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Abstract

The density-based formulation aims at recasting the clustering problem to a mathemat-

ically sound framework, by linking the groups to some features of the density assumed

to underlie the data. Even if early probabilistic approaches to cluster analysis can be

traced back to fifty years ago, the topic has recently found a renewed and vibrant in-

terest in the scientific community. This may be motivated both by the computational

advancements witnessed in the last years and by more conceptual and substantial rea-

sons. The increased availability of mixed type and complex structured data has indeed

required a rigorous formalization of the clustering problem.

Stemming from the same roots, density-based clustering has been developed following

two distinct paths. In its parametric formulation, a connection among groups and

unimodal components of a mixture model is drawn. On the other hand, according to

the nonparametric paradigm, clusters are seen as the domains of attraction of the modes

of the density. Revolving around this approach to clustering, the thesis explores both

the formulations by highlighting at the same time contact points and dissimilarities.

Moreover differently structured data are considered ranging from the unidimensional

setting to more complex three-way structure.

Three main contributions can be highlighted. In the first one we derive some asymp-

totic results to address nonparametric density estimation from a clustering-oriented per-

spective. In the second contribution we propose an ensemble approach for density-based

clustering, which inherits the strengths from both the parametric and the nonparametric

formulation, and possibly enhances the robustness and the stability of the partitions.

The third contribution addresses the problem of clustering complex multivariate time-

dependent data by adopting a parametric approach and proposing a flexible modification

of the Latent Block Model.





Sommario

Nell’ambito dell’analisi di raggruppamento l’approccio basato su densità mira ad otte-

nere una formalizzazione matematica del problema di clustering associando il concetto

di gruppo ad alcune caratteristiche della funzione di densità sottostante i dati. Sebbene

i primi approcci probabilistici al clustering risalgano a cinquant’anni fa, recentemen-

te si è potuto notare un rinnovato interesse verso questo argomento. Alcune possibili

motivazioni possono essere rintracciate negli sviluppi computazionali a cui si è assistito

negli ultimi anni o nella crescente complessità dei dati a disposizione che ha richiesto

una formalizzazione più rigorosa del problema di raggruppamento.

Il clustering basato su densità, pur condividendo concettualmente lo stesso punto di

partenza, è stato sviluppato secondo due paradigmi differenti. Nella sua formulazione

parametrica vi è una relazione biunivoca tra i gruppi e le componenti unimodali di

un modello di mistura. D’altra parte l’approccio non parametrico associa i gruppi ai

domini di attrazione delle mode della funzione di densità. Questa tesi mira ad esplorare

entrambe le formulazioni, evidenziandone punti di contatto e differenze. Allo stesso

tempo vengono analizzati dati aventi strutture radicalmente differenti, che spaziano da

scenari unidimensionali fino a più complessi dati three-way.

In questo lavoro possono essere evidenziati tre contributi principali. Innanzitutto

sono stati sviluppati alcuni risultati asintotici per la stima di densità non parametrica

quando considerata come accessoria al clustering. In secondo luogo si è proposto un

approccio ensemble in contesto di clustering basato su densità il quale, ereditando i

punti di forza da entrambe le formulazioni, mira a migliorare la qualità delle partizioni

ottenute in termini di robustezza e stabilità. Infine, ci si è posti l’obiettivo di modellare

in maniera flessibile dati multivariati tempo-dipendenti mediante l’identificazione di

gruppi di curve aventi un comportamento omogeneo, tramite un’opportuna modifica

del modello a blocchi latenti.





“Not all those who wander are lost”

- J.R.R. Tolkien -
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Introduction

Overview

All the attempts to partition a set of data into some homogeneous groups may be gath-

ered under the unified heading of cluster analysis. Cluster analysis has been pervasively

pursued in many different fields both as a preliminary step and as the main focus of the

data analysis, for classification or data compression. Examples of popular frameworks

where clustering has found fruitful applications are market segmentation, classification

of species in biology or, more recently, recommendation systems in information tech-

nology, the automation of diagnostic processes in the analysis of medical images, and

anomaly detection, among many others.

Tons of different tools have been proposed over the years, most of them based on

some measure of distance or dissimilarity. The soundness of these techniques is often

questionable, as they pursue some vague and heuristic notion of cluster. The search

for homogeneous and unknown patterns in data, while intuitively clear, lacks, in fact,

a specification of the target of the analysis or, in other words, of what we are precisely

searching for.

An effort to overcome the ill-posedness of the clustering problem has been made via

the so called density-based approach. Here, a probability density function is assumed to

underlie the observed data, properly describing the corresponding generative mechanism.

A precise notion of cluster is provided by drawing a correspondence between the groups

and the features of the density itself, thus allowing to frame the clustering problem into

a standard inferential context. Therefore, proper tools are available in the estimation

process and to evaluate the obtained partitions with respect to a targeted and well-

defined ground truth.

The density-based framework has been developed taking two distinct but related

paths. The parametric, or model-based, formulation assumes, as an underlying proba-

bility distribution, a mixture model, and identifies a partition by exploiting the corre-

spondence between groups and components of the mixture itself. On the other hand
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2 Overview

in the nonparametric, or modal, counterpart the density is estimated nonparametrically

and its modes are seen as the archetypal points of the clusters, in turn corresponding to

their domains of attraction. Albeit related, the two paradigms enjoy different strengths

and reasons of attractiveness, which make the one or the other overall preferable, de-

pending on data features and subject-matter considerations.

Revolving around the density-based framework, this thesis aims at proposing some

alternative solutions to clustering-related problems, faced via distinct approaches and

involving different data specificities. From a conceptual point of view it may be seen as

a journey in the density-based clustering realm, where different keys to reading can be

highlighted.

According to a first perspective, the thesis presents three contributions which explore

different formulations of density-based clustering, and focus on different estimation ap-

proaches and notions of cluster. A first contribution is based on a fully nonparametric

approach, letting the data driving us in the modality exploration, without specific as-

sumptions on the clusters shape. A further contribution focuses on the model-based

paradigm where the resort to some parametric assumptions allows handling highly com-

plex data structures and unveiling parsimonious patterns. The last contribution of the

thesis may be placed somewhere in between the previously mentioned ones. An en-

semble clustering approach is proposed, working as a bridge between the two different

density-based formulations. Both modal and model-based ideas are employed to blend

together the different perspectives and to show how this blending may be beneficial in

terms of cluster characterization.

As for the second perspective, a different interpretative point of view may be offered,

mainly focusing on the involved data structures. Despite the strong contact points

among parametric and nonparametric formulations, their differences reflect on their ca-

pabilities to handle specific settings; dimensionality and data complexity turn out to be

among the factors having more impact on the clustering performances and consequently

on the choice of a specific paradigm. Nonparametric techniques, strongly relying on the

concept of neighborhood, focus on local structures in order to get a sense out of the

data. As a consequence, when dealing with high dimensional spaces, where much of

the probability mass flows to the tails of the underlying density, the resulting sparsity

takes it toll by deteriorating the quality of their estimates. Therefore, modal clustering

is usually more effective with low dimensional data. Consistently, the approach has

been explored in the thesis mostly in the unidimensional (one-way) setting, where a

mathematical formalization is also easier to be derived. Conversely, parametric meth-

ods are less sensitive to the data dimensionality, hence the model-based formulation
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has been employed to both deal with a wider range of dimensionality scenarios in the

common subject-variables framework (two-way data), and to handle the complexity of

multivariate time-dependent (three-way) data.

Main contributions of the thesis

The previous section revealed the silver threads that flow underneath this thesis, simul-

taneously motivating it and linking together its different parts. Nevertheless a pretty

neat distinction among the chapters is not only possible but it may also come to an

aid when highlighting the main contributions of the work. After a brief introduction to

the density-based clustering world in Chapter 1, the contributions of this thesis can be

summarized as follows:

• Chapter 2 delves into the nonparametric density estimation process when consid-

ered as an instrumental step for the further identification of a clustering struc-

ture. When resorting to nonparametric estimators, a fine tuning of the amount

of smoothing, which governs the density shape and hence its modal structure, is

required. While thoroughly analyzed in the context of density estimation, this is-

sue has been scarcely studied for clustering purposes. In this work we address the

problem mainly in the unidimensional setting and from an asymptotic perspective.

Stemming from Chacón (2015) we introduce an appropriate metric measuring the

discrepancy among the partitions induced by the true and the estimated density

functions. Afterwards we derive an asymptotic approximation of the considered

metric that allows introducing new automatic bandwidth selectors specifically tai-

lored for modal cluster analysis.

• In Chapter 3 we propose an ensemble clustering approach aiming to overcome the

strong reliance on the so called single best model paradigm. In the model-based

formulation, usually a set of different mixture models is estimated based on a

different number of clusters and/or different parametrizations and only the best

one is selected according to an information criterion. Arguing that such approach

could be sub-optimal from clustering and inferential points of view (see e.g. Mc-

Nicholas, 2016), the idea of mixing together different models has already been

explored by Wei and McNicholas (2015) and Russell et al. (2015) where Bayesian

model averaging approaches are proposed. In the thesis we take a different path

by introducing an estimator defined as a convex linear combination of the density

estimates obtained from the models in the ensemble. The estimation process is
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practically carried out via likelihood penalization, and some alternative penalties

are proposed. The resulting estimate is operationally exploited to obtain partitions

by resorting to the modal concept of cluster; therefore we propose an hybrid ap-

proach blending together parametric and nonparametric approaches to clustering

thus enjoying their pertaining advantages.

• Chapter 4 focuses on the problem of clustering multivariate time-dependent data.

A model-based co-clustering strategy (Govaert and Nadif, 2013) is examined,

aimed at simultaneously partitioning individuals and variables, as it appears par-

ticularly suitable when parsimonious summaries of complex structured data are

needed. Specifically we extend a widely used co-clustering model to incorporate

random effects in the specification of the data generative mechanism where the

Shape Invariant Model (Lindstrom, 1995) is considered. As a consequence an high

flexibility is introduced which allows encompassing arbitrarily shaped concepts of

cluster. As an estimation tool we introduce a Marginalized SEM-Gibbs algorithm

being a modification of the widely used SEM-Gibbs with an added step specifically

designed to handle the random effects.



Chapter 1

An overview on density-based

clustering

1.1 Introduction

The goal of partitioning a set of data into some groups, diffusely known as clustering, has

been extensively studied in the last decades, and proved its usefulness in a wide range

of fields of application both as an exploratory step and as the focus of the data analysis.

Over the years a plethora of different techniques, based on different rationales, have been

proposed, most of them relying on the notion of cluster as a group of loosely similar

objects; standard methods include, for example, hierarchical and k-means clustering (see

e.g Hennig et al., 2016, for an overview). Despite their appealing interpretability and

conceptual simplicity, the soundness of these techniques is questionable, since they build

on a vague and heuristic definition of cluster mainly based on concepts as distance and

dissimilarity. This lack of a “ground truth” usually prevents the possibility to resort to

formal inferential techniques in order to evaluate and compare alternative partitions or to

select the number of groups in the data. As a further evidence of the ill-posedness of the

clustering problem, several authors along the years have advocated for a mathematical

formalization. As examples Aitkin et al. (1981) pointed out that “when clustering

samples from a population, no cluster analysis is a priori believable without a statistical

model” while Meilă (2007) noted how clustering remains a domain “where rigorous

methodology is still striving to emerge” and where theoretical developments could be

proven to be effective in addressing some of the most commonly arising criticalities.

An attempt to formalize the clustering problem by framing it into a statistically

rigorous context has been pursued via the so called density-based approach. Here the

concept of cluster is linked to some specific feature of the probability density function

5
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assumed to underlie the observed data.

The focus on the underlying density and the correspondence drawn between its char-

acteristics and the groups introduces some appealing advantages in the clustering pro-

cess. First of all, an ideal population goal, defined as the partition induced by the true

density, is introduced and can be exploited to evaluate and compare different data-based

clusterings. Furthermore the density-based formulation enables to obtain partitions of

the whole sample space and not only of the observed data, allowing the chance to classify

also incoming, not already seen, observations. Lastly, in this framework the choice of

the number of groups can be easily recasted to a model selection problem or, generally

speaking, included in the modelling process.

The idea on which the density-based formulation is built has been explored following

two distinct paths. It is possible to highlight a parametric, or model-based, approach and

a nonparametric, or modal, one with the first one being unarguably more widespread

and better established. Despite sharing the same rationale, the two approaches present

some relevant differences, not only from a practical point of view. Operationally different

density estimators are considered and, from a more conceptual point of view, different

notions of cluster and different ideal population goals are aimed at.

The next two sections will be devoted to a more comprehensive introduction to the

two paradigms outlined above focusing on their basic formulations, on the estimation

procedures and on the practical identification of the groups. Furthermore a glimpse of

their strengths and weaknesses will be given as well as their contact points.

1.2 Parametric formulation

1.2.1 Cluster notion and model specification

The model-based approach to clustering (Banfield and Raftery, 1993; Fraley and Raftery,

2002) represents undoubtedly the most studied and known formulation in the density-

based family. A first, tentative, definition of the concept of group in this framework

could be dated back to Wolfe (1963) who defined it as “a distribution which is one

of the components of a mixture of distributions”. A more recent and comprehensive

definition is given in McNicholas (2016) where a cluster is seen as “a unimodal compo-

nent within an appropriate finite mixture model”. Roughly speaking, the parametric

formulation to cluster analysis draws a one-to-one correspondence among the groups

and the components of a parametric mixture model. More specifically, denoted by

f : Rd → R the probability density function assumed to underlie the observed data
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X = {x1, . . . , xn}, xi ∈ Rd for i = 1, . . . , n, f is specified as follows

f(x|Θ) =
K∑
k=1

πkfk(x|θk) , (1.1)

where K is the number of mixture components, fk(·) the kth component density, while

Θ = (π1, . . . , πK , θ1, . . . , θK) is the full parameter vector, with πks representing the

mixing proportions, πk > 0, ∀k = 1, . . . , K and
∑

k πk = 1.

Given the formulation (1.1) it is straightforward to define the ideal population goal

in this framework. Indeed the population clustering C = {C1, . . . , CK}, induced by the

true density f(·|Θ), has ideal clusters defined as

Ck = {x ∈ Rd : πkfk(x|θk) ≥ πjfj(x|θj), ∀j 6= k} (1.2)

with k = 1, . . . , K.

In applications usually Gaussian densities are considered as the component ones;

therefore fk(·|θk) = φk(·|θk) with θk = (µk,Σk). Nonetheless, since Gaussian mixture

models are restricted to the detection of elliptically shaped clusters, other parametric

distributions have been studied and exploited in a clustering framework: mixtures of

multivariate t-distribution has been used in McLachlan and Peel (1998), while Lin (2009,

2010) proposed mixtures of skew-normal and skew-t, only to mention a few works in

this direction. Further references can be found in Bouveyron et al. (2019, Ch.9)

Note that when the dimensionality d of the data increases, mixture models turn out

to be highly overparametrized. As an example, in the Gaussian setting, the covariance

matrices Σk has an exploding number of parameters. In order to alleviate this issue,

several solutions have been proposed. The most common one, proposed by Banfield and

Raftery (1993), consists in considering an eigendecomposition of the component covari-

ance matrices as Σk = λkDkAkD
′
k where Dk is the orthogonal matrix of eigenvectors,

Ak is a diagonal matrix with elements being proportional to the eigenvalues and λk is

a constant of proportionality. This decomposition entails an appealing interpretation

from a geometric point of view; Dk determines the orientation of the k-th component

of the mixture while Ak governs its shape and λk its volume. By imposing different

constraints on the elements involved in the decomposition of the covariance matrices,

Celeux and Govaert (1995) obtain a family of Gaussian parsimonious clustering models

(see Table 1.1)
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Type Model Volume Shape Orientation Σk

Spherical EII Equal Spherical - λI
VII Variable Spherical - λkI

Diagonal EEI Equal Equal Axis-aligned λA
VEI Variable Equal Axis-aligned λkA
EVI Equal Variable Axis-aligned λAk
VVI Variable Variable Axis-aligned λkAk

General EEE Equal Equal Equal λDAD′

VEE Variable Equal Equal λkDAD
′

EVE Equal Variable Equal λDAkD
′

EEV Equal Equal Variable λDkAD
′
k

VVE Variable Variable Equal λkDAkD
′

VEV Variable Equal Variable λkDkAD
′
k

EVV Equal Variable Variable λDkAkD
′
k

VVV Variable Variable Variable λkDkAkD
′
k

Table 1.1: Nomenclature and covariance structure of the 14 models in the Gaussian
parsimonious clustering models family.

1.2.2 Estimation and allocation procedures

In order to practically obtain a partition of the observed data according to the model-

based formulation, an estimate Θ̂ of the full parameter vector is required. In this

framework the most commonly adopted choice consists in maximizing the likelihood of

model (1.1) defined as

L(Θ) =
n∏
i=1

K∑
k=1

πkfk(xi|θk) (1.3)

with corresponding log-likelihood being

`(Θ) =
n∑
i=1

log
K∑
k=1

πkfk(xi|θk). (1.4)

Maximization of (1.3) is carried out by means of the Expectation-Maximization algorithm

(EM, Dempster et al., 1977). This algorithm offers a general approach to maximum like-

lihood estimation in a variety of incomplete-data situations.

In the mixture model framework this propriety comes in handy since it is easy to re-

cast the problem to a missing data one. Thus the observed data xi are referred to as

incomplete. In turn the complete data are defined as the couples (xi, zi)1<i<n, where
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z = {zi}1≤i≤n with zi = (zi1, . . . , ziK) represents the unobserved component member-

ship. More specifically

zik =

1 if xi belongs to group k

0 otherwise.

The EM algorithm aims at maximizing the complete data likelihood Lc(Θ) by means of

an iterative procedure which alternates between two steps: an Expectation step (E-step),

where the conditional expectation of the complete data log-likelihood is computed given

the current estimates of the parameters and the observed data, and a Maximization step

(M-step) in which the parameter estimates are updated by maximizing the expected

log-likelihood obtained in the previous step. Under some regularity conditions (see

McLachlan and Krishnan, 2007), the EM algorithm converges to a local maximum of

Lc(Θ). Nevertheless, even when these conditions are not met, the algorithm has shown

good performances in practical applications.

In the considered framework, assuming that zi is drawn from a multinomial distri-

bution with probabilities π1, . . . , πK , the complete data likelihood and the associated

log-likelihood are defined as

Lc(Θ, z) =
n∏
i=1

K∏
k=1

[πkfk(xi|θk)]zik (1.5)

`c(Θ, z) =
n∑
i=1

K∑
k=1

zik log[πkfk(xi|θk)]. (1.6)

In the E-step determining the expected complete data log-likelihood corresponds to

replace the ziks in (1.6) with their expectation

ẑik =
π
(q)
k fk(xi|θ(q)k )∑K

k′ π
(q)
k′ fk′(xi|θ

(q)
k′ )

, (1.7)

where π
(q)
k and θ

(q)
k are the parameter estimates at q-th iteration of the algorithm. In

the M-step the availability of closed form solutions depends on the parametric family

chosen to model the component densities.

The two steps are iterated until a convergence criterion, usually on the values assumed

by `c(Θ) on subsequent iterations, is met.

Despite being successfully exploited in a variety of different real data applications, the

EM algorithm has shown a certain number of limitations when used in the mixture

modelling framework. Firstly, the rate of convergence can be slow and the initialization
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turns out to be particularly relevant both for the convergence speed and to avoid spurious

solutions corresponding to local maxima of Lc(Θ). Secondly, when considering Gaussian

mixtures, singularity or nearly singularity of covariance matrices leads the algorithm to a

breakdown. In order to overcome some of the limitations of the standard EM algorithm,

some variants have been proposed as for example the classification EM (CEM, Celeux

and Govaert, 1992) or the stochastic EM (SEM, Celeux and Diebolt, 1985).

Once the parameter estimates Θ̂ = (π̂1, . . . , π̂K , θ̂1, . . . , θ̂K) are obtained, the allo-

cation of the observations to the clusters is derived straightforwardly via maximum a

posteriori (MAP) classification. More specifically the ith observation is assigned to clus-

ter k∗ if k∗ = arg maxk ẑik where ẑik is defined as in (1.7) with π
(q)
k and θ

(q)
k respectively

replaced by π̂k and θ̂k.

From a practical point of view, the usual working routine in model-based clustering

follows the so called single best model paradigm. It consists firstly in estimating a set

of models corresponding to different number of mixture components, different specifica-

tions for the component densities or, in the Gaussian case, distinct parametrizations of

the component covariance matrices. Afterwards, the best model among the estimated

ones is selected and used to obtain a partition and for the subsequent analysis steps.

Model selection is usually carried out according to an information criterion with the

Bayesian Information Criterion (BIC, Schwarz, 1978) being the most popular one. It is

defined as

BIC = 2`(Θ̂)− γ log n , (1.8)

where `(·) is defined in (1.4) and γ is the number of free parameters in the model and can

be seen as a proxy of the complexity of the model. Therefore the second term in (1.8)

represents a sample-size dependent penalty leading to the selection of more parsimonious

models. Despite having shown remarkable results in a plethora of different applications,

the BIC is neither specifically conceived for the clustering setting nor it assures the

selection of the model with the best classification performance. For this reason some

other options have been studied as, for example, the Integrated Complete Likelihood

(ICL, Biernacki et al., 2000) usually approximated by

ICL ' BIC + 2
n∑
i=1

K∑
k=1

MAP(ẑik) log ẑik (1.9)

where MAP(ẑik) = 1 if observation i belongs to cluster k. The second term in (1.9)

aims at reflecting the uncertainty in the final partition therefore the ICL tends to select
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models where separation among clusters is more clear.

1.3 Nonparametric formulation

1.3.1 Cluster notion and model specification

The modal formulation of density-based clustering is unarguably less widespread than

its parametric counterpart. Research in this field have been conducted in a considerably

more scattered way and it is hence harder to give a comprehensive view of the devel-

opments and of their recent directions. A notable attempt to systematically review the

state of the art in nonparametric clustering has been made in Menardi (2016) which the

reader can refer to for more details.

A first rough definition of the concept of cluster, coherent with the modal formulation,

can be traced back to Carmichael et al. (1968) where groups are seen as “continuous,

relatively densely populated regions of the space, surrounded by continuous, relatively

empty regions”. Further developments of the definition are given by Wishart (1969)

asserting that clusters should be “distinct data modes, independently of their shapes

and variance” and by Hartigan (1975) who stated that “clusters may be thought of as

regions of high density separated from other such regions by regions of low density”.

This early attempts to connect clustering to the modal structure of the density are some-

what heuristic. A more structured definition of the concept of group was then given

by Stuetzle (2003) who drew a correspondence between clusters and the “domains of

attraction” of the density modes. Even if still rather vague this definition has relieved

the ill-posedness of the clustering problem by linking the groups to some features of

the underlying density. Roughly speaking it is then possible to highlight a one-to-one

correspondence among clusters and modal regions of the density, with the modes being

the archetypes of the clusters themselves.

It is only recently, however, that the concept of cluster could find a rigorous formaliza-

tion. To this aim, Chacón (2015) has resorted to the the aid of Morse Theory, a branch

of differential topology focusing on the large scale structure of an object via the analysis

of the critical points of a function (see e.g Matsumoto, 2002, for an introduction).

More specifically, assume that the observed data X = {x1, . . . , xn} are i.i.d. realiza-

tions of a continuous random variable X, with probability density function f : Rd → R.

Assume that f is a Morse function, i.e. a smooth enough function having nondegenerate

critical points, and denote by M1, . . . ,MK the modes of f (i.e. its local maxima). For

a given initial value x ∈ Rd, an integral curve of the negative density gradient −∇f is
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● ●
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4-crescent Broken ring

Eye

Fig. 1. The five true density models included in the simulation study, with the ideal
population clustering shown in different colors.

Figure 1.1: Ideal population clusters according to the modal approach in one di-
mension (left plot) and in two dimensions (right plot).

defined as the path νx : R→ Rd such that

ν ′x(t) = −∇f(νx(t)), νx(0) = x.

The set of points whose integral curve starts at a critical point x0 (as t → −∞) goes

under the name of unstable manifold of x0 and is defined as

W u
−(x0) = {x ∈ Rd : lim

t→−∞
νx(t) = x0}.

It has been showed (Thom, 1949) that the class of the unstable manifolds of every critical

point of a Morse function yields a partition of the whole space. With these notions at

hand, the modal ideal population clustering C = {C1, . . . , CK} associated to a density

function f is then defined as the set of the unstable manifolds {W u
−(M1), . . .W

u
−(MK)}

of the modes of f . Equivalently, if the integral curves associated to the positive density

gradient are considered, then a modal cluster is defined as the set of points whose integral

curves converge (as t → +∞) at the same mode. By borrowing concepts from terrain

analysis, the underlying intuition is that, if f is figured as a mountainous landscape

where the modes are the peaks, a modal cluster is the region that would be flooded by

a fountain emanating from a peak. When d = 1, clusters are then unequivocally defined

by the locations of the minima points of f , which represent the cluster boundaries.

The concept of modal clusters as the domains of attraction of the density modes stems

naturally from this definition. For a visual interpretation of the population clusters in

one and two dimensions see Figure 1.1.

The outlined notion of cluster claims several reasons of attractiveness. It is not bound to
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a particular shape since, in contrast to the parametric counterpart, it is linked to features

of the density without requiring assumptions on the true data generative mechanism.

Moreover it is naturally complying with the geometric intuition of dense sets making

it close to an intuitive grouping of data. Also, the number of clusters is an intrinsic

property of the data generator mechanism, thereby well defined, at least conceptually,

and estimable within the process of clustering itself.

1.3.2 Estimation and allocation procedures

All of the above-mentioned definitions of modal population clusters emphasize the cru-

cial role of the density in this framework. Since f is practically unknown, from an

operational point of view a density estimate is needed to determine the high density

regions which govern the final clustering. Which specific estimator is employed depends

on either conceptual or operational convenience, but the selection falls usually within

a nonparametric formulation, to guarantee the flexibility of possibly identifying groups

of arbitrary shape. In this framework the kernel density estimator represents the most

common choice (see, for a recent account, Chacón and Duong, 2018) and is defined as

f̂H(x) =
1

n

n∑
i=1

KH(x− xi) (1.10)

where H is a symmetric positive definite bandwidth matrix, KH(x) = |H|−1/2K(H−1/2x)

and K(·) is the kernel, usually a symmetric, smooth, non-negative function which inte-

grates to 1.

While the choice of the function K has been proven not to have a strong impact

on the resulting density estimate, an appropriate selection of H is critical. For the

sake of simplicity, we assume in the following a diagonal structure for the bandwidth

matrix, i.e. H = h2I. If a too small value for h is chosen, the density estimate will be

undersmoothed and possibly characterized by spurious modes. On the other hand large

values of h will result in oversmoothed estimates possibly covering relevant features of

the density. A one-dimensional illustration of the key role played by the bandwidth in

this framework is given in Figure 1.2.

Due to the pivotal role of the bandwidth matrix, several efforts have been made in

order to address its selection. The usual way forward consists in selecting the smoothing

parameter which minimizes some measure of distance between the estimated and the

true density. A common choice is then represented by the Integrated Squared Error,
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Figure 1.2: Top panel: two-component normal mixture density. Bottom panel:
examples of under and oversmoothing density estimates, respectively on the left and
on the right, using the kernel density estimator.

defined as

ISE(h) =

∫
Rd

{f̂h(x)− f(x)}2dx. (1.11)

Since the (1.11) depends on the observed data usually its expected value is considered,

not being subject to random variability that could hinder the bandwidth selection prob-

lem (see Hall and Marron, 1991). The Mean Integrated Squared Error is then defined

as

MISE(h) = E [ISE(h)] (1.12)

and commonly considered as a non-stochastic error distance. The optimal bandwidth,

according to the MISE, is subsequently obtained as hMISE = argminh>0 MISE(h). Note

that the minimization process does not lend itself to closed form solution, therefore

often the MISE asymptotic counterpart – the AMISE – is considered instead.

Since all of the above discrepancy measures are depending on the true and unknown

density function f , some approaches to estimate them is needed. In the last decades

several proposals have been made as, for example, the ones based on least squares

cross validation, biased cross validation or plug-in bandwidth selectors. A comprehensive

review of these methods is beyond the scopes of this thesis and can be found in Silverman

(1986), Wand and Jones (1995), and more recently in Chacón and Duong (2018).
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Once that an estimate of the density has been obtained, the following question to be

addressed is concerned with the need of operationally identifying its modal regions to

partition the observed data.

A first strand of methods aims at detecting directly the modes of the density and

then associates each data point to the pertaining mode coherently with the definition

given in the Section 1.3.1. Most of the contributions moving in this direction turn out

to be numerical optimization methods mainly based on the mean-shift algorithm. The

algorithm has been proposed by Fukunaga and Hostetler (1975) but it has been brought

to new life only more recently, with the computational advancements, by the work of

Cheng (1995) and the variants proposed by Comaniciu and Meer (2002) and Carreira-

Perpinán (2008).

The mean-shift transforms an initial point x(0) recursively, and identifies a sequence

(x(0), x(1), x(2), . . . ) according to an updating mechanism defined as

x(l+1) = x(l) + A
∇f̂(x(l))

f̂(x(l))
, (1.13)

where A is a d×d positive definite matrix chosen to guarantee the convergence to a local

maximum of f and ∇f̂ is the gradient of f̂ . In practice, at each iteration the algorithm

moves a generic data point along the steepest ascent path of the gradient of a kernel

estimate, until converging to a mode. The final partition is then straightforwardly

obtained by applying the mean-shift algorithm to each observed data point and by

grouping them in the same cluster if they ascend to the same mode.

A similar approach to the identification of the modal regions has been proposed by Li

et al. (2007) under the name of Modal EM algorithm (MEM). This technique aims at

seeking the local maxima of the density by exploiting the peculiar mixture structure

of the kernel density estimator. Apart from being built on a mixture construction, the

algorithm shares some some other connections with the parametric formulation of cluster

analysis since it alternates between two iterative steps in the guise of the EM algorithm

introduced in Section 1.2.2. Despite the contact points among the two algorithms it

should be noted that they aim at completely different scopes: while the EM searches

for the maximum of the likelihood in order to provide parameters estimates, the MEM

seeks directly for the local maxima of the density function which work as the archetypes

of the clusters.

A second strand of nonparametric clustering methods finds a direct inspiration from

the definition of modal cluster given in Hartigan (1975). This approach, instead of

associating clusters directly to the modes, links them to the connected components of
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the density level sets. Specifically, a section of f at a given level λ singles out the (upper)

level set

L(λ) = {x ∈ Rd : f(x) ≥ λ} 0 ≤ λ ≤ max f (1.14)

which may be connected or disconnected. In the latter case, it consists of a number of

connected components, each of them associated with a cluster at level λ.

While there may not exist a single λ which catches all the modal regions, any con-

nected component of L(λ) includes at least one mode of the density and, on the other

hand, for each mode there exists some λ for which one of the connected components

of the associated L(λ) includes this mode at most. Hence, not only it is not necessary

to define a specific level λ to identify the groups, which would be difficult and often

not effective in providing the overall number of modes, but conversely, all the modal

regions may be detected by identifying the connected components of L(λ) for different

λs. Varying λ along its range gives rise to a hierarchical structure of the high-density

sets, known as the cluster tree. For each λ, it provides the number of connected compo-

nents of L(λ), and each one of its leaves corresponds to a cluster core, i.e. the largest

connected component of L(λ) including one mode only.

Operationally L(λ) will be estimated by substituting f in (1.14) with its nonparametric

estimate f̂ . Afterwards the detection of its connected components is required in order

to practically obtained a partition. In the multivariate domain this turns out to be an

awkward issue that, in the past, has seriously limited the use of this approach to cluster

analysis. Only quite recently the question has been addressed with the aid of the graph

theory. More specifically, let G be a graph with vertices given by x1, . . . , xn. A suitable

subgraph Gλ, induced by the sample level set

S(λ) = {xi ∈ (x1, . . . , xn) : f̂(xi) ≥ λ} (1.15)

is built, by removing from G the vertices not in (1.15) and all the edges involving at least

one of these vertices. The connected components of Gλ are therefore straightforwardly

determined by those observations connected through an edge in the graph. A crucial

aspect then revolves around choosing how to practically construct the graph and several

efforts have been made along this direction. A suitable choice is represented by the

nearest-neighbour graph proposed in Cuevas et al. (2000, 2001) and Stuetzle (2003)

while Azzalini and Torelli (2007) exploit the Delaunay triangulation in order to build

G. Representing advancements of the two latter works, it is worth to mention also the

proposals in Stuetzle and Nugent (2010) and Menardi and Azzalini (2014) where the
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graph is built according to a more “density informative” formulation; an edge between

two vertices is indeed drawn if f̂ does not show any valley in the segment joining them.

Obtaining operationally a partition turns out to be more tricky when considering

level sets-based methods with respect to mode hunting approaches. While observations

belonging to one of the cluster cores are naturally assigned to the group associated to

the pertaining mode, data points not falling in any of the cores, referred to as fluff in

Stuetzle and Nugent (2010), remain unallocated thus requiring some sort of classification

tool. A tentative solution is provided in Azzalini and Torelli (2007) where each fluff point

is assigned to the most likely cluster in terms of the density.





Chapter 2

On the selection of an appropriate

bandwidth for modal clustering

2.1 Introduction

Especially in the initial stages of the analysis of a set of data, one wishes to gain insight

about the nature of the phenomenon of interest, without imposing preconceived notions

or models. This applies in particular when data exhibit non-Gaussian features, since the

possible identification of such behaviour may aid to decide how to subsequently approach

the analysis the most fruitfully. Often due to the unavailability of some relevant variable,

either unobserved or unobservable, data exhibit some unlabeled heterogeneity, which

typically arises in multimodal structures. In such situations, and a fortiori when the

heterogeneity arises along with asymmetry and heavy tails, a suitable approach for

group identification is the modal formulation of density-based clustering.

As highlighted in Chapter 1, modal clustering associates groups to the domains of

attraction of the modes of the density supposed to underlie the data. The reasons for

pursuing such approach, rather than its parametric counterpart, especially lie in the

opportunity of finding groups without specific, predetermined shapes. Moreover, the

number of clusters is an intrinsic property of the data generator mechanism, thereby its

determination is itself an integral part of the estimation procedure.

The existence of a formalized notion of cluster, based on the features of the density,

leads to the concept of ideal population clustering, i.e. clusters are defined in terms

of the true distribution. By serving as a reference “ground truth” to aim at, this

concept introduces a benchmark to evaluate the performance of data-based partitions.

Additionally, the purpose of the analysis is not limited to simply produce a partition of

the observed data; instead, a whole-space clustering can be obtained, that is a partition

19
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of the whole sample space (Ben-David et al., 2006; Chacón, 2015).

Despite the attractiveness of building clustering on the density underlying the data,

such density is, in practice unknown, and its estimation assumes a key role in order to

approximate the ideal population goal. While the modal formulation does not preclude

using a parametric density estimate as a first step to perform a data-based modal clus-

tering (Scrucca, 2016; Chacón, 2019), a long-standing practice resorts to nonparametric

estimators. Precisely, in this chapter the focus lies on those estimators based on kernel

smoothing (see e.g. Wand and Jones, 1995; Chacón and Duong, 2018).

Under- or over-smoothed estimates may lead to deceiving indications about the modal

structure of the underlying density function, and this problem is usually quantified

through some measure of the discrepancy between the estimate and the target density.

In contrast, the aim of this work is to consider nonparametric density estimation as

a tool for the final purpose of modal clustering, focusing on an appropriate metric to

compare the partitions induced by the true and the estimated distribution.

Our main result provides an asymptotic approximation for the considered metric,

which allows introducing new automatic bandwidth selection procedures specifically de-

signed for nonparametric modal clustering. The accuracy of this approximation and the

performance of the new methods in practice, with respect to the proposed error criterion,

is extensively studied via simulations, and compared with some plausible competitors.

The rest of the Chapter is structured as follows. In Section 2.2 the distance criterion

to target density estimation for modal clustering is presented, along with the main

asymptotic result and its consequences. Section 2.3 contains the setup and results of

the numerical experiments. A generalization to the multidimensional setting is discussed

in Section 2.4. Finally, some concluding remarks are stated in Section 2.5.

2.2 Density estimation for modal clustering

2.2.1 Asymptotic bandwidth selection for modal clustering

As introduced in Section 1.3.2 nonparametric clustering is conducted via exploration of

the modality structure of the probability density function f . Since f is usually unknown,

an estimator is needed in order to provide an estimate eventually inducing a partition. In

this work we focus our attention on the kernel density estimator (1.10) in a univariate

setting, to ease the mathematical formalization. As a consequence the selection of a

single bandwidth h > 0 is needed, instead of a complete bandwidth matrix.
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Figure 2.1: Left picture: two quite different densities, from an ISE perspective,
inducing the same partition of the space. Right picture: two closer densities having
different number of clusters.

In the previous Chapter we have seen how the smoothing parameter is usually se-

lected by minimizing a suitable measure of distance among the true density and its

kernel estimate, with a commonly considered measure being the ISE defined in (1.11).

Bandwidth selectors based on the ISE or akin distances pursue the aim of obtaining an

appropriate estimate of the density. However, the goal of modal clustering is markedly

different from that of density estimation (see e.g. Cuevas et al., 2001). In fact, two

densities that are close with respect to the ISE may result in quite different clusterings

while, on the other hand, densities far away from an ISE point of view could lead to the

same partition of the space. A graphical illustration of this idea is provided in Figure

2.1. The inappropriateness of the ISE, or related distances, depends on its focus on the

global characteristics of the density, while modal clustering strongly builds on specific

and local features, more closely related to the density gradient or the high-density re-

gions (see also Chen et al., 2017). Therefore, the choice of the amount of smoothing

makes sense to be tailored specifically for clustering purposes.

So far, the aim of choosing an amount of smoothing for the specific task of high-

lighting clustering structures has been scarcely pursued in literature. A related idea,

although without particular reference to cluster analysis, has been developed by Sam-

worth and Wand (2010), who propose a plug-in type bandwidth selector appropriate

for estimation of highest density regions (see also Qiao, 2018; Doss and Weng, 2018).

Another related work, more focused on the clustering problem, is the one by Einbeck

(2011), where the author suggests considering the self-coverage measure as a criterion for

bandwidth selection. Alternatively, the potential adequacy of a bandwidth selected to

properly estimate the density gradient has been pointed out informally by Chacón and

Duong (2013) and explored numerically by Chacón and Monfort (2006). The theoreti-

cal motivation of this suggestion lies on the strong dependence of both the population
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modal clustering and the mean shift updating mechanism on the density gradient. The

suggestion in Chen et al. (2016) follows the same rationale and the bandwidth is pro-

posed to be selected as a modification of the normal reference rule for density gradient

estimation.

To address the problem of bandwidth selection for modal clustering, an appropriate

measure of distance should compare the data-based clustering induced by a kernel den-

sity estimate with the ideal population one. Stemming from Chacón (2015), a natural

choice is the distance in measure, where the considered measure here is the probability

P induced by the density f . Formally, let C = {C1, . . . , Cr} and D = {D1, . . . , Ds} be

two partitions with r ≤ s (i.e. possibly different number of groups). The distance in

measure between C and D is defined as

d(C,D) =
1

2
min
σ∈Ps

{
r∑
i=1

P(Ci∆Dσ(i)) +
s∑

i=r+1

P(Dσ(i))

}
, (2.1)

where C∆D = (C ∩ Dc) ∪ (Cc ∩ D) is the symmetric difference between any two sets

C and D and Ps denotes the set of permutations of {1, 2, . . . , s}. When r > s we can

easily define the distance in measure between C and D as d(D,C).

This distance finds an interpretation as the minimal probability mass that would

need to be re-labeled to transform one clustering into the other (see Figure 2.2 for a

graphical illustration). In this sense, the second term in (2.1) serves as a penalization

for unmatched clusters in one of the clusterings. Practically, this distance conveys the

idea that two partitions are similar not when they are physically close, but when the

differently-labeled points do not represent a significant portion of the distribution.

It should be noted that the choice of this distance to evaluate the performance of a

data-based clustering is not arbitrary. Indeed, many other possibilities are described in

Meila (2016), but the conclusion of that study is that the distance in measure (called

misclassification error there) is “the distance that comes closest to satisfying everyone”.

Furthermore, in Von Luxburg (2010) the distance in measure is considered as “the most

convenient choice from a theoretical point of view”.

As with the ISE-MISE duality, the distance in measure is a stochastic error distance,

so for the purpose of bandwidth selection it seems more convenient to focus on the

Expected Distance in Measure

EDM(h) = E
[
d(Ĉh,C0)

]
, (2.2)

where Ĉh is the data-based partition induced by f̂h and C0 represents the ideal population



Chapter 2 - On the selection of the bandwidth for modal clustering 23

m̂ m

Figure 2.2: Graphical interpretation of the distance in measure: the shaded area
represents the probability mass that would need to be re-labeled to transform one
induced clustering into the other.

clustering. Once the appropriate error distance is defined, the optimal bandwidth h is

given by hEDM = argminh>0 EDM(h).

As it happened with hMISE, it does not seem possible to find an explicit expression

for hEDM. Hence, our goal will be to obtain an asymptotic form for the EDM that allows

deriving a simple approximation to hEDM.

To this aim, consider a standard normal random variable Z, and denote by ψ(µ, σ2) =

E|µ+ σZ| for µ ∈ R and σ > 0. Since |µ+ σZ| has a folded normal distribution (Leone

et al., 1961), it follows that ψ(µ, σ2) can be explicitly expressed as

ψ(µ, σ2) = (2/π)1/2σe−µ
2/(2σ2) + µ

{
1− 2Φ(−µ/σ)

}
(2.3)

= (2/π)1/2
{
σe−µ

2/(2σ2) + |µ|
∫ |µ|/σ
0

e−z
2/2dz

}
,

where Φ denotes the distribution function of Z. This function ψ plays a key role in the

asymptotic behavior of the expected distance in measure, as the next result shows.

Theorem 2.1. Assume that f is a bounded Morse function with compact support, r ≥ 2

modes and local minima m1 < · · · < mr−1, three-times continuously differentiable around

each mj, that
∫∞
−∞ |x|f(x)dx < ∞, and that the kernel K is supported on (−1, 1),

has four bounded derivatives and satisfies
∫∞
−∞K(x)dx = 1,

∫∞
−∞ xK(x)dx = 0 and

µ2(K) =
∫∞
−∞ x

2K(x)dx <∞. Define R(K(1)) =
∫∞
−∞K

(1)(x)2dx and suppose also that

h ≡ hn is such that h→ 0, nh5/ log n→∞ and (nh7)−1 is bounded. Then, EDM(h) is
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asymptotically equivalent to

AEDM(h) =
r−1∑
j=1

f(mj)

f (2)(mj)
ψ
(

1
2
µ2(K)f (3)(mj)h

2, R(K(1))f(mj)(nh
3)−1

)
, (2.4)

where g(k) refers to the k-th derivative of a function g(·).

Proof. From Theorem 4.1 in Chacón (2015) it follows that, with probability one, there

exists n0 ∈ N such that the kernel density estimator f̂h has the same number of local

minima as f for all n ≥ n0. Let us denote by m̂h,1 < · · · < m̂h,r−1 the local minima of

f̂h. Then, the expected distance in measure between the data-based clustering Ĉh and

the population clustering C0 can be written as

EDM(h) =
r−1∑
j=1

E|F (m̂h,j)− F (mj)|. (2.5)

Write, generically, m̂ and m for any of the estimated and true local minima. A Taylor

expansion with integral remainder allows writing

F (m̂)− F (m) = (m̂−m)

∫ 1

0

f
(
m+ t(m̂−m)

)
dt.

The assumptions imply that m̂ → m almost surely (see, for instance, Romano, 1988)

and, since f is bounded and continuous, this readily yields
∫ 1

0
f
(
m+t(m̂−m)

)
dt→ f(m)

almost surely, which entails that E|F (m̂) − F (m)| ∼ f(m)E|m̂ −m|. The result then

follows from Equation (2.6) in Grund and Hall (1995), where the asymptotic form of

E|m̂−m| is given.

The asymptotically optimal bandwidth hAEDM is then defined as the value of h > 0

that minimizes AEDM(h). Due to the structure of ψ(·, 1), minimization of (2.4) is closely

related to the problem of minimizing the L1 distance in kernel density estimation and, in

fact, reasoning as in Hall and Wand (1988) it is possible to show that hAEDM is of order

n−1/7. Unfortunately, as it happened with hEDM, it seems that neither hAEDM admits

an explicit representation. Hence, to get further insight into the problem of optimal

bandwidth selection for density clustering, it appears necessary to rely on a tight upper

bound for AEDM(h).

To find such a bound it is useful to note that many properties of ψ(u, 1) are given in

Devroye and Györfi (1985, Ch. 5), and can be translated to our function of interest by

taking into account that ψ(µ, σ2) = σψ(µ/σ, 1). It follows that ψ(µ, σ2) is symmetric



Chapter 2 - On the selection of the bandwidth for modal clustering 25

with respect to µ, nondecreasing for µ > 0 and convex, attaining its minimum at µ = 0

so that ψ(µ, σ2) ≥ ψ(0, σ2) = (2/π)1/2σ for all µ ∈ R, σ > 0.

By taking into account that e−µ
2/(2σ2) and |1 − 2Φ(−µ/σ)| are both bounded by 1,

Devroye and Györfi (1985) also noted that

ψ(µ, σ2) ≤ (2/π)1/2σ + |µ| (2.6)

for all µ ∈ R, σ > 0. However, a tighter bound for small values of µ is given in the next

lemma.

Lemma 2.2. The bound ψ(µ, σ2) ≤ (2/π)1/2σ + (2π)−1/2µ2/σ holds for all µ ∈ R and

σ > 0.

Proof. From ψ(µ, σ2) = σψ(µ/σ, 1), it suffices to show that ψ(u, 1) ≤ (2/π)1/2 +

(2π)−1/2u2 for u ≥ 0. From the definition of ψ, this is equivalent to proving that

α(u) ≤ 1, where α(u) = e−u
2/2 + u

∫ u
0
e−z

2/2dz − u2/2. Since α(0) = 1, it is enough to

show that α is nonincreasing, but this immediately follows from the fact that α′(u) =∫ u
0
e−z

2/2dz − u.

The bound in Lemma 2.2 is tighter than (2.6) whenever |µ| ≤ (2π)1/2σ, but the

situation reverses for bigger values of |µ|, so that none of the two bounds is uniformly

better (see Figure 2.3) hence we should keep track of both of them. They lead to upper

bounds for the asymptotic EDM.

Corollary 2.3. Under the conditions of Theorem 2.1, the asymptotic EDM satisfies

AEDM(h) ≤ min{AB1(h),AB2(h)} for all h > 0, where

AB1(h) = (2/π)1/2R(K(1))1/2bn−1/2h−3/2 + 1
2
µ2(K)a1h

2,

AB2(h) = (2/π)1/2R(K(1))1/2bn−1/2h−3/2

+ (32π)−1/2µ2(K)2R(K(1))−1/2a2n
1/2h11/2.

Here, b =
∑r−1

j=1 bj and a` =
∑r−1

j=1 aj` for ` = 1, 2, where

aj1 = f(mj)|f (3)(mj)|/f (2)(mj), bj = f(mj)
3/2/f (2)(mj),

aj2 = f(mj)
1/2f (3)(mj)

2/f (2)(mj).
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Figure 2.3: Graph of ψ(µ, 1) as a function of µ (grey solid curve), together with
the bound (2.6) (red dotted line) and the bound from Lemma 2.2 (blue dot-dashed
curve).

The minimizers of AB1(h) and AB2(h) can be computed explicitly, and are given by

hAB1 =

(
9R(K(1))b2

2πµ2(K)2a21

)1/7

n−1/7 (2.7)

hAB2 =

(
24R(K(1))b

11µ2(K)2a2

)1/7

n−1/7 . (2.8)

2.2.2 Some remarks

In this section we discuss in more depth some of the results derived in Section 2.2.1.

The aim is to provide insights on the behavior of the approximations and bandwidth

selectors and to discuss possible competitors.

Remark 2.1 Theorem 2.1 provides an asymptotic expression for the EDM that is valid as

long as the true density has two or more modes. When the true density is unimodal (r =

1), expression (2.4) is not well-defined. However, under the assumptions of the theorem

the kernel estimator is also unimodal with probability one for big enough n. Thus,

asymptotically the distance in measure would be identically zero, hence the AEDM

formula would remain valid under the usual convention setting
∑0

j=1 = 0.

Moreover, for unimodal densities the numerical work in Section 2.3 suggests that there

exists h0 > 0 such that EDM(h) = 0 for all h ≥ h0. Hence, in that case it seems sensible

to define hEDM = inf{h > 0: EDM(h) = 0}.
Remark 2.2 A natural estimator of the density first derivative is the first derivative of
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the kernel density estimator. For this estimator it is possible to define the MISE as in

(1.12), and to consider its minimizer hMISE,1 and its asymptotic approximation hAMISE,1

(see Singh, 1987; Chacón et al., 2011). The bandwidths (2.7) and (2.8) share the same

order as hAMISE,1, whose expression is given by

hAMISE,1 =

(
3R(K(1))

µ2(K)2R(f (3))

)1/7

n−1/7, (2.9)

with R(f (3)) =
∫∞
−∞ f

(3)(x)2dx. This consideration strengthens the intuition, outlined

in Section 2.2.1, that (2.9) could be an adequate bandwidth choice for modal clustering

purposes.

Remark 2.3 By explicitly plugging expression (2.3) for ψ into (2.4), it is easily seen

that the AEDM can be decomposed into two summands. Studying their behavior, as

a function of h, it can be checked that when h → 0 the first term decreases while the

second one tends to increase. Vice versa, when h increases, the opposite behaviour is

witnessed. A similar trade-off occurs with the decomposition of the AMISE into the

Asymptotic Integrated Squared Bias and the Asymptotic Integrated Variance, which are

minimized for diverging values of h.

Remark 2.4 If the true density is locally symmetric around its minima, the consid-

erations in the previous item do not hold anymore. Symmetry around a minimum m

implies f (k)(m) = 0, for any odd value of k. Therefore the first summand of the AEDM

expression, related to the bias, vanishes, leading to a monotonically decreasing behavior

of the AEDM itself. This would represent in principle a serious issue as in principle

it prevents us from using the proposed bandwidth selector. However, such situation is

highly unlikely to occur in practice, as motivated in Remark 2.5. A similar anomaly

was observed in the related problem of mode estimation in Chernoff (1964): if the true

density is symmetric around its mode, then Chernoff’s mode estimator is unbiased.

Hence, in some special cases symmetry plays a certain role in the performance of these

smoothing methodologies.

Remark 2.5 The derived bandwidths depend on some unknown quantities such as the

true density, its local minima and its second and third derivatives. In order to be of

practical use we shall resort to plug-in strategies, that is, data-based bandwidth selec-

tors will be proposed in the next section by substituting the aforementioned unknown

quantities with pilot estimates. This is the same procedure that is commonly adopted

when considering the plug-in bandwidth selector ĥPI,1 for density gradient estimation

(see Jones, 1992; Chacón and Duong, 2013). With reference to Remark 2.4, note that

due to sample variability, resorting to the considered plug-in strategy makes highly
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Figure 2.4: Univariate density functions selected for simulations.

unlikely to encounter a situation of perfect symmetry around a minimum in practice.

Remark 2.6 Theorem 2.1 assumes that f is a Morse function with compact support.

Since the support of a probability distribution is always a closed set, any other assump-

tion (smoothness, critical points, etc) is intended to be made with respect to the interior

of this support. In practice any sample takes values in a bounded set, so we may extend

the applicability of Theorem 2.1 to densities with unbounded support, provided that we

consider their significant support (Baillo et al., 2001), i.e. a subset of the support where

most of the probability mass lies. More formally, the significant support of a density f

is defined as the density level set L(c) = {x ∈ R : f(x) > c}, where c = cα is the largest

constant such that P(L(cα)) ≥ 1−α, for some small α > 0. Note that, by construction,

the significant support is always bounded hence respecting the theorem’s assumptions.

2.3 Numerical results

The idea of estimating the density for clustering purposes, via the minimization of the

expected distance in measure – or its asymptotic counterpart – is explored in this section

via simulations. All the analyses have been performed in the R environment (R Core

Team, 2019) with the aid of the ks (Duong, 2019), meanShiftR (Lisic, 2018), clue

(Hornik, 2018), and multimode (Ameijeiras-Alonso et al., 2018) packages, as well as a

number of routines specifically designed for the scope. All the functions to implement
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the proposed selectors will be made available publicly.

A total of B = 1000 samples for each of the sizes n ∈ {100, 1000, 10000} are generated

from the univariate densities depicted in Figure 2.4 and whose parameters are reported in

the Appendix. The selected densities are designed to illustrate different modal structures

to encompass different possible behaviors from a clustering perspective. In order to

respect the assumptions of Theorem 2.1, in the following analysis we restrain results

to the significant support of the considered densities, as discussed in Remark 2.6, with

α = 0.01.

The first goal of the study was to evaluate the quality of the asymptotic approxima-

tion of the EDM and the behavior of the two bounds derived in Corollary 2.3. Since an

explicit expression for the EDM was not available, we obtained a Monte Carlo approx-

imation based on the B = 1000 synthetic samples.

The plots displayed in Tables 2.1 to 2.5 show the behavior of the asymptotic approx-

imations, with respect to the EDM, as a function of the bandwidth h. As expected,

the approximations improve as the sample size increases. The two bounds show a quite

different behavior, with characteristics that reflect the theoretical properties pointed out

in Section 2.2.2. The first bound is closer to the AEDM in uniform terms, but despite

having a diverging behavior for large h the second bound is usually closer to the AEDM

around the location of the minimizer hAEDM.

With regard to the EDM, it presents a nearly flat pattern around its minimizer, thus

suggesting a range of plausible bandwidths with very similar performance as the optimal

one. This is especially true for densities with a simpler modal structure, captured by

the kernel estimate for a wide range of bandwidth values.

To appreciate how much is lost by changing the target from the optimal hEDM to the

oracle surrogates hAEDM and hMISE,1, the first three lines in each table also present the

values for the corresponding EDM, all computed under a full knowledge of the density

and its involved features. By construction, EDM(hEDM) is the lowest of these values

and, being derived as an asymptotic approximation, the oracle hAEDM stands close to

this optimal value, especially for larger sample sizes. However, it is remarkable that

hMISE,1, despite being based on a different optimality criterion, also leads to comparable

or even improved results over hAEDM in terms of the EDM.

As a second goal, we propose new data-based bandwidth selectors specifically de-

signed for modal clustering purposes. The first step consists in estimating the number

of local minima, and their location. This is achieved by numerically finding the roots

of a pilot estimate of f (1), constructed as the derivative of the kernel density estimator

using the plug-in gradient bandwidth ĥPI,1. Then, similarly, we obtain pilot estimates
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Table 2.1: Top panel: the EDM (solid line), the AEDM (dashed grey line),
and the bounds AB1 (dotted line) and AB2 (dot-dashed line) versus h, for n =
100, 1000, 10000. All the expressions are evaluated by assuming f and all the involved
quantities known. The minimum EDM is reported below the plots, together with the
EDM for the oracle bandwidths hAEDM and hMISE,1. Middle panel: average distances
in measure (and their standard error) for the proposed bandwidth selectors and the
plug-in bandwidth for density gradient estimation. Bottom panel: percentages of
times when the estimated number of cluster r̂ matches the true one r. Results refer
to density M1.
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hAEDM 0.164 0.103 0.050
hMISE,1 0.146 0.081 0.044

ĥAEDM 0.267 (0.173) 0.103 (0.130) 0.045 (0.075)

ĥAB1 0.256 (0.174) 0.105 (0.127) 0.056 (0.084)

ĥAB2 0.265 (0.173) 0.102 (0.129) 0.048 (0.079)

ĥPI,1 0.221 (0.176) 0.063 (0.084) 0.029 (0.052)
% r̂ = r 54.5 91.7 92.6

Table 2.2: Cf. Table 2.1. Results refer to density M2.
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ĥAB2 0.318 (0.199) 0.058 (0.069) 0.010 (0.016)

ĥPI,1 0.256 (0.159) 0.092 (0.076) 0.008 (0.005)
% r̂ = r 2.8 58.0 100.0
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Table 2.3: Cf. Table 2.1. Results refer to density M3.
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Table 2.4: Cf. Table 2.1. Results refer to density M4.
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% r̂ = r 85.4 97.2 99.8

of f , f (2) and f (3) at the estimated local minima using kernel estimates with the same

bandwidth ĥPI,1. These quantities are subsequently plugged-in in the formulas of the

AEDM, AB1 and AB2, and the minimizers of the resulting estimated criteria are found;

in the case of the estimated AEDM by numerical minimization, and according to ex-

pressions (2.7) and (2.8) for AB1 and AB2 respectively. The data-based bandwidths

thus obtained are denoted ĥAEDM, ĥAB1 and ĥAB2, respectively.

Occasionally (although rarely) the first step in the procedure above yielded a single
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Table 2.5: Cf. Table 2.1. Results refer to density M5.
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ĥAEDM 0.160 (0.175) 0.017 (0.034) 0.006 (0.007)
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ĥPI,1 0.179 (0.158) 0.013 (0.009) 0.005 (0.003)
% r̂ = r 42.7 99.7 100.0

mode, and then the AEDM was undefined. In those cases, and according to the rationale

exposed in Remark 2.1, a sensible choice for h is the critical bandwdith proposed by

Silverman (1981),

ĥcrit = inf{h > 0 : f̂h(·) has exactly one mode},

so in that case we set ĥAEDM = ĥAB1 = ĥAB2 = ĥcrit.

Tables 2.1 to 2.5 also contain the Monte Carlo averages and standard deviations of the

distances in measure obtained when performing modal clustering using the bandwidth

selectors ĥAEDM, ĥAB1 and ĥAB2. For completeness, their performance is also compared

to that of ĥPI,1, which so far probably represents their most sensible competitor in the

clustering framework (see Chacón and Monfort, 2006).

In general, ĥAB1 and ĥAB2 led to more accurate clusterings than ĥAEDM, with a slight

preference for ĥAB1. The gradient-based bandwidth ĥPI,1, in turn, not only produces

competitive results, but its Monte Carlo average distance in measure appears lower

than the one produced by the asymptotic EDM minimizers. In fact, a deeper insight

into the standard errors of the obtained distances shows that ĥAEDM, as well as ĥAB1

and ĥAB2, produce more variable results. The higher variability seems to be due to the

sensitivity of the minimizers to the plugged in pilot estimates, which strongly depend on

local features of the density. Some further investigations, not fully reported here, suggest

that the main responsible for this behaviour is not the pilot estimate of the local minima

but the pilot density derivatives estimates at the minimum points. On the other hand,
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while relying as well on some plug-in estimates, the gradient-based bandwidth ĥPI,1

produces more robust clusterings, as the quantities to be estimated refer conversely to

global features of the density. As expected, this diverging behavior tends to vanish with

increasing sample size since the asymptotic approximations improve. As a confirmation,

with n = 10000, all the considered bandwidths perform comparably.

2.4 Multidimensional generalization

The concepts discussed so far refer to the one-dimensional setting where a mathemat-

ically rigorous treatment is feasible. The multidimensional generalization poses some

difficulties since obtaining an asymptotic approximation of the EDM appears far from

trivial. Hence, in order to gain some insight into the problem of selecting the amount

of smoothing for nonparametric clustering in more than one dimension, some numerical

comparisons are performed assuming the true density as known.

Denote by f : Rd → R the true density function and by

f̂H(x) =
1

n

n∑
i=1

|H|−1/2K
(
H−1/2(x−Xi)

)
, (2.10)

its kernel estimate based on a sample X1, . . . ,Xn and indexed by a symmetric positive

definite d× d bandwidth matrix H. The problem of bandwidth selection is considered

by studying the EDM between the clustering induced by the kernel estimate ĈH and

the ideal population clustering C0. These clusterings are not so easily identifiable as in

the unidimensional setting, due to the arbitrary forms that the cluster boundaries may

adopt, however an approximation of the distance in measure d(ĈH,C0) can be computed

by resorting to a discretization scheme as follows (see Chacón and Monfort (2006) for

further details):

1. Take a grid over the sample space and rule the grid by considering hyper-rectangles

centered at each grid point.

2. Assign a cluster membership to each grid point by running a population version of

the mean-shift algorithm i.e. using the true density. This produces a discretized

version of C0.

3. Similarly, obtain the data-based partition ĈH induced by f̂H.

4. Compute the probability mass of each single hyper-rectangle in C0.
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Figure 2.5: Bivariate density functions selected for simulations.

5. Compute the distance in measure as in (2.1) where the involved probabilities are

evaluated based on the previous step.

For the multidimensional simulation study, a total of B = 1000 samples for each

of the sizes n ∈ {100, 1000} were generated from the bivariate densities whose contour

plots are shown in Figure 2.5 and described in Appendix. The densities have been

chosen to generalize the settings M1 and M5 included in the univariate study.

Three different parametrizations for the bandwidth matrix were considered: a scalar

bandwidth H = h2I, with I the identity matrix, a diagonal bandwidth H = diag(h21, h
2
2),

and a full, unconstrained bandwidth matrix H. For density and density derivative es-

timation, Wand and Jones (1993) and Chacón et al. (2011) showed that the use of the

simplest scalar bandwidth can be quite detrimental in practice, a diagonal bandwidth

may suffice in some scenarios, but in general it is advantageous to employ unconstrained

bandwidth matrices (see also Chacón and Duong, 2018). However, such results have

never been obtained in a modal clustering framework; thus one of the goals of this

simulation study is to examine how the bandwidth matrix parametrization affects the

performances of the procedures.

Using the synthetic samples from each density in the study, it was possible to obtain a

Monte Carlo estimate of the (discretized version of the) EDM, which was then minimized

over the class of scalar, diagonal and unconstrained bandwidth matrices. The EDM was

computed also for the MISE-optimal bandwidth for density gradient estimation over the

same matrix classes. In both cases, the true density as well as all the involved quantities

were assumed to be known. The EDM minimizers were determined numerically, by

running the procedure over a grid of sensible values of the entries, while the optimal

matrices for gradient estimation were determined as in Chacón et al. (2011).
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Table 2.6: Minimum EDM associated with a density estimate with bandwidth ma-
trix H selected to minimize the EDM (HEDM) and the MISE for gradient estimation
(HMISE,1). Different parametrizations for H are considered. In both cases, the true
density as well as all the involved quantities are assumed to be known. Results refer
to density M6.

HEDM HMISE,1

n =100 n=1000 n =100 n=1000(
h2 0
0 h2

)
0.006 0.004 0.064 0.040(

h21 0
0 h22

)
0.006 0.004 0.064 0.040(

h21 h12
h12 h22

)
0.005 0.003 0.042 0.024

The results are reported in Tables 2.6 and 2.7. Clustering based on the optimal band-

width according to the EDM is very accurate in both of the considered examples, and

improves considerably for increasing sample size. The use of more complex bandwidth

parametrizations does not seem worth for modal clustering since results obtained with a

full, unconstrained bandwidth matrix are comparable with those obtained with a scalar

bandwidth, while the latter requires a substantially smaller computational effort.

In the multidimensional setting, the gradient bandwidth is quite competitive in terms

of EDM, as in the univariate case. Again the comparable performance of unconstrained

bandwidth matrices does not seem to justify the use of more complex parametrizations.

Table 2.7: Cf. Table 2.6. Results refer to density M7.

HEDM HMISE,1

n =100 n=1000 n =100 n=1000(
h2 0

0 h2

)
0.114 0.044 0.116 0.054(

h21 0

0 h22

)
0.114 0.042 0.115 0.055(

h21 h12

h12 h22

)
0.110 0.040 0.121 0.054
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2.5 Conclusions

The modal clustering methodology provides a framework to perform cluster analysis

with a clear and explicit population goal. It allows clusters of arbitrary shape and size,

which can be captured by means of a nonparametric density estimator. In this context,

the distance in measure represents a natural and easily interpretable error criterion.

Therefore, in this chapter we have presented an asymptotic study of this criterion for

the case where density estimates of kernel type are employed to obtain a whole-space

clustering via the mean shift algorithm.

Our asymptotic approximations are useful to gain insight into the fundamental prob-

lem of bandwidth selection for modal clustering and, at the same time, serve as the basis

to propose practical data-based bandwidth choices specifically designed for clustering

purposes.

The finite-sample performance of the new proposals was investigated in a thorough

simulation study, and compared to the oracle bandwidths i.e. the optimal choices when

the true population is fully known. The gradient bandwidth, designed for the closely

related problem of density gradient estimation, was also included as a natural competitor

in the study.

The results of this simulation study have suggested that all the methods perform quite

satisfactorily, and exhibit a very similar behavior for large sample sizes. For smaller

samples, the performance of the gradient bandwidth was rather remarkable, since it

obtained comparable or even better results than the new proposals, even without being

specifically conceived for modal clustering.

This phenomenon resembles the conclusions obtained in Saavedra-Nieves et al. (2014)

regarding the related problem of level set estimation. There, it was shown that the tradi-

tional bandwidth selectors for density estimation often outperformed more sophisticated

methods designed for level set estimation purposes. The common pattern in both sit-

uations is that the optimal choices for the specific problems (level set estimation and

modal clustering, respectively) depend on very subtle local features of the unknown

density function, which are difficult to estimate, so that choices based on a more global,

yet somehow related, perspective represent a sensible alternative.



Chapter 3

Ensemble density-based clustering

3.1 Introduction

In virtually any scientific domain we are witnessing an explosion in the availability of

the data, coupled with a tremendous growth in their complexity. As a straightforward

consequence, the number of choices that has to be made is increasing as well as the

number of sophisticated modelling strategies proposed to deal with such newly intro-

duced challenges. These choices are practically involved in any phase of the modelling

process, spanning a wide landscape of possible options: from choosing a class of models

or an appropriate approach to analyze a set of data, to more specific decisions as the

selection of subsets of relevant variables or suitable parametrizations. Therefore, nowa-

days model selection steps, helping to formally extricate ourselves from the labyrinth of

all these possible alternatives, are ubiquitous in any data analysis routine. Some com-

monly considered ways forward hence consist among the others in estimating a set of

different models and then selecting the best one according to some information criterion

(Claeskens and Hjort, 2008) or resorting to penalization schemes aimed at balancing fit

and complexity (see Tibshirani et al. (2015) for an introduction).

Nevertheless, basing predictions and inference on a single model could turn out to

be suboptimal. In the latter case, model averaging approaches have been proposed as

a viable alternative, intended to estimate quantities by computing weighted averages of

different estimates. Such approaches may lead to improvements in the estimation process

by accounting for model uncertainty. In turn, from a predictive point of view, ensemble

techniques have shown remarkable performances in a lot of different applications by

building predictions as combinations of the ones given by a set of different models. Well

established methods as bagging, stacking, boosting or the random forests (see Friedman

et al., 2001, for a review) have become the state of the art in the supervised learning

37
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framework. Even if model averaging and ensemble approaches focus on different phases

of the modelling process, respectively estimation and prediction, they share the same

founding rationale as they aim to improve performances of the base models by combining

their strenghts, while simultaneously circumventing their limits. For this reason the two

expressions will be used interchangeably in the rest of the dissertation.

While extensively studied in the classification context, ensemble techniques have

been scarcely pursued in the clustering one. A possible explanation can be found in

the unsupervised nature of the problem itself; the absence of a response variable in-

troduces relevant issues in evaluating the quality of a model and of the corresponding

partition. As a consequence, weighting models in order to combine them turns out to

be an awkward problem. Nonetheless mixing different partitions in a final one could

in principle allows to combine clustering techniques based on different focuses to give a

multiresolution view of the data and possibly improve the stability and the robustness

of the solutions. Fern and Brodley (2003) exploit the concept of similarity matrix in

order to aggregate partitions obtained on multiple random projections, while a similar

approach is followed by Kuncheva and Hadjitodorov (2004) to study the concept of

diversity among partitions. Monti et al. (2003) consider again a similarity matrix in

order to evaluate the robustness of a discovered cluster under random resampling. In

turn, the work by Strehl and Ghosh (2002) introduces three different solutions to the

ensemble problem in the unsupervised setting by exploiting hypergraph representations

of the partitions.

In this chapter we focus mainly on the parametric, or model-based, approach to

cluster analysis where, as discussed in Chapter 1, a one-to-one correspondence among

clusters and components of an appropriate mixture model is drawn. In this framework,

the usual working routine is based on the single best model paradigm, i.e. a set of

models is fitted and only the best one is chosen and considered to obtain a partition.

The goal of the chapter is to go beyond this paradigm by proposing a model averaging

methodology to give partitions resulting from an ensemble of models, thus possibly

achieving a greater accuracy and robustness. Averaging is pursued directly on the

estimated mixture densities in order to build a new and more accurate estimate which

will be used to obtain a grouping of the data.

The rest of the chapter is organized as follows. In Section 3.2 the proposed method-

ology is outlined with specific attention to the estimation procedure. In Section 3.3 we

discuss some specific aspects of our proposal and highlight connections with other mod-

els. Lastly in Section 3.4 we show the performances of our method on both simulated

and real datasets, comparing them with some competitors. Section 3.5 presents some
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concluding remarks.

3.2 Model averaging in model-based clustering

3.2.1 Framework and model specification

In the model-based clustering framework introduced in Section 1.2.1, the observed data

X = (x1, . . . , xn)′, xi ∈ Rd are assumed to be generated from a density f : Rd → R ade-

quately described by a mixture model. A partition of X is then obtained by associating

clusters to the components of the mixture, in practice each observation is assigned to

the most likely component. Since the estimation step is performed conditionally to the

specification of the number of clusters, the choice of the model for each component and

its parametrization, different models are usually fitted and the best one, according to

an information criterion, is selected and used to obtain a clustering of the data.

We argue that this so called single best model paradigm could be sub-optimal es-

pecially when differences among values of the information criterion across competing

models are close. In this setting mixing competitive models together may lead to a gain

in robustness, stability and in the quality of the partition, as often witnessed in the

supervised framework.

As an illustrative example we consider the widely known Iris dataset. In Figure 3.1

the left panel shows the partition obtained by the best model according to the BIC, a

two-components VEV model (see Table 1.1 for details on the parametrization). On the

right, the clustering induced by the second best model, a three-components VEV model,

is shown. Even if no formal criteria are available in order to check if their difference

is significant, the values assumed by the BIC for the two models appears quite close.

Therefore it seems natural to ask if, discarding completely the second best model, useful

information on the data is thrown away. In fact, the true labels indicate the presence

of three groups, here adequately captured by the second best model.

In a model-based clustering framework the idea of mixing different models has been

developed in order to obtain partitions based on an average of different models rather

than on a single one. Both the works of Russell et al. (2015) and Wei and McNi-

cholas (2015) propose a Bayesian model averaging approach to postprocess the results

of model-based clustering. A key issue pointed out in both the proposals consists in the

need of selecting an invariant quantity, i.e. a quantity having the same meaning across

all the models in the ensemble, to average on. In parametric clustering this represents

a cumbersome problem since the models to mix together could possibly have different

number of groups; as a consequence, parameters spaces have different dimensions, thus
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Figure 3.1: Example on Iris data: on the left the partition induced by the best model
according to the Bayesian information criterion (BIC = −561.72). On the right the
partition induced by the second best model (BIC = −562.55).

preventing the chance to average directly parameters estimates. Wei and McNicholas

(2015) overcome this issue by introducing a component merging step in the procedure.

Alternatively, Russell et al. (2015), consider the similarity matrix as the invariant quan-

tity. They obtain an ensemble similarity matrix by averaging the candidate models

ones. Afterwards the resulting matrix, where the (i, j)th entry represents the averaged

probability of xi and xj to belong to the same cluster, is considered to obtain partitions

adopting a hierarchical clustering approach.

In this work we take a different path with respect to the ones mentioned above.

The issue is tackled directly at its roots, by exploiting the essential role assumed by

the density in the considered framework. Therefore, recasting the problem as a density

estimation one, the density itself is chosen as the invariant quantity to be averaged.

Let {fm(·|Θ̂m)}m=1,...,M be a set of estimated candidate mixture models. In the rest

of the chapter, we focus specifically on mixtures of normal densities, but the choice is

not binding for the subsequent developments. Additionally, the number M of models to

average is here considered as given, and we refer the reader to Section 3.3 for a discussion

about this aspect. A new estimator, being a convex linear combination of the estimated

densities fm(·|Θ̂m), is introduced:

f̃(x) =
M∑
m=1

αmfm(x|Θ̂m) , (3.1)

with αm > 0,
∑

m αm = 1, representing the weight to assign to the mth model ∀m =
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1, . . . ,M . A key aspect, as it will be discussed in Section 3.2.2, consists in properly es-

timate the model weights in order to guarantee that models describing more adequately

the underlying density will count more in the resulting estimator.

The rationale behind our proposal heuristically exploits some results obtained by

Rigollet and Tsybakov (2007). Here the authors show that, under some fairly general

regularity assumptions, linearly aggregating density estimators leads asymptotically to

an improvement in the resulting one under L2-loss perspective. Hence, by possibly im-

proving the quality of the density estimates, we aim at obtaining better characterizations

of the relevant patterns in the data, leading to more refined partitions.

Even if the estimator in (3.1) is still a mixture model we cannot obtain a partition

as usually carried out in parametric clustering, thus resorting to the one-to-one cor-

respondence among groups and components. As an illustrative example let consider

an ensemble formed by two mixture models, with two and three components. In this

situation f̃(·) will result in a five component mixture model hence giving contradictory

indications about the number of groups with respect to the models that have been mixed

together. The problem is naturally circumvented by shifting the concept of cluster, and

recasting it to the modal formulation hence searching for the modes of the estimated

density and associating the groups to their domains of attraction.

The proposed solution, staying in the realm of density-based clustering, inherits

and enjoys its relevant strenghts as the chance to frame the problem in a standard

inferential setting where proper statistical tools can be employed for evaluation, and

to obtain whole sample space partitions whose features are inferentially explorable.

Moreover it has already been shown (see Scrucca, 2016; Chacón, 2019) that blending

together parametric and nonparametric approaches to clustering coud lead to some

relevant improvements in some, otherwise troublesome, situations.

3.2.2 Model estimation

The procedure outlined in Section 3.2.1 requires a practical way to estimate the

density as in (3.1). Note that, since Θ̂m has been previously estimated, the only unknown

parameters involved are the αms. These parameters represent the weights to be assigned

at each single model in the ensemble, hence their estimation is crucial in governing the

resulting shape of the density, its modal structure and consequently the final partition.

A reasonable estimation procedure would result in giving nearly zero weights to those

models in the ensemble which do not suitably capture the features of the underlying

density, while weighting more the adequate ones.
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In order to obtain an estimate for the weight vector α = (α1, . . . , αM), we can aim

at maximizing the log-likelihood of the model (3.1), defined as

`(α) =
N∑
i=1

log
M∑
m=1

αmfm(xi|Θ̂m). (3.2)

However, if the quantity in (3.2) is considered as the objective function to maximize,

the procedure will incur in the overfitting problem since the most complex models in the

ensemble, which provide a better fit by construction, will weight more. This behaviour

will commonly result in wiggler estimates not appropriately seizing the relevant features

of the density hence some regularization has to be considered in the estimation.

A tentative solution has been proposed by Smyth and Wolpert (1999) where a stack-

ing procedure is adapted to the density estimation framework. The authors avoid to

fall into the overfitting trap by exploiting a cross-validation scheme when combining the

candidate models to obtain ensemble density estimates.

We take a different path by replacing the log-likelihood in (3.2) with a penalized

version, generally defined as

`P (α) = `(α)− λg(α, ν) . (3.3)

Here g(·) is a penalty function to be specified, ν = (ν1, . . . , νM) is a vector measuring

the complexity of the models in the ensemble, while λ is a parameter controlling for

the strength of the penalization. Within this general framework, we set νm to be the

cardinality of Θ̂m, as it appears a sensible proxy of the complexity of the mth model.

Additionally, we consider g(α, ν) =
∑

m αmνm as a simple choice which guarantees a

stronger penalization to the most complex models.

Due to the mixture structure easily recognizable in (3.1), and since the only unknown

parameters are the mixture weights α1, . . . , αM , we can resort to a slightly simplified

version of the EM-algorithm in order to maximize the penalized log-likelihood (3.3). In

the E-step, conditionally to an estimate α̂(t) for the vector α at iteration t, we compute

τ
(t)
mi =

α̂
(t)
m fm(xi|Θ̂m)∑M

m′=1 α̂
(t)
m′fm′(xi|Θ̂m′)

. (3.4)

Then the M-step will consist in maximizing, with respect to α, the expected value of

the complete-data penalized log-likelihood, in our setting expressed as
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Qp(α; α̂(t)) =
M∑
m=1

n∑
i=1

τ
(t)
mi [logαm + log fm(xi|Θ̂m)]− λ

M∑
m=1

αmνm , (3.5)

under the constraint
∑

m αm = 1. Since closed form solutions are not available, α̂(t+1)

is obtained by maximizing (3.5) numerically. As usual, the two steps will be iterated

until a convergence criterion is met.

Regarding the choice of λ, some more caution is needed, since an accurate selection

turns out to be essential in order to obtain a meaningful estimate properly reflecting the

modal structure of the underlying density. In this work a few different options have been

taken in consideration as, for example, the ones inspired to some information criteria

as the BIC-type or the AIC-type penalizations. These penalizations, stemming directly

from the definitions of BIC and AIC, induce penalized log-likelihoods defined as

`P,AIC(α) = 2`(α)− 2
M∑
m=1

αmνm (3.6)

`P,BIC(α) = 2`(α)− log(n)
M∑
m=1

αmνm , (3.7)

hence implying λAIC = 1 and λBIC = log(n)/2 according to the formulation in (3.3).

Another possible strategy consists in keeping λ unconstrained and estimating it by

means of the observed data. A sensible approach resorts to a cross-validation strategy

defined as follows:

• Partition the sample X randomly into S subsamples, where one subsample is

retained as test set Xtest while the remaining ones are used as a training set Xtrain;

• Build a reasonable grid for the regularization parameter then, for each λ in the

grid, obtain the estimated density based on Xtrain and then use it to compute

f̃(xtest|Xtrain, λ) defined as the predicted density of Xtest;

• Repeat the previous steps for s = 1, . . . , S obtaining an out-of-sample predicted

density estimate for the whole dataset X;

• Select

λCV = arg max `test(λ)

with `test(λ) =
∑

x∈Xtest
f̃(x|Xtrain, λ) a test log-likelihood. The selected λCV is

finally used to estimate the vector of weights α based on the whole sample.

Although requiring an higher computational effort, this approach introduces some rel-

evant advantages in the regularization process. By resorting to a data-driven selection
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of λ, we end up with a parameter being more adaptive, with respect to λBIC and λAIC,

both to the sample size and to the features of the observed data.

Once the density (3.1) is estimated, a partition is operationally obtained by identify-

ing its modal regions. To this aim, the most natural choice in the considered parametric

framework, is the Modal EM algorithm (Li et al., 2007) briefly introduced in Section

1.3.2.

3.3 Discussion

In this section we discuss further the procedure introduced in Section 3.2 pointing out

some practical considerations and highlighting its properties and some links with other

existing methods.

Remark 3.1. In Section 3.2 the dimension of the ensemble M has been considered as

fixed. Nonetheless its selection is needed in order to practically resort to the estimator

(3.1) and it could have some impact on the resulting partitions. Finding substantial

arguments that motivate some general recommendations for choosing M is challenging

and cannot leave aside the specificities of the data and of the problem at hand.

A natural strategy would consists in considering all the estimated models being a set of

reasonable candidates selected by some prior knowledge, as a wide batch of alternatives

recording a general uncertainty. Another alternative, being the one we followed in the

empirical section of the chapter, may consist in choosing M subjectively by picking those

models, among the estimated ones, resulting in a good fitting of the data. In this case

M should vary also reflecting the case specific uncertainty witnessed in the modelling

process. Lastly a viable approach we explore consists in considering an Occam’s window

to choose a set of model as proposed by Madigan and Raftery (1994). The main idea

is to discard those models providing estimates being qualitatively too far from the ones

provided by the best model. Practically the ith model can be discarded if |BICbest −
BICi| > 10, where BICbest and BICi represent respectively the values of the BIC for the

best model and for the ith one.

Remark 3.2. The estimation procedure outlined in Section 3.2.2 is fully frequentist in

nature. Alternatively, a Bayesian approach could be an interesting development claiming

some advantages. The work by Malsiner-Walli et al. (2017) faces, from a Bayesian

perspective, the estimation of mixtures of mixture models. Even if the underlying

motivation is different some ideas could be fruitfully borrowed and exploited in order to

average different mixture models. As an example, the consideration of a shrinkage prior
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on the weights of the models in the ensemble could practically overcome the previously

discussed issue of selecting M .

Remark 3.3. When considering the number of components as an unknown parameter,

mixture models can be seen as a semi-parametric compromise between classical para-

metric model and non-parametric methods as, for example, kernel density estimators

where the number of components equals the sample size. The model we introduced has

an increased number of components inherited by the averaging procedure hence it takes

another step forwards the non-parametric approach to density estimation. This partially

motivates the way we identify the ensemble partitions by searching for the domains of

attraction of the density modes. We believe indeed that, being model-based and modal

clustering two sides of the density-based coin, our proposal finds a relevant strength

in the coherency to not resort to distance-based approaches to practically identify a

grouping of the data. Moreover, staying in the density-based clustering realm, it enjoys

some of the relevant properties as for example the mathematically sound formalization

and the concept of ideal population clustering.

Remark 3.4. Model selection often precedes inference that is usually conducted consid-

ering the chosen model as fixed. However, since the selection is itself data-dependent, it

possesses its own variability. Drawing inference without accounting for the selection of

the model corresponds to neglect completely a source of uncertainty usually resulting in

anti-conservative statements (Leeb and Pötscher, 2005). Even in the full awareness of

the fact that, in parametric clustering, the main focus usually lies on obtaining partitions

rather than on inference or uncertainty quantification, we believe that a model averag-

ing approach can entail better estimation properties and more informative confidence

intervals for the parameters when needed.

Remark 3.5. In the supervised framework ensemble approaches have been found tremen-

dously effective in improving predictions of a plethora of different models. For those

techniques it has been frequently noticed (see, e.g. Dietterich, 2000) how the concept

of diversity is a key factor in increasing classification performances of the base learners

that are combined. As a consequence, often weak learners are considered in the su-

pervised context. These classifiers are highly unstable, consequently different one from

the others, as they possibly focus on distinct features of the observed data. Even in

a clustering framework the impact of the diversity among the combined partitions has

been empirically studied and proved to be impactful by Fern and Brodley (2003) and

Kuncheva and Hadjitodorov (2004).

We are aware that, when the proposed method is used to go beyond the single best model

paradigm, the models in the ensemble cannot be considered as weak and consequently
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diversity among them is not achieved. Nonetheless, even if introduced with a specific

aim, the proposal can in principle be exploited in all those cases where averaging multi-

ple density-induced clusterings could be fruitful. As a consequence the diversity can be

somehow determined for example averaging densities computed on bootstrap samples

or on general subsamples of the observed data. Another possibly appealing application

consists in combining models estimated using different starting values hence probably

more heterogeneous because of the well known initialization issues encountered in the

model-based clustering framework.

Remark 3.6. The model introduced so far, despite being based on a different rationale,

shares some connections with the general framework of Deep Gaussian Mixture Mod-

els investigated by Viroli and McLachlan (2019). Deep Gaussian Mixture Models are

networks of multiple layers of latent variables distributed as a mixture of Gaussian den-

sities. Since the outlined representation encompasses the specification of a mixture of

mixtures (Li, 2005), model (3.1) can be seen as a two layers Deep Gaussian Mixture

Model where the parameters involved in the inner layer are fixed.

3.4 Results

3.4.1 Syntethic data

The idea of averaging together different densities to obtain a more informative summary

for clustering purposes is explored in this section via simulations. All the reported

analyses have been conducted in the R environment (R Core Team, 2019) with the aid

of the mclust (Scrucca et al., 2016), ks (Duong, 2019) and EMMIXskew (Wang et al.,

2018) packages. The code implementing the proposed procedure is meant to be made

publicly available.

A total of B = 200 samples have been drawn, with sizes n ∈ {500, 5000}, for each

of the bivariate densities depicted in Figure 3.2 and whose parameters are reported in

the Appendix. These densities have been considered in order to encompass different

situations posing different challenges from a model-based clustering perspective. The

densities on the top panels of Figure 3.2 represent indeed settings where the single best

model is expected to display satisfactory results, being the data generated from Gaussian

mixtures. On the other hand the densities on the bottom panels, showing strong asym-

metric behaviors, constitute more challenging settings where Gaussian mixture models

generally produce inadequate partitions.
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Figure 3.2: Bivariate density functions selected for simulations.

Throughout the simulations we have considered M = 30 best models ranked accord-

ing to their BIC values, coherently with Remark 3.1 in Section 3.3; this choice moves

towards the direction of retaining a large number of models, letting the estimation pro-

cedure to select the most relevant ones, while keeping the computations feasible. We

also explored the option of selecting M by the Occam’s window to build the ensemble

as discussed in Remark 3.1; nonetheless results, not reported here, indicate that this

strategy often leads to the selection of a small set of models implying again a strong

reliance on the BIC. The three options λAIC , λBIC and λCV discussed in Section 3.2.2

are evaluated, the last one resorting to a k-fold cross validation scheme with k = 5.

The goal of the simulation study is twofold. On one side we want to evaluate the

performances of our proposal in terms of the quality of the produced density estimates.

These performances are studied with respect to the true and known density function

considering the MISE as evaluating criterion. On the other hand the clustering perfor-

mances of the proposed method are investigated. As an assessment criterion we employ

the Adjusted Rand Index (ARI, Hubert and Arabie, 1985) between the obtained par-

titions and the true component memberships of the observations. An additional aim

consists in evaluating how the sample size impacts on these comparisons.

As a side goal of the numerical explorations we want to study which penalization

strategy introduced in Section 3.2.2 produces more satisfactory results. In particular we



48 Section 3.4 - Results

evaluate if the increased computational costs implied by the cross-validation worth the

effort or if less intensive strategies as the BIC-type and AIC-type penalizations produce

comparable results. Lastly we want to compare our proposals with some reasonable

competitors. We consider a fully parametric approach, using the single best model

chosen among the alternatives in Table 1.1. Moreover we consider a completely non-

parametric counterpart relying on the kernel density estimator and on the mean-shift

algorithm to obtain the partition as discussed in Section 1.3.1 where we use, as a band-

width matrix, the unconstrained gradient one as it constitutes a standard choice (see

Chacón and Duong, 2018, for a detailed tractation). Furthermore we examine also an

hybrid approach consisting in finding the modes, via Modal EM algorithm, of the den-

sity estimated by the single best model. The possible improvements introduced by our

proposal may be due to two different motivations: the first related to a better estimation

of the underlying density while the second is concerned with the modal-inspired alloca-

tion procedure. Considering an hybrid approach as a competitor can help to disentangle

properly this distinct sources.

Results are reported in Tables 3.1 to 3.5. As a first, expected, behavior the perfor-

mances of the methods considered tend to improve, both from a clustering and from a

density estimation point of view, as the sample size increases.

Generally speaking our proposal, regardless of the penalization used, produces satis-

factory density estimates and partitions of the datasets. The first three scenarios have

been considered to see how the ensemble approach behaves in situations where the single

best model has a head start; in these cases the true generative model is indeed among

the ones estimated in the model-based clustering routine. Even in these somewhat un-

favourable settings, where in some sense an ensemble approach is not strictly needed,

the proposed method behaves well producing overall comparable results with respect to

the parametric ones.

In the skewed scenarios M4 and M5, where Gaussian mixture models are known to

be less effective as a clustering tool, the ensemble approach induces remarkable improve-

ments in the performances, both in terms of MISE and ARI. Note that, regarding the

relation between performances and sample size, we are witnessing some results consti-

tuting an exception with respect to what we pointed out before. Indeed, especially for

the setting M5, the increased availability of data points forces Gaussian mixture models

to resort to an higher number of components, even if in the presence of two groups, to

properly model the asymmetry thus deteriorating the clustering results. In commenting

these results some words of caution are needed since obtaining the allocation accord-

ing to the modal concept of groups can have a strong impact in these two settings.
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MISE ARI MISE ARI
SB 0.050 (0.037) 1.000 (0.000) 0.003 (0.002) 1.000 (0.000)
MS 0.270 (0.091) 0.528 (0.500) 0.041 (0.012) 0.455 (0.499)
SB-MS - 1.000 (0.000) - 1.000 (0.000)
λAIC 0.105 (0.088) 0.898 (0.303) 0.004 (0.003) 1.000 (0.000)
λBIC 0.052 (0.038) 0.986 (0.118) 0.003 (0.002) 1.000 (0.000)
λCV 0.051 (0.037) 0.998 (0.045) 0.003 (0.002) 1.000 (0.000)

Table 3.1: Top panel: the MISE (up to a density-dependent multiplicative constant)
and the ARI (black lines) as functions of λ for n = 500, 5000. Light blue, gold and
dark green horizontal lines represent the same quantities respectively for the single
best model (SB), the nonparametric approach (NP) and the hybrid approach (SB-
NP). The vertical lines represent the values of λAIC (in red), λBIC (in light green)
and the mean over the B samples of λCV (in blue). Bottom panel: numerical values
of the MISE (up to a density-dependent multiplicative constant) and ARI (and their
standard errors) for the competing considered methods. Results refer to density M1.

Nonetheless comparisons with the hybrid approach help shedding light on this and to

study further the improvements intrinsically introduced by averaging together distinct

densities. The method proposed, despite showing comparable results when n = 500,

attains notable enhancements when n = 5000 along with decreased standard errors.

This could constitute an indication about the increased quality, from a clustering stand-

point, of the density estimates produced considering model 3.1 with respect to the ones

produced by a single mixture model; better ARI values could indeed indicate smoother

estimates, being easier to be explored when searching for the modes.

The aforementioned decrease in the variability of the results of the proposal with

respect to the competitors is witnessed across all the scenarios. This represents a sub-

stantial and somewhat expected advantage of the ensemble approach, since a gain in
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MISE ARI MISE ARI

SB 0.205 (0.223) 0.681 (0.119) 0.012 (0.008) 0.680 (0.067)
NP 0.505 (0.144) 0.540 (0.177) 0.089 (0.021) 0.661 (0.083)
SB-NP - 0.694 (0.113) - 0.720 (0.012)
λAIC 0.255 (0.146) 0.686 (0.076) 0.015 (0.010) 0.719 (0.013)
λBIC 0.221 (0.171) 0.685 (0.125) 0.012 (0.008) 0.720 (0.012)
λCV 0.208 (0.130) 0.691 (0.092) 0.012 (0.008) 0.720 (0.012)

Table 3.2: Cf. Table 3.1. Results refer to density M2

robustness and stability moves towards the desired direction when mixing models to-

gether.

With regard to the choice of the penalization scheme some different considerations

arise. As expected, building on a data-based rationale, λCV seems to be more reliable

when the aim is to obtain an accurate estimate of the density. Choosing the amount of

the penalization via cross-validation appears to be particularly suitable especially when

n = 500 while, with increasing sample size, the performances of the three considered

schemes tend to be more similar. However, when clustering is the final aim of the analysis

λBIC turns out to be a serious candidate as it often produces better results with respect

to λCV and λAIC ; this constitutes a notable result since the BIC-type penalization,

unlike the cross-validation based one, requires a null computational cost when dealing

with the selection of λ. On the other hand, as expected not even depending on the

sample size, λAIC tends to produce the most unsatisfactory results among the three.

Lastly note that the performances of the fully nonparametric approach appear not

to be competitive with the other approaches considered. Nonetheless we believe that

some tuning in choosing the smoothing parameters used could lead to an improvement
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MISE ARI MISE ARI
SB 0.548 (0.431) 0.798 (0.107) 0.027 (0.013) 0.865 (0.008)
NP 1.096 (0.226) 0.588 (0.152) 0.224 (0.041) 0.713 (0.097)
SB-NP - 0.797 (0.099) - 0.831 (0.012)
λAIC 0.505 (0.247) 0.790 (0.070) 0.029 (0.014) 0.829 (0.017)
λBIC 0.547 (0.330) 0.811 (0.065) 0.027 (0.013) 0.830 (0.012)
λCV 0.467 (0.254) 0.804 (0.063) 0.027 (0.013) 0.830 (0.012)

Table 3.3: Cf. Table 3.1. Results refer to density M3

in the results. Anyway in our numerical explorations this chance is not explored since

appropriate bandwidth selection is not the aim of the study hence it appears reasonable

to resort to a standard selector as we did.

3.4.2 Real data

In this section we consider three illustrative examples on real datasets. As in the previous

section, we fit our proposed model considering the three different penalization schemes

introduced in Section 3.2.2 and we use as competitors the parametric, the nonparametric

and the hybrid approaches. The number of models in the ensemble is set to M = 30

following the same rationale as the one discussed in the simulated examples. The focus

of the analyses, not having a true density to refer at, is set on the quality of the obtained

partitions, evaluated via Adjusted Rand Index.
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MISE ARI MISE ARI

SB 0.044 (0.018) 0.000 (0.000) 0.004 (0.002) 0.000 (0.000)
NP 0.042 (0.013) 0.292 (0.455) 0.008 (0.002) 0.736 (0.442)
SB-NP - 0.498 (0.500) - 0.727 (0.447)
λAIC 0.031 (0.015) 0.418 (0.494) 0.003 (0.001) 0.917 (0.277)
λBIC 0.031 (0.013) 0.648 (0.478) 0.003 (0.001) 0.968 (0.177)
λCV 0.029 (0.013) 0.498 (0.500) 0.003 (0.001) 0.967 (0.178)

Table 3.4: Cf. Table 3.1. Results refer to density M4

3.4.2.1 Iris data

The Iris dataset (available at https://archive.ics.uci.edu/ml/datasets/Iris), al-

ready mentioned in Section 3.2.1 to motivate our proposal, have been thoroughly studied

since the seminal paper by Fisher (1936) and it consists in d = 4 variables (sepal length

and width, petal length and width) measured on n = 150 iris plants with Ktrue = 3

classes equally sized. A visual illustration of the data is given in Figure 3.3; note that

one class is linearly separable from the other two, in turn hardly to detect as separate

groups.

Results are shown in Table 3.6. The method proposed here clearly outperforms all the

considered competitors. As seen in Section 3.2.1 the BIC select a two-component model

hence giving wrong indications about the number of groups. As a consequence, both the

parametric and the hybrid approaches, relying on the single best model, tend to produce

unsatisfactory results. On the other hand the detection of 7 groups, via modal clustering

based on kernel density estimation, is a symptom of an undersmoothed density estimate.

Note that the high degree of rounding in the dataset could affect nonparametric per-

formances since the estimator is built to work with continuous data, hence without
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MISE ARI MISE ARI
SB 0.016 (0.006) 0.773 (0.190) 0.001(0.001) 0.367 (0.033)
NP 0.016 (0.003) 0.869 (0.144) 0.003 (< 0.001) 0.868 (0.159)
SB-NP - 0.907 (0.160) - 0.839 (0.175)
λAIC 0.009 (0.003) 0.812 (0.167) 0.001 (< 0.001) 0.960 (0.091)
λBIC 0.010 (0.003) 0.901 (0.152) 0.001 (< 0.001) 0.986 (0.052)
λCV 0.008 (0.003) 0.831 (0.164) 0.001 (< 0.001) 0.966 (0.086)

Table 3.5: Cf. Table 3.1. Results refer to density M5

SB NP SB-NP λAIC λBIC λCV
ARI 0.568 0.556 0.568 0.845 0.941 0.869

K̂ 2 7 2 4 3 4

Table 3.6: Results obtained on the Iris dataset. The true number of cluster is
Ktrue = 3.

duplicated values. Our method, regardless of the penalization scheme, produces strong

improvements in the clustering results. The AIC-type and the cross-validation-based

penalizations wrongly find 4 clusters with one spurious, yet small, group detected. A

deeper examination of the results reveals that conversely, λBIC assumes a grossly dou-

bled value with respect to λAIC and λCV and allows for the correct identification of 3

groups.

3.4.2.2 DLBCL data

The Diffuse Large B-cell Lymphoma (DLBCL) dataset is provided by the British Columbia

Cancer Agency (Spidlen et al., 2012; Aghaeepour et al., 2013). The sample consists in

fluorescent intensities of d = 3 markers, namely CD3, CD5 and CD19, measured on
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Figure 3.3: Bivariate scatter plots of the Iris data with colors representing the true
clustering labels.

n = 8183 lymph nodes cells from subjects with a DLBCL diagnosis. A scatter plot of

the data is shown in Figure 3.4. In flow cytometry analysis these measurements are used

to study normal and abnormal cell structures and to monitor human diseases and re-

sponse to therapies. An essential step in this framework consists in obtaining a grouping

of the cells according to their fluorescences. This task is usually accomplished via the

so called gating process: the experts obtain a partition manually by visually inspecting

the data. This approach is usually time-consuming and infeasible in high-dimensional

situations, therefore clustering tools could come in aid to automate the gating process.

The 3-dimensional structure of the data, illustrated in Figure 3.4, allows us to visually

inspect the true cluster configuration, displaying elongated and skewed group shapes.

Results in Table 3.7 show how the model-based approach, as noted in the simulated

scenarios, tends to perform badly when dealing with such situations, since it detects an

higher number of groups with respect to the true one. In this setting, building mixtures

on more flexible, possibly skew component densities could help in improving the fit by

means of a single model. Conversely, the nonparametric and the hybrid approaches,

which search for the modes of the density, do not suffer of the same drawbacks and out-

perform the parametric strategy. Nonetheless while the former appears to undersmooth

again the density, the latter detects the true number of clusters, yet with improvable

performance in the allocation of units.

Our proposal, regardless of the penalization scheme adopted, enjoys the very same

advantage of nonparametric tools when dealing with asymmetric shapes. Nonetheless
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Figure 3.4: 3D scatter plot of the DLBCL data with colors representing the true
clustering labels.

SB NP SB-NP λAIC λBIC λCV
ARI 0.401 0.857 0.867 0.909 0.910 0.912

K̂ 7 5 4 4 4 4

Table 3.7: Results obtained on the DLBCL dataset. The true number of cluster is
Ktrue = 4.

the results obtained improve with respect to the hybrid approach thus indicating that

our model produces a density estimate better tailored for the clustering scope. In this

case different penalization schemes lead to irrelevant changes in the ARI values, and

indicate a weaker dependency on the strength of the penalization itself.

3.4.2.3 Olive oil data

As a last example we consider the Olive oil dataset, originally introduced in Forina

et al. (1986). The data consist of d = 8 chemical measurements on n = 572 olive oils

produced in 9 regions of Italy (North and South Apulia, Calabria, Sicily, Sardinia coast

and inland, Umbria, East and West Liguria) that can be further aggregated in three

macro-areas (Centre-North, South and Sardinia island). Clustering tools may come in

aid in reconstructing the geographical origin of the oils on the basis of their chemical

compositions.

This example allows us to explore the performances of the proposal in a moderately

higher dimensional setting with respect to the two considered above. Results in Table

3.8 show how our proposal outperforms the competitors, regardless of the penalization
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SB NP SB-NP λAIC λBIC λCV
ARI 0.782 0.604 0.792 0.902 0.892 0.902

K̂ 6 20 6 8 8 8

Table 3.8: Results obtained on the Olive oil dataset. The unaggregated regions have
been considered as true labels hence Ktrue = 9.

1 2 3 4 5 6 7 8

South

Apulia north 24 1 0 0 0 0 0 0
Apulia south 0 6 200 0 0 0 0 0
Calabria 0 56 0 0 0 0 0 0
Sicily 6 30 0 0 0 0 0 0

Sardinia
Sardinia inland 0 0 0 65 0 0 0 0
Sardinia coast 0 0 0 0 33 0 0 0

Centre-North
Liguria east 0 0 0 0 0 1 42 7
Liguria west 0 0 0 0 0 0 0 50
Umbria 0 0 0 0 0 48 3 0

Table 3.9: Olive oil results, partition obtained with penalization parameter λAIC

adopted, allowing to obtain a more faithful partition of the data into the 9 considered re-

gions. The parametric and the hybrid approaches detect 6 groups, aggregrating Sardinia

coast and inland oils and highlighting some issues concerning the correct classification

of oils produced in South macro-area. On the other hand, probably suffering of the

higher dimensionality of the data, the fully nonparametric approach clearly produces a

partition based on an severely undersmoothed density with 20 modes.

As it happened in Section 3.4.2.2 the clustering performances of our proposal appear

to be quite insensitive to the specific penalization adopted. In Table 3.9 we report the

partition induced considering λAIC as penalizing parameter. Again it appears harder to

discriminate the oils produced in the southern macro-area, with calabrian and sicilian

ones assigned mainly to the same cluster, while oils in the other two macro-areas are

substantially correctly identified.

3.5 Conclusions

In this chapter we have addressed the issue of overcoming the strong reliance of model-

based clustering on a single best model, selected according to some information criterion.

Making reference to a single model may be suboptimal both for clustering and for

density estimation, since alternative well-fitted models may provide useful information
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by uncovering different and complementary features which are otherwise discarded. It

has been pointed out that possible solutions may be found in the ensemble learning

literature. In this setting, we have proposed a clustering method building on a density

function which averages different estimated models, and whose modal regions are then

associated to the groups. The introduced density estimator is defined as a convex linear

combination of the estimates of the models in the ensemble, with weights estimated

via penalized maximum likelihood. This choice allows assigning relevance to the only

models which better fit the data while avoiding the risk of overfitting.

The introduced approach can be comprehensively viewed as an attempt to bind

together the parametric and the nonparametric formulations of density-based clustering,

thus inherit their intrinsic strengths. From one side, the modal concept of clusters is

considered, which allows to identify groups of arbitrary shape which naturally comply

with the geometric intuition. From the other side, by resorting to parametric tools and

to model average, density estimation is strengthened, allowing to obtain more accurate

results of both nonparametric tools and single parametric models. The performances

of the proposal have been investigated both on simulated and on real data, selected to

encompass different situations and to pose distinct challenges. The method produces

satisfactory results both from a density estimation and from a clustering perspective,

and it compares favorably with the considered competitors. A deeper examination

of the results leads to disentangle the reasons of the improvements into two different

sources: on one side partitioning the data according to the modal formulation produces

promising results in some specific scenarios, on the other hand several clues have been

obtained which highlight enhancements in the density estimation process. Concerning

the introduced penalization schemes, the results seem to suggest the use of the BIC-

type penalization, being more suitable for clustering, or of the cross-validation-based

one, being able to adapt more to the features of the considered dataset.





Chapter 4

Co-clustering of time-dependent

data

4.1 Introduction

Time dependent data, arising when measurements are taken on a set of units in different

time occasions, are pervasive in a plethora of different fields. Non exhaustive examples

are data describing the time evolution of asset prices and volatility in finance, the growth

of countries as measured by economic indices, heart or brain activities as monitored by

medical instruments, disease evolution evaluated by suitable bio-markers in epidemiol-

ogy, data streams on websites or electronic devices. The analysis of such data shares a

common aim of proper modelling typical time courses by accounting for the individual

correlation over time. In fact, while nomenclature and taxonomy in this setting are not

always consistent, some relevant differences in time-dependent data structures and the

subsequent different challenges in the modelling process can be highlighted. On opposite

poles we may thus distinguish functional from longitudinal data analysis. In the former

case the quantity of interest is supposed to vary over a continuum and usually a huge

number of regularly sampled observations is available, allowing to treat each sample

element as a function. On the other hand, in longitudinal studies, time series are often

shorter with sparse and irregular measurements. See Rice (2004) for further details.

Very often standard methods take into account properly these features while, at

the same time, assume homogeneity among individuals as if the observed curves were

generated by the same mechanism. Nonetheless this is often not the case, and tools

being able to identify and describe the heterogeneity across curves are necessary. In

the outlined landscape, clustering methods may be particularly useful to capture het-

erogeneous behaviors by assuming that some groups, each of them characterized by its

59
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own generative model, are present. To this aim, several tools, addressing the above-

mentioned criticalities and aiming at finding groups in a set of observed curves in time,

have been proposed. For a thorough review of these works the reader may refer to Liao

(2005) and Frühwirth-Schnatter (2011). Some contributions that specifically worth a

mention, developed in a model-based framework coherently with this thesis, are the

ones of De la Cruz-Meśıa et al. (2008), McNicholas and Murphy (2010), Bouveyron and

Jacques (2011) and Bouveyron et al. (2015). While the first two works specifically deal

with longitudinal data, the latter two address, with a clustering aim in mind, the issues

arising in a functional analysis setting.

All these methods deal with situations where a single feature is measured over time

for a number of subjects. Data of such type have a two-way structure and may be

represented by a n× T matrix, being n and T respectively the number of subjects and

of observed time instants. In fact, nowadays it is increasingly common to encounter

multivariate time-dependent data, where several variables are measured over time for

different individuals. These data may be represented according to three-way structured

matrices of dimension n×d×T where d here is the number of features. The introduction

of an additional layer entails some new challenges and criticalities that have to be faced

and taken into account by clustering, and more generally, modelling tools. Research in

this framework has been conducted in a considerably more scattered way. Indeed, as

highlighted by Anderlucci and Viroli (2015), models have to “account simultaneously

for three goals of the analysis, which arise from the three layers of the data structure:

heterogeneous units, correlated occasions and dependent variables”.

To extract useful information and unveil patterns from such complex structured and

high-dimensional data, standard clustering strategies would require the specification and

the estimation of severely parametrized models. To induce parsimony, such situation

has often lead to neglect the correlation structure among different variables. A possible

clever workaround, specifically proposed in a parametric setting, is represented by the

contributions of Viroli (2011a,b) where, in order to handle three-way data, mixtures of

Gaussian matrix-variate distributions are exploited.

In this work a different direction has been taken, and a co-clustering strategy is

pursued to address the mentioned issues. Aiming at simultaneously cluster rows and

columns of the observed data matrix, co-clustering models turn out to be particularly

well suited in the presence of heterogeneous high-dimensional data where also relations

among the variables are of interest. In this setting, we propose a parametric model

conceived for time-dependent data and we introduce a new estimation strategy being

able to handle the peculiar characteristics of the model.
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The rest of the chapter is organized as follows. In Section 4.2 we introduce the

main ingredients considered for the specification of the proposed method. This is in

turn described, along with the estimation procedure, in Section 4.3. In Section 4.4 the

performances of the methodology are illustrated both on simulated and real examples.

Lastly some concluding remarks are outlined in Section 4.5.

4.2 Building blocks

4.2.1 Modelling time-dependent data

In the quest for a flexible approach to handle the heterogeneous landscape of time

dependent data outlined in the previous section, a variety of modelling approaches are

sensible to be pursued. The one we follow in this thesis borrows the rationale from

curve registration (Ramsay and Li, 1998), according to which observed curves often

exhibit common patterns but with some variations. Methods for curve registration,

also known as curve alignment or time warping, are based on the ideas of aligning

prominent features in a set of curves via either an amplitude variation, a phase variation

or a combination of the two via scale transformation. The first one is concerned with

vertical variations while the latter regards horizontal, hence time related, ones. As an

example it is possible to think about modelling the evolution of a specific disease. Here

the observable heterogeneity of the raw curves can be often disentangled in two different

sources: on one hand it should indeed depend on differences in the intensities of the

disease among subjects, on the other hand there could be different ages of onset, i.e.

the age at which an individual experiences the first symptoms. Therefore, after having

properly taken into account of these causes of variation, often the curves result to be

more homogeneously behaving, with a so called warping function, which synchronizes

the observed curves and allows for visualization and estimation of a common mean shape

curve.

Coherently with the aforementioned rationale, in this work time dependency is ac-

counted for via a self-modelling regression approach (Lawton et al., 1972) and, more

specifically, via the so called Shape Invariant Model (SIM, Lindstrom, 1995), based on

the idea that an individual curve is a simple transformation of a common shape function.

Let be X = {xi(ti)}1≤i≤n the set of curves, observed on n individuals, with xi(t) repre-

senting the level of the i-th curve at time t and t ∈ ti = (t1, . . . , Tni
), hence with the

number of observed measurements allowed to be subject-specific. Stemming from the
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Shape Invariant Model we define

xi(t) = αi,1 + eαi,2m(t− αi,3) + εi(t) (4.1)

where

• m(·) denotes a general common shape function whose specification is arbitrary.

In the following we consider B-spline basis functions (De Boor, 1978), i.e. giving

m(t) = m(t; β) = B(t)β, where B(t) and β are respectively a vector of B-spline

basis evaluated at time t and a vector of basis coefficients whose dimension allows

for different degrees of flexibility;

• αi = (αi,1, αi,2, αi,3) ∼ N3(µ
α,Σα) i = 1, . . . , n is a vector of subject specific

normally distributed random effects. These random effects are responsible for the

individual specific transformations of the mean shape curve m(·) assumed to give

birth to the observed ones. In particular αi,1 and αi,3 govern respectively amplitude

and phase variations while αi,2 accounts for scale transformations. Moreover they

allow taking into account the correlation among observations on the same subject

measured at different time points. Note that, following Lindstrom (1995), the

parameter αi,2 is optimized in the log-scale to avoid identifiability issues;

• εi(t) ∼ N (0, σ2
ε ) is a Gaussian distributed error term.

Due to its flexibility, and even if with different purposes, the SIM has already been

considered as a stepping stone to model different types of time-dependent data as func-

tional and longitudinal one (Telesca and Inoue, 2008; Telesca et al., 2012). Indeed, if on

one hand the smoothing involved in the specification of m(·; β) allows to handle function-

like data, on the other hand random effects, borrowing information across curves, make

this approach fruitful even with short, irregular and sparsely sampled time series. Hence

we find such model particularly appealing and suitable for our scopes, being potentially

able to handle temporal dependent data in a quite comprehensive way.

4.2.2 Latent Block Model

Even in a co-clustering framework a taxonomy of the approaches proposed in litera-

ture, coherent with the distance-based versus density-based dualism in the clustering

framework, is possible. With regard to the first class of methods, referred to as metric

approaches in Govaert and Nadif (2013), unsurprisingly the task boils down to the se-

lection of an appropriate distance measure to be minimized among the original matrix
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and a block-structured one. Conversely, the density-based approach aims at embedding

co-clustering in a probabilistic framework. It reflects the idea of a density being parti-

tionable in several blocks, and builds a common framework to handle different type of

data. In this work, coherently with the rest of the thesis, we pursue the latter approach.

In the model-based co-clustering framework the Latent Block Model (LBM, Govaert

and Nadif, 2013) represents unarguably the most popular approach. Consider a data

set represented in a matrix form X = {xij}1≤i≤n,1≤j≤d, where by now we should intend

xij as a random variable of generic nature. To aid the definition of the model, and

in accordance with the parametric approach to clustering, two latent random vectors

z = {zi}1≤i≤n, with zi = (zi1, . . . , ziK), and w = {wj}1≤j≤d, with wj = (wj1, . . . , wjL),

are introduced, indicating respectively the row and column cluster memberships, with

K and L the number of row and column clusters. Here, the standard binary partition

holds for the latent variables; hence zik = 1 if the i-th observation belongs to the k-

th row cluster and 0 otherwise and, coherently, wjl = 1 if the j-th variable belongs

to the l-th column cluster and 0 otherwise. The model formulation relies on a local

independence assumption, i.e. the n× d random variables {xij}1≤i≤n,1≤j≤d are assumed

to be independent conditionally on z and w. Moreover z and w are in turn considered

as independent. The LBM can be thus written as

p(X; Θ) =
∑
z∈Z

∑
w∈W

p(z; Θ)p(w; Θ)p(X|z,w; Θ) , (4.2)

where:

• Z and W are respectively the set of all the possible partitions of rows in K groups

and columns in L groups;

• a multinomial distribution is assumed for both the latent vectors z and w. There-

fore p(z; Θ) =
∏

ik π
zik
k and p(w; Θ) =

∏
jl ρ

wjl

l where πk and ρl are the row and

column mixture proportions, hence lying in [0, 1] with
∑

k πk =
∑

l ρl = 1;

• as a consequence of the local independence assumption, we may decompose p(X|z,w; Θ)

such as p(X|z,w; Θ) =
∏

ijkl p(xij; θkl)
zikwjl where θkl is the vector of parameters

specific to block (k, l);

• Θ = (πk, ρl, θkl)1≤k≤K,1≤l≤L is the full parameter vector of the model.

It is straightforward to note, from the formulation outlined in (4.2), how the introduc-

tion of an additional latent variable basically adds a supplementary mixture layer to the

model (1.1) used as a cornerstone in parametric clustering. For a more detailed tracta-

tion of the link among the LBM and mixture models the reader may refer to Govaert
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and Nadif (2013). The authors indeed highlight how, conditionally on the partition w,

the density function of X is a mixture model, and the same holds conditioning on z.

The LBM turns out to be particularly flexible in modelling different data types as

they are handled by a proper specification of the marginal density p(xij; θkl). As a

consequence several versions of the LBM may be found in literature dealing with binary

(Govaert and Nadif, 2003), count (Govaert and Nadif, 2010), continuous (Lomet, 2012),

categorical (Keribin et al., 2015), and ordinal data (Jacques and Biernacki, 2018; Corneli

et al., 2019). At the best of our knowledge the only works proposing a parametric

co-clustering approach to model time-dependent data is represented by the ones of

Ben Slimen et al. (2018) and Bouveyron et al. (2018) where the LBM is extended to a

functional setting, where the block partitions result from clustering the basis expansion

coefficients and not directly the observed curves.

Several estimation approaches have been proposed for LBM as for example likelihood-

based (Govaert and Nadif, 2008), Bayesian (Wyse and Friel, 2012) and greedy search

methods (Wyse et al., 2017). Coherently with the framework introduced in Section

1.2.2, we focus on methods based on likelihood maximization, and exploit the double

missing data structure of the problem, induced by the unknown row and column labels

described by the latent variables z and w.

As in the clustering setting, the aim consists in maximizing the complete data log-

likelihood, defined as

`c(Θ, z,w) =
∑
ik

zik log πk +
∑
jl

wjl log ρl +
∑
ijkl

zikwjl log p(xij; θkl) (4.3)

where the first two terms account for the proportions of row and column clusters while

the third one depends on the probability density function of each block.

A sensible approach to maximize (4.3) would resort to the EM-algorithm. Unfortunately

in the co-clustering case this approach is unfeasible as the E-step would require the

computation of the joint conditional distribution of the missing labels which involves

terms that cannot be factorized as conversely happens in a standard mixture model

framework. As a consequence, several modifications have been explored, searching for a

workaround when dealing with the E-step; examples are the Stochastic EM-Gibbs (SEM)

algorithm, the Classification EM (CEM) and the Variational EM (VEM) among the

others. In the subsequent developments, we shall focus on the SEM algorithm, where

a SE-step takes the place of the E-step by replacing the intractable computation of the

expected value of (z,w) by simulating according to their conditional distribution via

Gibbs sampling.
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4.3 Time-dependent Latent Block Model

4.3.1 Model specification

Once the LBM structure has been properly defined, extending its rationale to handle

time-dependent data in a co-clustering framework boils down to a suitable specification

of p(xij; θkl). Note that this reveals one of the main advantage of such an highly-

structured model, consisting in the chance to search for patterns in multivariate and

complex data by specifying only the model for the variable xij.

As introduced in Section 4.1, multidimensional time-dependent data may be repre-

sented according to a three-way structure where the third mode accounts for the time

evolution. The observed data assume an array configuration as X = {xij(ti)}1≤i≤n,1≤j≤d
with ti = (t1, . . . , Tni

) as outlined in Section 4.2.1; different observational lengths are

taken can be handled by a suitable use of missing entries. Consistently with the (4.1),

we consider as a generative model for the curve in the (i, j)-th entry, belonging to the

generic block (k, l)), the following

(xij(t)|zik = 1, wjl = 1) = αklij,1 + eα
kl
ij,2m(t− αklij,3; βkl) + εij(t) . (4.4)

Two main differences may be highlighted with respect to the original SIM model. Here

we do not have individual-specific random effects but cell-specific ones since we are

indeed modelling directly the (i, j)-th cell. Moreover, reasoning conditionally to the

block membership of the cell, the parameters involved are block-specific, coherently

with the co-clustering setting. As a consequence:

• m(t; βkl) = B(t)βkl where the quantities are defined as in Section 4.2.1, with the

only difference that βkl is a vector of block-specific basis coefficients, hence allowing

different mean shape curves across different blocks;

• αklij = (αklij,1, α
kl
ij,2, α

kl
ij,3) ∼ N3(µ

α
kl,Σ

α
kl) is a vector of cell-specific random effects

distributed according to a block-specific Gaussian distribution;

• εij(t) ∼ N (0, σ2
ε,kl) being the error term distributed as a block-specific Gaussian;

• θkl = (µαkl,Σ
α
kl, σ

2
ε,kl, βkl).

Note that the ideas borrowed from the curve registration framework are here ac-

counted for according to a rather different perspective. While curve alignment aims

at synchronizing the curves to estimate a common mean one, in our setting the Shape

Invariant model works as a suitable tool to model the heterogeneity inside a block and
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Figure 4.1: In the left panels curves in dotted line arise as random fluctuations of
the superimposed red curves, but they are all time, amplitude or scale transformations
of the same mean-shape function on the right panel.

to introduce a flexible notion of cluster. The rationale behind considering the SIM

in a co-clustering framework consists in looking for blocks characterized by a different

mean shape function m(·; βkl). Then, the curves belonging to the same block arise as

random shifts and scale transformations of m(·; βkl), governed by the block-specifically

distributed random effects. Consider, for the sake of illustration, the small panels on

the left side of Figure 4.1, displaying a number of curves which arise as transformations

induced by non-zero values of αij,1, αij,2, or αij,3. In other words, beyond the sample

variability, the curves differ for a (phase) random shift on the x− axes, an amplitude

shift on the y− axes, and a scale factor. According to model (4.4), all those curves

belong to the same cluster, since they share the same mean shape function (see the

right panel of Figure 4.1).

In fact, further flexibility can be naturally introduced within the model by “switching

off” one or more random effects, depending on subject-matter considerations and on the

concept of cluster one has in mind. If there are reasons to support that similar time

evolutions associated to different intensities are, in fact, expression of different clusters,

it makes sense to switch off the random intercept αij,1. In the example illustrated in

Figure 4.1 this ideally leads to a two-clusters structure (4.2, left panels). Similarly,

switching off the random effect αij,3 would lead to blocks characterized by a shifted time

evolution (Figure 4.2, right panels), while removing the random effect αij,2 determines

different blocks varying for a scale factor (Figure 4.2, middle panels).

4.3.2 Model estimation

In order to estimate model (4.4), we propose a modification of the SEM algorithm being

able to properly take into account the presence of the random effects. To ease readability,
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and with a slight abuse of notation, in the following we suppress the dependency on the

time t i.e. xij has to be intended as xij(ti).

Computation of the complete data log-likelihood (4.3) associated to model (4.4) is not

straightforward, since the marginal density p(xij; θkl) is defined as

p(xij; θkl) =

∫
p(xij|αklij ; θkl)p(αklij ; θkl) dαklij , (4.5)

not lending itself to a closed-form expression. To overcome this problem, we propose

a Marginalized SEM-Gibbs (M-SEM) algorithm as an iterative procedure, in the guise

of the SEM. The novelty we introduce consists in considering an additional step, the

Marginalization step, in order to properly take into account of the random effect and

handle (4.5).

Given an initial value for the parameters Θ(0) and an initial column partition w(0),

the (q + 1)-th iteration of the M-SEM algorithm alternates the following steps:

• Marginalization step: obtain the marginal density of each matrix cell by means

of Monte Carlo integration as follow

p(xij; θ
(q)
kl ) ' 1

M

M∑
m=1

p(xij;α
kl,(m)
ij , θ

(q)
kl ) (4.6)

t t t

Figure 4.2: Pairs of plots in each column represent the two-cluster configurations
arising from switching off respectively αij,1 (left), αij,2 (middle), αij,3 (right).
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for i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , K and l = 1, . . . , L and being M the

number of Monte Carlo samples. The values of the vectors α
kl,(1)
ij , . . . , α

kl,(M)
ij are

drawn from a Gaussian distribution N3(µ
α,(q)
kl ,Σ

α,(q)
kl );

• SE step: repeat, for a number of iterations, the following Gibbs sampling steps:

1. generate the row partition z
(q+1)
i = (z

(q+1)
i1 , . . . , z

(q+1)
iK ), i = 1, . . . , n according

to a multinomial distribution z
(q+1)
i ∼M(1, z̃i1, . . . , z̃iK), with

z̃ik = p(zik = 1|X,w(q); Θ(q))

=
π
(q)
k pk(xi|w(q); Θ(q))∑

k′ π
(q)
k′ pk′(xi|w(q); Θ(q))

,

for k = 1, . . . , K, xi = {xij}1≤j≤d and pk(xi|w(q); Θ(q)) =
∏

jl p(xij; θ
(q)
kl )w

(q)
jl .

2. generate the column partition w
(q+1)
j = (w

(q+1)
j1 , . . . , w

(q+1)
jL ), j = 1, . . . , d

according to a multinomial distribution w
(q+1)
j ∼M(1, w̃j1, . . . , w̃jL), with

w̃jl = p(wjl = 1|X, z(q+1); Θ(q))

=
ρ
(q)
l pl(xj|z(q+1); Θ(q))∑
l′ ρ

(q)
l′ pl′(xj|z(q+1); Θ(q))

,

for l = 1, . . . , L, xj = {xij}1≤i≤n and pl(xj|z(q+1); Θ(q)) =
∏

ik p(xij; Θ
(q)
kl )z

(q+1)
ik .

• M step: Estimate Θ(q+1) conditionally on z(q+1) and w(q+1). Mixture proportions

are updated as π
(q+1)
k = 1

n

∑
i z

(q+1)
ik and by ρ

(q+1)
l = 1

d

∑
j w

(q+1)
jl .

An estimate of θkl = (µαkl,Σ
α
kl, σ

2
ε,kl, βkl) can be obtained by noting that the spec-

ification in (4.4) results in a non-linear mixed effect model. Estimation in this

framework is not straighforward and closed-form solutions are not available. In

this work we use the approximate maximum likelihood approach as proposed in

Lindstrom and Bates (1990); the variance and the mean components are estimated

by approximating and then maximizing the marginal density of the latter near the

mode of the posterior distribution of the random effects. Conditional or shrinkage

estimates are afterwards used for the estimation of the random effects.

The M-SEM algorithm is run for a certain number of iterations until a convergence

criterion on the complete data log-likelihood is met. Since a burn-in period is considered,

the final estimate for Θ, denoted as Θ̂, is given by the mean of the sample distribution.

A sample of (z,w) is then generated according to the SE step as illustrated above with
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Θ = Θ̂. The final block-partition (ẑ, ŵ) is then obtained as the mode of their sample

distribution.

Coherently with the parametric clustering formulation, the choice of the number of

groups is recasted here to a model selection problem. In accordance with a standard

model-based framework (Section 1.2.2), the single best model paradigm is operationally

considered. Several models, corresponding to different combinations of K and L and,

in our case, to different configurations for turning on and off the random effects, are

estimated and the best one is selected according to a specific information criterion.

Keribin et al. (2015) have noted that in the co-clustering framework the BIC is not a

viable solution, as the penalization term no longer remains valid due to the dependency

structure of the observed data X. As an alternative, we consider an approximated

version of the ICL (Biernacki et al., 2000) that, relying on the complete data likelihood

does not suffer of the same issues as the BIC. The considered criterion is then defined

as

ICL = log p(X, ẑ, ŵ; Θ̂)− K − 1

2
log n− L− 1

2
log d− KLν

2
log nd , (4.7)

where ν denotes number of specific parameters for each block and

log p(X, ẑ, ŵ; Θ̂) =
∏
ik

ẑik log α̂k +
∏
jl

ŵjl log β̂l
∑
ijkl

ẑikŵjl log p(xij, θ̂kl) . (4.8)

The selected model will be the one corresponding to the pair (K,L) attaining the highest

value for the ICL.

4.3.3 Computational remarks

The model introduced so far inherits the advantages of both the building ingredients it

embeds. Thanks to the local independence assumption of the LBM, it allows handling

multivariate, possibly high dimensional complex data structures in a relatively parsimo-

nious way. Differences among the subjects are captured by the random effects, while

curve summaries can be expressed as a functional of the mean shape curve. Additionally,

the recourse to a smoother when modeling the mean shape function allows for a flexible

handling of functional data while the presence of random effects lends the model to be

applied to a longitudinal setting. Finally, clustering is pursued directly on the observed

curves, without resorting to intermediate transformation steps, as in Bouveyron et al.

(2018).
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These reasons of attractiveness should not distract from the caution required by some

aspects, especially of computational nature, of the proposed method, discussed in the

following.

• Initialization The M-SEM algorithm encloses different numerical steps which re-

quire the suitable specification of starting values.

The EM algorithm and its modifications are known to be very sensible to the ini-

tialization. Furthermore since the convergence towards a global maximum of the

likelihood is not guaranteed, to avoid local solutions a proper initialization strat-

egy is crucial. Assuming K and L to be known, the M-SEM algorithm requires

starting values for z and w in order to implement the first M-step. In this work

we consider two different initialization strategies:

– (Multiple) random initialization: the row and column partitions are sampled

independently from multinomial distributions with uniform weights. If mul-

tiple initializations are considered, the one eventually leading to the highest

value of the complete data log-likelihood is retained;

– K-means initialization: two k-means algorithms are independently run for

the rows and the columns of X and the M-SEM algorithm is initialized with

the obtained partitions ẑ and ŵ.

Anyhow it has been pointed out (see e.g. Govaert and Nadif, 2013) that the SEM,

being a stochastic algorithm, can attenuate in practice the impact of the initial-

ization on the resulting estimates.

Lastly note that a further initialization is required, to estimate the nonlinear mean

shape function within the M-step.

• Convergence and other numerical problems. Although the benefits of including

random effects in the considered framework are undeniable, parameter estimation

is known not to be straightforward in mixed effect models, especially in the non-

linear setting (see, e.g. Harring and Liu, 2016). The nonlinear dependence of the

conditional mean of the response on the random effects requires multidimensional

integration over the random effects distribution to derive the marginal distribu-

tion of the data. In fact, this integral is almost always intractable. While several

methods such as, for example, likelihood approximation have been proposed to

overcome this issue, serious convergence problems are often encountered. In such

situations, some devices can come in aid to ease convergence of the estimation

algorithm. Examples are to try different sets of starting values, to scale the data
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prior to the modeling step, or to simplify the nonlinear structure of the model (e.g.

in the case of B-splines, by reducing the number of knots). Even when convergence

is eventually achieved, in fact, addressing these issues often results in considerable

computational times. Depending on the specific data at hand, it is also possible

to consider alternative mean shape formulations, such as polynomial functions,

which result in easier estimation procedures.

• Curse of flexibility. Including random effects for both phase and amplitude shifts

and scale transformations allows for a virtually excellent fitting of any arbitrarily

shaped curve. This flexibility, albeit desirable, may achieve excessive extents, turn-

ing out to estimation troubles. This is especially true in a clustering framework,

when data are expected to exhibit a remarkable heterogeneity. From a practical

point of view our experience suggests that the estimation of the parameters αij,2

turns out to be the most troublesome, sometimes leading to convergence issues

and instability in the resulting estimates. In agreement with the final considera-

tions of Section 4.3.1, and when a preliminary exploration of data suggests highly

heterogeneous curve shapes, a sensible workaround consists in switching off αij,2,

resulting in the search for clusters which are homogeneous in the curve scale. Op-

erationally, switching off a random effect boils down to resort to a constrained

estimation scheme in the M step of the M-SEM algorithm. Let us consider a di-

agonal specification for Σα
kl for all the blocks. A random effect is then practically

turned off by constraining its mean and variance estimates to be exactly equal to

zero.

• Label switching. As every stochastic algorithm due to the resort to a Gibbs sam-

pling, SEM is in principle subject to label switching (see Frühwirth-Schnatter,

2006, for a detailed tractation of the topic). Nonetheless it has been pointed out

by Keribin et al. (2015) that most of the time this phenomenon is not encoun-

tered in practical situations. This indication has been confirmed by the results we

obtained in Section 4.4.

4.4 Numerical examples

4.4.1 Simulation study

This section aims at exploring the main features of the proposed approach on some

synthetic data. We focus on the capability of the method to properly partition the data

into blocks, analyzing thoroughly the subsequent groups obtained from a clustering
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Figure 4.3: Block specific mean shape curves employed in the simulation study.

quality perspective. Moreover we explore the validity of the ICL criterion when used

to choose the number of blocks and when considered to select an appropriate random

effect configuration.

All the analyes have been conducted in the R environment (R Core Team, 2019) with

the aid of nlme (Pinheiro et al., 2019), funLBM (Bouveyron and Jacques, 2018) and

splines packages. The code implementing the proposed procedure is available upon

request.

The examined simulation setup is defined as follows. We generated B = 100 Monte

Carlo samples of curves according to the general specification (4.4), with block-specific

mean shape function mkl(·) and both the parameters involved in the error term and the

ones describing the random effects distribution considered constant across the blocks.

In fact, in the light of the final considerations made in Section 4.3.3, the random scale

parameter is switched off in the data generative mechanism, i.e. αij,2 is constrained

to be degenerate in zero. The number of row and column clusters has been fixed to

Ktrue = 4 and Ltrue = 3 and the mean shape functions mkl(·) are chosen among four

different curves namely m11 = m13 = m33 = m1, m12 = m32 = m31 = m41 = m2,

m21 = m32 = m42 = m3 and m22 = m43 = m4, as illustrated in Figure 4.3.

We set n = 100 rows, d = 20 columns and T = 15 equi-spaced time points ranging in
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Table 4.1: Mean over the Monte Carlo samples of the Adjusted Rand Index for
both the row and column partitions obtained, as a function of the detected number
of groups. The true number of row clusters is 4, while the true number of column
clusters is 3.

2 3 4 5
ARI (row) - 0.81 0.98 0.89

ARI (column) - 1.00 0.85 0.69

[0, 1]. Further details about the simulation setting parameters, as well as the specifica-

tion of the curves considered, are provided in the Appendix.

Model estimation is performed by setting the first 10 iterations of the M-SEM al-

gorithm as a burn-in period while, for the B-spline basis functions, we considered 4

knots.

With the aim of evaluating the ability of the proposed methodology in recovering

the true clustering structure, we have computed the Adjusted Rand Index for both the

row and the column partitions, disregarding the number of detected blocks. Results are

illustrated in Table 4.1. The obtained performances are extremely satisfactory. Indeed,

when the selected number of groups corresponds to the true one, the ARI values indicates

nearly perfect classifications of rows and columns. Moreover, even when the ICL detects

a wrong number of blocks, a satisying clustering quality is still witnessed; this gives an

indication about the identification of clusters of curves that retain the homogeneity of

the curves inside the groups.

As a second goal of the numerical analysis we have explored the capabilities of the

ICL to detect the right number of blocks in the data, disregarding the random effect

configuration. To this aim, the best model has been selected among different choices for

K and L, with the random effect configuration assumed to be known and fixed. Table

4.2 reports the percentage of samples for which each number of considered row and

column cluster has been selected across the Monte Carlo samples. Again we obtained

satisfactory results with a slight tendency to overestimate the number of blocks. While it

would be interesting to further investigate this behavior, it is nonetheless conceptually

preferable with respect to underestimation since, potentially, it does not hinder the

homogeneity within a block, being the final aim of cluster analysis.

As a third goal of the study, we assessed if the ICL criterion represents a valid

strategy also when used to select among different random effects configuration. To this

aim, the number of blocks has been set to the true values and models corresponding

to different configuration for αklij are estimated. As highlighted in Section 4.3.3, the

estimation of model configurations in the presence of the scale random effect is sometimes



74 Section 4.4 - Numerical examples

Table 4.2: Percentage of selection for each model (K,L) on the 100 simulated
datasets. Bold cell represents the true number of blocks.

K/L 2 3 4 5
2 0.0 0.0 0.0 0.0
3 0.0 0.0 1.0 0.0
4 0.0 57.6 10.1 8.1
5 0.0 18.2 4.0 1.0

Table 4.3: Percentage of selection for each random effects configuration over 100
simulated datasets. T means that the corresponding random effect is switched on
while F means that is switched off. As an example FTT represent a model where αij,1
is constrained to be a random variable with degenerate distribution in zero. Bold cell
represents the true data generative model.

FFF TFF FTF FFT TTF TFT FTT TTT

% of selection 0.0 0.0 0.0 0.0 0.0 96.9 0.0 3.1

troublesome, and has not converged for a few cases, so that results, reported in Table

4.3, are somewhat biased toward the selection of the true generative mechanism, as well

as towards the other model configurations with αij,2 switched off. In fact, none among

the latter configurations has been selected across any of the Monte Carlo samples, and

the true generative configuration of random effects is selected in the great majority of

the cases.

Due to the mentioned computational complexity of the proposed methodology the

numerical exploration has been limited to the mentioned goals. In fact, an improved

understanding of the strengths and weaknesses of the proposed methodology is left

for future work, and meant to be reached by extending the focus of the simulation to

alternative choices of n, d, and T , and to the comparison with some competitors. Also,

note that further aspects such as the selection of the number of knots in the splines has

not been thoroughly studied in this work but it could constitute an interesting further

development; by removing some knots we may indeed, losing something in terms of

flexibility, obtain faster and simpler procedures from a computational point of view.

4.4.2 Real data illustration

The data we consider in this section (publicly available at https://www.pollens.fr/en/

reports/database) are provided by the Réseau National de Surveillance Aŕobiologique

(RNSA), the French institute which analyzes the biological particles content of the air

and studies their impact on the human health. RNSA collects data on concentration of

pollens and moulds in the air, along with some clinical data, in more than 70 munici-

palities in France.
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The analyzed dataset contains daily observations of the concentration of 21 pollens

for 71 cities in France in 2016. Concentration is measured as the number of pollens

detected over a cubic meter of air and carried on by means of some pollen traps located

in central urban positions over the roof of buildings, in order to be representative of the

trend air quality.

The aim of the analysis is to identify homogeneous trends in the pollen concentration

over the year and across different geographical areas. For this reason, we focus on finding

groups of pollens differentiating one from the others for either the period of maximum

exhibition or the timespan they are present. Consistently with this choice, only models

with the y-axis shift parameter αij,1 are estimated (i.e. αij,2 and αij,3 are switched off),

for varying number of row and column clusters, and the best one selected via ICL.

We consider monthly data by averaging the observed daily concentrations over months.

The resulting dataset may be represented as a matrix with n = 71 rows (cities), p = 21

columns (pollens) where each entry is a sequence of T = 12 time-indexed measurements.

In order to practically apply our proposed procedure on the data a preprocessing

step has been carried out. We work on a logarithmic scale and, in order to improve the

stability of the estimation procedure, the data have been standardized.

Results are graphically displayed in Figure 4.4. The ICL selects a model with K = 3

row clusters and L = 5 column ones. A first visual inspection of the pollen time

evolutions reveals that the procedure is able to discriminate the pollens according to

their seasonality. Pollens in the first two column groups are mainly present during the

summer, with a difference in the intensity of the concentration. In the remaining three

groups pollens are more active, grossly speaking, during winter and spring months but

with a different time persistence and evolution.

Digging deeper substantially in the cluster configuration obtained is beyond the scope

of this work and may benefit from some help and insights from experts of botanical

and geographical disciplines. Anyway it stands out that column clusters are roughly

grouping together trees pollens, distinguishing them from weed and grass ones (left

panel of Figure 4.5). Results are also coherent with the usually considered typical

seasons, with groups of pollens from trees mostly present in winter and spring while

the ones from grass spreading in the air mainly during the summer months. With

respect to the row partition, displayed in the row panel of Figure 4.5, three clusters

have been detected, with the one in light blue on the map roughly corresponding to

the Mediterranean region. The situation, for what it concerns the other two clusters,

appears to be more heterogeneous. One of these groups (in red on the map) tends to

gather together cities in the northern region and on the Atlantic coast while the other
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Figure 4.4: Curves belonging to each single block with superimposed the corre-
sponding block specific mean curve (in light blue).

(in green) cover mainly the central and continental part of the country. Again the results

appear promising but it may be beneficial a cross analysis with some climate scientists

in order to get a more informative and substantiated point of view.

4.5 Conclusions

Multivariate time-dependent data can be suitably arranged in three-way structures

where each layer introduces its own peculiar characteristics. When exploring appropriate

modelling strategies it is required to account for heterogeneous subjects, relations among

variables and correlation across different time instants.

This chapter has aimed at answering these challenges by proposing a new paramet-

ric co-clustering methodology, recasting to the widely known Latent Block Model in

a time-dependent fashion. The co-clustering model, by simultaneously searching for

row and column clusters, partitions three-way matrices in some blocks formed by ho-

mogeneous curves. Such an approach seems particularly reasonable in the considered

framework since it takes into account the mentioned features of the data while building

parsimonious and meaningful summaries. As a data generative mechanism for a single

curve we have considered the Shape Invariant Model that has turned out to be partic-

ularly flexible when embedded in a co-clustering context. The model allows describing
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Pollens group
1 Gramineae, Urticaceae
2 Chestnut, Plantain
3 Cypress
4 Ragweed, Mugwort, Birch, Beech

Morus, Olive, Platanus, Oak, Sorrel
Linden

5 Alder, Hornbeam, Hazel, Ash
Poplar, Willow
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Figure 4.5: On the left: Pollens organized according to the column cluster mem-
berships. On the right: French map with overimposed the points indicating the cities
colored according to their row cluster memberships.

arbitrary time evolution patterns while adequately capturing dependencies among dif-

ferent temporal instants. The further chance of “switching off” some of the random

effects, although in principle simplifying the model structure, increases its flexibility, as

it allow encompassing different concepts of cluster possibly depending on the specific

applications and on subject-matter considerations.

While further analyses and comparisons with alternative models are required to in-

crease our understanding about the general performance of the proposed model, its first

application to both simulated and real data has proved overall satisfactory results and

highlighted some aspects which will worth further investigation. Among them, we shall

introduce the idea of the curse of flexibility, as in some specific situations, the con-

sidered specification may induce a degree of flexibility possibly entailing issues from a

computational point of view and in the obtained results. Some alternative choices, for

example to model the block mean curves, could be considered and compared with the

ones adopted here. A further direction for future work would consist in exploring the

chance to resort to a fully Bayesian estimation approach, possibly handling more easily

the random parameters in the model.





Appendix

Parameter settings - Chapter 2

In the following the parameter settings of the densities selected for the simulations in

Chapter 2 are presented. Since all the densities are mixtures of Gaussian models, we

adopt the usual notation where, for a given k component, πk represents the k-th mixture

weight, µk and σ2
k (Σk for the bivariate models) the mean and variance (covariance

matrix).

Unidimensional parameter settings

Density M1

Components πk µk σ2
k

1 0.75 0.00 0.83

2 0.25 1.37 0.09

Density M2

Components πk µk σ2
k

1 0.45 -0.93 0.22

2 0.45 0.93 0.22

3 0.1 0.00 0.04

Density M3

Components πk µk σ2
k

1 0.5 -0.74 0.14

2 0.3 0.37 0.55

3 0.2 1.47 0.14
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Density M4

Components πk µk σ2
k

1 0.15 0.00 0.44

2 0.15 -0.33 0.19

3 0.5 -0.99 0.14

4 0.2 1.32 0.19

Density M5

Components πk µk σ2
k

1 0.5 0.00 0.14

2 0.35 1.28 0.14

3 0.15 2.56 0.11

Bidimensional settings

Asymmetric bimodal

Components πk µk Σk

1 0.5

(
1

−1

) (
0.44 0.31

0.31 0.44

)

2 0.5

(
−1

1

) (
0.44 0

0 0.44

)

Trimodal

Components πk µk Σk

1 0.43

(
−1

0

) (
0.36 0.25

0.25 0.49

)

2 0.43

(
1

1.15

) (
0.36 0

0 0.49

)

3 0.14

(
1

−1.15

) (
0.36 0

0 0.49

)



Appendix 81

Parameter settings - Chapter 3

In the following the parameter settings of the densities selected for the simulations in

Chapter 3 are presented. The notation remains unchanged for Density M1, M2 and M3

being Gaussian mixture models. On the other hand for Density M4 and M5 we consider

multivariate skew normal distributions (or mixture of) hence the additional parameter

δk regulates the skeweness of the k-th component.

Density M1

Components πk µk Σk

1 1

(
0

0

) (
1.25 0.75

0.75 1.25

)

Density M2

Components πk µk Σk

1 0.5

(
−0.53

−0.53

) (
0.68 −0.41

−0.41 0.68

)

2 0.5

(
0.53

0.53

) (
0.68 −0.41

−0.41 0.68

)

Density M3

Components πk µk Σk

1 0.4

(
−0.85

−0.85

) (
0.58 −0.35

−0.35 0.58

)

2 0.4

(
0.85

0.85

) (
0.58 −0.35

−0.35 0.58

)

3 0.2

(
0

0

) (
0.16 −0.09

−0.09 0.16

)
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Density M4

Components πk µk Σk δk

1 1

(
0

0

) (
0.8 −0.4

−0.4 0.8

) (
3

3

)

Density M5

Components πk µk Σk δk

1 0.5

(
1

1

) (
0.8 −0.4

−0.4 0.8

) (
3

3

)

2 0.5

(
−1

−1

) (
0.8 −0.4

−0.4 0.8

) (
−3

−3

)

Parameter settings - Chapter 4

In the following the parameter considered for the simulations in Chapter 4, as well as

the specification of the functions used as block specific mean curves, are presented.

The curves considered are specified as follows

m1(t) ∝ 6t2 − 7t+ 1

m2(t) ∝ φ(t; 0.2, 0.008)

m3(t) ∝ 0.75− 0.81{t∈(0.4,0.6)}

m4(t) ∝
1

(1 + exp(−10t+ 5))

Concerning the parameters involved in the error terms and in the random effects distri-

bution σε,kl = 0.3, µαkl = (0, 0, 0) and Σα
kl = diag(1, 0, 0.1) ∀k = 1, . . . , K, l = 1, . . . , L.
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