
Chapter 6 
Advances in Cytometry Gating Based on 
Statistical Distances and Dissimilarities 

Hristo Inouzhe 

Abstract In this chapter, we overview some recent and relevant applications of dis-
crepancy measures (distances and dissimilarities) between statistical objects (such 
as random variables, probability distributions, samples) in the field of cytometry 
gating. Cytometry gating identifies cell populations in cytometry datasets, i.e., finds 
groups in multidimensional measurements of (hundreds of) thousands of single 
cells. From a statistical perspective, cytometry gating is a classification problem, and 
hence the applicable methods can be unsupervised, supervised, or semi-supervised. 
Since substantial amounts of variability are unavoidable in biological data, crucial 
tasks to help classification are establishing similarity between entire (or parts of) 
cytometry datasets and finding transformations between datasets that are optimal in 
some sense. A powerful approach to establish similarity between cytometry datasets 
is to model them as statistical objects and to use some distance or dissimilarity such 
as the Wasserstein distance, maximum mean discrepancy, and some f -divergence 
such as Kullback–Leibler or Hellinger or some statistic such as Friedman–Rafsky. 
We briefly overview the previous discrepancy measures and present how they are (or 
can be) used for grouping cytometry datasets, for producing templates from a group 
of datasets, or for interpolation between datasets. We provide instructive examples 
and further sources of information. The code for generating all figures is freely 
available at https://github.com/HristoInouzhe/Gating-with-Statistical-Distances. 

Keywords Flow cytometry gating · Optimal transport · Statistical distances 

6.1 Introduction 

Cytometry is concerned with the measurement (“metry”) of physical, chemical, 
and other properties of a cell (“cyto”) and, therefore, offers a characterization 
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of biological samples at the single-cell level. Cytometry has diverse and relevant 
applications in clinical and research immunology and oncology, for example, for 
diagnosing a range of hematologic (blood) cancers and diseases such as AIDS. 
Two prevalent techniques for characterizing single cells are flow cytometry (FC) 
and time of flight (mass) cytometry (CyTOF). In FC, cells tagged with fluorescent 
antibodies are exposed to lasers with different wavelengths, and the resulting 
light spectrum is measured and used to characterize a cell. An extensive and 
comprehensible description of flow cytometry and its applications can be found 
in [1]. In CyTOF, cells tagged with heavy metal isotope-coupled antibodies go 
through a mass spectrometer, and the resulting mass spectrum is used for the 
characterization of a cell. An up-to-date review on CyTOF and its applications 
can be found in [2]. Currently, the number of different antibodies, also known as 
markers, used to characterize a cell with CyTOF can get as high as 100, while 
for FC it can be close to 50. The number of cells that can be characterized in a 
single sample goes from around hundred thousand to more than several millions. 
Hence, cytometry data, obtained after appropriate measurement and preprocessing, 
belong to high-dimensional spaces with big sample sizes. Throughout this chapter, 
we will use cytometry data, cytometric data, cytometric datasets, and cytometries 
interchangeably. 

A crucial task in cytometry data analysis is to identify different cell populations, 
which amounts to discovering groups of cells that display some significant differ-
ences in one or a group of the measured markers. A reference for standardized cell 
types is [3]. This allows a variety of applications, for example, the cell types and 
their relative proportions, identified in each cytometry dataset corresponding to a 
different blood sample in a study, can be used to characterize an immune system 
reaction or an illness. The standard way of identifying cell populations is called 
manual gating. Examples of manual gating can be found in Figure 1 in [4] and 
Figure 169 in [1]. It consists of an expert selecting a pair of markers, then, in 
the corresponding bi-dimensional projection the expert selects a region where cells 
inside it are further inspected. That is, a new pair of markers is selected, the cells 
inside the previous region are represented in the corresponding bi-dimensional plot, 
and the expert selects a new region for further inspection. This continues until the 
cells inside the region of interest are considered to be of the same type. Hence, a 
single cell type is obtained by defining a sequence (hierarchy) of pairs of markers 
with corresponding regions of interest (also known as gates). Different cell types 
are defined by a different sequence of pairs of markers and the corresponding gates. 
This algorithmic procedure allows to identify the cell populations of interest or to 
discover new ones in a cytometry dataset. 

Manual gating has been extremely successful, but it presents several drawbacks 
[1, 4, 5]. Firstly, it is subjective and time-consuming. The selected hierarchy of pairs 
of markers and the corresponding gates depend on the knowledge and dedication 
of the expert. Hence, reproducibility of results between different experts may be 
low. The bi-dimensional inspection can be very time-consuming when the number 
of markers (the dimension of the space) is high (for example, around 30). In 
consequence, the time required for an expert or a small group of experts to annotate
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(label, gate) hundreds of high-dimensional cytometry datasets is a major bottleneck 
for modern studies. Secondly, high-dimensional information is lost, due to the 
sequential exploration of bi-dimensional projections, which makes it impossible 
to find and use intricate correlations between multiple markers as a criterion for 
defining a cell type. To address some of these limitations, automated or semi-
automated gating has been introduced using powerful tools based on the interplay 
of statistics and computer science commonly known as Machine Learning (ML) 
(see [5, 6]). 

The main applications of ML to cytometry gating originate from the tools 
developed for classification tasks and can be divided into three broad categories: 
unsupervised, supervised, and semi-supervised. Unsupervised techniques try to 
extract structure from the raw data without requiring knowledge of any ground 
truth. The primary tool to consider is cluster analysis or clustering, where data are 
divided into groups (clusters) where elements in the same group are more similar to 
each other, in some predefined way, than members of different groups. Clustering 
algorithms can be split into partitioning and agglomerative ones. Partitioning 
algorithms try to divide the data into a number of clusters such that an optimality 
criterion is fulfilled, where k-means is the best known and most widely used. 
Agglomerative algorithms start with single observations and merge them into 
clusters according to some dissimilarity criteria; hierarchical clustering is probably 
the most popular example. For readers interested in the topic, a good source is [7]. 
Clustering is applied to cytometry data as a way of discovering cell populations in 
high-dimensional spaces in an automatic, time-efficient, unbiased, and reproducible 
manner. Typically, after clustering a cytometry dataset, clusters are assigned, by an 
expert or another algorithm, to previously known cell populations or are considered 
as a new cell population. 

When using supervised learning, the approach to cytometry gating is fundamen-
tally different to the unsupervised case. The task is to automatically learn a gating 
strategy from previously manually or otherwise gated cytometry datasets to gate a 
new ungated one. In this case, contrary to the unsupervised setting, the algorithm 
directly assigns each cell in an unlabeled cytometry dataset to a specific cell 
population. The available tools are many, and we highlight quadratic discriminant 
analysis, tree-based methods as random forest or any approach based on neural 
networks. It is out of the scope of this chapter to present in detail the many tools of 
supervised learning, so we refer the interested reader to [8, 9]. The main point of 
supervised learning applied to cytometry data is to use high-quality historical data, 
i.e., previously expertly manually gated cytometry datasets, to gate a new ungated 
cytometry dataset in a time-efficient way which uses intricate and high-dimensional 
correlations between markers. The clinical setting, where well-established 
protocols lead to good historical data, is especially well suited for supervised 
methods. 

Semi-supervised learning can be considered a mixture between the previous 
settings where an unsupervised method requires some input from a human or a
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previous example for the gating task. This is a fairly common paradigm in cytometry 
gating since it offers a good trade-off between time efficiency and previously 
available or expert information. Examples of such applications can be found in 
[10, 11]. 

One of the main challenges with automatic or semi-automatic gating is the huge 
variability present in cytometric data, which ensues from a diversity of sources 
(see [12]). There is a natural biological variability, for example, the cytometry data 
from blood samples of the same individual in the same conditions measured on the 
same flow cytometer may present non-negligible differences. A technical source 
of variability, commonly referred to as batch effect, corresponds to measurements 
in different conditions (different days, locations, temperature, pressure, etc.), with 
different machines, with the same machine but different settings, with different 
staining antibodies, and so on. Another prominent source of variability comes 
from experts having different criteria for gating, i.e., different sequence of pairs 
of markers and gates, and the different level of completeness in a gated cytometry 
dataset, and it is common to gate only some cell populations of interest leaving 
the rest ungated. Therefore, any automatic gating method that deals with cytometry 
data from a variety of measurements must be robust to the previous types of 
variability while also correctly detecting meaningful variability coming from the 
natural response of the immune system, a cell population characteristic of a disease, 
a vaccine effect, and many others. 

To address the previous difficulties and aid the automatic gating workflow, 
a successful strategy has been to quantify variability of cytometric data (see, 
for example, [11, 13, 14]). Such variability quantification has been based on 
mathematical tools that measure the difference between raw or gated cytometry 
datasets. In essence, when the signal of interest is stronger than natural biological 
variability or batch effects, one expects higher values for the measure of variability. 
Hence, with an appropriate measure of difference or similarity between cytometric 
data, one can detect meaningful and meaningless variability, and this can guide the 
learning strategy for automated gating. Additionally, the possibility of establishing 
similarity between cytometry datasets allows for matching and alignment which 
are of common use in gating workflows. Matching refers to the problem of how 
to optimally assign a group of cytometry datasets to another group of cytometry 
datasets, while alignment (interpolation) refers to the problem of transforming, in 
some predefined way, one cytometry dataset into another cytometry dataset. 

The aim of this chapter is to introduce the reader to some of the main aspects 
of the cytometry gating workflow where statistical dissimilarities and distances, 
that is, measures of discrepancy (difference) between statistical objects, are used. 
Our goal is to provide some basic notions, while the interested reader can find 
much more details in the references. We presuppose that the reader has basic 
notions of probability, if it is not the case we refer to the chapters on random 
variables, integration (expectation), and joint distributions in the introductory books 
[15, 16]. The first section of this chapter is dedicated to introducing the mathematical
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modelling of cytometric data and to presenting some popular statistical discrepancy 
measures used in automated flow cytometry gating. In the second section, we 
present how statistical measures of dissimilarity can be used in the gating workflow, 
particularly: for grouping cytometric datasets, for producing template cytometry 
data, and for interpolation between cytometries. We finish this chapter with some 
brief concluding remarks. 

6.2 Dissimilarities and Distances 

In this section, the mathematical formalism for dealing with cytometric data 
is provided. Firstly, several useful ways of describing a cytometry dataset are 
presented. Secondly, we provide definitions for the notions of dissimilarity and 
distance between cytometric data. Finally, some of the most popular dissimilarities 
and distances used in gating are overviewed. 

A raw cytometry dataset X can be viewed as a collection of single-cell measure-
ments .X = {xi}Ni=1 with .xi ∈ R

m or equivalently as a matrix .X ∈ R
N×m, with N 

the number of cells in the measured sample and m the used markers. An example of 
two raw cytometries for two markers can be seen in the top of Fig. 6.1. A cytometric 
dataset can be viewed as an empirical probability distribution 

.η =
N∑

i=1

1

N
δxi

, (6.1) 

i.e., a probability distribution giving weights .1/N to each .xi ∈ X, or alternatively, as 
some probability distribution . ηX estimated from the raw sample X. As was noted in 
Sect. 6.1, N can be in the millions and m close to hundred, and therefore cytometry 
data can be considered high-dimensional and sample sizes are not particularly small. 
A gated cytometry is a cytometry dataset with labels for each cell, i.e., . X̃ =
{(xi, li )}Ni=1 with .xi ∈ R

m and .li ∈ L, where . L is some finite set of labels, usually 
the names of the cell populations from a manual or supervised gating or the label of 
the cluster from an unsupervised gating. An example of two gated cytometries can 
be seen in the bottom of Fig. 6.1, where the set of labels is .L = {1, 2, 3, 4}. A gated  
cytometry can also be viewed as a collection of probability distributions and some 
associated weights. Let us say that the number of cell populations or the number of 
clusters in the gated cytometry . X̃ is K; equivalently, we can write .|L| = K . Then, 
one can take .X̃ = {(μk,wk)}Kk=1 with weights .wk > 0 such that . 

∑K
k=1 wk = 1

and with . μk representing some probability distribution. Usually, . μk is obtained 
from a model-based or a non-parametric fit to the cells belonging to the k-th cell 
population or cluster, while . wk is the relative frequency of the cells in the k-th group 
with respect to the total amount of cells. For instance, one can fit a multivariate 
normal distribution to each group in the bottom of Fig. 6.1, and the collection of 
normal distributions and the relative frequencies of the points in the clusters are a
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Fig. 6.1 Top: Two ungated cytometries .X1 = {x1,i}43156i=1 and .X2 = {x2,i}10660i=1 with . X1, X2 ⊂
R
2. Middle: Non-parametric density estimation with kernel smoothing of . X1 and . X2. Bottom: 

Unsupervised gating of . X1 and . X2, which we denote . X̃1 and . X̃2, with a clustering method called 
tclust (see [17]) looking for four different cell types
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good representation of the cytometries at hand. Notice that the different ways of 
modelling cytometry data can be suitable for different purposes. Equipped with a 
formal definition of cytometry data, we can provide tools for comparing different 
datasets. 

A dissimilarity (discrepancy) between two cytometry datasets X and Y is a 
measure of how different the two objects are, with values close to zero if the two 
datasets are similar and high values if they are very different. Exactly the same 
concept can be applied to the gated versions .X̃, Ỹ which we omit for simplicity 
of exposition. Formally, a dissimilarity d is a symmetric divergence, and hence it 
fulfils: 

1. .d(X, Y ) ≥ 0 for any two cytometry datasets X and Y and .d(X, Y ) = 0 if and 
only if the datasets are the same, .X = Y (definition of divergence). 

2. .d(X, Y ) = d(Y,X) for any .X, Y (symmetry). 

A distance (or metric) between cytometry datasets, d, is a dissimilarity with an 
additional property: 

3. .d(X,Z) ≤ d(X, Y ) + d(Y,Z) for any cytometry datasets .X, Y,Z (triangle 
inequality). 

A question that arises naturally is what formalism to use for cytometry data 
and what is an appropriate dissimilarity or distance for different contexts. These 
questions are not independent, and in the next sections, we briefly present some 
of the most useful dissimilarities and their applications. In Table 6.1, one can find a 
summary with some general information about the discrepancy measures introduced 
in the next sections. 

6.2.1 Wasserstein Distance 

Wasserstein distance, sometimes referred to as the Earth mover’s distance, is a 
distance between probability distributions which is well suited for cytometric data 
since it is robust against small translations and small changes in probability [18]. 
Even more, it can handle distributions with non-overlapping supports, which is a 
typical situation in cytometry datasets. Broadly speaking, the Wasserstein distance 
measures the cost of optimally transporting one distribution into the other. The 
following are good references for the theory of optimal transport [19] and for the 
theory and computation [20]. 

Definition 1 (Optimal Transport Cost) Let X and Y be random variables on the 
spaces . X and . Y where .law(X) = μ .(X ∼ μ) and .law(Y ) = ν .(Y ∼ ν). Let  
.π(X ×Y) be the space of all joint probability measures on the product space . X ×Y
with first marginal . μ and second marginal . ν, i.e., such that for any joint probability 
.π ∈ π(X × Y), .

∫
Y dπ(x, y) = μ and .

∫
X dπ(x, y) = ν. Finally, let .c(x, y) be a 

cost function representing the cost of transporting a unit of probability mass from



122 H. Inouzhe

Ta
bl
e 
6.
1 

Su
m
m
ar
y 
of
 th

e 
st
at
is
tic

al
 m

ea
su
re
s 
of
 d
is
cr
ep
an
cy
 b
et
w
ee
n 
pr
ob

ab
ili
ty
 d
is
tr
ib
ut
io
ns
 p
re
se
nt
ed
 in

 th
is
 c
ha
pt
er
. T
yp
e 
in
di
ca
te
s 
if
 o
ne
 is
 d
ea
lin

g 
w
ith

 
a 
di
st
an
ce
 o
r 
a 
di
ss
im

ila
ri
ty
 a
s 
de
fin

ed
 i
n 
th
e 
be
gi
nn

in
g 
of
 S
ec
t.
6.
2.
 D

is
tr
ib
ut
io
ns
 i
nd

ic
at
es
 i
f 
bo

th
 d
is
cr
et
e 
an
d 
co
nt
in
uo

us
 p
ro
ba
bi
lit
y 
di
st
ri
bu
tio

ns
 c
an
 b
e 

ha
nd
le
d.
 D

en
si
ty
 e
st
im

at
io
n 
re
fe
rs
 t
o 
th
e 
ne
ed
 o
f 
de
ns
ity

 e
st
im

at
io
n 
to
 c
om

pu
te
 t
he
 r
es
pe
ct
iv
e 
m
ea
su
re
 o
f 
di
sc
re
pa
nc
y 
in
 t
he
 c
yt
om

et
ry
 g
at
in
g 
se
tti
ng

. 
T
he
 

fo
ur
th
 c
ol
um

n 
pr
es
en
ts
 i
f 
ba
ry
ce
nt
er
s 
(a
ls
o 
kn

ow
n 
as
 F
re
ch
et
 m

ea
ns
) 
ca
n 
be
 c
om

pu
te
d 
in
 a
n 
ef
fic

ie
nt
 w

ay
. 
T
he
 l
as
t 
co
lu
m
n 
pr
es
en
ts
 s
om

e 
fr
ee
ly
 a
va
ila

bl
e 

so
ft
w
ar
e 

Ty
pe

D
is
tr
ib
ut
io
ns

D
en
si
ty
 e
st
im

at
io
n 

E
ffi
ci
en
t b

ar
yc
en
te
r 

co
m
pu

ta
tio

n
So

ft
w
ar
e 

W
as
se
rs
te
in

D
is
ta
nc
e

D
is
cr
et
e,
 c
on
tin

uo
us

N
o

Y
es

R
: t
ra
ns
po
rt
 

Py
th
on
: P

O
T
 

M
ax
im

um
 m

ea
n 
di
sc
re
pa
nc
y

D
is
ta
nc
e

D
is
cr
et
e,
 c
on
tin

uo
us

N
o

Y
es

R
: k

er
nl
ab
 

Py
th
on
: E

as
y 
to
 

im
pl
em

en
t 

Sy
m
m
et
ri
c 
K
ul
lb
ac
k-
L
ei
bl
er

D
is
si
m
ila

ri
ty

D
is
cr
et
e,
 c
on
tin

uo
us

Y
es

N
o 

E
as
y 
to
 

im
pl
em

en
t 

H
el
lin

ge
r

D
is
ta
nc
e

D
is
cr
et
e,
 c
on
tin

uo
us

Y
es

N
o 

E
as
y 
to
 

im
pl
em

en
t 

Fr
ie
dm

an
-R
af
sk
y

D
is
si
m
ila

ri
ty

D
is
cr
et
e

N
o

N
o

Py
th
on
: P

yT
or
ch
 

R
 

(B
io
co
nd
uc
to
r)
: 

flo
w
M
ap



6 Advances in Cytometry Gating Based on Statistical Distances and Dissimilarities 123

x to y. The optimal transport (OT) cost is defined as the solution of the following 
optimal transport problem: 

. OTc(μ, ν) = min
π∈π(X×Y)

∫

X×Y
c(x, y)dπ(x, y)

= min
(X,Y )

{E(X,Y )c(X, Y ) : law(X) = μ, law(Y ) = ν}. (6.2) 

Notice that for discrete measures, that is, when . μ and . ν give masses to finite 
collections of points .xi, . . . , xn and .y1, . . . , yn′ , respectively, the OT cost (6.2) 
becomes 

.OTc(μ, ν) = min
π∈π(X×Y)

n∑

i=1

n′∑

j=1

πi,j c(xi, yj ), (6.3) 

where .π(X × Y) is the set of .n × n′-matrices with row sums equal to 
.(μ(x1), . . . , μ(xn)) and column sums equal to .(ν(y1), . . . , ν(yn′)). Let us stress 
that the discrete OT problem can be viewed as a soft assignment problem, where the 
mass of an origin point . xi is assigned in different proportions to the corresponding 
. yj points. This is in contrast with a hard assignment where origin points are assigned 
exclusively to one destination point. When .n = n′, the OT problem is equivalent to 
a hard assignment problem, i.e., a bijection between the sets .{xi}ni=1 and .{yj }nj=1. 

The p-Wasserstein distance is an Optimal Transport Cost where the cost function 
is a p-power of the usual Euclidean distance. 

Definition 2 (p-Wasserstein Distance) Let .X = Y ⊆ R
m, .EXp,EYp < 0 (finite 

p-moments), and .c(x, y) = ‖x − y‖p, with .‖ · ‖ representing the usual Euclidean 
distance. Then, the p-Wasserstein distance is defined as 

. dWp(μ, ν) =
(

min
π∈π(X×X )

∫

X×X
‖x − y‖pdπ(x, y)

)1/p

=
(
min
(X,Y )

{E(X,Y )‖X − Y‖p : law(X) = μ, law(Y ) = ν}
)1/p

. (6.4) 

Associated with .dW (μ, ν), under some mild conditions, there is a (not-
necessarily unique) optimal coupling T , which encodes an optimal way of 
transforming . μ into . ν. For example, when both probabilities are discrete, T 
is a matching indicating how much mass to send from each origin point to its 
corresponding matched points in the destination. A particularly important case is 
the 2-Wasserstein distance, where, when at least one of the probability distributions 
has a density, there is a unique optimal map T such that 

.d2
W2

(μ, ν) =
∫

X
‖x − T (x)‖2 dμ(x).



124 H. Inouzhe

Intuitively, a coupling T provides a mean to do interpolation (alignment) between 
probability distributions, and this interpolation is unique when at least one of the 
probabilities has a density and T is obtained through the 2-Wasserstein distance. 

A very attractive property of the Wasserstein distance is the fact that it allows to 
produce a “sort of average,” which respects geometrical properties of the underlying 
data. In applications to gating, this means that it is possible to obtain a template from 
a group of cytometry datasets. The tool we refer to is the Wasserstein barycenter. 

Definition 3 (Wasserstein Barycenter) Let .μ1, . . . , μn be a set of probability 
distributions belonging to .Pp(Rm), the set of probability distributions with finite p-
moment. Let .{wi}ni=1 be weights such that .

∑n
i=1 wi = 1. Then, the p-Wasserstein 

barycenter is the measure . μ∗ that solves the following optimization problem: 

.μ∗
Wp

= argminμ∈Pp(Rm)

n∑

i=1

wid
p
Wp

(μ,μi). (6.5) 

In the case of the 2-Wasserstein barycenter, if one of the probability distributions . μi

has a density, then the barycenter is unique. Furthermore, if all . μi have densities, 
there are unique optimal interpolations between each of them and the barycenter. 

For practical purposes, it is essential to be able to compute Wasserstein dis-
tances and barycenters efficiently. The task is relatively simple when dealing with 
location-scatter families such as the (multivariate) normal distribution, but for 
more general distributions there are only approximate algorithms. Furthermore, to 
improve efficiency, it is common to use some (entropically) regularized versions 
of the Wasserstein distance which are only approximations of it. For details on 
computation, we refer to [20]. However, this allows many real-world applications 
and in particular its application to different stages of cytometry gating workflows. 

6.2.2 Maximum Mean Discrepancy 

Maximum mean discrepancy (MMD) is a popular measure of difference between 
probability distributions. It is of great interest since it allows the use of many 
standard ML algorithms such as Support Vector Machines and Gaussian Process 
Regression with probability distributions. For the interested reader, extensive details 
can be found in [21]. 

Definition 4 (Maximum Mean Discrepancy) Let . μ and . ν be probability distribu-
tions on . X , and let . F be a class of real-valued functions defined on . X . The MMD 
with respect to . F is defined as 

. MMD(μ, ν,F) = sup
f ∈F

(∫

X
f (x)dμ(x) −

∫

X
f (x)dν(x)

)

= sup
f ∈F

(
EX∼μf (X) − EX∼νf (X)

)
. (6.6)
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Let . H be a reproducing kernel Hilbert space (RKHS) with kernel . κ , i.e., . H =
closure(span{κ(x, ·) : x ∈ X }) and .κ : X × X → R is a symmetric and positive 
definite function. Then (6.6) becomes 

. MMD2(μ, ν,H) =
∫

X×X
κ(x, x′)dμ(x)dμ(x′) − 2

∫

X×X
κ(x, y)dμ(x)dν(y)

+
∫

X×X
κ(y, y′)dν(y)dν(y′)

= EX,X′∼μκ(X,X′) − 2EX∼μ,Y∼νκ(X, Y ) + EY,Y ′∼νκ(Y, Y ′).
(6.7) 

If . κ is a universal kernel, that is, the corresponding RKHS . H is dense in the space 
of continuous and bounded functions in . X , then 

.MMD(μ, ν,H) = 0 if and only if μ = ν. (6.8) 

Therefore, in that setting, the MMD is a distance, and we will denote it 

.dMMD,H(μ, ν) = MMD(μ, ν,H). (6.9) 

A well-known universal kernel in . Rm is the Gaussian kernel with parameter . λ, given  
by 

.κ(x, y) = exp

(−‖x − y‖2
2λ2

)
. (6.10) 

We stress that there are other universal kernels in . Rm and that the choice of kernel 
is non-trivial and it is problem specific. 

There is an equivalent barycenter problem for MMD for a set of measures 
.{μi}ni=1, which can be written as 

.μ∗
MMD,H = argminμ∈P(Rm)

n∑

i=1

wid
2
MMD,H(μ,μi), (6.11) 

where the barycenter has the following expression (see [22]): 

.μ∗
MMD,H =

n∑

i=1

wiμi. (6.12) 

In the setting of MMDs, optimal interpolation between measures, i.e., following 
geodesics, is straightforward since a geodesic between . μ and . ν is given by . μt = (1−
t)μ+tν for .0 ≤ t ≤ 1. It is worth mentioning that barycenters coming from Eq. (6.5) 
with .p > 1, particularly the 2-Wasserstein distance, have significantly different
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geometrical properties than barycenters coming from (6.11). A clear example can 
be seen in the top of Fig. 6.3. 

Computations of .dMMD,H based on (6.7) are fairly straightforward since for 

samples .X = {xi}ni=1 and .Y = {yi}n′
i=1 the following is an unbiased estimator: 

. d2
MMD,H,n

= 1

n(n − 1)

∑

x �=x′∈X

k(x, x′) − 2

nn′
∑

x∈X,y∈Y

k(x, y)

+ 1

n′(n′ − 1)

∑

y �=y′∈Y

k(y, y′).

The computation of the barycenter in the setting of MMD can be found in [22]. 

6.2.3 Kullback–Leibler Divergence 

The Kullback–Leibler (KL) divergence, which fulfils only the first criteria of a 
dissimilarity and is also called relative entropy, is a very popular way of measuring 
the difference between two probability distributions. The KL divergence is probably 
the most notorious representative of a family of difference measures between 
probability distributions known as f -divergences. More information about the topic 
can be found in Section 8.1 in [20]. 

Definition 5 (Kullback–Leibler Divergence) For discrete distributions . μ and . ν
defined on the same space . X , the Kullback–Leibler divergence is defined as 

.KL(μ, ν) =
∑

x∈X
μ(x) log

μ(x)

ν(x)
. (6.13) 

When . μ and . ν have densities . fμ and . fν and are defined on .X ⊆ R
m, the Kullback– 

Leibler divergence takes the form 

.KL(μ, ν) =
∫

X
fμ(x) log

fμ(x)

fν(x)
dx. (6.14) 

It is important to notice that if . μ assigns probability to a set (region, points) 
where . ν does not assign any probability, .KL(μ, ν) = ∞, and if it is the other way 
around, then .KL(μ, ν) = −∞. Therefore, the KL divergence is better suited for 
absolutely continuous measures, that is, for measures that assign zero probability to 
the same sets. One possible way to obtain a dissimilarity from the KL divergence is 
the Symmetric KL divergence defined as 

.dKL(μ, ν) = KL(μ, ν) + KL(ν, μ). (6.15)
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The computation of the KL divergence in the continuous case requires an 
estimation of the densities and then a numerical computation of the integrals which 
makes it very sensible to the curse of dimensionality. Additionally, when absolute 
continuity is not strictly fulfilled, one may need to allow some tolerance for the KL 
divergence to return meaningful results. 

6.2.4 Hellinger Distance 

The Hellinger distance is another popular measure of the difference between 
probability distributions. As the KL divergence it also belongs to the family of f -
divergences. It presents some desirable properties, for example, it can be easily 
used to define kernel functions (see [23]), something that is not the case with 
the Wasserstein distance or the KL divergence. It is also more computationally 
amenable than the KL divergence. 

Definition 6 (Hellinger Distance) For discrete distributions . μ and . ν defined on 
the same space . X , the Hellinger distance is defined as 

.d2
H (μ, ν) = 1

2

∑

x∈X

(√
μ(x) − √

ν(x)
)2

. (6.16) 

For . μ and . ν with densities .fμ, fν defined on .X ⊆ R
m the Hellinger distance takes 

the form 

.d2
H (μ, ν) = 1

2

∫

X

(√
fμ(x) − √

fν(x)
)2

dx. (6.17) 

Notice that in the continuous case (6.17), the Hellinger distance is the . L2 distance 
between the square roots of the density functions. 

As for the KL divergence, when applied to the cytometry gating setting, 
the computation of the Hellinger distance requires estimating densities and then 
numerically computing an integral. Hence, it presents similar difficulties as the KL 
divergence case, although it handles better probabilities that assign zero measure to 
different sets. 

6.2.5 Friedman–Rafsky Statistic 

The Friedman–Rafsky (FR) statistic [24] was conceived as a statistic for testing if 
two multivariate samples came from the same distribution. The basic concept is the 
following, if the two samples come from the same distribution, they should be well
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mixed in the space of markers . Rm. The technically difficult aspect is how to measure 
the “mixedness” in space. 

Broadly speaking, to measure how well mixed are two samples . X = {x1, . . . , xn}
and .Y = {y1, . . . , yn′ } with .xi, yj ∈ R

m, one creates a complete graph considering 

.{zk}n+n′
k=1 = {x1, . . . , xn, y1, . . . , yn} as the vertices and the respective Euclidean 

distance .‖zk − zk′ ‖ as the weight for the edge connecting .zk, zk′ . From the complete 
graph, one extracts the minimum spanning tree (MST), which is a subgraph of the 
complete graph that connects all vertices, without cycles and with the minimum 
total edge weight. Once the MST is obtained, all its edges connecting points from 
the two different samples are removed. The number of remaining subgraphs, r , is an  
indication of how well mixed the data are. An insightful example of this procedure 
can be found in [25]. For example, .r = 2 means that there was only one edge in the 
MST connecting the two samples, and this can be interpreted as the samples being 
not well mixed. If the value of r is high, many edges in the MST were connecting 
points from the different samples and this can be interpreted as well mixedness. 
The FR statistic compares r to its expected value and normalizes with the standard 
variance. The formal definition is the following. 

Definition 7 (Friedman–Rafsky Statistic) In the setting and notation of the pre-
vious paragraph, let us define .N = n + n′, and 

. m = 2nn′

N
+ 1,

σ 2 = 2nn′

N − 1

(
2nn′ − N

N
+ (c − N + 2)(n′ + N(N − 1) − 4nn′ + 2)

(N − 2)(N − 3)

)
,

where . c is the total number of edge pairs sharing common nodes in the MST. Then, 
the Friedman–Rafsky statistic is defined as 

.FR(X, Y ) = r − m

σ
. (6.18) 

From the FR statistic (6.18), one can define a dissimilarity between two 
cytometries X and Y , or the associated empirical distributions, as 

.dFR(X, Y ) = |FR(X, Y )| . (6.19) 

The main computational challenge for obtaining the FR statistic is the computa-
tion of the MST. This can be done with standard tools in popular libraries such as 
igraph in R and scipy in Python.
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6.3 Applications to the Gating Workflow 

In this section, we present some fundamental applications of statistical distances and 
dissimilarities to the different gating workflows. In such workflows, the objective 
is to gate big amounts of cytometric data with no or minimum amount of expert 
intervention. As is expected, this is where automatic gating is the most useful. 
Since distances and dissimilarities allow to compare cytometric data, their main 
applications are the following: 

• Group cytometry datasets into homogeneous groups, which reduces variability 
[11, 14, 25] 

• Produce templates, through barycenters and other techniques, that can summarize 
the information in a group of cytometric datasets [13, 14, 26] 

• Interpolate between cytometric datasets, allowing for gates in one cytometry 
dataset to be transferred to another or allowing for mitigation of batch effects 
[11, 26–29] 

6.3.1 Grouping Cytometric Datasets 

The idea behind grouping cytometry data is straightforward, since variability is so 
high it is useful to form groups of cytometric data where variability is lower and 
then work on these more homogeneous groups of datasets. Therefore, the objective 
is to do clustering on cytometric datasets. A simple procedure is the following, 
for a set of cytometry datasets .{X1, . . . , Xn}, gated or ungated, choose a distance 
or dissimilarity d and produce a distances (dissimilarities) matrix .Dd such that 
.[Dd ]ij = d(Xi,Xj ). Then, one can use . Dd for hierarchical clustering, although 
other clustering options are also possible, and obtain a partition of the cytometry 
datasets. The main difficulty here is to produce a distance matrix . Dd according to 
how cytometry data are modelled. 

6.3.1.1 Ungated Cytometry Datasets 

The first case to consider is when data are samples, i.e., . Xi = {xi,1, . . . , xi,ni
} ⊂

R
m for .1 ≤ i ≤ n, with an associated empirical probability distribution to 

each . Xi . This means that suitable candidates for a measure of similarity are the 
Wasserstein distance (6.4), the maximum mean discrepancy distance (6.7), and the 
dissimilarity based on the Friedman–Rafsky statistic (6.19). For example, one can 
consider the cytometry datasets in the top of Fig. 6.1 and compute the respective 
distance. Depending on the sample size of the cytometries involved, to lower the 
computational and memory cost of the distance calculation for . dWp , (6.4), and 
.dMMD,H, (6.9), multivariate adaptative extensions of histograms can be used 
(see, for example, [30, 31] and the references therein). Hence, a dataset . Xi is
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approximated as .X̂i = {(cj , pj )}n
′
i

j=1, where .cj ∈ R
m is a centroid corresponding 

to the points in the hyperbox j , . pj is the relative weight of the points in the same 
box, and .n′

i << ni is the number of hyperboxes. Therefore, the original . Dd is 

approximated by .[D̂d ]ij = d(X̂i, X̂j ). Notice that non-parametric multivariate 
density estimation when the number of markers m is high is quite hard, and therefore 
using directly the symmetric KL divergence (6.15) or the Hellinger distance (6.17) 
is not a good idea in this situation. However, for some small number of markers or 
for some projections into low-dimensional subspaces, one can use those distances. 
With the density estimations of the middle of Fig. 6.1, one can compute the Hellinger 
distance or the symmetric KL divergence between the two cytometries . X1 and . X2. 

6.3.1.2 Gated Cytometry Datasets 

A second important case is when (manually, with supervised or unsupervised 
methods) gated cytometry data are available, i.e., one has cell measurements 
and their labels for different samples. Hence, the setup is .{X̃1, . . . , X̃n} where 
.X̃i = {(xi,1, li,1), . . . , (xi,ni

, li,ni
)} with .xi,j ∈ R

m (the measurements) and . li,j ∈
Li = {	i,1, . . . , 	i,ki

} (the labels). Here, we are allowing different cytometries 
to have different cell types, different names for the same cell type, or different 
numbers of clusters. In the bottom of Fig. 6.1, we have two gated cytometries 
. X̃1 and . X̃2, each with four different clusters with the same space of labels, . L =
{1, 2, 3, 4}. An alternative description of a gated cytometric dataset is given by 
.C̃i = {{Ci,l}l∈Li

, μi}, where .Ci,l = {x : (x, l) ∈ X̃i} is a grouping of all 
cells with label l and . μi is a discrete probability distribution on the clusters, i.e., 
.
∑ki

j=1 μi(Ci,	j
) = 1 and .μi(Ci,	j

) ≥ 0. Therefore, .Ci,l is the collection of all 

points in the dataset . X̃i that have label l, i.e., the cluster corresponding to label l in 
. X̃i . A gated cytometry is a collection of the clusters corresponding to each label and 
a measure that associates weights to each cluster. In this setting, one can compute 
the discrete optimal transport cost (6.3) between two cytometries .C̃i , C̃j as 

.OTc(μi, μj ) = min
π∈π

(
{Ci,l}l∈Li

×{Cj,l}l∈Lj

)

ki∑

i′=1

kj∑

j ′=1

πi,j c(Ci,	i′ , Cj,	j ′ ). (6.20) 

There is a naive transport cost given by 

. NTc(μi, μj ) =
ki∑

i′=1

kj∑

j ′=1

μi(Ci,	i′ )μj (Cj,	j ′ )c(Ci,	i′ , Cj,	j ′ ).

This allows to introduce the following distances matrix between gated cytometries:



6 Advances in Cytometry Gating Based on Statistical Distances and Dissimilarities 131

.[Dd ]i,j = dsim,c

(
C̃i , C̃j

)
= OTc(μi, μj )

NTc(μi, μj )
. (6.21) 

To fully define the similarity distance, .dsim,c, which was introduced in [32], one has 
to specify c, the cost function between clusters. Equivalently, one can provide a cost 
matrix .[cij ]i′,j ′ = c(Ci,	i′ , Cj,	j ′ ). This is fairly straightforward, good candidates 
for the cost function are the distances that we have already discussed in Sect. 6.2. 
If clusters are modelled as discrete samples, one can use the Wasserstein or MMD 
distances or the Friedman–Rafsky dissimilarity. If one uses some density estimation 
for each cluster, typically one assumes that clusters have a multivariate normal shape 
(or are members of some other location-scale family), and the KL divergence and the 
Hellinger distance are also available. For more details, we refer to [14]. An example 
of different cost matrices . c12 between two gated cytometries . X̃1 and . X̃2 is given in 
Fig. 6.2. 

The solution of the OT problem (6.20) provides a soft assignment of the clusters 
of one cytometry to the clusters of the other. This is just one of the possible 
assignment strategies. Another one is to use the solution of a generalized edge 
covering (GEC) problem, where it is allowed for some origin and end points not 
to be matched. For more details, we refer to [13]. Hence, a dissimilarity measure 
can be the cost of the GEC problem, which yields 

. [Dd ]i,j = dGEC,c,λ(C̃i , C̃j )

= min
BG∈ bigraphs between{Ci,l}l∈Li

and {Cj,l}l∈Lj

∑

{C,C′}∈BG

c(C,C′) + λ|Vuc|,

(6.22) 

where .|Vuc| is the number of clusters (vertices of the bigraph) that are unassigned, 
. λ is a free parameter that penalizes unassigned clusters (vertices), and .c(C,C′) is a 
cost between clusters of the two cytometries. Notice that the cost c can be chosen in 
the same fashion as for the similarity distance (6.21). 

6.3.2 Template Production 

A prominent feature of using statistical distances in cytometry gating workflows is 
that they allow the production of a synthetic cytometry dataset, which we will also 
call a template, that encapsulates the information of a set of cytometry datasets. 
This is useful since a template of a group of cytometry datasets can be manually 
or otherwise gated and then used to gate the cytometry datasets from which it was 
obtained. This can result in a significant reduction in the amount of expert input in 
the workflow. Notice that having a template that resembles the group of datasets that 
it represents facilitates comparison between a new cytometry dataset and the group 
itself, and it boils down to a comparison between the new cytometric data and the
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Fig. 6.2 Representation of the normalized cost matrix, .c12/max c12, between the cell types 
(clusters) found in the two gated cytometries . X̃1 and . X̃2 in the bottom of Fig. 6.1, for different 
distances between cell types. Notice that .[c12]ij = d(C1,	i

, C2,	j
) = d(C1,i , C2,j ), with 

.L1 = L2 = {1, 2, 3, 4}. The distance d can be the 2-Wasserstein distance (6.4), the squared 
MMD distance (6.7) with the vanilla kernel .κ(x, y) =< x, y > (the usual scalar product), the 
squared MMD distance (6.7) with the Gaussian kernel (6.10) with  .λ = 10/

√
2, the Hellinger 

distance (6.17), and the symmetric KL divergence (6.15) and the FR dissimilarity (6.19). The 
plot’s interpretation is the following: the black 1 (Cluster 1 in cytometry 2) over the x-label value 1 
(cluster 1 in cytometry 1) is the lowest of all the other black numbers (rest of clusters in cytometry 
2) at the same x-label value. Hence, in 2-Wasserstein distance, cluster 1 in Cytometry 1 is the 
closest to cluster 1 in Cytometry 2. This yields that only the 2-Wasserstein distance, the MMD 
with vanilla kernel, and the Hellinger distance have that the closest to clusters 1, 2, 3, and 4 of 
Cytometry 1 are clusters 1, 2, 3, and 4 of Cytometry 2, respectively, which correctly captures 
which clusters represent the same cell types 

template. This reduces the amount of comparisons required and facilitates assigning 
a new cytometry to a group of datasets that is most similar to it. From the previous 
sections, it is clear that a good candidate for a template, but not the only possible 
one, is the barycenter of a group of cytometric datasets. Below we present some 
strategies on how to produce template cytometries.
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6.3.2.1 Ungated Cytometry Datasets 

To obtain a template sample .T = {t1, . . . , tnT
} ⊂ R

m from a group of raw 
cytometry samples .{X1, . . . , Xn} (as in Sect. 6.3.1.1), one can solve a barycenter 
problem as the one introduced in Eqs. (6.5) and (6.11). One gets T as a sample 
from the distribution .μ∗

Wp
or .μ∗

MMD,H, respectively. The main difficulty with this 
approach is computation. For low-dimensional subspaces of markers, .m ≤ 3, 
and for relatively small cell counts (sample sizes), it can be done in reasonable 
computation time. However, to tackle more realistic situations further work in 
the field of barycenter computation is required. A toy example is given in the 
top of Fig. 6.3. The synthetic cytometries, i.e., the plotted samples of size 1500, 
encapsulate the common information present in . X1 and . X2 which are plotted in the 
top of Fig. 6.1. These templates, or barycenters, can be used as a representation of 
the set of cytometric datasets .{X1, X2}. 

6.3.2.2 Gated Cytometry Datasets 

A workaround to the problem faced in the ungated setting is to try to work with 
gated datasets. Since there are many efficient unsupervised gating procedures, this 
is a viable option. For extensive reviews on such methods, we refer to [4, 6, 33–35]. 
Hence, we are in the setting of Sect. 6.3.1.2 and there is a collection of cytometry 
datasets where each individual dataset is modelled as a collection of clusters. 
Therefore, one has .{Ci = {Ci,l}l∈Li

}ni=1. This is the setting represented in the 
bottom of Fig. 6.1, where we have two cytometries each formed by four clusters 
labelled from one to four. There are different approaches on how to obtain a template 
in this setting. 

One way, which is used in [14], is to pool all clusters together, hence obtaining 
the set .{C1,	1,1, . . . , C1,	1,k1

, . . . , Cn,	n,1 , . . . , Cn,	n,kn
} = {Ci}k1+···+kn

i=1 , and try to 
group elements in this set. The rationale behind this is that similar clusters, with 
respect to some dissimilarity (distance) measure, will represent the same, or at least 
similar, cell types, and hence grouping them together will allow to separate different 
cell types. Once different cell types are separated, one can obtain a template for 
each cell type. The collection of cell type templates is the template for the group 
of cytometry datasets. Once more, a viable strategy is to obtain a distance matrix 
.[Dd ]ij = d(Ci , Cj ) and to use hierarchical clustering. As previously, the distance 
between clusters d can be chosen as in Sect. 6.3.1.2. In the particular case when 
each cluster is modelled as a member of a location-scale family, there is an efficient 
extension of the k-means algorithm known as k-barycenter (for details see [36]), 
which produces a template for .{Ci}k1+···+kn

i=1 with k different cell types. 
Another possible strategy, the one followed in [13], is to start with individual 

cytometric datasets and produce a template of the two closest ones. Then, since 
templates can be handled exactly the same as the other cytometric datasets, one 
can continue merging the two closest cytometric datasets until there is only one
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Fig. 6.3 Examples of different templates for a group of cytometric datasets. The goal is to obtain 
a synthetic cytometry that captures the information of both cytometries in Fig. 6.1. For ease of 
computation, we select the template to have 1500 cells. Top: Templates obtained from the ungated 
cytometry datasets X1 and X2 in the top of Fig. 6.1. We see that the most relevant information of 
both cytometries is well represented, with the 2-Wasserstein barycenter producing some spurious 
clusters. Bottom: Templates obtained from the gated versions of X1 and X2, X̃1 and X̃2, plotted  
in the bottom of Fig. 6.1. We considered clusters that are closest in 2-Wasserstein distance to 
correspond to the same cell type (see Fig. 6.2) and obtained a barycenter for each cell type. 
Again, templates seem to represent the original information well, with the 2-Wasserstein template 
producing the more homogeneous cell types
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last template of the whole group of cytometric datasets. Hence, in this approach it 
is important to have a distance between gated cytometries such as .dsim,c (6.21) or  
.dGEC,c,λ (6.22). Notice that the last one comes with a hard assignment which can 
be used as a recipe for which clusters to merge together and which ones to leave 
unmerged. 

To complete the template production, one needs to describe a method for 
obtaining a template from the clusters that have been grouped together as rep-
resenting the same or similar cell types. A straightforward cell template can be 
achieved by pooling together all the points of the clusters grouped together. A 
more sophisticated approach is to solve a barycenter problem. Here, solving the 
barycenter problem (6.11) to obtain .μ∗

MMD,H will give a template which will be 
fairly similar to the one obtained by pooling. By solving a Wasserstein barycenter 
problem (6.5), one can obtain a different result. As mentioned in the previous 
section, when the space is high dimensional and the involved clusters have hundreds 
of thousands of points, one may need to fit location-scale models with densities to 
the clusters and then solve a 1-barycenter problem. In the bottom of Fig. 6.3, we  
have the templates obtained, from grouping together each cluster from . X̃1 to its 
closest counterpart in . X̃2, and, then, the barycenters for each cell type are obtained 
by a 2-Wasserstein barycenter, an MMD barycenter or by pooling. We see that the 
resulting templates are a sensible representation of the information stored in the two 
original cytometries. 

6.3.3 Interpolation Between Cytometry Datasets 

The ability to transform one cytometry dataset into another in some controlled 
fashion is very desirable. Two major consequences are the following: firstly, one 
can translate gates used to gate one of the cytometric datasets to gate the other one, 
and secondly, one can transform several cytometry datasets to try to reduce batch 
effects in a procedure known as normalization. In this section, we describe several 
methods based on statistical distances. 

6.3.3.1 Gate Transportation 

Typically, manual gating is a one- or a two-dimensional hierarchical procedure, and 
therefore to use gates from a gated cytometry, one needs to be able to interpolate 
in one or two dimensions and not in the full space of m markers. This is a 
considerable reduction in dimension and makes computation far easier. A good tool 
for interpolation in this setting is the transport map T , whenever it exists, associated 
with the solution of the optimal transport problem (6.4). Hence, in order for the 
transport maps to exist and be unique, we will assume that we are working with the 
2-Wasserstein distance and that the cytometric datasets are samples from probability
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distributions with densities. Although transport maps in two dimensions can be used 
to transport two-dimensional gates from one cytometry dataset to another one, it is 
far more technical and it is out of the scope of this chapter. On the other hand, the 
one-dimensional counterpart provides good intuition and can be broadly applied. 
The optimal map between two measures . μ and . ν defined in . R is given by 

.T (x) = F−1
ν ◦ Fμ(x), (6.23) 

where .Fμ is the cumulative distribution function (CDF) of . μ and .F−1
ν is the 

quantile function (QF), also known as the generalized inverse, of . ν. For a sample 
.X = {x1, . . . , xnX

} from . μ and .Y = {y1, . . . , ynY
} from . ν, a plug-in estimator is 

obtained by 

.Tn(x) = F−1
n,ν ◦ Fn,μ(x), (6.24) 

where .Fn,μ is the empirical CDF associated with the sample X and .F−1
n,ν is the 

empirical QF associated with the sample Y . Notice that when dealing with one-
dimensional projections, a gate associated with marker . mi is just a value .θi ∈ R. 
Therefore, the transported version of the gate is .Tn(θi), and it is the one to be used 
for gating Y with respect to marker . mi . Examples of this gate transportation can be 
seen in Fig. 6.4. Let us stress that here the samples are just the one-dimensional 
projections into marker . mi . We want to point out that this alignment method 
can replace or be used alongside the alternatives in the workflows presented in 
[11] and [26]. 

A different approach, also based on the OT problem and introduced in [27], tries 
to reweight the learning sample, the one that is gated, in order to minimize the OT 
cost to the ungated cytometry dataset. The optimal weights can be understood as the 
relative frequencies of the original gated cell types in the new cytometry dataset. 
Since, usually, the relative frequencies are relevant for diagnosis, the previous 
procedure can be good enough in many practical situations. Being that the origin 
cytometry is gated, one can write its empirical distribution function as 

.η =
K∑

k=1

|C1,	k
|

∑K
j=1 |C1,	j

|

⎛

⎝
∑

x∈C1,	k

1

|C1,	k
|δx

⎞

⎠ =
K∑

k=1

n	k

n1
η	k

, (6.25) 

where .|C1,	k
| = n	k

is the number of points that have labels . 	k , . 
∑K

j=1 |C1,	j
| = n1

is the total number of cells in . C1, and . η	k
is the empirical distribution of the points 

with label . 	k . A reweighting of . η with weights .w = {wk}Kk=1, with .wk > 0 and 

.
∑K

k=1 wk = 1, is given by 

.η(w) =
K∑

k=1

wkη	k
. (6.26)
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Fig. 6.4 Examples of gate transportation using the OT map (6.24). In solid black, we have 
the density estimation of projections into two markers of an origin cytometry X. Some one-
dimensional gates are given in dashed black, which separate low and high values in the respective 
marker. Transported gates, which do not require any human input, are presented in dashed red.
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Let us call the empirical distribution associated with the ungated cytometry . X2 =
{x2,1, . . . , x2,n2}, .η′ = ∑

x∈X2
1
n2

δx . Then, one has the following minimization 
problem: 

.w∗ = argmin
w

d2
W2

(η(w), η′). (6.27) 

An approximate solution of the regularized version of this problem, i.e., with the 
entropically regularized Wasserstein distance as approximator of the Wasserstein 
distance, can be computed efficiently (see details in [27]) and its solution . w∗
represents the relative weights in the new cytometry . X2 of the cell types present 
in . C1. It is also possible to obtain a full gating of . X2 if one has access to the optimal 
coupling. 

6.3.3.2 Reduction of Batch Effects 

When the problem of interest is the reduction of batch effects, there are two distinct 
strategies. One is to look for cell type-dependent normalizations, and therefore one 
assumes that batch effects are not independent from the cell types. Another is to try 
to treat batch effects as a common perturbation to the whole dataset and therefore as 
cell type independent. The main setting is the following: there are batches .{Bj }NB

j=1, 
where each batch is a collection of cytometric datasets . Bj = {Xj,1, . . . , Xj,Nj

}
such that .Xj,i = {xj,i,1, . . . , xj,i,nj,i

} ⊂ R
m. 

A cell type-dependent normalization may proceed by previously gating in an 
unsupervised fashion the available datasets, and then producing a normalization 
dependent on the groups (as in [26]), or, alternatively, it can affect only some gates 
in a gating hierarchy (as in [37]). The main tools required in those settings are the 
production of an “average” element for a group of 1D samples and the interpolation 
between two 1D samples. When possible, reducing batch effects is helped if one can 
have a control sample at each batch (see [26]). Therefore, one can find the empirical 
quantile function of the barycenter of the 1D projections onto the marker . mq of the 
control sample in the different batches, which we denote as .F−1

n,∗,q . For details on the 
computation, see Remark 9.6 in [20]. Hence, for each batch j , there is a transport 
map 

.Tn,j,q(x) = F−1
n,∗,q ◦ Fn,j,q(x), (6.28) 

where .Fn,j,q is the empirical CDF associated with the projection onto the marker 
. mq of the control sample in batch j . A normalization of marker . mq for batch j 
corresponds to applying .Tn,j,q to the . mq projection of the other cytometric datasets 
of batch j . The full normalization is the resulting data for the correction of all 
(or some) markers. When normalization is cell type specific, this is done for each 
cell type and the corresponding markers. We stress that in [26, 37] methods not
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directly related to statistical measures of discrepancy are used. However, adopting 
the techniques presented in this section is fairly simple. 

A different approach consists of finding an approximation of a function . g :
R

m → R
m such that cytometry datasets in different batches are closer after 

transforming them by g. This problem can be situated in the fields of domain 
adaptation of transfer learning in ML (for some comprehensive reviews on the topics 
see [38, 39]). The idea is to choose a reference cytometry dataset . X∗, usually the 
one that will be gated, and try to find a function g that brings all other cytometries 
closer to . X∗. This can be done using generative adversarial networks (GANs) where 
a loss function is based on a distance d between cytometric datasets. Examples of 
this procedure can be found in [28, 29]. The distance d can be any of the ones we 
have discussed so far, but usually the most efficient are the Wasserstein and the one 
based on MMD since they can be computed from samples efficiently. 

6.4 Conclusions 

The main point that the reader should take from this chapter is that working 
with cytometry datasets as statistical objects, particularly through the lenses of 
statistical distances, is very helpful in the whole gating workflow. Some popular 
gating methods can be readily adapted to incorporate (or already do) a measure 
of discrepancy or an alignment method between cytometry datasets based on the 
tools discussed in this chapter. Furthermore, in supervised settings, preprocessing 
steps based on reducing variability have proven effective in improving performance 
as shown in [14]. Therefore, any practitioner or interested researcher should have 
at least a basic knowledge of the topics presented in this chapter. This knowledge 
can be very helpful since many of the discussed topics are very active fields of 
research and innovation which can have further positive impact in the cytometry 
gating workflow. 
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