of the empirical k-means

is far beyond the scope of this thesis.

5.3.2 Risk minimization for k-means over Donsker classes

The k-means problem, as stated in (5.1) and (5.3), can be viewed as a risk minimization

problem over an appropriate class of functions. We follow here this approach, in the

framework of empirical processes theory, to address the question of the uniqueness in

k-means.

As it is common in clustering, we assume that the k-means live in a certain subset

of the space B. Hence, for a fixed B ⊂ B, we consider the collection of functions

FVk(B) = {fa ∶ a = (a1, . . . , ak) ∈ Vk(B)} , (5.10)

where fa ∶ B → R is defined by

fa(z) = min
i=1,...,k

(∥z − ai∥2B) , z ∈ B, (5.11)

and

Vk(B) = {(a1, . . . , ak) ∈ Bk ∶ ai ≠ aj for i ≠ j} . (5.12)

The expected risk of a function f ∈FVk(B) is given by

P(f) = ∫
B
f dP .

The expected risk of the class FVk(B), R (FVk(B)), is the minimum risk that we can achieve

with functions in FVk(B). In other words,

R (FVk(B)) = inf
f∈FVk(B)

(P(f)). (5.13)
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When the k-means are restricted to live in B ⊂ B, the k-means problem in (5.1) corre-

sponds to finding the functions fµ ∈ FVk(B) (or, equivalently, the elements µ = (µ1, . . . , µk) ∈
Vk(B)) such that P (fµ) = R (FVk(B)). In other words, {µ1, . . . , µk} ∈ SP(k) (an element

of the set of all k-means) with µi ∈ B if and only if the function fµ in (5.11) with

µ = (µ1, . . . , µk) is a risk-minimizer of P in FVk(B). Note that the parametrization of

FVk(B) in terms of the set Vk(B) in (5.12) is not injective: different permutations of

a ∈ Vk(B) lead to the same function fa ∈ FVk(B).

As the underlying probability P is usually unknown, instead of using P(f) and

R (FVk(B)) in (5.13), the empirical risk of a function f ∈ FVk(B) and the class FVk(B) are

usually employed in practice. That is,

Pn(f) =
1

n

n

∑
i=1

f (Xi) and Rn (FVk(B)) = inf
f∈FVk(B)

(Pn(f)) , (5.14)

where X1, . . . ,Xn is a set of independent variables distributed as P (a training sample

from X) and Pn is the empirical measure in (5.2). Observe that Rn (FVk(B)) is nothing

but the mean of the within cluster sum of squares in k-means.

In the following theorem we calculate the asymptotic distribution of the empirical

risk Rn (FVk(B)) in (5.14). This result is key to characterize the uniqueness of the set

of k-means. When dealing with risk minimization, it is often required that the class of

functions in use is (uniform) Glivenko-Cantelli (see, e.g., A. van der Vaart and Wellner

(1996)) to ensure that Pn(f) and P(f) are close to each other uniformly over the class

of functions (for all probability measures P on B). However, to derive the asymptotic

distribution of Rn (FVk(B)) it is essential that FVk(B) satisfies the Central Limit Theorem

–i.e., FVk(B) has to be a Donsker class (see Definition 11)–, which is obviously a more

demanding condition. Donsker classes are rather general and they have been already

considered in this setting; see Caponnetto and Rakhlin (2006).

The following result provides the asymptotic distribution of the empirical risk

Rn (FVk(B)) in (5.14). It is a consequence of Corollary 26.

Theorem 63. Let us assume (Int) and that the following two conditions are satisfied.

(Bnd) Boundedness assumption. The set B is bounded in B. In other words, we restrict

the search for the k-means to a bounded set of the space.

(Dnk) Donsker assumption. The class FVk(B) in (5.10) is P-Donsker.

Then we have that,

Tn(k) =
√
n (Rn (FVk(B)) −R (FVk(B)))↝ T (k) = inf

f∈SP(k,B)
(GP(f)) , (5.15)

where

SP(k,B) = {f ∈ FVk(B) ∶ P(f) = R (FVk(B))} , (5.16)

is the set of all minimizers of P over the class FVk(B) ≡ the completion of FVk(B) with

respect to the metric ρL2(P).
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Proof. First, by (Bnd), M = sup
b∈B
(∥b∥2

B
) < ∞. For any fa ∈ FVk(B) with a = (a1, . . . , ak) ∈

Vk(B), by (Int), we have that

P (fa) = ∫
B

min
i=1,...,k

(∥z − ai∥2B) dP(z)

= 22 ∫
B

min
i=1,...,k

(∥z − ai
2
∥
2

B

) dP(z)

(1)
≤ 22 ∫

B
min

i=1,...,k
(1

2
(∥z∥2

B
+ ∥ai∥2B)) dP(z)

≤ 2 (∫
B
∥z∥2B dP(z) +M) <∞,

(5.17)

where (1) follows by the convexity of the norm and the square. Therefore, the functional

P ∶ FVk(B) → R defined by P(f) = ∫B f dP belongs to ℓ∞ (FVk(B)).
Now, we use similar ideas as those in the proof of Theorem 50. As FVk(B) is

P-Donsker, the space (FVk(B), ρP) is totally bounded, where ρP is the intrinsic pseudo-

metric (see Definition 9 or Giné and Nickl (2021, Remark 3.7.27)). Also, the P-Brownian

bridge GP ∈Cu (FVk(B), ρP) a.s. By (5.17), the class FVk(B) is bounded in L1(P), i.e.,

sup
f∈FVk(B)

(∣P(f)∣) <∞. This condition, joint to the fact that (FVk(B), ρP) is totally bounded,

implies that (FVk(B), ρL2(P)) is totally bounded; as it follows from the same ideas as in the

proof of Giné and Nickl (2021, Theorem 3.7.40, p. 262). Note that the trajectories of GP

also belong to Cu (FVk(B), ρL2(P)) with probability 1 because ρP ≤ ρL2(P). Finally, we can

apply the extended Delta method for the infimum together with Corollary 26 to derive

the asymptotic result in (5.15).

5.3.3 A characterization and test of k-means uniqueness

We establish here necessary and sufficient conditions for the uniqueness of the set of k-

means within a set B ⊂ B. First, we observe that the set of functions FVk(B) includes the

set of all possible limits (in the completion of FVk(B) in (5.10) with respect to ρL2(P)) of

minimizing sequences of the risk. Further, SP(k,B) in (5.16) is just the set of minimizers

of the risk in the ρL2(P)-completion of FVk(B). Note that we need to complete the class

FVk(B) to ensure the existence of minimizers of the risk.

We say that P satisfies the k-means uniqueness property in B, UP(k,B), or

P ∈ UP(k,B), if the set SP(k,B) in (5.16) has cardinal one. The following result, a

consequence of Theorem 63, characterizes this situation in terms of the properties of the

limit variable T (k) in (5.15).

Corollary 64. Under assumptions (Bnd) and (Dnk), the following three assertions are

equivalent.

(i) P ∈ UP(k,B) (uniqueness of k-means on B).

(ii) The variable T (k) in (5.15) is normally distributed with mean zero.
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(iii) The variable T (k) in (5.15) has zero mean.

Proof. Assume that (i) holds. We then have that there exists a unique minimizer f− ∈
FVk(B) such that SP(k,B) = {f−}. From Theorem 63, we obtain that T (k) = GP (f−),
which has normal distribution with mean zero. Therefore, (ii) is satisfied. The implication

(ii) ⇒ (iii) is direct. Finally, assume that (iii) holds. Observe that T (k) ≤st GP(f), for

each f ∈ SP(k,B), where ‘≤st’ stands for the usual stochastic order. Since E(T (k)) =
0 = E (GP(f)), we conclude that T (k) =st GP(f); see Shaked and Shanthikumar (2007,

Theorem 1.A.8.). Hence, we obtain that T (k) is normally distributed. Finally, as T (k) =
inf

f∈SP(k,B)
(GP(f)) is the infimum of normal variables, its distribution only can be normal

when the infimum is taken over a set of cardinal one; if f1, f2 ∈ SP(k,B) with f1 ≠ f2, then

min (GP (f1) ,GP (f2)) is not normally distributed. Hence, we conclude that the cardinal

of SP(k,B) is necessarily one and (i) holds.

Corollary 64 makes it possible to develop various discrepancy measures to perform

the following hypothesis test for uniqueness of k-means:

H0 ∶P ∈ UP(k) (uniqueness of k -means),
H1 ∶P ∉ UP(k) (non-uniqueness of k -means) .

(5.18)

We note that H0 is equivalent to the asymptotic distribution of Tn(k) in (5.15) being

normal with zero mean. Therefore, we can use any normality test available in the literature

if we have a sufficient number of data. On the other hand, under H0 the mean of T (k) is

zero and under H1, E(T (k)) < 0 (strictly less than zero). Therefore, the test in (5.18) is

equivalent to either of the following two tests:

(a) H0 ∶ T (k) ∼ N (0, σ2) ,
H1 ∶ no H0,

(b) H0 ∶ E(T (k)) = 0,

H1 ∶ E(T (k)) < 0,
(5.19)

where T (k) is the limiting distribution of Tn(k) in equation (5.15).

We apply these ideas in Section 5.4 to evaluate the performance of the uniqueness

test in (5.18) (and (5.19)) with simulated data.

5.3.4 Donsker’s theorems for k-means

In this section we give conditions guaranteeing that the class of functions FVk(B) in (5.10)

is P-Donsker, and hence assumption (Dnk) in Theorem 63 is fulfilled.

In the classical, finite dimensional setting, of the k-means problem; when X takes

values in a ball of Rd (for the Euclidean distance), then the class FVk(B) in (5.10) is

universal Donsker; see Caponnetto and Rakhlin (2006, Lemma 3.1). This boundedness

assumption is usually imposed in many works related to k-means. In Telgarsky and

Dasgupta (2013) some additional results are provided for distributions with p ≥ 4 finite

moments.

A subset B ⊂ B is said to be bounded respect to the metric d if there exist a ∈ B and

r > 0 such that B ⊂ Bd(a, r), the ball of center a and radius r respect to the metric d. The
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sub-index d is omitted when the metric is understood by the context. The metric induced

by the norm ∥ ⋅ ∥B is denoted by dB. In the finite dimensional context, it is reasonable

to ask that the k-means be restricted to a bounded set B ⊂ B. However, in the infinite

dimensional (functional) setting more demanding conditions are needed by the loss of the

Heine-Borel’s property.

Sufficient conditions to ensure that a class of functions F satisfies the Donsker

property are related to the size of the covering. One way to cover a subset of a metric

space is using balls. Given a subset of B ⊂ B we say that B is totally bounded if for every

ε > 0 there exists N ∈ N and x1, . . . , xN ∈ B such that B ⊆ ⋃N
i=1Bd (xi, ε). Then, it is said

that B is covered by {Bd (xi, ε)}Ni=1. Given ε > 0, N(ε,B, d) is the minimal number of balls

of radius ε required to cover B. The quantity N(ε,B, d) is known as ε-covering number.

Obviously, every totally bounded set is bounded and N(ε,B, d)→ 1 when ε→∞.

Alternatively, a class of real functions F endowed with a metric d can be covered

with brackets. Given l, u ∈ F , the bracket

[l, u] = {f ∈ F ∶ l ≤ f ≤ u}.

An ε-bracket (respect to the metric d) is a bracket where d(l, u) < ε. The ε-bracketing

number N[ ](ε,F , d) is the minimal number of ε-brackets necessary to cover B. The

Donsker property is typically ensured for a class F through conditions that are associated

with the covering and/or bracketing numbers; see A. van der Vaart and Wellner (1996,

Section 2.5).

The following lemma links bracketing numbers of FVk(B) in (5.10) to covering

numbers of B.

Lemma 65. Let B ⊂ B be a totally bounded set and assume that (Int) is satisfied. For

the class FVk(B) in (5.10), we have that

N[ ] (ε,FVk(B), ∥ ⋅ ∥L2(P)) ≤ N (
ε

C
,B, dB)

k

, (5.20)

where C = 2 (∫B ∥z∥2B dP(z) + sup
b∈B
(∥b∥

B
)).

Proof. Let us first prove the following Lipschitz property for the functions in FVk(B):

∣fa(z) − fb(z)∣ ≤ 2 (∥z∥B + diam(B)) d∞ (a, b) , (5.21)

where a = (a1, . . . , ak) and b = (b1, . . . , bk) ∈ Vk(B) and

d∞ (a, b) = max
i=1,...,k

(∥ai − bi∥B) .
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Indeed, we have that

∣fa(z) − fb(z)∣ = ∣ min
i=1,...,k

(∥z − ai∥2B) − min
i=1,...,k

(∥z − bi∥2B)∣

= ∣ max
i=1,...,k

(− ∥z − ai∥2B) − max
i=1,...,k

(− ∥z − bi∥2B)∣

≤ max
i=1,...,k

(∣∥z − ai∥2B − ∥z − bi∥
2
B
∣)

= max
i=1,...,k

(∣∥z − ai∥B + ∥z − bi∥B∣ ∣∥z − ai∥B − ∥z − bi∥B∣)

≤ (2 ∥z∥B + max
i=1,...,k

(∥ai∥B + ∥bi∥B)) max
i=1,...,k

(∥ai − bi∥B) .

The first summand above can be bounded by 2 (∥z∥B + sup
u∈B
(∥u∥

B
)) and the second one

is, by definition, d∞ (a, b), so the Lipschitz property (5.21) is obtained.

Now, we apply A. van der Vaart and Wellner (1996, Theorem 2.7.11) to derive

(5.20).

The sufficient conditions for a class to be P-Donsker in A. W. van der Vaart (2000,

Theorem 19.5) are quite standard in empirical processes literature. The following theorem

allows us to express this condition in terms of the, more geometrically motivated, covering

numbers of B.

Theorem 66. Assume that (Int) is satisfied and

∫
∞

0

√
log (N (ε,B, dB)) d ε <∞. (5.22)

Then, FVk(B) in (5.10) is a P-Donsker class.

Proof. By Lemma 65 we have that

∫
∞

0

√
log (N[ ] (ε,FVk(B), ∥ ⋅ ∥L2(P))) d ε <

√
k ∫

∞

0

√
log (N ( ε

C
,B, dB)) d ε.

Hence, if right hand side is finite, by A. W. van der Vaart (2000, Theorem 19.5) the class

FVk(B) is Donsker.

The previous theorem extends the findings in Pollard (1982), where the asymptotic

Gaussianity of the empirical k-means is established. Let us now comment on the crucial

condition (5.22) concerning the set B. This requirement might appear restrictive at

first glance. However, it is satisfied by a broad range of examples. To begin with, it

holds for every finite-dimensional bounded set. Moreover, every Vapnik-C̆ervonenkis (VC)

class satisfies this condition, with its entropy numbers growing polynomially; for this and

related results, we refer to A. van der Vaart and Wellner (1996, Section 2.6).

In the realm of functional data analysis, there are also several examples in which

FVk(B) is Donsker. For instance, unit balls in α-Hölder continuous, Sobolev, and Besov

function spaces satisfy this condition under mild restrictions on the parameters; see A. van
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der Vaart and Wellner (2023, Section 2.7). It is worth noting that these sets are dense

in the unit balls of the space of continuous and bounded functions Cb and Lp spaces,

respectively. In essence, the preceding lines imply that if we confine ourselves to dense

subspaces of “smooth functions”, a common practice in functional data analysis, there is

no loss of generality for the uniqueness of k-means problem.

Other commonly used spaces satisfying this condition are monotone and convex

functions on subsets of the Euclidean space. The following corollary summarize this

discussion.

Corollary 67. Assume one of the following conditions is satisfied:

(a) B is a bounded subset of a finite dimensional Banach space B.

(b) B is a Vapnik-C̆ervonenkis (VC) class of functions endowed with the Lp(P)-metric.

(c) B is the unit ball of the space α-Hölder continuous functions Cα(X ), where X ⊂ Rl

bounded, convex and with no empty interior.

(d) B is the unit ball of the Sobolev space Wα,p(X ), where X is a Lipschitz domain of Rl,

endowed with Lr-norm and α > max (0, d (1p − 1
r)). More generally, B is a subset of

the unit ball of the Besov space Bαp,q(X ) endowed with the Lr-norm.

(e) B is the class of monotone functions on [0,1] endowed with an Lp-norm.

(f) B is the class of all convex functions on a compact convex subset C ⊂ Rl with values

on [0,1] endowed with Lp-norm.

Then FVk(B) in (5.10) is a P-Donsker class.

Proof. The proof of this corollary is based on checking condition (5.22) and a direct

application of Theorem 66 for each of the stated scenarios. To see (a), we denote the

dimension of this space by r. Then, B is totally bounded and the covering numbers

N (ε,B, dB) are proportional to 1
εr . Consequently, (66) holds. In part (b), the decreasing

of the covering numbers is polynomial in 1
ε ; see A. van der Vaart and Wellner (2023,

Theorem 2.6.4). In part (c), to check that the decreasing of the logarithm of covering

numbers is polynomial in 1
ε we refer to A. van der Vaart and Wellner (2023, Theorem

2.7.1). To see (d), use A. van der Vaart and Wellner (2023, Theorem 2.7.4). For (e), A.

van der Vaart and Wellner (2023, Theorem 2.7.9). Part (f) follows from A. van der Vaart

and Wellner (2023, Theorem 2.7.14).

Finally, let us introduce the concept of Riesz’s property: given a class of real

functions F endowed with the norm ∥ ⋅ ∥, it is said that ∥ ⋅ ∥ satisfies the Riesz’s property

if for every pair f, g ∈ F such that ∣f ∣ ≤ ∣g∣, then ∥f∥ ≤ ∥g∥. Norms with this property on

F fulfil N (ε,F , d∥⋅∥) ≤ N[ ] (2 ε,F , d∥⋅∥). In other words, Riesz’s property gives a relation

between covering and bracketing numbers that can be also exploited in this context. Lp-

norms and supremum norm satisfy Riesz’s property.
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5.4 Empirical results

In this section we provide some insight about the validity of the theoretical results es-

tablished in Section 5.3. We analyze some examples to illustrate the different scenarios

discussed in this chapter: UP(k), uniqueness of the k-means set; CNU(k) continuous

non-uniqueness; and DNU(k) discrete non-uniqueness. The CNU(k) case could be seen

as “more pathological” since it entails the existence of different sets of k-means arbitrarily

close (in Hausdorff distance), which usually leads to algorithm instability problems.

The numerical experiments include:

(a) Graphical illustrations of the behavior of the empirical k-means sets in different

scenarios of non-uniqueness.

(b) Some simulations designed to evaluate the performance of the uniqueness test in

(5.18).

(c) A few Monte Carlo experiments, where many samples are drawn from a known

underlying distribution to check the empirical level of the k-means uniqueness test

(α = 0.05 being the theoretical significance level in all examples).

The models under study

We follow here the notation introduced in Section 5.2. Thus, Cikj stands for a model in

which the data are drawn for a mixture of i distributions and we decide to look for k = j
centers. Of course, ideally, if we had prior information on the underlying distribution

(which seldom happens in practice), the k-means parameter should be typically chosen to

match the numbers of mixture components, that is, i = j. But, as we have commented in

Section 5.2, non-uniqueness might arise from a “wrong” choice of k when compared with

the true numbers of mixture components.

We explore five different situations, as described below. Here U(A) denotes a

uniform distribution with support A, and N (µ,Σ) represents a Gaussian distribution

with mean µ and covariance matrix Σ.

C1k2 Two different population distributions are considered: P ∼ N ((0,0), I2), where I2
is the identity matrix of dimension 2, and P ∼ U (B ((0,0), 15)), where B (0, 15) is the

open ball of center (0,0) and radius 1
5 . In both models there is a single population

center and we chose (wrongly) k = 2 so that infinite sets of 2-means appear as in

Figure 5.4.

C2k2, C2k3 Here

P ∼ 1

2
N ((−1,0), I2

25
) + 1

2
N ((1,0), I2

25
) ,

and

P ∼ 1

2
U (B ((−1,0), 1

5
)) + 1

2
U (B ((1,0), 1

5
)) .

In other words, we consider a mixture of two well-separated distributions.
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C3k2, C3k3 We consider

P ∼ 1

3
N ((−1,0), I2

25
) + 1

3
N ((0,0), I2

25
) + 1

3
N ((1,0), I2

25
) ,

and

P ∼ 1

3
U (B ((−1,0), 1

5
)) + 1

3
U (B ((0,0), 1

5
)) + 1

3
U (B ((1,0), 1

5
)) .

We deal with a mixture of three distributions well-separated from each other.

Some graphical illustrations

The colored points, and lines, in the before figures correspond to the empirical estimators

of the k-means sets we have obtained from very large samples of the respective models

(so we do not have analytically calculated the population k-means). The light gray points

are a few observations from these distributions, just to give a more complete idea of the

whole situation.

Figure 5.4: Model C1k2. In light black, a sample of a standard Gaussian distribution of

size 2000. In red, centers resulting from running the Hartigan-Wong k-means algorithm

over 1000 samples of size n = 2 × 105 from a standard Gaussian distribution with k = 2.
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Figure 5.5: Model C2k2 in the left. In light black, a sample of the mixture
1
2 N ((−1,0),

I2
25
) + 1

2 N ((1,0),
I2
25
) of size 2000. In red, centers resulting from running

the Hartigan-Wong k-means algorithm over 1000 samples of size n = 2 × 105 from a stan-

dard Gaussian distribution with k = 2. Model C3k3 on the right. Analogous graph taking

the mixture 1
3 N ((−1,0),

I2
25
) + 1

3 N ((0,0),
I2
25
) + 1

3 N ((1,0),
I2
25
) and k = 3.

Figure 5.6: Model C2k3 in the left. In light black, a sample of the mixture
1
2 N ((−1,0),

I2
25
) + 1

2 N ((1,0),
I2
25
) of size 2000. In red-bullets and blue-triangles, cen-

ters resulting from running the Hartigan-Wong k-means algorithm over 1000 sam-

ples of size n = 2 × 105 from a standard Gaussian distribution with k = 2. Infi-

nite sets of 3-means. Model C3k3 on the right. Analogous graph taking the mixture
1
3 N ((−1,0),

I2
25
) + 1

3 N ((0,0),
I2
25
) + 1

3 N ((1,0),
I2
25
) and k = 2. Two sets of 2-means.
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Test experiments

Before presenting the results of testing the hypothesis of uniqueness of the set of k-means

(see (5.18)), let us describe first the different testing procedures. According to Corollary

64, the test in (5.18) is equivalent to test that the quantity Tn(k) in (5.15) is asymptotically

normal.

Given a sample X1, . . . ,Xn ∼ P, we proceed as follows:

1. Draw B = 1000 bootstrap samples X∗1 , . . . ,X
∗
n ∼ Pn (of size n).

2. Compute the quantities T ∗n (k), where

T ∗n (k) =
√
n (R∗n (FVk(B)) −Rn (FVk(B))) ,

R∗n (FVk(B)) being the risk computed with the bootstrap sample.

3. Implement a test of Gaussianity over the bootstrap sample of the previous step in

(5.19) (a) or a test for the mean in (5.19) (b). Here, we have used this last approach

as well as two different normality tests available in literature:

Normal mean (NM): We conduct a test for the mean based on (5.19) (b) over

the bootstrap sample of the estimator of the risk.

Jarque-Bera (JB): We carry out a normality test based on third and fourth mo-

ments; see Jarque and Bera (1987).

Anderson-Darling (AD): We run a normality test based on a weighted L2-norm

of the distribution functions; see Anderson and Darling (1954).

Regarding the asymptotic validity of the bootstrap methodology, let us recall that

the functional given by the infimum is fully Hadamard directional differentiable if

and only if there is an unique set of k-means; see Remark 27. Hence, under the

null hypothesis the naive bootstrap is a.s. consistent; see Fang and Santos (2019,

Theorem 3.1).

The results of the simulations are summarized in Table 5.1. All the considered mixtures

are made of Gaussian distributions. Note that the Type I error is not controlled until

n = 2 × 105. The best results are obtained by the test of means NM. However, this test

tends to over-reject under the null hypothesis systematically with lower sample sizes. It

is also remarkable that JB and AD are not able to discriminate between non-uniqueness

continuous cases (C1k2 and C2k3) and uniqueness (null-hypothesis: C2k2 and C3k3).

Monte Carlo experiments

As commented above, based on the the result of the testing experiment, which is far

from being exhaustive, the best option for testing uniqueness of the set of k-means is

NM; see Table 5.1. However, large sample sizes are required. Table 5.2 shows the results

obtained from the indicated models, when the mixtures are made of uniform distributions
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Test

N
M

C1k2 C2k2 C2k3 C3k3 C3k2

n = 105 1.00 0.100 0.990 0.110 1.00

n = 2 × 105 1.00 0.060 0.990 0.050 0.890

J
B

C1k2 C2k2 C2k3 C3k3 C3k2

n = 105 0.055 0.050 0.040 0.095 0.785

n = 2 × 105 0.030 0.050 0.100 0.030 0.730

A
D

C1k2 C2k2 C2k3 C3k3 C3k2

n = 105 0.040 0.070 0.060 0.070 0.660

n = 2 × 105 0.025 0.055 0.065 0.035 0.625

Table 5.1: Rejection proportion with level α = 0.05 in the five different proposed models

under different testing procedures. The sample sizes used are n = 105,2 × 105.

(as pointed out above), where the k-means problem should be easier to solve. Further, all

the involved quantities can be computed explicitly. Hence, it is the best possible scenario

for the k-means problem. In this experiment (where, in all cases, we are under the null

hypothesis of uniqueness) the following steps have been followed:

1. Take B = 1000 samples X1, . . . ,Xn ∼ P (of size n).

2. Compute the quantities

Tn(k) =
√
n

σ
(Rn (FVk(B)) −R (FVk(B))) ,

where σ2 = VarP (f−) and f− is the unique minimizer of the risk. The population

constants σ and R (FVk(B)) are explicitly computed.

3. Perform the test for the mean in (5.19) (b).

Note that there are two main differences with respect to the previous experiments. First,

the samples are taken from the “true” population distribution P (since it is assumed to

be known). Second, standardization of the risk is carried out with the true population

parameters.

Some conclusions

Though our empirical study is far from exhaustive, we may draw some provisional con-

clusions. First, the overall results are consistent with our theory in the sense that the

asymptotic test seems to work, both in the sense of controlling the type I error and in the

sense of detecting departures from the null hypothesis. Still, the convergence is slow, as

we observe that large sample sizes are needed in order to control the Type I error.

Second, the outputs of the Monte Carlo experiments show some counter-intuitive

aspects, when compared with those of the bootstrap simulations. For some reason (not
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n C2k2 C3k3

104 0.315 0.340

2 × 104 0.200 0.245

5 × 104 0.135 0.200

105 0.075 0.175

2 × 105 0.095 0.100

5 × 105 0.045 0.100

106 0.050 0.055

Table 5.2: Type I error with α = 0.05 of the NM test under Monte Carlo data obtained

from mixtures of uniform distributions under models C2k2 and C3k3.

completely clear to us), larger sample sizes are required to properly control the significance

level. Recall that simulations are based on normal mixtures which, in principle, should

lead to harder situations that those of the uniform counterparts considered in the Monte

Carlo experiments. Clearly, more research is needed in this regard.



Chapter 6

Conclusions and future work

The goal of this section is to provide a perspective on the main contributions of this thesis.

The supremum norm is a widely applicable mathematical tool in Statistics. This is mainly

due to its simplicity and versatility. The supremum norm is simple in that, intuitively,

it extends pointwise distance. Furthermore, it characterizes uniform convergence, so that

this intuition materializes in results about continuity. So much so that, for example,

the Kolmogorov-Smirnov test has been the foundation of many non-parametric statistical

works for over 70 years. As mentioned, in addition to being simple, it is versatile since

there is a vast number of duality theorems in function spaces that characterize norms and

distances such as the supremum over the appropriate set (Hahn-Banach, Kantorovich-

Rubinstein, Riesz for measures, Riesz in Hilbert spaces, Riesz siblings, . . . ). From a

computational perspective, it is also noteworthy because it is naturally approximated

through the maximum over an increasing sequence of finite sets that eventually fill the

domain.

Regarding the results obtained in this thesis, we can say that they are developed

around two main axes that complement each other: theoretical and computational re-

sults. The theoretical contributions, as evident in Chapters 3, 4, and 5, are based on the

application of the extended Delta method (see Proposition 5, also Shapiro (1991, The-

orem 2.1)). The key result enabling this is found in Theorem 17, where the Hadamard

directional differentiability of the supremum (and other related functionals) in the space

of bounded functions equipped with the supremum norm is proven. Thus, thanks to the

consequences of this theorem obtained throughout Chapter 2, the following statistical

results are established:

� In Section 3.1 of Chapter 3, we generalize the results obtained in Raghavachari

(1973) on the Kolmogorov-Smirnov and Kuiper statistics under the alternative hy-

pothesis. Briefly, these results were obtained through a careful analysis of the statis-

tics, for which the author imposed an unnecessary continuity restriction. This con-

straint has been replicated in subsequent works. With the approach proposed in

this thesis, this restriction is eliminated by explicitly calculating the distribution of

these statistics in a very general setting which allows for multivariate extensions.

Alongside this classical result, other applications in non-parametric statistics are

105
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also presented, namely, the asymptotic distribution of the estimator of the distance

between copulas, the asymptotic distribution of Berk-Jones type statistics, and the

asymptotic (general) distribution of integral probability distances, also known as

maximum mean discrepancies (MMD).

� In Chapter 4, a test for two-sample problems in high dimensions and functional data

based on kernel-type distances is derived. Specifically, a new test is proposed based

on the distance resulting from calculating the supremum of a family of distances. In-

tuitively, under the alternative hypothesis, the discrepancy between different prob-

ability measures is maximized, thereby increasing power and robustness. Unlike

previous works on this topic, heuristics to select a parameter (usually data-driven,

dependent on the data) that escapes the theoretically proven results to date are

avoided in this approach. Finally, the test based on this new proposal also allows

for considering an entire family of kernels (associated with the relevant distance

family), making it more robust against a poor choice that might not appropriately

capture the data differences in the true populations.

Section 4.4 of this chapter also includes, an empirical analysis where the power of

the test is compared with other popular proposals. Although these results are not

exhaustive, the performance of our proposal is better than that of other kernel-based

distance tests. The software related to these experiments will be publicly available

in an R package named skd2.

� In Chapter 5, we address the issue of uniqueness in sets of k-means. Specifically,

using the same theoretical framework as in the previous chapters, it is proven that

the normalized sum of squares follows a Gaussian distribution if and only if there is

a unique set of k-means in the considered population (for a fixed k). Additionally, a

consistency result on the estimation of the population k-means through a sequence

of sample k-means is provided.

The proposed test (based on a normality test or a test for the mean) is derived from

these theoretical results, and a small empirical study is conducted. Although more

computational work is needed, the theoretical results can be visualized in Monte

Carlo experiments as well as in the rejection proportion experiments with simulated

data.

Up to this point, this thesis has resulted in two scientific articles: Cárcamo et al. (2020),

which encompasses Chapters 2 and 3; and Cárcamo et al. (2022), which covers Chapter

4.

Future work

We briefly comment on some lines of future work that constitute the natural continuation

of this thesis. As it is always the case in science, no work is ever truly finished because

new questions continually arise. This thesis is no exception.
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� The works derived from this thesis fit into the theoretical framework provided by

the differentiability of the supremum. Since the publication Cárcamo et al. (2020),

others have emerged, such as Dette and Kokot (2022), Hundrieser et al. (2022), and

del Barrio et al. (2024). We expect to add two more to the list soon, focusing on

the empirical process with estimated parameters and the application of functional

regression models with functional response.

� Following the theoretical and empirical results presented in Chapter 4, it is necessary

to conduct a depth empirical study. The SKD appears to be a reasonable alternative

to classical kernel distances and energy tests. Additionally, there are proposals for

homogeneity tests that have been excluded from this study, along with others related

to random projections or dimensionality reduction. From a theoretical standpoint,

it is known that the popular energy test can be expressed as a kernel distance (see

Sejdinovic et al. (2013)). Therefore, it is reasonable to inquire whether including

this family of distances in the SKD would lead to increased power in models where

the energy tests performs better. In summary, a comprehensive experiment with

various scenarios and real data is needed to shed light on when to use one test over

another in two sample problems.

� The work presented in Chapter 5 is still in progress. The k-means problem is inher-

ently complex. So far, non-uniqueness scenarios have been proposed with simulated

data. Intuition suggests that non-uniqueness scenarios are related to models that

exhibit a certain degree of symmetry. Therefore, two main lines of work open up.

On one hand, the necessary and sufficient condition for uniqueness is purely analyt-

ical and probabilistic. It would be interesting to find sufficient conditions regarding

the geometric nature. On the other hand, conducting a broader study with real

data to demonstrate the usefulness of the uniqueness test for the set of k-means.

In summary, Statistics is a branch of Applied Mathematics where both abstract theoreti-

cal results and concrete applications with intensive computation continue to be of interest

even today. This manuscript is a proof of it. On the theoretical front, all key results find

their foundation in Theorem 17. This result, at a considerable level of abstraction, allows

for a profound understanding and a unified mathematical framework for classical results

from 50 years ago, others not so old, and some yet to come. On the computational side,

particularly as these lines are written with Chapter 5 in mind, they are those experi-

ments—easy to comprehend yet challenging to execute—that defy intuition and pave the

way for the theoretical development.
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Chapter 7

Conclusiones y trabajo futuro

El principal objetivo de esta sección es poner en perspectiva las aportaciones principales

de esta tesis. La norma del supremo es una herramienta matemática de amplia aplicación

en Estad́ıstica. Esto se debe principalmente a su simplicidad y versatilidad. La norma del

supremo es simple en tanto a que, intuitivamente, extiende la distancia punto a punto.

Caracteriza, además, la convergencia uniforme, por lo que aparece de manera natural

en los resultados sobre funciones continuas. Tanto es aśı que, por ejemplo, el test de

Kolmogorov-Smirnov es la base de muchos trabajos de estad́ıstica no paramétrica desde

hace más de 70 años. Además de simple es versátil pues existe una vasta cantidad de

teoremas de dualidad en espacios de funciones que caracterizan normas y distancias como

el supremo sobre el conjunto apropiado (Hahn-Banach, Kantorovich-Rubinstein, Riesz

para medidas, Riesz en espacios de Hilbert, hermanos Riesz, . . . ). Desde el punto de vista

computacional es manejable pues en definitiva, el máximo sobre una sucesión creciente de

conjuntos finitos que, eventualmente, llenan el dominio supone una aproximación natural

del supremo de una función.

En cuanto a los resultados obtenidos en esta tesis, podemos decir que se dan en

dos ejes principales que se complementan mutuamente: teórico y computacional. Las

aportaciones teóricas, como puede verse en los aṕıtulos 3, 4 y 5, se basan en la aplicación

del Método delta extendido (ver Proposición 5, también Shapiro (1991, Theorem 2.1)). El

resultado principal que hace eso posible en el Teorema 17, donde se prueba la diferencia-

bilidad Hadamard direccional del supremo (y otros funcionales relacionados) en el espacio

de las funciones acotadas equipado con la norma del supremo. Aśı, gracias a corolarios

de este teorema obtenidos a lo largo del Caṕıtulo 2, se prueban los siguientes resultados

estad́ısticos:

� En la Sección 3.1 del Caṕıtulo 3, se generalizan los resultados obtenidos en Raghavachari

(1973) sobre el estad́ıstico de Kolmogorov-Smirnov y de Kuiper bajo la hipótesis al-

ternativa. Brevemente, los resultados de aquel art́ıculo fueron obtenidos mediante

un cuidadoso análisis de los estad́ısticos, para lo que el autor impone una restricción

de continuidad que no es necesaria. Dicha limitación ha sido impuesta en los trabajos

subsiguientes. Con el enfoque propuesto en esta tesis, esta es eliminada, calculando

expĺıcitamente la distribución asintótica de los estimadores bajo la alternativa un

109
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contexto más general. Asimismo, permite una extensión multivariante.

Junto a este resultado clásico se proporcionan también otras aplicaciones en Es-

tad́ıstica no paramétrica: la distribución asintótica del estimador de la distancia en-

tre cópulas, distribución asintótica de estad́ısticos del tipo Berk-Jones y distribución

asintótica (general) de distancias integrales de probabilidad, también conocidas

como discrepancias máximas medias (MMD).

� En el Caṕıtulo 4 se obtiene un contraste de hipótesis para los problemas de dos

muestras en alta dimensión y datos funcionales basado en las distancias de tipo

kernel. Concretamente, se propone un nuevo test basado en el supremo de una

familia de distancias. Intuitivamente, bajo la hipótesis alternativa se maximiza la

discrepancia entre las medidas de probabilidad, aumentando aśı la potencia. A

diferencia de los trabajos sobre esta temática, evitamos heuŕısticas para seleccionar

los parámetros (métodos data-driven, dependiente de los datos, generalmente) que

escapan a los resultados teóricos probados hasta la fecha. Finalmente, el test basado

en esta nueva propuesta permite, además, tener en cuenta toda una familia de

núcleos (asociados a las distancias pertinentes), por lo que es más robusto ante una

mala elección que no capture las propiedades de los datos apropiadamente.

En la Sección 4.4 un análisis emṕırico donde se ha comparado la potencia del test

con otras propuestas. Como puede verse, aunque estos resultados no son exhaus-

tivos, el desempeño de nuestra propuesta es mejor que el de otros tests basados

en distancias kernel. El software relativo a estos experimentos estará disponible en

breve públicamente en un paquete de R bajo el nombre skd2.

� En el Caṕıtulo 5 se aborda la cuestión de unicidad en los conjuntos de k-medias.

Concretamente, con la misma metodoloǵıa que en los caṕıtulos anteriores, se prueba

que la suma de cuadrados dentro de los grupos normalizada sigue una distribución

gaussiana si y solo si hay un único conjunto de k-medias en la población consid-

erada (fijado k). Asimismo, se da también un resultado de consistencia para los

estimadores (sucesión de k-medias muestrales) de las k-medias (poblacionales).

De estos resultados teóricos se deriva el test de unicidad (basado en test de normal-

idad o medias) y se hace un pequeño estudio emṕırico. Aunque hace falta más tra-

bajo computacional, pueden visualizarse los resultados teóricos demostrados, tanto

en experimentos Montecarlo como en experimentos de proporción de rechazo con

datos simulados.

Hasta el momento, esta tesis ha dado lugar a dos art́ıculos cient́ıficos: Cárcamo

et al. (2020), que engloba los Caṕıtulos 2 y 3; y Cárcamo et al. (2022), que recoge el

Caṕıtulo 4.
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Trabajo futuro

Comentamos aqúı brevemente algunas ĺıneas de trabajo futuro que son la continuidad

natural de esta tesis. Como siempre sucede en Ciencia, ningún trabajo está totalmente

terminado porque siempre surgen nuevos interrogantes. Esta tesis no es una excepción:

� Esta tesis y los trabajos derivados de ella encajan en el marco teórico que pro-

porciona la diferenciabilidad del supremo. Desde la publicación de Cárcamo et

al. (2020), han aparecido otros trabajos con similares ideas como Dette and Kokot

(2022), Hundrieser et al. (2022) y del Barrio et al. (2024). Esperamos, próximamente,

añadir dos más a la lista relacionados con el proceso emṕırico con parámetros esti-

mados y la aplicación de los modelos de regresión funcional con respuesta funcional

a la inferencia sobre ecuaciones diferenciales.

� Tras los resultados, tanto teóricos como emṕıricos, expuestos en el Caṕıtulo 4, es

necesario hacer un estudio emṕırico más profundo. Las SKD parece una alterna-

tiva razonable a las distancias kernel clásicas y a los energy test. Asimismo, hay

propuestas de tests de homogeneidad que han quedado fuera de este estudio y otros

relacionados, como aquellos basados en proyecciones aleatorias o reducción de di-

mensión. Desde el punto de vista teórico, es sabido que los populares energy test se

pueden expresar como una distancia kernel (ver Sejdinovic et al. (2013)). Por tanto,

es razonable preguntarse si incluir esta familia de distancias en la SKD llevaŕıa a

un aumento de la potencia en aquellos modelos donde los energy teńıan mejores

resultados. En śıntesis, hace falta realizar un experimento amplio con situaciones

más o menos frecuentes y datos reales que arroje algo de luz sobre cuándo se debe

usar un test u otro en problemas de dos muestras.

� El trabajo presentado en el Caṕıtulo 5 se encuentra aún en v́ıas de desarrollo. El

problema de k-medias es, en śı mismo, una cuestión compleja. Hasta ahora se han

propuesto escenarios de no unicidad limitados con datos simulados. La intuición

nos dice que los ejemplos de no unicidad están relacionados con modelos que poseen

cierto grado de simetŕıa. Por tanto, se nos abren dos ĺıneas principales de trabajo.

Por un lado, la unicidad es una condición puramente anaĺıtica y probabiĺıstica. Seŕıa

interesante dar, además, una condición suficiente de tipo geométrico. Por otro, seŕıa

deseable hacer un estudio más amplio con datos reales para aśı mostrar la utilidad

del test de unicidad propuesto.

En śıntesis, la Estad́ıstica es una rama de la Matemática aplicada donde aún siguen

teniendo interés tanto los resultados teóricos abstractos como las aplicaciones concretas

de intensa computación. Este manuscrito es una prueba de ello. En lo que al plano teórico

respecta, todos los resultados clave tienen su punto de apoyo en el Teorema 17. Este

resultado, desde una nivel de abstracción considerable, permite comprender de manera

profunda y bajo el mismo marco matemático resultados clásicos de hace 50 años, otros

no tan antiguos y algunos que están por llegar. Por otro lado, desde la perspectiva
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computacional, con el Caṕıtulo 5 en mente al redactar estas ĺıneas; son esos experimentos,

fáciles de comprender y complejos de ejecutar los que desaf́ıan la intuición sugiriendo el

camino que debe seguir el desarrollo teórico.



Glossary

↝ Weak convergence of probability measures in the sense of Hoffamnn-Jørgensen (see A.

van der Vaart and Wellner, 1996). 17, 18, 26, 68

≪ usual (partial) order in the set of kernels. k1 ≪ k2 if and only if k2 − k1 is a positive

definite kernel. 43, 66

GP P-Brownian bridge. 18, 41, 68

Pn empirical probability measure associated with a sample of size n coming from P. 17,

65, 84

1A indicator function of the set A (if x ∈ A, 1A(x) = 1 and it takes the value 0 otherwise).

20, 31, 48

C space of continuous functions. Usually, the domain and its topology are also specified.

If a topology is not specified with the domain, standard topology is assumed. Addi-

tionally, Cb is the space of bounded continuous function, Cu is the space of uniformly

continuous functions, and Cpl is the space of continuous pre-linear functions. Indices

can be combined. 32, 34, 36, 40, 41, 43, 54, 94

FVk(B) = {f(z) = min
j=1,...,k

(∥z − aj∥2B) ∶ (a1, . . . , ak) ∈ Vk(B)}, with B totally bounded in the

corresponding space and Vk(B) = {(a1, . . . , ak) ∈ Bk ∶ ai ≠ aj for i ≠ j}. FVk(B) is the

associated class of functions for empirical risk minimization in k-means problem. 48,

92

FHk,Λ
= ⋃λ∈ΛFHk,λ

, where {kλ ∶ λ ∈ Λ} is a family of reproducing kernels indexed by Λ

and FHk,λ
is the respective unit ball in the corresponding RKHS. 42, 56

FHk
= {h ∈ Hk ∶ ∥h∥Hk

≤ 1}, unit ball of the reproducing kernel Hilbert space Hk. 23, 40,

48, 56, 64, 65, 68, 81

M space of Borel measures. Usually, the domain and its topology are also specified. If

a topology is not specified with the domain, standard topology is assumed. Addi-

tionally, Mp denoted the subset of probability measures, a the subset of M. 62

L with exponent p ∈ [1,∞], the space of classes of functions f such that ∫ ∣f ∣p <∞. The

measure and the domain can be specified as Lp(X, ν). L1 is the space of integrable

functions. 23, 55, 64
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i. i.d. independent and identically distributed. 20

ρL2(P) Intrinsic pseudometric of square integrable functions respect to the measure P. 18,

57, 80, 93

ρP Intrinsic pseudometric associated with the measure P. 18, 41, 94

op “Little” o for convergence in probability (in measure respect to the probability mea-

sure). 17

=st equality in distribution. 54
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Dette, H., Möllenhoff, K., Volgushev, S., & Bretz, F. (2018). Equivalence of regression

curves. Journal of the American Statistical Association, 113 (522), 711–729.

Dudley, R. M. (2002). Real analysis and probability. Cambridge University Press.



BIBLIOGRAPHY 117

Dudley, R. M. (2014). Uniform central limit theorems (Vol. 142). Cambridge university

press.
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