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The use of variable selection methods is particularly appealing in statistical problems with
functional data. The obvious general criterion for variable selection is to choose the ‘most
representative’ or ‘most relevant’ variables. However, it is also clear that a purely relevance-
oriented criterion could lead to select many redundant variables. The mRMR (minimum
Redundance Maximum Relevance) procedure, proposed by Ding and Peng (2005) and Peng
et al. (2005) is an algorithm to systematically perform variable selection, achieving a reason-
able trade-off between relevance and redundancy. In its original form, this procedure is based
on the use of the so-called mutual information criterion to assess relevance and redundancy.
Keeping the focus on functional data problems, we propose here a modified version of the
mRMR method, obtained by replacing the mutual information by the new association mea-
sure (called distance correlation) suggested by Székely et al. (2007). We have also performed
an extensive simulation study, including 1600 functional experiments (100 functional models
x 4 sample sizes x 4 classifiers) and three real-data examples aimed at comparing the dif-
ferent versions of the mRMR methodology. The results are quite conclusive in favor of the
new proposed alternative.
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1. Introduction

The use of high-dimensional or functional data entails some important practical is-
sues. Besides the problems associated with computation time and storage costs, high-
dimensionality introduces noise and redundancy. Thus, there is a strong case for using
different techniques of dimensionality reduction.

We will consider here dimensionality reduction via variable selection techniques. The
general aim of these techniques is to replace the original high-dimensional (perhaps func-
tional) data by lower dimensional projections obtained by just selecting a small sub-
set of the original variables in each observation. In the case of functional data, this
amounts to replace each observation {x(t), t € [0,1]} with a low-dimensional vector
(z(t1),...,x(tg)). Then, the chosen statistical methodology (supervised classification,
clustering, regression,...) is performed with the ‘reduced’, low-dimensional data. Usually
the values 1, ..., t; identifying the selected variables are the same for all considered data.
A first advantage of variable selection (when compared with other dimension reduction
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methods, as Partial Least Squares) is the ease of interpretability, since the dimension
reduction is made in terms of the original variables. In a way, variable selection appears
as the most natural dimension reduction procedure in order to keep in touch, as much
as possible, with the original data: see for instance [I, 2] among many other examples
in experimental sciences or engineering. In [I] the authors note that 50 genes (among
almost 7000) are enough for cancer subtype classification. Likewise, Lindquist and McK-
eague [2] point out that in some functional data regression (or classification) problems, as
functional magnetic resonance imaging or gene expression, ‘the influence is concentrated
at sensitive time points’.

We refer to [3] for an account of different variable selection methods in the multivariate
(non-functional) case. A partial comparative study, together with some new proposals
for the functional framework, can be found in [4].

Throughout this work we will consider variable selection in the setting of functional su-
pervised classification (the extension to more general regression problems is also possible
with some obvious changes). Thus, the available sample information is a data set of type
D, = ((X1,Y1),...,(X,,Y,)) of n independent observations drawn from a random pair
(X,Y). Here Y denotes a binary random variable, with values in {0, 1}, indicating the
membership to one of the populations Py or P; and X; are iid trajectories (in the space
C[0, 1] of real continuous functions on [0, 1]), drawn from a stochastic process X = X (¢).
The supervised classification problem aims at predicting the membership class Y of a
new observation for which only the variable X is known. Any function g, (x) = gn(z;Dy)
with values in {0, 1} is called a classifier.

Several functional classifiers have been considered in the literature; see, e.g., [5] for a
survey. Among them maybe the simplest one is the so-called k-nearest neighbours (k-NN)
rule, according to which an observation x is assigned to P if and only if the majority
among their k£ nearest sample observations X; in the training sample fulfil Y; = 1. Here
k = k, € N is a sequence of smoothing parameters which must satisfy k, — oo and
kn/n — 0 in order to achieve consistency. In general, k&-NN could be considered (from
the limited experience so far available; see e.g., [0]) a sort of benchmark, reference method
for functional supervised classification. Simplicity, ease of motivation and general good
performance (it typically does not lead to gross classification errors) are perhaps the
most attractive features of this method. Besides k-NN, we have also considered (inspired
in the paper by Ding and Peng [7] where a similar study is carried out) three additional
classifiers: the popular Fisher’s linear classifier (LDA) used often in classical discriminant
analysis, the so-called Naive Bayes method (NB) and the (linear) Support Vector Machine
classifier (SVM). Note that, in our empirical studies, all the mentioned classifiers (k-NN,
LDA, NB and SVM) are used after the variable selection step, on the ‘reduced data’
resulting from the variable selection process.

In fact, as we will point out below, the main goal of our study is not to compare
different classifiers. We are rather concerned with the comparison of different methods
for variable selection (often referred to as feature selection). A relevant procedure for
variable selection, especially popular in the machine learning community, is the so-called
minimum Redundancy Maximum Relevance (mRMR) method. It was proposed by Ding
and Peng [7] and Peng et al. [§] as a tool to select the most discriminant subset of
variables in the context of some relevant bioinformatics problems. See also [9HIT] for
closely related ideas.

The purpose of this paper. Overall, we believe the mRMR procedure is a very natural
way to tackle the variable selection problem if one wants to make completely explicit the
trade-off relevance/redundancy. The method relies on the use of an association measure
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to assess the relevance and redundancy of the considered variables. In the original papers
the so-called ‘mutual information’ measure was used for this purpose. The aim of the
present paper is to propose other alternatives for the association measure, still keeping
the main idea behind the mRMR procedure. In fact, most mRMR researchers admit
that there is considerable room for improvement. We quote from the discussion in [§]:
‘The mRMR paradigm can be better viewed as a general framework to effectively select
features and allow all possibilities for more sophisticated or more powerful implementation
schemes’. In this vein, we consider several versions of the mRMR and compare them by an
extensive empirical study. Two of these versions are new: they are based on the ‘distance
covariance’ and ‘distance correlation’ association measures proposed by Székely et al.
[12]. Our results suggest (and this is the main conclusion of our study) that the new
version based on the distance correlation measure represents a clear improvement of the
mRMR methodology.

The rest of the paper is organized as follows. Section [2] contains a brief summary and
some remarks about the mRMR algorithm. The different association measures under
study (which are used to define the different versions of the mRMR method) are explained
in Section |3, with especial attention to the correlation of distances. [12,[13] The empirical
study, consisting of 1600 simulation experiments and some representative real data sets,
is explained in Section [4] Finally, some conclusions are given.

2. The trade-off relevance/redundancy. The mRMR criterion

When faced with the problem of variable selection methods in high-dimensional (or
functional) data sets, a natural idea arises at once: obviously, one should select the
variables according to their relevance (representativeness). However, at the same time,
one should avoid the redundancy which appears when two highly relevant variables are
closely associated to each other. In that case, one might expect that both variables
essentially carry the same information, so that to choose just one of them should suffice.

The mRMR variable selection method, as proposed in [7, [§], provides a formal im-
plementation of a variable selection procedure which explicitly takes into account this
trade-off relevance /redundancy.

In our functional binary classification problem, the description of the mRMR method is
as follows: the functional explanatory variable X (), ¢ € [0, 1] will be used in a discretized
version (X (t1),...,X(tn)). When convenient, the notations X; and X (¢) will be used
indistinctly. For any subset S of {¢1,...,tx}, the relevance and the redundancy of S are
defined, respectively, by

Rel(S) = Cardl(s) S I1(x,,Y), (1)
tesS
and
Red(S) = Cardlz(s) S 1(X, X,), (2)

s,tes

where card(S) denotes the cardinality of S and I(-,-) is an ‘association measure’. This
function I measures how much related are two variables. So, it is natural to think that
the relevance of X; is measured by how much related it is with the response variable
Y, that is I(X;,Y), whereas the redundancy between X; and X is given by I(Xs, Xy).
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Figure 1. Mean functions for both classes considered in the Tecator data set (first derivative). Left panel shows
the five variables selected by Maximum Relevance. Right panel corresponds to the variables selected by mRMR.

Now, in summary, the mRMR algorithm aims at maximizing the relevance avoiding an
excess of redundancy.

The choice of the association measure [ is a critical aspect in the mRMR methodology.
In fact, this is the central point of the present work so that we will consider it in more
detail later. By now, in order to explain how the mRMR method works, let us assume
that the measure [ is given:

(a) The procedure starts by selecting the most relevant variable, given by the value t; such
that the set S; = {t;} maximizes Rel(S) among all the singleton sets of type S; = {¢;}.

(b) Then, the variables are sequentially incorporated to the set S of previously selected
variables, with the criterion of maximizing the difference Rel(S) — Red(S) (or alterna-
tively the quotient Rel(S)/Red(S5)).

(c) Finally, different stopping rules can be considered. We set the number of variables
through a validation step (additional details can be found in Sections |4 and .

In practice, the use of the mRMR methodology is especially important in the functional
data problems, where those variables which are very close together are often strongly
associated.

The following example shows to what extent the mRMR makes a critical difference in
the variable selection procedure. It concerns the well-known Tecator data set (a bench-
mark example very popular in the literature on functional data; see Section |5|for details).
To be more specific, we use the first derivative of the curves in the Tecator data set, which
is divided into two classes. We first use a simple ‘ranking procedure’, where the variables
are sequentially selected according to their relevance (thus avoiding any notion of re-
dundancy). The result is shown in the left panel of Figure [1| (the selected variables are
marked with grey vertical lines). It can be seen that in this case, all the five selected
variables provide essentially the same information. On the right panel we see the vari-
ables selected from mRMR procedure which are clearly better placed to provide useful
information. This visual impression is confirmed by comparing the error percentages ob-
tained from a supervised classification method using only the variables selected by both
methods. While the classification error obtained with the mRMR selected variables is
1.86%, the corresponding error obtained with those of the ranking method is 4.09%.
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Association measures

As indicated in the previous section, the mRMR criterion relies on the use of an associ-
ation measure I(X,Y’) between random variables. The choice of appropriate association
measures is a classical issue in mathematical statistics. Many different proposals are
available and, in several aspects, this topic is still open for further research, especially in
connection with the use of high-dimensional data sets (arising, e.g., in genetic microarray
examples,[14] [15]).

A complete review of the main association measures for random variables is clearly
beyond the scope of this paper. So, we will limit ourselves to present here the measures
I(X,Y) we have used in this work:

(1)

(2)

The ordinary correlation coefficient between X and Y (in absolute value). This is
the first obvious choice for the association measure I(X,Y"). It clearly presents some
drawbacks (it does not characterize independence and it is unsuitable to capture
non-linear association) but still, it does a good job in many practical situations.
The Mutual Information Measure, MI1(X,Y") is defined by

p(z,y)

MIX,Y) = /log p1(@)p2(y

)p(:ﬂ, y)du(z,y), (3)

where X, Y are two random variables with respective u-densities p; and ps; in the
standard, absolutely continuous case, 1 would be the product Lebesgue measure. In
the discrete case, p would be a counting measure on a countable support. The joint
density of (X,Y) is denoted by p(z,y).

This is the association measure used in the original version of the mRMR
procedure. [7, [§].

It is clear that MI(X,Y) measures how far is p(z,y) from the independence
situation p(z,y) = pi(x)p2(y). It is easily seen that MI(X,Y) = MI(Y,X) and
MI(X,Y)=0if and only if X and Y are independent.

In practice, MI(X,Y) must be approximated by considering, if necessary, ‘dis-
cretized versions’ of X and Y, obtained by grouping their values on intervals rep-
resented by suitable label marks, a;, b;. This leads to approximate expressions of

type

]P’(X = CLZ',Y = bj)

MI(X,Y) = log P(X =a;,Y = b)), (4)
1]

where, in turn, the probabilities can be empirically estimated by the corresponding
relative frequencies. In [7] the authors suggest a threefold discretization pattern, i.e.,
the range of values of the variable is discretized in three classes. The limits of the
discretization intervals are defined by the mean of the corresponding variable +o /2
(where o is the standard deviation). We will explore this criterion in our empirical
study below.

The Fisher-Correlation (FC') criterion: It is a combination of the F-statistic,

F(X,Y) = ank(Xk—X)z/(K_l) (5)

Yk —Dog/(n— K)

used in the relevance measure (1)), and the ordinary correlation, C, used in the
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redundancy measure . In the expression , K denotes the number of classes (so
K = 2 in our binary classification problem), X denotes the mean of X, X is the
mean value of X of the elements belonging the k-th class, for k = 0,1, and n; and
al% are the sample size and the variance of the k-th class, respectively.

Ding and Peng [7] suggest that, in principle, this criterion might look more useful
than MT when dealing with continuous variables but their empirical results do not
support that idea. Such results are confirmed by our study so that, in general terms,
we conclude that the mutual information (4) is a better choice even in the continuous
setting.

(4) Distance covariance: this is an association measure recently proposed by Székely
et al. [12]. Denote by ¢x vy, ¢x, ¢y the characteristic functions of (X,Y), X and
Y, respectively. Here X and Y denote multivariate random variables taking values
in RP and RY, respectively (note that the assumption p = ¢ is not needed). Let
us suppose that the components of X and Y have finite first-order moments. The
distance covariance between X and Y is the non-negative value V(X,Y") defined by

VA(X,Y) = / | oxy (9) — px ()py (v) 2 w(u, v)dudo, (6)

Rpr+a

a(4a)/2

P |v\é+q)*1, where ¢4 = w73 1 half the surface area of

with w(u,v) = (c,,cq]u\,lJ
the unit sphere in R and | - |4 stands for the Euclidean norm in RY.

While definition @ has a rather technical appearance, the resulting association
measure has a number of interesting properties. Apart from the fact that @ allows
for the case where X and Y have different dimensions, we have V?(X,Y) = 0 if and
only if X and Y are independent. Moreover, the indicated choice for the weights
w(u,v) provides valuable equivariance properties for V2(X,Y) and the quantity can
be consistently estimated from the mutual pairwise distances | X; — X;|, and |Y; Y},
between the sample values X; and Y; (no discretization is needed).

We refer to [12} [13] [16] [I7] for a detailed study of this increasingly popular associ-
ation measure. We refer also to [4] for an alternative use (not related to mRMR) of
V2(X,Y) in variable selection.

(5) Distance correlation: this is just a sort of standardized version of the distance co-
variance. If we denote V?(X) = V?(X, X), the (square) distance correlation between

X and Y is defined by R2(X,Y) = % if V2(X)V2(Y) > 0, R2(X,Y) =0

otherwise.

Of course, other association measures might be considered. However, in order to get an
affordable comparative study, we have limited our study to the main association measures
previously used in the mRMR literature. We have only added the new measures V? and
R?, which we have tested as possible improvements of the method.

Also, alternative versions of the mRMR procedure have been proposed in literature.
In particular, the Mutual Information measure could be estimated by kernel density
estimation,[I8]. Regarding the kernel-based estimation of the MI measure, the crucial
issue [19] of the optimal selection of the smoothing parameter has not been, to our
knowledge, explicitly addressed; note that here ‘optimal’ should refer to the estimation of
MI. Likewise, other weighting factors might be used instead of just card(S) in equation
(2),[20]. However, still the ‘original’ version of mRMR (with discretization-based MI
estimation) seems to be the most popular standard; see [21], 22] for very recent examples.
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Let us finally note that all the association measures we are considering take positive
values. So, the phenomena associated with the the negative association values analyzed
in [23] do not apply in this case.

Notation. The association measures defined above will we denoted in the tables of our
empirical study by C, MI, FC, V and R, respectively.

4. The simulation study

We have checked five different versions of the mRMR variable selection methodology.
They have been obtained by using different association measures (as indicated in the
previous section) to assess relevance and redundancy.

In all cases, the comparisons have been made in the context of problems of binary
supervised classification, using 100 different models to generate the data (X,Y’). These
models are defined either by

(i) specifying the distributions of X|Y =0 and X|Y = 1; in all cases, we take p =P(Y =
0) =1/2.

(ii) specifying both the marginal distribution of X and the conditional distribution n(z) =

P(Y = 1|X = z).

Our experiments essentially consist of performing variable selection for each model
using the different versions of mRMR and evaluating the results in terms of the respective
probabilities of correct classification when different classifiers are used on the selected
variables. The full list of considered models is available at the Supplemental material
document. All these models have been chosen in such a way that the optimal (Bayes)
classification rule depends on just a finite number of variables. The processes considered
include Brownian motion (with different mean functions), Brownian bridge and several
other Gaussian models, in particular the Ornstein-Uhlenbeck process. Other mixture
models based on them are also considered. All these models are generated according
to the pattern (i) above. In addition, we have considered several ‘logistic-type’ models,
generated by using pattern (ii).

For each considered model all the variable selection methods (C, MI, etc.) are checked
for four sample sizes, n = 30, 50, 100, 200 and four classification methods (k-NIN, LDA,
NB and SVM). So, we have in total 100 x 4 x 4 = 1600 simulation experiments.

4.1. Classification methods

We have used the four classifiers considered in the paper by Ding and Peng [7], except
that we have replaced the logistic regression classifier (which is closely related to the
standard linear classifier) with the non-parametric k-NN method. All of them are widely
known and details can be found, e.g. in [24].

e Naive Bayes classifier (NB). This method relies on the assumption that the se-
lected variables are Gaussian and conditionally independent in each class. So a new
observation is assigned according to its posterior probability calculated from the Bayes
rule. Of course the independence assumption will often fail (especially in the case of
functional data). However, as shown in [7], this rule works as an heuristics which offers
sometimes a surprisingly good practical performance.

e The k-Nearest Neighbors classifier (k-INN). According to this method (already
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commented in the introduction of the paper) a new observation is assigned to the class
of the majority of its k closest neighbors. We use the usual Euclidean distance (or L?-
distance when the method is used with the complete curves) to define the neighbors.
The parameter k is fitted through the validation step, as explained below.

e Linear Discriminant Analysis (LDA). The classic Fisher’s linear discriminant is,
still today, the most popular classification method among practitioners. It is know
to be optimal under gaussianity and homoscedasticity of the distributions in both
populations but, even when these conditions are not fulfilled, LDA tends to show a
good practical performance in many real data sets. See, e.g., [25].

e Support Vector Machine (SVM). This is one of the most popular classification
methodologies in the last two decades. The basic idea is to look for the ‘best hyperplane’
in order to maximize the separation margin between the two classes. The use of different
kernels (to send the observations to higher dimensional spaces where the separation is
best achieved) is the most distinctive feature of this procedure. As in [7] we have used
linear kernels.

As an objective reference, our simulation outputs include also the percentages of correct
classification obtained with those classifiers based on the complete curves, i.e., when no
variable selection is done at all (except for LDA whose functional version is not feasible;
see [0]). This reference method is called Base. A somewhat surprising conclusion of
our study is that this Base method is often outperformed by the variable selection
procedures. This could be due to the fact that the whole curves are globally more affected
by noise than the selected variables. Thus, variable selection is beneficial not only in terms
of simplicity but also in terms of accuracy.

4.2. Computational details

All codes have been implemented in MATLAB and are available from the authors upon
request. We have used our own code for k-NN and LDA (which is a faster implemen-
tation of the MATLAB function classify). The Naive Bayes classifier is based on the
MATLAB functions NaiveBayes.fit and predict. The linear SVM has been performed
with the MATLAB version of the LIBLINEAR library (see [26]) with bias and solver
type 2, which obtains (with our data) very similar results to those of the default solver
type 1 but faster. The mRMR method has been implemented in such a way that different
association measures can be used to define it. An online implementation of the original
mRMR method can be found in http://penglab.janelia.org/proj/mRMR/| .

Following Ding and Peng [7], the criteria (1)) and (2]) to assess relevance and redundancy,
respectively, are in fact replaced by approximate expressions, numbered (6) and (7) in
[7]: as these authors point out, their expression (6) is equivalent to the relevance criterion
(1)) while (7) provides an approximation for the minimum redundancy criterion . The
empirical estimation of the distance covariance (and distance correlation) implemented
is the one proposed in Székely et al. [12] expression (2.8).

All the functional simulated data are discretized to (x(t1),...,x(t100)), where t; are
equi-spaced points in [0, 1]. There is a partial exception in the case of the Brownian-like
model, where (to avoid the degeneracy x(ty) = 0) we take t; = 5/105. Also (for a similar
reason), a truncation is done at the end of the interval [0, 1] in those models including
the Brownian Bridge.

The number k of nearest neighbours in the k-NN classifier, the cost parameter C' of the
SVM classifier and the number of selected variables are chosen by standard validation
procedures. [3]. To this end, in the simulation study, we have generated independent vali-
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Table 1. Performance outputs for the considered methods, using NB and the difference criterion, with
different sample sizes. Each output is the result of the 100 different models for each sample size.

Output (NB) Sample size MID  FCD RD VD CD Base
Average accuracy  n =30 78.08 7842 [7956| 79.24 [79.28| 77.28
n =50 79.64  79.34 [80.92]| 8045 [80.46| 78.29
n =100 80.76  80.06 [81.90| 81.34 [81.41| 78.84
n = 200 81.46  80.44 [82.55| 81.90 [82.05| 79.13
Average dim. red n =30 8.7 9.3 7.1 7.8 100
n =50 7.9 9.0 6.7 7.4 100
n =100 7.2 8.5 6.2 6.8 100
n = 200 6.6 8.1 5.7 6.4 100
Victories over Base n =30 57 61 69 -
n =50 66 61 74 70 -
n =100 77 61 81 -
n =200 84 62 85 -

dation and test samples of size 200. Each simulation output is based on 200 independent
runs.

4.3. A few numerical outputs from the simulations

We present here just a small sample of the entire simulation outputs, which can be
downloaded from www.uam.es/antonio.cuevas/exp/mRMR-outputs.xlsx . Some addi-
tional results, including a complete list of the considered models, can be found in the
Supplemental material file.

Tables [1] - [4] contain the results obtained with NB, k-NN, LDA and SVM respectively.
The boxed outputs in these tables correspond to the winner and second best method in
each row. The columns headings (MID, FCD, etc.) correspond to the different mRMR
methods based on different association measures, as defined in Section |3| (see the respec-
tive notations at the end of that section). The added letter ‘D’ refers to the fact that
global criterion to be maximized is just the difference between the measures and
of relevance and redundancy, respectively. There are other possibilities to combine
and . One could take for instance the quotient. The corresponding outputs methods
are denoted MIQ, FCQ, etc. in our supplementary material files. However, the outputs
are not given here for the sake of brevity. In any case, our results suggest that the
difference-based methods are globally (although not uniformly) better than those based
on quotients. The column ‘Base’ gives the results when no variable selection method is
used (that is, the entire curves are considered). This column does not appear when the
LDA method is used, since LDA cannot directly work on functional data.

The row entries ‘Average accuracy’ provide the average percentage of correct classifica-
tion over the 100 considered model outputs; recall that every output is in turn obtained
as an average over 200 independent runs. The rows ‘Average dim. red.” provide the aver-
age numbers of selected variables. The average number of times that every method beats
the ‘Base’ benchmark procedure is given in ‘Victories over Base’.

It can be seen from these results that the global winner is the R-based mRMR method,
with a especially good performance for small sample sizes. Note that the number of vari-
ables required by this method is also smaller, in general, than that of the remaining
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Table 2. Performance outputs for the considered methods, using k-NN and the difference criterion, with
different sample sizes. Each output is the result of the 100 different models for each sample size.

Output (k-NN) Sample size  MID  FCD RD VD CD Base
Avgerage accuracy  n = 30 80.09  79.26 80.54] 80.40  78.98
n =50 81.43  79.91 81.47| 81.33  80.34
n =100 83.01] 80.76 82.54 8232 81.99
n = 200 84.28|  81.34 83.37 8315  83.38
Average dim. red n =30 9.2 9.8 8.3 100
n =50 9.3 9.9 8.5 100
n =100 9.6 10.2 8.7 100
n = 200 9.8 10.4 8.8 100
Victories over Base n =30 71 51 69 -
n =50 45 70 68 -
n =100 38 60 65 -
n =200 33 56 58 -

Table 3. Performance outputs for the considered methods, using LDA and the difference criterion,
with different sample sizes. Each output is the result of the 100 different models for each sample size.

Output (LDA) Sample size  MID  FCD RD VD CD Base
Avgerage accuracy n =30 7872] 7687 [79.35| 7823 78.37 -

n =50 80.28 77.84 80.59 79.15  79.36 -

n = 100 81.85 78.97 81.88 80.22  80.47 -

n = 200 82.96 79.83 82.87 81.02 81.30 -
Average dim. red n =30 5.6 4.9 5.0 5.2 -

n =50 6.5 5.9 5.9 6.1 -

n = 100 7.9 7.5 7.1 7.4 -

n = 200 9.0 8.9 8.0 8.3 -

Table 4. Performance outputs for the considered methods, using SVM and the difference criterion,
with different sample sizes. Each output is the result of the 100 different models for each sample size.

Output (SVM) Sample size MID FCD RD VD CD Base
Avgerage accuracy  n = 30 81.53] 7941 8150 80.35 80.51 [81.91
n =50 82.61| 80.01 8245 81.00 8120 |82.99
n =100 83.75| 80.75 8345 8177 8200 |[84.11
n = 200 84.55| 8127 8422 8238 8261 [84.91
Average dim. red =30 10.5 1.0 [92] o7 100
n =50 10.5 1.1 (93] 97  [96] 100
n =100 107 113 [9.6] 100 [9.9] 100
n =200 10.9 1.5 [9.7] 101 [9.9] 100
Victories over Base n =30 37 39 42 -
n =50 42 34 44 -
n =100 32 41 47 -
n =200 48 29 42 -
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methods. Moreover, RD is the most frequent winner with respect to the Base method
(with all classifiers) keeping, in addition, a more stable general performance when com-
pared with the other variable selection methods. In this sense, R-based methods seem
both efficient and reliable. In agreement with the results in [7], the performance of the
FC-based method is relatively poor. Finally, note that the Base option (which uses the
entire curves) is never the winner, with the partial exception of the SVM classifier.

4.4. Ranking the methods

It is not easy to draw general conclusions, and clear recommendations for practitioners,
from a large simulation study. A natural idea is to give some kind of quantitative assess-
ment summarizing the relative merits of the different procedures. Many different ranking
criteria might be considered. Following Berrendero et al. [4], we have considered here the
following ones:

e Relative ranking: for each considered model and sample size the winner method (in
terms of classification accuracy) gets 10 score points and the method with the worst
performance gets 0 points. The score of any other method, with performance u, is
defined by 10(u —w)/(W —w), where W and w denote, respectively, the performances
of the best and the worst method.

e Positional ranking: The winner gets 10 points, the second best gets 9, etc.

e F1 ranking: the scores are assigned according to the current criteria in a Formula 1
Grand Prix: the winner gets 25 score points and the following ones get 18, 15, 10, 8,
6, and 4 points.

The summary results are shown in Tables [5|- 8 and a visual version of the complete (400
experiments) relative ranking outputs for the k-NN classifier is displayed in Figure
(analogous figures for the other classification methods can be found in the Supplemental
material document). The conclusions are self-explanatory and quite robust with respect
to the ranking criterion. The mRMR methods based on the distance correlation measure
are the uniform global winners. The results confirm the relative stability of R, especially
when compared with MI whose good performance is restricted to a few models.

Of course, the criteria for defining these rankings, as well as the idea of averaging
over different models, are questionable (although one might think of a sort of Bayesian
interpretation for these averages). Anyway, this is the only way we have found to provide
an understandable summary for such a large empirical study. On the other hand, since
we have made available the whole outputs of our experiments, other different criteria
might be used by interested readers.

5. Real data examples

We have chosen three real-data examples on the basis of their popularity in the literature
on Functional Data Analysis: we call them Growth (93 growth curves in boys and girls),
Tecator (215, near-infrared absorbance spectra from finely chopped meat) and Phoneme
(1717 log-periodograms corresponding to the pronounciation of the sounds ‘aa’ and ‘ao’).
The respective dimensions of the considered discretizations for these data are 31, 100 and
256. The second derivatives are used for the Tecator data. There are many references
dealing with these data sets so we will omit here a detailed description of them. See,
for example Ramsay and Silverman [27], Ferraty and Vieu [28] and Hastie et al. [24],
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Table 5. Global scores of the considered methods under three different ranking criteria using NB.
Each output is the average of 100 models

Ranking criterion (NB)  Sample size ~MID  FCD RD VD CD

Relative n =30 2.43 5.10 8.67 7.08 8.10
n =50 3.04 4.31 9.16 6.97 7.86
n = 100 3.38 3.92 9.28 6.84 7.82
n = 200 3.84 3.57 9.20 6.56 7.59
Positional n =30 6.65 7.62 8.84 8.21 8.68
n =50 6.82 7.43 9.12 8.19 8.46
n = 100 6.87 7.36 9.26 8.16 8.35
n = 200 6.96 7.30 9.18 8.17 8.42
F1 n = 30 11.64 15.11 18.64 16.37 18.24
n =50 12.13 14.54 20.24| 16.16 |16.98
n = 100 12.19 14.29 20.82| 16.17 |16.53
n = 200 12.38 14.09 20.54| 16.15 |16.92

Table 6. Global scores of the considered methods under three different ranking criteria using k-NN.
Each output is the average of 100 models

Ranking criterion (k-NN)  Sample size MID  FCD RD VD CD

Relative n =30 4.01 3.50 9.38 6.63 6.64
n =50 4.66 3.09 9.07 6.19 6.34
n =100 564 274 |8.96| [594] 578
n = 200 2.34 8.70 5.89 5.81
Positional n =30 7.24 7.14 9.43 8.17 8.02
n =50 7.42 7.08 9.39 8.14 7.97
n =100 7.71 7.04 9.26 8.25 7.74
n =200 8.02 6.95 9.13 8.21 7.69
F1 n =30 13.37 13.59 21.69 16.17 15.18
n =50 13.98 13.39 21.33 16.22 15.08
n =100 15.05 13.16 20.46 17.03 14.30
n =200 16.33 12.67 19.71 16.82 14.47

IHIH ‘||‘|\ | I

|
] '

00 350 400
Figure 2. Cromatic version of the global relative ranking table taking into account the 400 considered experiments
(columns) and the difference-based mRMR versions with the k-NN classifier: the darker de better.
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Table 7. Global scores of the considered methods under three different ranking criteria using LDA.
Each output is the average of 100 models

Ranking criterion (LDA)  Sample size MID  FCD RD VD CD

Relative n =30 5.00 1.98 8.94 6.24 6.47
n =50 574 193 [8.77 5.65 6.14
n =100 6.07] 194  [851 5.50 5.95
n =200 6.53] 208  [8.44 5.36 5.92

Positional n =30 7.57 6.68 9.31 8.17 8.27
n =50 778 678 [9.28 8.00 8.16
n =100 7.85 690  [9.14 8.02 8.09
n = 200 799 686 [9.11 8.01 8.03

F1 n =30 14.69 1181 [20.86] [1651] 1613
n =50 1556 1213 [20.60| 1572 [15.99 |
n =100 1581 1239 [19.86] [16.07] 15.87
n = 200 12.25  [20.11] 1579 15.56

Table 8. Global scores of the considered methods under three different ranking criteria using SVM.
Each output is the average of 100 models

Ranking criterion (SVM)  Sample size = MID  FCD RD VD CD

Relative n =30 6.32 2.99 8.10 5.34 5.57
n =50 6.63 3 8.28 5.07  5.70
n = 100 6.82 2.87 8.13 497  5.59
n = 200 7.19 2.45 8.24 5.06 5.28
Positional n =30 8.07 7.22 9.06 7.87 7.78
n =50 8.09 7.20 9.09 7.78 7.84
n = 100 8.22 7.19 9.02 7.84 7.73
n = 200 8.32 7.05 9.15 7.83 7.65
F1 n = 30 16.55 13.98 19.63 15.35 14.49
n =50 16.61 13.86 19.80 | 14.94 14.79
n =100 17.17 13.84 19.31| 15.29 14.39
n = 200 17.43 13.10 20.10| 15.09 14.28

respectively, for additional details.

The methodology followed in the treatment of these data sets is similar to that followed
in the simulation study, with a few technical differences. For Tecator and Growth data
sets, a standard leave-one-out cross-validation is used. Such a procedure turns out to be
too expensive (in computational terms) for the Phoneme data set. So in this case we have
carried out 50-fold cross validation; see, for example, [24, Sec. 7.10] for related ideas.

A summary of the comparison outputs obtained for these data sets using the different
mRMR criteria (as well as the benchmark ‘Base’ comparison, with no variable selection)
is given in Table [0l Again, the letter D in MID, FCD, etc. indicates that the relevance
and redundancy measures are combined by difference. The analogous outputs using the
quotient (instead of the difference) can be found in the Supplemental material file.

The conclusions are perhaps less clear than those in the simulation study. The lack
of a uniform winner is apparent. However, the R-based method is clearly competitive
and might even be considered as the global winner, taking into account both, accuracy
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Table 9. Performances of the different mRMR methods in three data sets. From top to bottom tables
stand for Naive Bayes, k-NN, LDA and linear SVM outputs respectively.

NB outputs
Output Data MID  FCD RD VD CD Base
Classification accuracy Growth 92.47 87.10 89.25 87.10 86.02 84.95
Tecator ~ 98.60  97.67 [99.53| [99.53] 98.14  97.21
Phoneme  79.03  [80.27] [80.49] 79.39  80.14  74.08
Number of variables Growth 2.0 2.2 1.3 31
Tecator 2.0 5.9 3.3 100
Phoneme  12.6 15.8 15.9 256
k-NN outputs
Output Data MID FCD RD VD CD Base
Classification accuracy  Growth 95.70 83.87 94.62 91.40 84.95 96.77
Tecator  99.07  99.07 [99.53] [99.53] 99.07  98.60
Phoneme  80.14 8048 [81.14] 80.31 [80.55| 78.80
Number of variables Growth 3.5 2.5 4.8 31
Tecator 5.7 3.0 4.0 100
Phoneme  15.4 17.7 16.5 256
LDA outputs
Output Data MID FCD RD VD CD Base
Classification accuracy Growth 94.62] 9140 [94.62] [94.62] 89.25 -
Tecator 95.81| 93.95  94.88 [9581| 94.88 -
Phoneme |79.50| 79.34  79.21  79.39  [79.98 -
Number of variables Growth 5.0 4.2 5.0 -
Tecator 8.8 5.6 -
Phoneme  19.1 14.6 17.1 12.0 -
SVM outputs
Output Data MID FCD RD VD CD Base
Classification accuracy  Growth 94.62 87.10 94.62 95.70 86.02 95.70
Tecator  98.14  99.07 [99.53] [99.53] 98.60  99.07
Phoneme [80.90| 80.83  80.67  80.78  80.67 |80.96
Number of variables Growth 5.0 2.5 4.2 5.0 31
Tecator 6.7 2.0 1.0 4.1 100
Phoneme 185 16.2 16.7 256

and amount of dimension reduction. The Tecator outputs are particularly remarkable
since RD and VD provide the best results (with three different classifiers) using just one
variable. Again, variable selection methods beat here the ‘Base’ approach (except for the
Growth example) in spite of the drastic dimension reduction provided by the mRMR
methods.
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6. Final conclusions and comments

The mRMR methodology has become an immensely popular tool in the machine learning
and bioinformatics communities. For example, the papers by Ding and Peng [7] and Peng
et al. [§] had 819 and 2430 citations, respectively on Google Scholar (by October 2, 2014).
As we have mentioned, these authors explicitly pointed out the need of further research,
in order to get improved versions of the mRMR method. The idea would be to keep
the basic mRMR paradigm but using other association measures (besides the mutual
information). This paper exactly follows such line of research, with a particular focus on
the classification problems involving functional data.

We think that the results are quite convincing: our extensive simulation study (based
on 1600 simulation experiments and real data) places the mRMR method based in the
R association measure by Székely et al. [12] globally above the original versions of the
mRMR paradigm. This is perhaps the main conclusion of our work. The good perfor-
mance of the distance correlation in comparison with the other measures can be partially
explained by the facts that this measure captures non-linear dependencies (unlike C and
FC), has a simple smoothing-free empirical estimator (dissimilar to MI) and is normalized
(different from V).

There are, however, some other more specific comments to be made.

(1) First of all, variable selection is worthwhile in functional data analysis. Accuracy can
be kept (and often improved) using typically less than the 10% of the original vari-
ables, with the usual benefits of the dimension reduction. This phenomenon happens
for all the considered classifiers.

(2) The average number of selected variables with the R- or V-based methods is also
smaller than that of MI and FC (that is, the standard mRMR procedures). This
entails an interpretability gain: the fewer selected variables, the stronger case for
interpreting the meaning of such selection in the context of the considered problem.

(3) The advantage of the R-based methods over the remaining procedures is more re-
markable for the case of small sample sizes. This looks as a promising conclusion
since small samples are very common in real problems (e.g. in biomedical research).

(4) In those problems involving continuous variables there is a case for using non-
parametric kernel density estimators in the empirical approximation of the mutual
information criterion. However, these estimators are known to be highly sensitive to
the selection of the smoothing parameter which can be seen as an additional unwel-
come complication. On the other hand, the results reported so far (e.g. in [§]) do
not suggest that kernel estimators will lead to a substantial improvement over the
simplest, much more popular discretization estimators (see e.g. [21), 22]).

(5) Still in connection with the previous remark, it is worth noting the lack of smoothing
parameters in the natural estimators of V and R.[I2] This can be seen as an additional
advantage of the R- or V-based mRMR method.

(6) The better performance of R when compared with V can be explained by the fact
that R is normalized so that relevance and redundancy are always measured
‘in the same scale’. Otherwise, one of these two quantities could be overrated by the
mRMR algorithm, specially when the difference criterion is used.

(7) The method FCD (sometimes suggested in the literature as a possible good choice)
does not appear to be competitive. It is even defeated by the simple correlation-based
method CD.

(8) In general, the difference-based methods are preferable to their quotient-based coun-
terparts. The quotient-based procedures are only slightly preferable when combined
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with methods (FC, V) where relevance and redundancy are expressed in different
scales. The outputs for these quotient-based methods can be found in the complete
list of results www.uam.es/antonio.cuevas/exp/mRMR-outputs.xlsx, and a sum-
mary is available in Supplemental material document.

(9) We should emphasize again that the goal of this paper is to propose new versions of
the mRMR method and to compare them with the standard ones. Therefore, a wider
study involving comparisons with other dimension reduction methods, is beyond the
scope of this work. The recent paper by Berrendero et al. [4] includes a study of this
type (always in the functional setting) whose conclusions suggest that mRMR might
be slightly outperformed by the Maxima-Hunting (MH) procedure proposed by these
authors. It also has a very similar performance to that of Partial Least Squares (PLS),
although PLS is harder to interpret. Moreover, the number of variables selected by
MH is typically smaller than those required by mRMR.

(10) Finally, if we had to choose just one among the considered classification methods, we
should probably take k-NN. The above commented advantages in terms of ease of
implementation and interpretability do not entail any significant price in efficiency.
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