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“There should be no obstacles to accessing knowledge.”

Alexandra Elbakyan
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Abstract

Functional data consist of observations that depend on a continuous parameter,
such as time or space. These types of data appear in many problems of practical
interest in economics, biology, medicine, and environmental sciences, among oth-
ers. They present characteristics that are markedly different from multivariate data,
which are the most prevalent object of study in statistics and machine learning. For
these reasons, it is important to have at one’s disposal tools that take into account
and exploit the functional nature of the observations.

The main goal of this thesis is to design statistical methods and computational
tools for machine learning with functional data. A first set of methodological contri-
butions have been made for dimensionality reduction, clustering, and classification.
In particular, we derive optimal rules for the classification of Gaussian processes.
Special attention is devoted to the singular case in which the processes are orthog-
onal and near-perfect classification (zero Bayes error) is obtained asymptotically. A
second contribution consists in an exhaustive theoretical and empirical analysis of
recursive maxima hunting (RMH), a filter method for variable selection that takes
advantage of the functional nature of the data. In recursive maxima hunting, vari-
ables are selected iteratively. At each step one selects the variable whose dependence
with the class label, measured using the distance covariance, is strongest. Then, the
corresponding contribution is removed by subtracting from each functional obser-
vation the expectation of the underlying process conditioned to the value of the vari-
able selected. Finally, the behavior of the clustering method fuzzy C-means has been
analyzed when applied to functional data.

In the second part of the thesis, a suite of computational tools for retrieval, repre-
sentation, exploratory analysis, preprocessing, and machine learning for functional
data is introduced. Specifically, the Python libraries scikit-datasets and rdata have
been developed to handle multivariate and functional datasets. These packages fa-
cilitate the retrieval of these data from a variety of sources, their conversion to a
unified format, and the empirical evaluation of machine learning methods that uti-
lize them. A prominent contribution of this thesis is the development of the library
scikit-fda, a Python package for Functional Data Analysis (FDA). It provides a com-
prehensive set of tools for statistical analysis and machine learning with functional
data. The library is built upon and integrated in the scientific Python ecosystem. In
particular, it conforms to the scikit-learn application programming interface so as to
take advantage of the functionality for machine learning provided by this package:
pipelines, hyperparameter tuning, and model selection, among others. Finally, the
dcor package is an additional contribution of this thesis. This package provides tools
to compute dependency measures, such as the aforementioned distance covariance,
as well as related tests of homogeneity and independence. The computational tools
developed as part of this thesis have been released as free open-source software, and
are open to contributions from the scientific community.
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Resumen

Los datos funcionales son observaciones que dependen de un parámetro continuo,
como el tiempo o el espacio. Estos tipos de datos aparecen en muchos problemas de
interés práctico en economía, biología, medicina, y ciencias medioambientales, entre
otros. Presentan características muy diferentes de los datos multivariantes, los cua-
les son el objeto de estudio predominante en estadística y aprendizaje automático.
Por estas razones, es importante disponer de herramientas que tengan en cuenta y
aprovechen la naturaleza funcional de los datos.

El objetivo principal de esta tesis es diseñar métodos estadísticos y herramien-
tas computacionales para aprendizaje automático con datos funcionales. En primer
lugar, se han realizado contribuciones metodológicas para reducción de dimensio-
nalidad, agrupamiento y clasificación. Concretamente, se han derivado reglas ópti-
mas para la clasificación de procesos gaussianos. Con especial atención se estudia
el caso singular en el que los procesos son ortogonales y se obtiene asintóticamente
clasificación casi perfecta (error de Bayes cero). Una segunda contribución consiste
en un análisis exhaustivo, tanto teórico como empírico, de recursive maxima hunting
(RMH), un método de filtro para selección de variables que aprovecha la naturaleza
funcional de los datos. En recursive maxima hunting las variables se seleccionan de
manera iterativa. En cada paso se selecciona la variable cuya dependencia con la eti-
queta de clase, cuantificada en términos de la covarianza de la distancia, es mayor. A
continuación, se elimina la contribución correspondiente, sustrayendo de cada ob-
servación funcional el valor esperado del proceso subyacente condicionado al valor
de la variable seleccionada. Finalmente, se analiza el comportamiento del método
de agrupamiento borroso fuzzy C-means aplicado a datos funcionales.

En la segunda parte de la tesis se presentan una serie de herramientas compu-
tacionales para el acceso, representación, análisis exploratorio, preprocesamiento,
y aprendizaje automático para datos funcionales. En concreto, las bibliotecas de
Python scikit-datasets y rdata se han desarrollado para el manejo de conjuntos de
datos multivariantes y funcionales. Estos paquetes permiten el acceso a datos alma-
cenados en diversos repositorios, su conversión a un formato unificado, y la evalua-
ción empírica de métodos de aprendizaje automático que hacen uso de los mismos.
Una contribución destacada de esta tesis es el desarrollo de la biblioteca scikit-fda,
un paquete de Python para el análisis de datos funcionales (FDA, por sus siglas en
inglés). Proporciona un amplio conjunto de herramientas para el análisis estadístico
y aprendizaje automático con este tipo de datos. La librería ha sido construida sobre
la base del ecosistema científico de Python y se integra en el mismo. En particular, se
adecúa a la interfaz de programación de aplicaciones de scikit-learn, de forma que
sea posible aprovechar la funcionalidad de aprendizaje automático proporcionada
por este paquete: flujos de trabajo, ajuste de hiperparámetros, y selección de mode-
los, entre otros. Finalmente, el paquete dcor es una contribución adicional de esta
tesis. Este paquete proporciona medidas de dependencia, como la ya mencionada
covarianza de la distancia, así como contrastes de homogeneidad e independencia
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relacionados. Las herramientas desarrolladas a lo largo de esta tesis han sido publi-
cadas como software libre, de código abierto, y están abiertas a contribuciones por
parte de la comunidad científica.
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Chapter 1

Introduction

Numerous machine learning problems of practical interest involve data with a com-
plex structure (Marron and Dryden, 2021). These include, for example, text (Sebas-
tiani, 2002), pieces of music (Weihs et al., 2016), time series (Bagnall et al., 2017),
shapes (Srivastava and Klassen, 2016), images (Litjens et al., 2017), and graphs (Guo,
Srivastava, and Sarkar, 2021). For these types of data, it is necessary to develop
methods that go beyond the classical multivariate paradigm, in which observations
are encoded as vectors of real-valued or categorical attributes. A particularly inter-
esting kind is functional data, in which the observations depend on a continuous
parameter. This parameter can be a real number, such as time for trajectories, or
frequency for the spectra of chemical substances, in which case the data are curves
in one dimension. One can consider also observations that depend on a continu-
ous parameter in two or more dimensions, such as surfaces, 2 and 3-D images, and
videos.

Functional data arise naturally in a variety of fields. For example, in medicine,
growth curves, electrocardiograms, electroencephalograms, and other measures of
health indicators over time can be used for diagnosis and patients’ follow-up. Im-
ages are also collected by means of X-ray radiography, magnetic resonance imaging
(MRI) and other techniques. The analysis of these data is key to addressing im-
portant problems in public health, such as cancer studies (Crawford et al., 2020),
detection of potential health risks (Maturo and Verde, 2022) or, in recent times, the
evaluation of the effects of the COVID-19 pandemic (Boschi et al., 2021; Oshinubi et
al., 2022). Meteorology is another discipline in which functional data commonly ap-
pears; for example, when analyzing temperature, precipitation, and wind speed as
a function of time and location on the surface of the Earth. The study of these types
of data has direct and profound impact in society, as decision-making tools. For in-
stance, to determine the optimal placement of renewable energy facilities (Tapia et
al., 2022) or to predict the effects of climate change (Ghumman et al., 2019), among
others. Functional data are common also in other areas of application, such as biome-
chanics, finance, psychology, and linguistics (Ullah and Finch, 2013).

Functional observations present some characteristics that are very different from
those of multivariate data (Cuevas, 2014; Wang, Chiou, and Müller, 2016). They are
often assumed to be continuous and, in some cases, smooth as well. They have
a high degree of redundancy because nearby points in the functions tend to be
strongly correlated. In particular, the values of the functions cannot be reordered
without altering the nature of the problem. This is in contrast to the multivariate
case, in which the observations are not affected by permutations of the components
of the attribute vectors. Additionally, due to the infinite-dimensional nature of func-
tional data, there is no reference measure analog to the Lebesgue measure of finite-
dimensional spaces (Cuevas, 2014). Thus, it is not possible to define probability den-
sities, which are fundamental mathematical objects in multivariate statistics. New
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phenomena also appear, such as near-perfect classification (Delaigle and Hall, 2012).
The continuous and smooth nature of the data opens up the possibility of us-

ing additional mathematical tools. For instance, the information contained in the
derivatives can be exploited to uncover patterns associated with the rate of variation
of the functions. Local smoothing techniques can be used for noise reduction. The
redundancy of the data can be leveraged to design variable selection procedures, in
which the selected points embody the information of a whole range of points in their
neighorhood. Because of their functional nature one could also utilize the tools of the
theory of stochastic processes (Doob, 1990) and functional analysis (Rudin, 1991). In
particular, in this thesis we make extensive use of the theory of reproducing kernel
Hilbert spaces (RKHS), which bridges the two fields (Berlinet and Thomas-Agnan,
2004).

The distinct characteristics of functional data pose important challenges. Multi-
variate methods may have poor performance due to the high dimensionality of the
data, or the collinearity of nearby points, among other reasons. In some cases, it
is possible to sidestep these difficulties by applying dimensionality reduction tech-
niques or approximating the data by a truncated basis expansion. However, in gen-
eral, the functional nature of the data requires a novel framework, which is provided
by functional data analysis (FDA). Functional data analysis is the branch of statis-
tics that deals with mathematical objects that depend on a continuous parameter,
such as curves or surfaces (Ramsay and Silverman, 2005; Kokoszka and Reimherr,
2017). In this framework, functional observations are assumed to be realizations of a
random function (Ferraty and Vieu, 2006; Hsing and Eubank, 2015). These random
functions are akin to random vectors in multivariate statistics. This correspondence
makes it possible to formulate standard machine learning problems (e.g., classifi-
cation, regression, and clustering) with functional data as direct extensions of their
multivariate counterparts. FDA deals also with problems that are specific to func-
tional data. One such problem is registration, in which one attempts to account for
the potential misalignment of the data (Marron et al., 2015).

The objective of this thesis is to design machine learning methods and computa-
tional tools for functional data. In particular, optimal classification rules have been
derived for the classification of Gaussian processes (Torrecilla et al., 2020). The ap-
proach taken is to consider the functional case as the limit of discretizations in a
grid that becomes progressively finer. Using this approach, near-perfect classifica-
tion arises when the quadratic discriminant, which is the optimal classification rule
for the discretized data, presents terms that diverge in this limit. When these di-
vergences cancel out, the two processes are equivalent and the optimal classification
rule can be expressed in terms of the Radon-Nikodym derivative (Baíllo, Cuevas,
and Cuesta-Albertos, 2011; Berrendero, Cuevas, and Torrecilla, 2018). Explicit for-
mulas are derived and illustrated empirically for specific problems.

A second contribution is an exhaustive theoretical and empirical analysis of re-
cursive maxima hunting (RMH), a filter variable selection method for functional
data (Torrecilla and Suárez, 2016). Recursive maxima hunting is an iterative method.
At each iteration one selects the variable that has the strongest dependence with the
class label. This dependence is quantified using the distance covariance (Székely,
Rizzo, and Bakirov, 2007). The contribution of each selected variable is then re-
moved by subtracting the expectation of the underlying process conditioned to the
value observed. In this analysis, different assumptions of the underlying noise pro-
cess are considered. We prove that, under certain conditions, the algorithm selects
precisely the points that appear in the optimal classification rule. An empirical com-
parison between RMH and other variable selection methods is also carried out.



Chapter 1. Introduction 3

A final methodological contribution is the study of the behavior of the clustering
method fuzzy C-means (FCM) when it is applied to functional data in discretized
form (Ramos-Carreño, 2023). This algorithm presents convergence problems in the
high-dimensional multivariate case. We explored FCM considering simulated data
from a Gaussian process in which the dependences between function values have
a characteristic lengthscale. When the extent of the correlations is small compared
to the resolution of the discretization grid, FCM has convergence problems as in the
multivariate high-dimensional case. In contrast, the algorithm generally converges
well when the lengthscale is increased and is comparable or larger to the spacing
between grid points. This corresponds to a case in which nearby points are more
correlated, as is common in functional datasets. In this manner we observe a case in
which the behavior changes in a smooth way from the multivariate case to a more
functional one.

Computational tools play a crucial role in both scientific research and applica-
tions. The design and implementation of open source software facilitates the reuse
of previous work in research, thus reducing mistakes, fostering reproducibility, and
the comparison between different methods. In addition, these tools lower the entry
barrier for new practicioners interested in the practical application of these tech-
niques, and thus broaden the appeal of the subject. When particular care is taken in
maintaining high quality documentation and examples, these tools are also a didac-
tical resource, which provides learning opportunities for people outside the field.
Thus, a second group of contributions consists in the development of computational
tools for handling datasets, statistical analysis, and machine learning methods to
functional data:

• The package scikit-datasets is a Python library that can be used to retrieve
multivariate and functional datasets from different repositories widely used
by the scientific community. It also provides utilites to carry out empirical
evaluation studies that employ these datasets and for the presentation of the
results in the form of tables.

• The package rdata is a library to convert datasets in the rda and rds formats,
typical of the R programming language, into Python objects. In combination
with scikit-datasets this makes possible to load a wide variety of datasets only
available in CRAN, the repository of R packages.

• The Python package scikit-fda (Ramos-Carreño et al., 2023) offers a variety of
representation, preprocessing and machine learning tools for functional data.
The package includes standard analysis tools, as well as all the methods im-
plemented in this thesis. It is integrated in the scientific Python ecosystem, and
can be used in combination with the tools of the widely-used machine learning
package scikit-learn. The implementation work is complemented by detailed
documentation including tutorials and examples of use (Ramos-Carreño et al.,
2022).

• The dcor package (Ramos-Carreño and Torrecilla, 2023) provides fast imple-
mentations of the nonlinear dependence measures distance covariance and
correlation. It provides also support for dependence and homogeneity tests
based on related measures. This library has been used in several scientific
articles and software tools. In particular, it is used in the RMH algorithm pre-
sented in this thesis to compute the dependence between the attributes that
characterize an instance and the class label.
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The computational tools developed are published as free and open-source software
packages in the scientific Python ecosystem. They have been designed to be easily
used along with other packages in that environment, and they are open to contribu-
tions from the scientific community.

1.1 Publications related to the thesis

The research presented in this thesis has given rise to several publications in in-
ternational journals and contributions to conferences in the areas of computational
statistics and machine learning. The methodological advances that are presented in
Part I are described in the following documents:

• J. L. Torrecilla, C. Ramos-Carreño, M. Sánchez-Montañés, and A. Suárez (2020).
“Optimal Classification of Gaussian Processes in Homo- and Heteroscedastic
Settings”. In: Statistics and Computing 30.4, pp. 1091–1111. ISSN: 1573-1375.
DOI: 10.1007/s11222-020-09937-7

• J. L. Torrecilla, C. Ramos-Carreño, and A. Suárez (2023). “Recursive maxima
hunting: Variable selection in functional data classification”. (In preparation)

• C. Ramos-Carreño (2023). “Fuzzy C-means: Differences on Clustering Behav-
ior between High Dimensional and Functional Data (Student Abstract)”. In:
Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 37

The computational tools described in Part II have been presented in the following
journals and conferences:

• C. Ramos-Carreño, J. L. Torrecilla, M. Carbajo-Berrocal, P. Marcos, and A. Suárez
(2023). “scikit-fda: A Python Package for Functional Data Analysis”. In: Jour-
nal of Statistical Software. (Accepted for publication. Preprint available at http:
//arxiv.org/abs/2211.02566)

• C. Ramos-Carreño, J. L. Torrecilla, Y. Hong, and A. Suárez (2022). “scikit-
fda: Computational Tools for Machine Learning with Functional Data”. In:
2022 IEEE 34th International Conference on Tools with Artificial Intelligence (IC-
TAI), pp. 213–218. DOI: 10.1109/ICTAI56018.2022.00038

• C. Ramos-Carreño, J. L. Torrecilla, and A. Suárez (2022). “Classification of
Functional Data: A Comparative Study”. In: 2022 21st IEEE International Con-
ference on Machine Learning and Applications (ICMLA), pp. 866–871. DOI: 10.
1109/ICMLA55696.2022.00143

• C. Ramos-Carreño and J. L. Torrecilla (2023). “dcor: Distance Correlation and
Energy Statistics in Python”. In: SoftwareX 22, p. 101326. ISSN: 2352-7110. DOI:
10.1016/j.softx.2023.101326

As a result of the research carried out in this thesis the following free and open-
source software packages have been released:

• D. Díaz-Vico and C. Ramos-Carreño (2022). scikit-datasets: scikit-learn-compatible
Datasets. DOI: 10 . 5281 / zenodo . 6383047. URL: https : / / github . com /
daviddiazvico/scikit-datasets (visited on 05/22/2023)

https://doi.org/10.1007/s11222-020-09937-7
http://arxiv.org/abs/2211.02566
http://arxiv.org/abs/2211.02566
https://doi.org/10.1109/ICTAI56018.2022.00038
https://doi.org/10.1109/ICMLA55696.2022.00143
https://doi.org/10.1109/ICMLA55696.2022.00143
https://doi.org/10.1016/j.softx.2023.101326
https://doi.org/10.5281/zenodo.6383047
https://github.com/daviddiazvico/scikit-datasets
https://github.com/daviddiazvico/scikit-datasets
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• C. Ramos-Carreño (2022). rdata: Read R datasets from Python. DOI: 10.5281/
zenodo.6382237. URL: https://github.com/vnmabus/rdata (visited on
05/22/2023)

• C. Ramos-Carreño, A. Suárez, J. L. Torrecilla, M. Carbajo Berrocal, P. Mar-
cos Manchón, P. Pérez Manso, A. Hernando Bernabé, D. García Fernández,
Y. Hong, P. M. Rodríguez-Ponga Eyriès, Á. Sánchez Romero, and E. Petrunina
(2022). scikit-fda: Functional Data Analysis in Python. DOI: 10.5281/zenodo.
3468127. URL: https : / / github . com / GAA - UAM / scikit - fda (visited on
05/22/2023)

• C. Ramos-Carreño (2020). dcor: Distance Correlation and Related E-Statistics in
Python. DOI: 10.5281/zenodo.3468124. URL: https://github.com/vnmabus/
dcor (visited on 05/22/2023)

1.2 Structure of the thesis

The thesis is structured as follows: Chapter 2 presents an overview of concepts and
methods in FDA, the branch of statistics that deals with random functions. A de-
scription of the functional datasets that are used in this thesis can be found in Chap-
ter 3. After this chapter, the thesis is divided in two parts.

Part I comprises Chapters 4, 5 and 6, which focus on the methodological ad-
vances obtained during this thesis. In Chapter 4 we derive optimal rules for the
classification of Gaussian processes as a limit of the quadratic discriminant rule for
multivariate problems. In Chapter 5 we propose a general version of the variable
selection algorithm RMH, and analyze it in the context of binary classification. The
convergence properties of the clustering algorithm FCM when applied to multivari-
ate and to functional data are studied in Chapter 6.

Part II consists of Chapters 7, 8, and 9. In these chapters the focus is on the
computational tools developed for working with functional data. In Chapter 7 we
present the software packages scikit-datasets and rdata. These can be used to han-
dle multivariate and functional datasets. The package scikit-fda, which provides
tools for statistical analysis and machine learning with functional data, is described
in Chapter 8. This chapter includes also several examples of use in real-data prob-
lems. To conclude this chapter, a comparison between different classifiers for func-
tional data is carried out using the tools in scikit-fda. The package dcor, which
includes measures and tests for homogeneity and dependence of random vectors, is
described in Chapter 9.

Finally, in Chapter 10 we summarize the conclusions of the thesis and propose
avenues of exploration for future work.

https://doi.org/10.5281/zenodo.6382237
https://doi.org/10.5281/zenodo.6382237
https://github.com/vnmabus/rdata
https://doi.org/10.5281/zenodo.3468127
https://doi.org/10.5281/zenodo.3468127
https://github.com/GAA-UAM/scikit-fda
https://doi.org/10.5281/zenodo.3468124
https://github.com/vnmabus/dcor
https://github.com/vnmabus/dcor
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Chapter 2

Learning from functional data

Functional data analysis (FDA) is the branch of statistics that deals with observa-
tions varying over a continuous parameter, such as curves, surfaces, and other types
of functions (Cuevas, 2014; Wang, Chiou, and Müller, 2016). These types of data ap-
pear in many different fields of application, such as biology (Cremona et al., 2019),
demographics (Hyndman and Shahid Ullah, 2007), economics (Frois Caldeira et
al., 2020), energy (Gong, Wang, and Lin, 2021), genomics (Leng and Müller, 2006;
Chen et al., 2020), medicine (Sørensen, Goldsmith, and Sangalli, 2013; Ferrando,
Ventura-Campos, and Epifanio, 2020; Horsley et al., 2021), meteorology (Beyaztas
and Yaseen, 2019), oceanography (Assunção et al., 2020), traffic control (Wagner-
Muns et al., 2018; Hu et al., 2019), and other areas of application (Ullah and Finch,
2013).

The functional observations considered are of the form x : T ⊆ Rp → Rq, were
p, q ≥ 1. The parameter p is the dimension of the domain, which is 1 for curves,
2 for surfaces or images, etc. The dimension of the codomain q is the number of
coordinates for vector valued functions. Thus, a grayscale two-dimensional image
can be considered as a functional datum with p = 2, for the location of the pixels in
the image, and q = 1, for the intensity at each pixel. A color image consisting of three
channels (e.g., red, green, and blue) would have p = 2 and q = 3. The functions are
assumed to belong to a functional space X , such as L2, the space of square integrable
functions, or a particular reproducing kernel Hilbert space (RKHS) (Berlinet and
Thomas-Agnan, 2004). In this work, we focus mainly on the case of real-valued
univariate functions (that is, p = q = 1). We assume that the domain T of the
functional observations is a compact interval. Typically, the continuous parameter
on which the functions depend, t ∈ T , is assumed to be time.

A functional dataset consists then of N observations {xi(t), t ∈ T }N
i=1, where

xi(t) is the i-th observation in the sample. Functional observations are usually mea-
sured at a grid of points t = (t1, . . . , tM) ∈ T M, which need not be regularly spaced.
An observation x in the sample is represented by the vector x(t), where x(t) =
(x(t1), . . . , x(tM)). The discretization grid is assumed to be sufficiently fine so that
the functional character of the data is apparent (Ramsay and Silverman, 2005; Fer-
raty and Vieu, 2006; Hsing and Eubank, 2015). As an illustration, three trajectories
measured at a grid of irregularly-spaced points are displayed in Figure 2.1.

Alternatively, a functional observation can be represented as an expansion in a
functional basis {φb(t), t ∈ T }b≥1 of X

x(t) = ∑
b≥1

cbφb(t), (2.1)

where {cb}b≥1 are the coefficients of the expansion.
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t1 t2 t3 t4 t5 t6

x1(t4)

x1(t1)
x2(t1)
x3(t1)

x1
x2
x3

FIGURE 2.1: Functional observations in discretized form. The quan-
tity xi(tm) represents the value of the i-th trajectory at tm.

It is commonly assumed that the data correspond to noisy observations of under-
lying functions that are continuous and smooth (with one or more derivatives). This
means that the data, even when they are measured only at a finite number of points
in a grid, present notable differences with their traditional multivariate counterparts
(Cuevas, 2014; Wang, Chiou, and Müller, 2016). Their continuous structure means
that the components of the observations x(t) = (x(t1), . . . , x(tM)), cannot be freely
reordered, as was possible in the multivariate case. Another consequence is that each
feature is strongly correlated with the nearby ones. This redundancy can be a source
of difficulties in some cases. For instance, in variable selection methods it becomes
necessary to control for it, as we will explain in Chapter 5. The infinite dimension
of the functional data spaces of interest, also poses additional challenges. For exam-
ple, there is no infinite-dimensional analog of the Lebesgue measure (Cuevas, 2014).
As a result, it is not possible to define probability density functions for stochastic
processes in general (Delaigle and Hall, 2010). Moreover, some useful multivariate
constructs, such as the Mahalanobis distance and the linear and quadratic discrimi-
nant analyses (among others), cannot be naively extended to the functional context,
and need to be adapted (Berrendero, Bueno-Larraz, and Cuevas, 2020). Both of these
will be of special relevance in Chapter 4.

In the remaining part of the chapter we provide a more thorough description of
the main theoretical concepts required for a complete understanding of this thesis.
We first introduce formally the concept of stochastic processes, the random variables
from which functional observations are drawn, in Section 2.1. A special emphasis
is placed in Gaussian processes, the functional analog to the normal distribution,
which are very important in this work. The discussion continues in Section 2.2 with
the explanation of the different functional spaces in which the observations may live.
A particular family of functional spaces are the RKHS, which are also very related
with the theory of stochastic processes. In particular, each second order stochastic
process has a related RKHS, associated with is covariance function. As explained in
that section, studying the RKHS associated to a process we can derive some prop-
erties of interest of the process. Finally, Section 2.3 presents some of the machine
learning problems with functional data which are of interest for this thesis. In par-
ticular, we start with registration, a new problem arising with functional data. In
this problem, one tries to align the functional observations in order to improve the
performance in further processing. We also explain the problem of dimensional-
ity reduction, whose relevance is even higher in the functional case, as functional
observations are in principle infinite-dimensional. Using dimensionality reduction
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techniques it is possible, in some cases, to summarize each observation as a vector
in a low-dimensional space, and thus use the methods from multivariate statistics in
further analysis. In addition, in this section the classical machine learning problems
of regression, classification and clustering are also reframed in the functional data
context.

2.1 Stochastic processes

Given a probability space (Ω,F , P), a stochastic process is a collection {X(t, ω) | ω ∈
Ω}t∈T of random variables, indexed by the parameter t ∈ T . When T ⊆ Rp, with
p > 1, it is also common to use the name random field to refer to this collection. For
a fixed value of t, X(t, ω) is a random variable. In particular, we will consider that
the random values take values in a subset S ⊆ Rq, and we will denote as B(S) the
Borel σ-algebra in S. As it is common in probability theory, we will drop the ω in
the notation, which allows us to refer to the process as X and to a particular random
variable at index t with the notation X(t).

When X is jointly measurable with respect to both t and ω, an alternative inter-
pretation is possible (Hsing and Eubank, 2015). Let X be a space of functions from
T to S ⊆ Rq, so that for a fixed value of ω, X( · , ω) ∈ X . Then, one can also see a
stochastic process as a random function X : Ω → X , and consider the dataset {xi}N

i=1
as a set of particular realizations of that random function.

Using this interpretation, we can define a measure P in X , called the law of the
stochastic process, as the pushforward measure

P(B) = P(X−1(B)) B ∈ G, (2.2)

where G is a σ-algebra in X . This measure is of special importance in FDA, as there
is no analog of the Lebesgue measure for infinite-dimensional spaces, and thus there
are no density functions. In the places where a density function would appear in
the multivariate case, we will instead need to use alternative formulations using the
laws of the stochastic processes involved.

In this work we will assume that the stochastic processes involved are of second
order. That is, a random process X will have a finite mean

µ(t) = E[X(t)] (2.3)

and a finite covariance function or kernel

k(s, t) = E[(X(s)− µ(s))(X(t)− µ(t))]. (2.4)

2.1.1 Gaussian processes

The normal or Gaussian distribution is of great importance in multivariate statistics,
both because of its crucial role in the central limit theorem, and its analytical prop-
erties. For stochastic processes, the analog to the multivariate normal are Gaussian
processes (GPs). A stochastic process is Gaussian if and only if for every finite set
of indices t1, . . . , tP ∈ T , the random vector (X(t1), . . . , X(tP)) has a multivariate
Gaussian distribution (Rasmussen and Williams, 2005). Analogously to the multi-
variate case, a Gaussian process is completely determined given its mean function µ
and covariance function k. In this section we introduce several Gaussian processes,
which are relevant for this thesis.
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Brownian motion (Doob, 1942), which is also referred to as the Wiener process,
is characterized by the covariance function

kBM(s, t) = σ2 min(s, t) s, t ≥ 0, (2.5)

with σ ≥ 0. When σ = 1, and the process has zero mean, it is called standard
Brownian motion (B), as depicted in the left plot of Figure 2.2. This σ parameter is
common to all kernels and controls the dispersion. The definition of this process can
be extended to s, t < 0 (Mishura and Shevchenko, 2017) as

k(s, t) = σ2 |s|+ |t| − |s− t|
2

. (2.6)

This stochastic process is called two-sided Brownian motion, and it is shown in the
right plot of Figure 2.2. Again, when σ = 1, and the mean is 0, it is called standard
two-sided Brownian motion (B) As its name and plot indicates, this is equivalent to
two independent Brownian motions spanning from 0 in opposite directions. Thus,
given two independent standard Brownian motions B1, B2, a two-sided Brownian
motion X can be expressed as

X(t) =

{
σB1(t) if t ≥ 0,
σB2(−t) if t < 0.

(2.7)
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FIGURE 2.2: The left plot shows trajectories sampled from standard
Brownian motion. In the right plot the trajectories are sampled from

two-sided Brownian motion instead.

If one conditions Brownian motion to having the value 0 in an additional point
T, apart from the origin, we obtain the so called Brownian bridge. This Gaussian
process has the covariance

kBB(s, t) = σ2
(

min(s, t)− st
T

)
. (2.8)

In particular, the standard Brownian bridge BB has σ = 1, T = 1, as shown in Fig-
ure 2.3. A Brownian bridge X can also be expressed in terms of a standard Brownian
motion B as

X(t) = σ

(
B(t)− t

T
B(T)

)
. (2.9)

Some stochastic processes preserve their distribution when shifts are performed
in the domain T . These are called stationary processes. For Gaussian processes, in
particular, this can be achieved when the mean µ is constant and the covariance
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FIGURE 2.3: Plot of trajectories from a standard Brownian bridge.

depends only on the distance between the inputs, that is k(s, t) = k(|s − t|, 0) =
k(|s− t|). Thus any covariance k of a stationary Gaussian process can be considered
a radial basis function (RBF), as it only depends on the distance |s− t|.

Of the stationary Gaussian processes, we can consider the one having as its co-
variance the Gaussian RBF

kRBF(s, t) = σ2 exp
(
−|s− t|2

2l2

)
, (2.10)

with l > 0. This kernel is so popular in the literature of support vector machines
(SVMs) and Gaussian process regression (Rasmussen and Williams, 2005), that it is
usually referred simply as the RBF kernel, in spite of the existence of additional RBF
covariances.

The parameter l, commonly called the lengthscale, characterizes the strength of
the correlation between nearby points. Plots of the Gaussian RBF process with dif-
ferent lengthscales are shown in Figure 2.4.
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FIGURE 2.4: From left to right, plots of trajectories sampled from
Gaussian RBF processes with lengthscales of 0.1, 1 and 10, respec-

tively.

One apparent property of trajectories sampled from the Gaussian RBF process is
their smoothness. In fact, these trajectories are infinitely differentiable everywhere.
In some applications, however, the observed functions are not that smooth. For
example, the Ornstein-Uhlenbeck process, that has the exponential covariance func-
tion

kOU(s, t) = σ2 exp
(
−|s− t|

l

)
, (2.11)

has trajectories that are still continuous but nowhere differentiable, as shown in Fig-
ure 2.5.
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FIGURE 2.5: From left to right, plots of trajectories sampled from an
Ornstein-Uhlenbeck process with lengthscales of 0.1, 1 and 10, respec-

tively.

A generalization of both the Gaussian RBF process and the Ornstein-Uhlenbeck
process is the family of Gaussian processes with Matérn kernels. A general Matérn
kernel has the form

kν(s, t) = σ2 · 21−ν

Γ(ν)

(
|s− t|

√
2ν

l

)ν

Kν

(
|s− t|

√
2ν

l

)
. (2.12)

The parameter ν > 0 controls the smoothness of the trajectories, as they are dνe − 1
times differentiable, while Kν is a modified Bessel function of the second kind. If
ν = p + 1

2 , with p a non-negative integer, this formula further simplifies to

k(s, t) = σ2 exp

(
−|s− t|

√
2ν

l

)
p!

(2p)!

p

∑
i=0

(p + i)!
i!(p− i)!

(
|s− t|

√
8ν

l

)p−i

. (2.13)

For ν = 1/2 this gives the previously mentioned exponential kernel

k(s, t) = σ2 exp
(
−|s− t|

l

)
, (2.14)

which is thus an element of this family. For ν = 3/2 we obtain

k(s, t) = σ2

(
1 +

√
3|s− t|

l

)
exp

(
−
√

3|s− t|
l

)
, (2.15)

with one-time differentiable trajectories while for ν = 5/2 we have

k(s, t) = σ2

(
1 +

√
5|s− t|

l
+

5|s− t|2
l2

)
exp

(
−
√

5|s− t|
l

)
, (2.16)

whose trajectories are twice differentiable. These three processes are depicted in
Figure 2.6. When ν → ∞, one obtains the Gaussian RBF process, with infinitely
differentiable trajectories.

For the aforementioned stationary Gaussian processes, we could take the limit
l → 0. In this case we obtain the covariance function

kWN(s, t) = σ2δst, (2.17)
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FIGURE 2.6: From left to right, plots of trajectories sampled from a
Matérn process with ν = 1/2 (Ornstein-Uhlenbeck), ν = 3/2 and

ν = 5/2 respectively.

with nonzero values only in the diagonal. This corresponds to the so-called white
noise, shown in the left plot of Figure 2.7.

We can also consider the limit l → ∞. In this case, the covariance function be-
comes the constant covariance kernel

kC(s, t) = σ2, (2.18)

as illustrated in the right plot of Figure 2.7.
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FIGURE 2.7: On the left plot, trajectories sampled from white noise
are shown. The right plot corresponds to trajectories from a Gaussian

process with constant covariance.

2.2 Functional spaces

As mentioned before, in FDA the functional observations belong to a common func-
tional spaceX . This space is assumed to be closed under addition and multiplication
by an scalar, and is thus a vector space. For example, the space C(T ) of continuous
functions defined in T , verifies this, as the result of adding two continuous function
or the product of a continuous function by an scalar is still a continuous function.

Some functional spaces are in addition metric spaces, that is, they have a particular
metric d : X × X → R defined for all possible pairs of elements of the space. A
particular case of these are normed spaces, in which a norm ‖ · ‖ : X → R can be
used to measure the “length” of a particular element. A metric can be induced from
the norm as d(x1, x1) = ‖x1 − x2‖.

To define limits in a normed space it is necessary that the space is complete with
respect to the induced metric, that is, that every Cauchy sequence converges to an
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element of the space. A normed space with this property is called a Banach space. A
widely used family of functional Banach spaces is the collection of Lp spaces with
p > 0,

Lp(T ) =
{

x : T → R

∣∣∣∣∫T |x(t)|pdt < ∞
}

, (2.19)

where the (semi)norm in this space, or Lp-norm is

‖x‖p = p

√∫
T
|x(t)|pdt. (2.20)

In order for the ‖ · ‖p to be a proper norm, it needs to verify that ‖x‖p = 0 ⇔ x =
0. This is only the case if we consider that two functions in this space are equal if
they agree almost everywhere. Therefore, properly speaking, Lp is not a space of
functions, but a space of equivalence classes of functions. However, as our functions
of interest do not have removable discontinuities, this distinction can be ignored in
practice. We can also provide a definition for the limit case p = ∞ as

L∞(T ) = {x : T → R||x(t)| < ∞ almost everywhere} , (2.21)

with the (semi)norm
‖x‖∞ = sup

t∈T
|x(t)|. (2.22)

Finally, a Hilbert space is a Banach space whose norm is induced by an inner
product 〈 · , · 〉 as

‖x‖ =
√
〈x, x〉. (2.23)

This inner product is of crucial importance for several applications, such as pro-
jections, change of basis or the notion of orthogonality. Of the functional spaces
mentioned so far, only L2 is a Hilbert space, with

〈x1, x2〉 =
∫
T

x1(t)x2(t)dt. (2.24)

Note that this definition is similar to the Euclidean inner product in finite dimension,
with the sums turned into integrals. As L2 is the most commonly used Hilbert space,
we will use the notation 〈 · , · 〉 to refer to the inner product in L2 in the rest of this
work.

2.2.1 Reproducing Kernel Hilbert Spaces

A reproducing kernel Hilbert space (RKHS) is a space of real-valued functions on
T endowed with an inner product that is a reproducing kernel. A kernel k(s, t) is
a symmetric positive-semidefinite function on T × T , which throughout this work
will also be assumed to be continuous and bounded. The reproducing property for
the kernel k associated with the RKHSHk implies that

x(t) = 〈x( · ), k( · , t)〉k , ∀x ∈ Hk, (2.25)

where 〈 · , · 〉k denotes the inner product inHk. The positivity condition implies that
for any finite set of distinct values {ti}D

i=1 ∈ T D the D × D Gram matrix K, whose
elements are Kij = k(ti, tj), for 1 ≤ i, j ≤ D, is positive-semidefinite; that is, all its
eigenvalues are non-negative.
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Let Hk
(0) be the space of functions that can be expressed as finite linear combi-

nations of the form

x( · ) =
r

∑
i=1

αik(ti, · ). (2.26)

This space is endowed with the inner product

〈x, z〉k =
r

∑
i=1

s

∑
j=1

αiβ jk(ti, tj), (2.27)

where z( · ) = ∑s
j=1 β jk(tj, · ). The RKHS associated to k, denoted byHk, is the set of

functions f : T → R that is the completion in the corresponding norm of the space
Hk

(0).
Associated to kernel k, it is possible to define a covariance operator K : L2(T )→

L2(T ), by the integral equation

Kx(t) =
∫
T

k(t, s)x(s)ds. (2.28)

This operator is linear, self-adjoint, and positive. The eigenvalues and eigenfunc-
tions of this operator satisfy∫

T
k(t, s)φj(s)ds = λjφj(t), j ≥ 1 (2.29)

with 0 < . . . ≤ λ2 ≤ λ1 < ∞, and
{

φj(s)
}∞

j=1, an orthonormal basis in L2(T )
∫
T

φi(t)φj(t)dt = δij, i, j = 1, 2, . . . . (2.30)

If the kernel is only positive-semidefinite, some of the eigenvalues of K could be
zero. In that case, there is no loss of generality in considering only the linear sub-
space spanned by the set of eigenvectors corresponding to positive (non-zero) eigen-
values of the covariance operator (see, e.g., Remark 3 of Section 3 in Cucker and
Smale, 2002).

By Mercer’s theorem (Parzen, 1959; Cucker and Smale, 2002), the spectral repre-
sentation of the kernel is

k(s, t) =
∞

∑
i=1

λiφi(s)φi(t). (2.31)

The convergence of this series is absolute for each (s, t) ∈ T ×T and uniform on T ×
T . In this representation, the RKHS associated to kernel k is the space of functions
that fulfill

Hk =

{
x ∈ L2(T ) : x =

∞

∑
i=1

αiφi,
∞

∑
i=1

α2
i

λi
< ∞

}
. (2.32)

The corresponding inner product is

〈x, z〉k =
∞

∑
i=1

αiβi

λi
, (2.33)

with z(t) = ∑∞
i=1 βiφi(t). Finally, the set of functions

{
ϕj(s) =

√
λjφj(s)

}∞
j=1 form an

orthonormal basis inHk.
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Note also that the map K1/2 : L2(T )→ Hk given by

∑
i≥1

aiφi ∈ L2(T ) 7→ ∑
i≥1

ai
√

λiφi ∈ Hk, (2.34)

makes it possible to build the RKHS from L2(T )

Hk =
{
K1/2(x), x ∈ L2(T )

}
. (2.35)

Using this square root of the kernel operator, it is also possible to write the inner
product of x, z ∈ Hk as an inner product in L2(T )

〈x, z〉k =
〈
K1/2(x),K1/2(z)

〉
, (2.36)

which is a convenient representation for some computations.

2.2.2 Stochastic processes and RKHSs

There is an alternative construction of the RKHS that takes as a starting point the
zero-mean second-order stochastic process Z(t), t ∈ T , whose covariance function
is

k(s, t) = E [Z(s)Z(t)] , s, t ∈ T . (2.37)

Consider L0(Z), the linear span of the process Z, whose elements are of the form

D

∑
i=1

αiZ(ti), {αi}D
i=1 ∈ RD, {ti}D

i=1 ∈ T D, (2.38)

for some integer D. Let L(Z) be the closure of L0(Z) in L2(Ω), the space of zero-
mean random variables with finite second moments. By Loève’s representation the-
orem (Berlinet and Thomas-Agnan, 2004) it is possible to define an isomorphism
ψ : L(Z)→ Hk that maps each ∑i≥1 αiZ(ti) ∈ L(Z) onto a unique element

ψ

(
∑
i≥1

αiZ(ti)

)
(t) = E

[
∑
i≥1

αiZ(ti)Z(t)

]
= ∑

i≥1
αik(ti, t), t ∈ T

(2.39)

inHk. Since ∑i αik(ti, t) converges in the norm sense to an element of the RKHS (be-
cause ∑i αiZi belongs to the closure of L0(Z) in L2(Ω)), it also converges pointwise
for all t ∈ T to the same limit (Corollary 1 of Berlinet and Thomas-Agnan, 2004).
This isomorphism preserves the inner product; i.e., it is a congruence. This congru-
ence is referred to as Loève’s isometry (Lukić and Beder, 2001). It maps Z(s) onto
k(s, t)

ψ(Z(s))(t) = k(s, t), s, t ∈ T . (2.40)

Conversely, the inverse congruence ψ−1
Z maps the function x( · ) = ∑i αik(ti, · ) ∈ Hk

onto the random variable ψ−1
Z (x) = ∑i αiZ(ti) ∈ L(Z). Therefore, the value of the

random trajectory at t ∈ T can be expressed as

Z(t) = ψ−1
Z (k( · , t)) . (2.41)
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In terms of this isometry, the inner product between the functions x = ∑∞
i=1 αik(ti, · )

and z = ∑∞
j=1 β jk(tj, · ), both inHk is

〈x, z〉k =
∞

∑
i=1

∞

∑
j=1

αiβ jk(ti, tj) = E
[
ψ−1

Z (x)ψ−1
Z (z)

]
. (2.42)

Following Parzen, 1961a, this isometry can be used to define the mapping

〈Z, x〉k = ψ−1
Z (x) =

∞

∑
i=1

αiZ(ti) ∈ L(Z), (2.43)

for Z, a trajectory of the stochastic process, and x = ∑∞
i=1 αik(ti, · ) ∈ Hk. This

mapping, which can be viewed as a formal extension of the definition of the inner
product, is well-defined even though, except for trivial cases, Z /∈ Hk with probabil-
ity one (Kailath, 1971; Berlinet and Thomas-Agnan, 2004). The quantity 〈Z, x〉k is the
unique linear square-integrable functional of Z that satisfies (Parzen, 1959; Kailath,
1971)

E [Z 〈Z, x〉k] = x, ∀x ∈ Hk. (2.44)

Finally, it is also possible to express this congruence inner product as

〈Z, x〉k =
∞

∑
i=1

ζixi

λi
, (2.45)

in terms of x(t) = ∑∞
i=1 xiφi(t), t ∈ T , and of Z(t) = ∑∞

i=1 ζiφi(t), t ∈ T , the
Karhunen-Loève expansion of the process (Berlinet and Thomas-Agnan, 2004). The
coordinates of this expansion are computed by projecting Z onto the basis of eigen-
functions of K

ζi =
∫

t∈T
Z(t)φi(t)dt, i = 1, 2, . . . . (2.46)

They are zero-mean independent normal random variables

E [ζi] = 0
E
[
ζiζ j
]

= λiδij, i, j = 1, 2, . . . . (2.47)

In this thesis we will show how one can take advantage of the properties of RKHS
to address problems in machine learning with functional data.

2.3 Machine learning with functional data

The main objective of this thesis is the development of new methodologies and tools
for machine learning with functional data. To this end, we will first define the main
problems in this functional context. For these problems we will consider that we
have a functional dataset D = {xi}N

i=1. In the so-called unsupervised problems, no
additional information is given. However, in supervised problems, a target yi associ-
ated with the observation xi is provided for training data, but not present in the final
evaluation. Thus, the annotated dataset in this case would be D = {(xi, yi)}N

i=1. The
yi belong to a set Y of possible targets, whose elements could be scalar, categorical
or even functional.

In this section, we present several problems in the intersection of machine learn-
ing and functional data. The problem of registration is first presented in Section 2.3.1.
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This is a novel problem in functional data, in which the potential misalignment of
the data is corrected. Although it could be considered a preprocessing technique,
the complexity of the problem and the techniques employed are similar to those
present in traditional machine learning tasks. In Section 2.3.2 we present the prob-
lem of dimensionality reduction with functional data. As this kind of data is infinite
dimensional, this problem is of crucial importance to achieve performant and in-
terpretable models. We present the problem of regression with functional data in
Section 2.3.3. As functional data may appear as a covariate, a response, or both,
this particular problem presents new challenges in the functional context. In Section
2.3.4 we introduce the problem of classification with functional data. This problem
is of particular relevance in this thesis, and thus is explained in detail. In particular
we explain how the optimal rule can be computed, and how the new phenomenon
of near-perfect classification arises when the data is functional. Finally, Section 2.3.5
provides a cursory introduction to clustering problems with functional data, which
are also present in this thesis.

2.3.1 Registration

For correct application of functional data techniques, it is usually required that the
important features of the data, such as maxima, minima or zero-crossing points, that
are common to every observation are properly aligned. These can be occasionally
misaligned due to errors in the measurement process. For example, when measur-
ing the heartbeats of a patient, we may measure two of them starting at different
locations. If that happens, the peaks of the two heartbeats will not be aligned, and
this could affect further processing. Even if the measurement is error-free, different
functions may have inherent variations that cause those features to appear at dif-
ferent positions in each observation. This happens, for example, when data can be
better described as a function of some internal and unobserved continuous parame-
ter, unique for each observation. In that last case, the variations occasionated by the
differences in the internal parameter could be useful in subsequent tasks, such as
classification, clustering or regression. Therefore, it is often useful to preserve that
information, in addition to the aligned observations.

The variability in the location of the features, which one attempts to remove, is
usually called phase variation. In contrast, the remaining variability in the magnitude
of the features is called amplitude variation. In the case of real valued functions of one
variable, or curves, which is the most commonly studied, phase variation is related
with variability in the horizontal axis of the graph of the function, while amplitude
variation is related with variability in the vertical axis. The techniques employed
to align the features, and separate both sources of variability, receive the name of
registration methods. Phase and amplitude variation are often defined in an informal
way. However, formal definitions have also been proposed (Vantini, 2012; Marron et
al., 2015). There is some ambiguity in the definition of these quantities: in some cases
some sources of variation can be equally attributed to phase or amplitude (Marron
et al., 2015), referred to as the identifiability problem (Chakraborty and Panaretos,
2021).

Landmark registration

The simplest case of registration occurs when we have information about the loca-
tion of a fixed number of points of interest {τip}P

p=1, or landmarks, for each curve
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xi i = 1, . . . , N, such as maxima, minima or zero-crossing points. Given a particu-
lar observation xi ∈ X , the corresponding aligned function x̃i ∈ X would be of the
form x̃i = xi ◦ γi, for some transformation of the domain, or warping function γi We
want that in the registered functions the landmarks appear at some fixed locations
{τ∗p}P

p=1, and thus
x̃i(τ

∗
p ) = xi(τip), p = 1, . . . , P. (2.48)

When P = 1, this can be trivially achieved by considering only the warping func-
tions that perform a shift, or displacement in the domain, that is, functions of the
form γi(t) = t + δi, for δi ∈ T . Then the shifts δi = τi1 − τ∗1 leave the landmark
aligned.

Alternatively, when more than one landmark is given, or when shifting is unde-
sirable, one may want to achieve an elastic transformation, that modifies the shape
of the curve. Then, one would restrict the warping in order not to modify the val-
ues at the domain boundary. For example, if T = [a, b], we have that γi(a) = a
and γi(b) = b. The additional constraints γi(τ

∗
p ) = τip p = 1, . . . , P, guarantee

that the final curves have their landmarks aligned. In order for the warping func-
tion to be continuous and invertible, a monotonic interpolation between these fixed
points, such as monotonically increasing splines (Ramsay and Silverman, 2005), can
be applied to define it.

In most datasets, however, there is no given set of landmarks that we must align,
but instead is required that we infer the appropriate alignment from the data itself.
This requires a more formal and careful definition of phase and amplitude, that is
given below.

Formal definition of phase and amplitude

The following definition of phase and amplitude is based on the work of Vantini,
2012. We consider that X is a metric space such as L2(T ). We also must choose a
family of allowed warping functions

Γ = {γ : T → T , γ continuous} (2.49)

which is a subgroup with respect of the composition operator ◦ of the group of con-
tinuous automorphisms of T . As mentioned before, we want that x̃ ∈ X . Thus we
need to impose that ∀x ∈ X ∀γ ∈ Γ x ◦ γ ∈ X . As an additional requirement
to guarantee the soundness of the registration procedure, the family of warpings Γ
should be compatible with the metric d in the sense that applying the same warping
to two functions should leave their distance invariable, that is

∀x1, x2 ∈ X ∀γ ∈ Γ d(x1, x2) = d(x1 ◦ γ, x2 ◦ γ). (2.50)

This property ensures that it is not possible to obtain a false reduction in similarity
between two functions warping them in the same way.

In order to clarify the above definitions, it is useful to consider several possible
choices of X , d and Γ that verify the aforementioned properties. For example, one
could consider the L2 distance and the family of shifts of the form γ(t) = t + δ, for
δ ∈ T , mentioned before. Here is necessary that T = R, and in that case all the
properties are verified (Sangalli, Secchi, and Vantini, 2014). Choosing this restricted
family makes sense in case that one knows that each observation has the same in-
ternal “velocity”, and the only possible discrepancies in the alignment of the curves
come from a different choice of origin for each observation during the measurement
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process. Other possible choices of the Γ family are the sets of scalings of the domain
or linear or affine transformations (Marron et al., 2015), which are also compatible
with the L2(R) distance.

After choosing an appropriate family Γ, we can define the semimetric

dΓ(x1, x2) = min
γ1,γ2∈Γ

d(x1 ◦ γ1, x2 ◦ γ2). (2.51)

Intuitively, this semimetric measures the distance between the best possible regis-
tration of each pair of curves, using the warpings in Γ. Although the definition
is clearly symmetrical, using the property in Equation (2.50) and the fact that the
family of warping functions is a group, and thus every warping function γ has an
inverse γ−1, there exists an identity element, and is closed under composition, we
can see that this is equivalent to aligning only one of the functions to the other, that
is,

dΓ(x1, x2) = min
γ1,γ2∈Γ

d(x1 ◦ γ1, x2 ◦ γ2)

= min
γ1,γ2∈Γ

d(x1 ◦ γ1 ◦ γ−1
2 , x2 ◦ γ2 ◦ γ−1

2 )

= min
γ1,γ2∈Γ

d(x1 ◦ γ, x2) with γ = γ1 ◦ γ−1
2

= min
γ∈Γ

d(x1 ◦ γ, x2).

(2.52)

We can now consider the equivalence relation ∼ given by the metric identifica-
tion with dΓ (that is, x1 ∼ x2 ⇐⇒ dΓ(x1, x2) = 0). If we define as [x] the equivalence
class containing x as one of its elements, then we can define another metric in the
quotient space X/∼ as

dX/∼([x1], [x2]) = dΓ(x1, x2). (2.53)

Now we have the mathematical tools to provide a more rigorous definition of
phase and amplitude variation. Functions belonging to the same equivalence class
can be warped into each other composing them with an appropriate warping func-
tion γ ∈ Γ. Thus, we can define phase variation as the one that occurs between
functions in the same equivalence class. As a consequence, the remaining source of
variability, the amplitude variation, would be the variation between the equivalence
classes themselves. If we have two functions x1 and x2 with dΓ(x1, x2) = d(x1, x2)
then no warping function can bring them closer together, so all the variability is due
to amplitude variation.

One important point to note about these definitions is that they depend on the
choice of d and Γ. These choices in turn depend on the task at hand, as the nature of
the particular problem can suggest a particular metric or warping family, which in
turn defines a concept of amplitude and phase appropriate for that problem.

Registering a group of curves

Until now, we have considered the case where two observations are registered to
each other. But in most registration problems we have a set of several observations
{xi}N

i=1, and we want every one of them to be aligned with the others. A usual way to
address that problem is to find a function, called a template, which is centered inside
the set of observations in the phase space, and align each observation to it. Due
to Equation (2.52), we know that registering the template and each observation to
each other with two warping functions is equivalent to just register each observation
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towards the template, using only one warping function. It is natural to choose as the
equivalence class [x0] for the template the analog of the mean using the available
metric dX/∼ in the quotient space, that is, the Fréchet mean

[x0] = argmin
[x]∈X/∼

(
N

∑
i=1

d2
X/∼([xi], [x])

)
. (2.54)

It is less clear, however, how to select the best template function x0 inside this equiv-
alence class. Some authors (Sangalli et al., 2010; Kneip and Ramsay, 2008; Srivastava
et al., 2011) consider that the mean of the warping functions should be the identity,
and thus use

1
N

N

∑
i=1

γi = idT (2.55)

as a constraint. In Vantini, 2012 is argued that this constraint, although good enough
in practice, is not the best approximation, and furthermore requires that the family
of warping functions form a convex linear space. Instead, this work recommends
using again a Fréchet mean inside the equivalence class of the template function as
a constraint, that is,

x0 = argmin
x∈[x0]

(
N

∑
i=1

d2(xi, x)

)
. (2.56)

Finally, there remains the question of how these minimizations should be imple-
mented in practice. A Procrustes fitting criteria seems to be a popular choice (Vantini,
2012), iteratively alternating a step in which the Fréchet mean of the functions is
computed and another step in which the functions are registered towards that mean.
This is indeed the usual procedure when one uses the warping families of shifts or
affine functions (Ramsay and Li, 1998; Sangalli et al., 2009). For example, for the
family of shifts mentioned before, a Procrustes method can iteratively compute the
mean µ̂(t) and register the data minimizing

REGSSE =
N

∑
i=1

∫
T
[x̃i(t)− µ̂(t)]2dt, (2.57)

as proposed in Ramsay and Silverman, 2005.

Fisher-Rao elastic registration

The concepts and procedures previously explained have been magnificently applied
to the warping family of diffeomorphisms, or differentiable and invertible automor-
phisms of an interval (Srivastava et al., 2011), for real valued functions of a single
variable. In this setting, one usually consider that the domain of the functions is the
interval T = [0, 1]. The family of warping functions is then

Γ = {γ : γ(0) = 0, γ(1) = 1, γ is a diffeomorphism}. (2.58)

An analogous definition could be made for a different interval, or even for the whole
real line, in which case the family of affine transformations would be a strict subset
of Γ (Marron et al., 2015).

Unfortunately this family of warpings is not compatible with the L2([0, 1]) norm
in the sense of Equation (2.50). The alternative is to use as d the distance induced by
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an extension of the Fisher-Rao Riemannian metric. Recall that a Riemannian met-
ric defines a smoothly varying inner product for the vectors in the tangent space
of a manifold. That is, given the manifold X containing our observations, and if
Tx(X ) is the tangent space to X at x ∈ X , for every two vectors v1, v2 ∈ Tx(X ) this
Riemannian metric will be defined as

〈v1, v2〉x =
1
4

∫ 1

0
v′1(t)v

′
2(t)

1
|x′(t)|dt. (2.59)

In order to compute a metric between functions using this inner product, one first
defines the length L of a continuously differentiable curve c : [a, b] → X in an anal-
ogous way as in the usual case, but using the aforementioned inner product

L(c) =
∫ b

a

∥∥c′(t)
∥∥
X dt =

∫ b

a

√
〈c′(t), c′(t)〉X dt. (2.60)

Then, the distance between two functions is the infimum of the lengths of every
continuously differentiable curve that connects them.

The aforementioned distance verifies Equation (2.50) for the family Γ of diffeo-
morphisms. Moreover, it can be shown that it is the only metric with this property
(Srivastava et al., 2011). Although the above reasons provide a sufficient justifica-
tion for choosing this metric, it is very difficult to compute it directly. Fortunately, it
has been proven that a simple transformation, the square root slope function (SRSF),
transforms the space of functions in such a way that the Fisher-Rao distance can be
computed using the standard L2([0, 1]) metric. Given x ∈ X this transformation is
defined as

SRSF(x)(t) =

{
x′(t)/

√
|x′(t)|, if x′(t) 6= 0

0, otherwise
(2.61)

or equivalently

SRSF(x)(t) = sign
(
x′(t)

)√
|x′(t)|. (2.62)

Note that the composition of functions does not commute with the SRSF. Instead,
we have the identity SRSF(x ◦ γ)(t) = (SRSF(x) ◦ γ)(t)

√
γ′(t). Now the distance

induced by the Fisher-Rao metric between two functions x1, x2 ∈ X can be expressed
as

d(x1, x2) = ‖SRSF(x1)− SRSF(x2)‖2 =

√∫ 1

0
|SRSF(x1)(t)− SRSF(x2)(t)|2dt,

(2.63)
and we can apply the results of the previous section to define the registration prob-
lem in this case. The registration process that uses this warping family of diffeomor-
phisms and this particular distance is called Fisher-Rao elastic registration, and it is
currently one of the best general purpose registration methods.

There are a few differences between the usual computations in elastic registration
and the procedures mentioned before. First, in order to select a particular template
function from its equivalence class, a constraint similar to Equation (2.55) is imposed,
but using the Fréchet mean of the warping functions instead, that is

argmin
γ∈Γ

(
N

∑
i=1

d2(γi, γ)

)
= idT . (2.64)
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Other difference is that instead of using a Procrustes method, the required minimiza-
tions in the algorithm are computed using a dynamic programming algorithm.

2.3.2 Dimensionality reduction

Dimensionality reduction methods play an essential role in FDA. Since functional
observations can be evaluated at arbitrary points in a continuum, the nature of func-
tional data is, in principle, infinite-dimensional. Even when the data has been dis-
cretized, the number of grid points can be fairly large. As a result, large amounts of
storage and computation are required to handle functional data.

The continuous nature of functional data means that nearby points are strongly
correlated. Due to these redundancies, it is often possible to reduce the dimensional-
ity of functional data while retaining most of the relevant information. In particular,
we are interested in methods by means of which functional observations are repre-
sented as a finite-dimensional vector while retaining most of the information.

A number of benefits can be obtained from reducing the dimensions of the data.
First, it makes possible to take advantage of off-the-shelf multivariate models for
regression, classification, and clustering (Vieu, 2018). In that case, the functional na-
ture of the data needs to be taken into consideration only in the preprocessing steps,
including dimensionality reduction itself. If the dimensionality reduction process is
effective, the accuracy of the model trained in the lower-dimensional representation
is comparable to the predictors induced from the original functional data. Second,
dimensionality reduction can have a regularization effect, so that more accurate pre-
dictors that reduce overfitting can be built. Third, further processing can be made
with lower computational costs. Finally, dimensionality reduction can improve the
interpretability of the models, by uncovering relevant features of the data.

One common way to represent functional data in a lower dimensional space is
to approximate it using a finite basis expansion. For example, suppose that an ob-
servation x ∈ X can be exactly represented as a series,

x =
∞

∑
b=1

cbφb(t), (2.65)

where {φb(t), t ∈ T }∞
b=1 is an infinite-dimensional (Schauder) basis, and ci are the

particular coefficients in the basis expansion. Examples of these bases include the
Fourier and monomial bases of L2(0, 1). In this case, one could truncate the basis
expansion after a finite number B of elements, to achieve a lower-dimensional ap-
proximation

x ≈
B

∑
b=1

cbφb(t). (2.66)

One could then represent the data in RB as the vector of coefficients c = (c1, . . . , cB).
The quality of this representation will depend not only on the number B of chosen
basis elements, but also in the basis itself. Depending on the data and the nature
of the problem, some bases would be better choices than others. Moreover, if the
basis employed is orthonormal, the results obtained by applying functional proce-
dures would be the same as just considering the vector c as if it was expressed in the
standard basis of RB.

One widely used dimensionality reduction method that uses this approach is
functional principal components analysis (FPCA) (Ramsay and Silverman, 2005).
This method is based on the Karhunen-Loève expansion of a zero-mean stochastic



24 Chapter 2. Learning from functional data

process X which takes values in L2. This process has a covariance function k and
associated covariance operator K. Let {λb}∞

b=1 and {φb}∞
b=1 be the eigenvalues and

eigenvectors of K, respectively. Then, the Karhunen-Loève theorem, already men-
tioned in Section 2.2.2, states that such a process can be expressed as

X(t) =
∞

∑
b=1

ξbφb(t), (2.67)

where the basis functions are orthogonal in L2 and the ξb are zero-mean uncorrelated
random variables, defined as ξb = 〈X, φb〉. Furthermore, the random variable ξb has
variance λb. Thus, by truncating to a fixed number of elements in the expansion,
we actually keep the directions φb which maximize the explained variance of the
process.

Variable selection

Variable selection is a method of dimensionality reduction that is of particular in-
terest. The goal of variable selection methods is to identify a set of impact points,
denoted by t = {t1, . . . , tD}, which capture the bulk of the information present in
the original trajectories. Subsequently, the original functional data are replaced by
their values at the selected impact points, i.e {X(t1), . . . , X(tD)}. Since the lower-
dimensional representation corresponds to particular points of the original func-
tional observations, models that make use of variable selection methods are often
more interpretable than models using other dimensionality reduction methods. In
this last case, the dimensions of the reduced space correspond to combinations and
transformations of the original variables, which may make the models harder to ex-
plain.

There are three main categories of variable selection methods (Guyon and Elis-
seeff, 2003; Guyon et al., 2006). In filter methods, the variable selection is performed
as a preprocessing step, independent of the particular procedures performed after-
wards. For example, a method that rank the variables according to statistical tests
(e.g. higher dependence with the target, high variance, etc) and then selects the best
variables in the ranking would be in this category. On the contrary, in wrapper meth-
ods, a predictive procedure, such as a classifier or regressor is used as a black-box in
order to select the points that have a greater predictive power. A possible method
in this category is to apply forward selection using as a criterion the accuracy of the
predictions. In that case, we proceed iteratively, adding at each step to the set of
selected variables the one that best improves prediction, until the improvement is
too small. Finally, in embedded procedures variable selection is integrated in the pre-
diction process itself. That would be the case if, for example, we train a classification
tree and discard all variables that end not being used by the model.

A possible approach to variable selection in the functional setting is to directly
apply multivariate methods to the discretized trajectories (Jiménez-Cordero and Mal-
donado, 2021). The multivariate method can be enhanced by taking into consider-
ation the continuity and underlying smoothness of the functional data. In particu-
lar, nearby values in the trajectories should carry similar information. This redun-
dancy can be taken into account explicitly in the design of the variable selection
method (Aneiros and Vieu, 2014). Alternatively, as in the mRMR (minimum Re-
dundance Maximum Relevance) method Ding and Peng, 2005, redundant variables
can be discarded (Berrendero, Cuevas, and Torrecilla, 2016a). In some cases, feature
construction is performed to summarize the functional observations by vectors of
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attributes that can be subsequently passed to multivariate variable selection proce-
dures (Gómez-Verdejo, Verleysen, and Fleury, 2009; Fraiman, Gimenez, and Svarc,
2016).

There is a sizeable literature on variable selection in the context of functional re-
gression (Goia and Vieu, 2016; Vieu, 2018; Aneiros, Novo, and Vieu, 2022). Some
of these methods employ linear regression models, wherein a penalty term is uti-
lized to encourage sparsity (Kneip and Sarda, 2011; Lee and Park, 2012; Aguilera-
Morillo et al., 2020; Feng, Zhang, and Tong, 2022; Belli, 2022). Extensions of LASSO
to nonparametric cases have also been proposed (Ghosal and Maity, 2022). In con-
trast, variable selection can be performed using sliced inverse regression (Picheny,
Servien, and Villa-Vialaneix, 2019) techniques or wrapper methods like sequential
forward-backward selection (Ferraty, Hall, and Vieu, 2010), which do not require
any specific assumptions about the regression model.

In the context of classification, variable selection methods have been proposed
for predictors based on penalized linear regression (Grosenick, Greer, and Knutson,
2008), logistic regression (Lindquist and McKeague, 2009; McKeague and Sen, 2010;
Matsui, 2014), Bayesian discriminant analysis (Yu et al., 2022), and support vector
machines (Blanquero et al., 2019; Blanquero et al., 2020). A wrapper approach is
introduced in Delaigle, Hall, and Bathia, 2012. In this work the continuous nature of
the data is taken into account by searching in a coarse grid of points and refining the
search in the most promising regions.

The problem of variable selection in functional classification is also addressed in
Berrendero, Cuevas, and Torrecilla, 2018. This paper discusses classification prob-
lems in which Bayes classification rule (see Section 2.3.4) depends on a finite number
of variables due to the structure of the mean functions. The authors propose a filter
variable selection algorithm, reproducing kernel-based variable selection (RKVS).
The name RKVS refers to the role of the reproducing kernel Hilbert spaces theory
in deriving properties of the method, such as optimality results for some Gaussian
models. RKVS aims at selecting the variables to maximize the (multivariate) Maha-
lanobis distance between the class means in the reduced space,

φ(t) = µ(t)Tk(t, t)−1µ(t), (2.68)

where µ(t) = µ1(t) − µ0(t) is the difference between the class means evaluated at
the vector t of selected points and k(t, t) is the covariance matrix for these points.
The method has good theoretical properties and performs well in practice.

The same authors introduced maxima hunting (MH) (Berrendero, Cuevas, and
Torrecilla, 2016b), a non-parametric and data-driven variable selection method for
functional data. MH relies on identifying impact points at which the dependence of
the class label on the corresponding function values is maximal. Similar strategies
of selecting the maxima of a relevance function have been followed in subsequent
works (Ordóñez et al., 2018; Poß et al., 2020). A complete description of MH, as
well as the analysis of recursive maxima hunting (RMH), a more advanced method
inspired by it, are the main topics covered in Chapter 5.

2.3.3 Regression

Functional data regression is an example of a supervised problem in machine learning.
In these kinds of problems, a initial set of previously labeled observations is available
for training a model. The observations themselves belong to a set X , which could
be, for example, a multivariate space, such as RM, or a functional space like the ones
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described in Section 2.2. The labels, or targets, belong to the setY , which will depend
on the particular problem considered. The trained model will then be used to predict
the label of previously unseen data for which the correct label is not known.

In the case of regression, we will have a training dataset {xi, yi}N
i=1 xi ∈ X , yi ∈

Y , in which Y is a continuous space, such as the set of real numbers R. In this
setting the label is often called the “dependent variable” or “response”, while the
attributes of the observations are called the “independent variables” or “covariates”.
Depending on the actual sets X and Y , we can distinguish between different kinds
of regression problems (Ramsay and Silverman, 2005; Morris, 2015).

When X = RM and Y = RP, we are dealing with classical multivariate regression.
When P > 1 sometimes the term multi-output regression is employed. It is common
to restrict ourselves to the case P = 1 in this case, as the case P > 1 can often be
treated as P different regression problems, each with P = 1.

If X is a functional space and Y = RP, the problem is called functional regres-
sion with scalar response or scalar-on-function regression (Reiss et al., 2017). As in
multivariate regression, it is common to consider just the case P = 1.

We can also have the opposite situation, when X = RM and Y is a functional
space. This is the so-called function-on-scalar regression (Bauer et al., 2018). Note that
in this case it is not desirable to consider this problem as unrelated regression models
with scalar response. This is not only because there would be as many models as
discretization points in the response, but also because these response values are not
independent, but instead they are highly correlated.

It is also possible to consider the case were both X and Y are functional spaces.
In this case the problem is function-on-function regression (Ivanescu et al., 2015). This
case includes as sub-models two constrained cases of interest: the historical model
(Malfait and Ramsay, 2003), in which the response at time t can only be predicted
using the values of the covariates at times s ≤ t, and the concurrent model (Ram-
say and Silverman, 2005), in which only the values of the covariates at time t are
considered.

One simple model that is often useful in multivariate and functional regression
is the linear regression model (Ramsay and Silverman, 2005). In this model the re-
sponse, either multivariate or functional, is considered to be a linear function of one
or more covariates. The covariates themselves can be multivariate or functional, or
even a combination of both. Consider a case with p = p1 + p2 covariates in which
the first p1 covariates are multivariate and the last p2 covariates are functional. An
observation xi is then the set of covariates {xi1, . . . , xip1 , xip1+1, . . . , xip}. When the
response is scalar, the functional linear regression model can be written as

yi = β0 +
p1

∑
j=1

β jxij +
p

∑
j=p1+1

∫
Tj

β j(t)xij(t)dt + εi, i = 1, . . . , N, (2.69)

were β0 is the intercept term, β j is the coefficient associated with the j-th covariate,
Tj is the support of the j-th covariate and εi models some error or noise of the i-th ob-
servation. In order to prevent overfitting due to the presence of infinite-dimensional
parameters β j in the model, a regularization that penalizes the curvature of the func-
tional β j is often applied. In spite of the simplicity of this model, it is very useful not
only for simple problems, but also because it provides an interpretation of how the
response depends on the covariates, explaining the influence of each one.
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In the functional response case, the linear regression model is now

yi(t) = β0(t) +
p1

∑
j=1

β j(t)xij +
p

∑
j=p1+1

∫
Tj

β j(t, s)xij(t, s)ds+ εi, i = 1, . . . , N. (2.70)

Note that here each functional covariate xij can depend on the same parameter t as
the response, on a different parameter s, and on both. This general model includes
several particular interesting cases. For example, it is common that the functional
covariates are univariate functions. In this case, each corresponding term in Equa-
tion (2.70) can be written as ∫

Tj

β j(t, s)xij(s)ds. (2.71)

If s and t are defined in the same domain, it is possible to obtain the historical linear
model in Malfait and Ramsay, 2003 by restricting β j(t, s) such that s > t⇒ β j(t, s) =
0. Furthermore, a concurrent functional linear model can be written replacing the
corresponding term in Equation (2.70) by

β j(t)xij(t). (2.72)

There have been additional developments in parametric functional regression,
that generalize the linear model presented here. Generalized additive models, in
particular, have been extended to the FDA context, for scalar (McLean et al., 2014)
and functional (Scheipl, Gertheiss, and Greven, 2016) responses.

Nonparametric methods for regression can also be employed in the FDA con-
text. The simplest of these methods are neighbor-based ones. In particular k-nearest
neighbors (k-NN) regression can be applied to the functional case, both with scalar
(Burba, Ferraty, and Vieu, 2009) and functional responses (Lian, 2011). In this model,
a metric d in the original spaceX is required. In order to predict the target for a given
x ∈ X , one first finds the pairs corresponding to the nearest k observations in the
train dataset (x[1], y[1]), . . . (x[k], y[k]). Then the predicted target is a weighted sum of
these targets,

ŷ =
k

∑
i=1

wiy[i], (2.73)

with ∑k
i=1 wi = 1. The wi are typically all 1

k , to give equal importance to all neighbors,
or inversely proportional to the distance between x and x[i].

Instead of considering only a fixed number of neighbors, it is possible to consider
the weighted sum of all targets in the training data,

ŷ =
N

∑
i=1

wiyi. (2.74)

In order to achieve a good prediction, the weights should reflect the closeness of each
observation in the training set to x. This is commonly done using a kernel function K,
which weights the values in the real line according to their proximity to the origin
(Wasserman, 2006). Given K a possible distribution of the weights is given by

wi =
K
(

d(x,xi)
h

)
∑N

j=1 K
(

d(x,xj)
h

) , i = 1, . . . , N, (2.75)
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where h is a positive real that depends on N and is called the bandwidth. This is the
so-called Nadaraya–Watson kernel regression method, whose applicability to the
functional data context has been studied in Ferraty and Vieu, 2006.

2.3.4 Classification

Functional data classification is another example of a supervised problem, in which
the target, or class label, is categorical, that is, Y = {0, . . . , C}. Given a training set
{xi, yi}N

i=1 xi ∈ X , yi ∈ Y , the objective is to construct a classifier, that is, a measur-
able function g : X → Y , that given a previously unseen observation x obtains a
correct prediction ŷ = g(x) of its target.

Functional data classification is an active research field that has multiple appli-
cations in different areas, such as medicine (Zhu, Brown, and Morris, 2012; Epifanio
and Ventura-Campos, 2014), genomics (Leng and Müller, 2006; Song et al., 2008;
Rincón and Ruiz-Medina, 2012), spectrometry (Rossi and Villa, 2006), weather mod-
elling and forecasting (Martin-Barragan, Lillo, and Romo, 2014), speech recognition
(Rossi and Villa, 2006), and the analysis of handwriting (Hubert, Rousseeuw, and
Segaert, 2017).

As mentioned before, there are substantial differences between the traditional
multivariate classification problem and the functional one. The lack of densities of
random functions, in particular, complicates the definition of some concepts, such
as the optimal (Bayes) classification rule. In some cases, even if the individual class-
conditional probability densities do not exist, such rule can still be given in terms of
the Radon-Nikodym derivative, which plays the role of the likelihood ratio in these
types of infinite-dimensional problems (Baíllo, Cuevas, and Cuesta-Albertos, 2011).
The non-invertibility of the covariance operator in the functional case prevents a
straightfordward definition in the functional context of some of the classic classi-
fiers, such as linear discriminant analysis (LDA) or quadratic discriminant analysis
(QDA).

The theoretical analysis in functional data classification tends to focus on the
binary case C = 1, as the notation becomes simpler, and the generalization to multi-
class problems is often straightforward. In this case, the random function X taking
values in X , from which the observations have been obtained, can be defined as{

(X(t) | Y = 0) = µ0(t) + Z0(t) with probability 1− p
(X(t) | Y = 1) = µ1(t) + Z1(t) with probability p,

(2.76)

where 0 ≤ p ≤ 1, Y is the associated random variable for the target, µ0, µ1 are
the deterministic functions corresponding with the class means and Z0, Z1 are class-
dependent stochastic processes with mean 0, whose laws or induced measures are
P0 and P1, respectively

Without loss of generality, the mean µ0 can be subtracted from all trajectories to
obtain the equivalent classification problem{

(X(t) | Y = 0) = Z0(t) with probability 1− p
(X(t) | Y = 1) = µ(t) + Z1(t) with probability p,

(2.77)

where µ(t) = µ1(t)− µ0(t).
A case of special interest from a theoretical point of view is where Z0 and Z1 are

GPs, analogously to the discrimination between normally distributed populations in
the multivariate setting. This model has been widely studied in the functional data
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literature (Delaigle and Hall, 2012; Delaigle and Hall, 2013; Dai, Müller, and Yao,
2017; Berrendero, Cuevas, and Torrecilla, 2018).

Another useful simplification is to consider the homoscedastic case, where Z0 and
Z1 have the same covariance function k. In the particular case in which they are
both Gaussian, their distribution is the same Z0 = Z1 = Z, as they are completely
determined by the covariance, and thus the model becomes{

(X(t) | Y = 0) = Z(t) with probability 1− p
(X(t) | Y = 1) = µ(t) + Z(t) with probability p.

(2.78)

The Bayes classification rule

The Bayes classification rule is the measurable function

g∗(x) = argmax
y∈Y

P(Y = y | X = x). (2.79)

This predictor achieves the minimum error for a classification problem characterized
by the joint distribution P(X, Y) (Devroye, Györfi, and Lugosi, 1996).

In some problems of interest it is possible to provide an explicit expression for
the Bayes classifier. In order to do that we need to introduce some new concepts.
Given two probability measures P0 and P1 in the same measurable space, we say
that P0 is absolutely continuous with respect to P1 (P0 � P1) if for every measurable
set A with P1(A) = 0 we also have P0(A) = 0. In this case is possible to define a
density function f = dP0

dP1
or Radon-Nikodym derivative that relates these measures such

that for every P1-measurable set A we have

P0(A) =
∫

A
f dP1. (2.80)

For the binary classification problem in Equation (2.76), if P0 and P1 are both
absolutely continuous with respect to a common measure λ, then we can express
this optimal rule as

g∗(x) = I{p f1(x)>(1−p) f0(x)}, (2.81)

where fi = dPi
dλ (Baíllo, Cuevas, and Cuesta-Albertos, 2011). This is precisely the

case for multivariate data, where for λ we can choose the Lebesgue measure. How-
ever, this is not possible in the functional case, as there is no analog of the Lebesgue
measure for infinite-dimensional spaces, and there is no other obvious dominant
measure.

However, even in the absence of this common λ, in the case where P0 and P1 are
mutually absolutely continuous with respect to each other, also called equivalent
(P0 ∼ P1), we can still write (Berrendero, Cuevas, and Torrecilla, 2018) the optimal
rule as

g∗(x) = I{ dP1
dP0

(x)> 1−p
p

}. (2.82)

In the Gaussian homoscedastic case of Equation (2.78), we know that P0 ∼ P1 ⇔
µ ∈ Hk, and in this case we have an expression for the Radon-Nikodym derivative
in terms of the theory of RKHS (Berrendero, Cuevas, and Torrecilla, 2018):

dP1

dP0
(x) = exp

(
〈x, µ〉k −

1
2
〈µ, µ〉k

)
. (2.83)
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Note that if the RKHS is infinite dimensional, the trajectories of the random pro-
cess do not belong toHk with probability one (Kailath, 1971; Lukić and Beder, 2001;
Berlinet and Thomas-Agnan, 2004). In this case, we have to understand the notation
〈x, µ〉k as the extension of the inner product given by Loève’s isometry in Equa-
tion (2.43). The final expression for the Bayes classification rule in this case would
be

g∗(x) = I{η∗(x)>0}, (2.84)

with

η∗(x) = 〈x, µ〉k −
1
2
〈µ, µ〉k − log

(
1− p

p

)
. (2.85)

The error associated with this optimal rule is

L∗ =(1− p) cdf
(
−‖µ‖k

2
− 1
‖µ‖k

log
(

1− p
p

))
+

p cdf
(
−‖µ‖k

2
+

1
‖µ‖k

log
(

1− p
p

))
,

(2.86)

where cdf is the cumulative distribution function of a standard Gaussian variable.
In the particular case where p = 1

2 , this formula simplifies to

L∗ = 1− cdf
(‖µ‖k

2

)
. (2.87)

Near-perfect classification

A surprising effect that appears in the context of functional classification is near-
perfect classification (Delaigle and Hall, 2012). This is the observed behavior in some
functional problems in which zero classification error can be achieved in the asymp-
totic (infinite sample) case. This happens for homoscedastic problems, even with
non Gaussian processes, if

∞

∑
i=1

µ2
i

λi
= ∞, (2.88)

where the λi are the eigenvalues of the common covariance operator K, as defined
in Equation (2.29). The {µi}∞

i=1 are the coefficients of the mean in the base of eigen-
functions, that is, µ = ∑∞

i=1 µiφi.
In the general case, near-perfect classification will occur whenever the measures

P0 and P1 are mutually singular. Recall that two measures P0 and P1 are mutually
singular (P0 ⊥ P1) if there exist two measurable subsets A, B ⊆ X , with A ∩ B = ∅
and A∪ B = X , and we have P0(A) = 0 and P1(B) = 0. In the case of classification,
given a particular observation x, if x ∈ A then Y = 1 with probability 1 and if
x ∈ B then Y = 0 with probability 1. In the particular case in which Z0 and Z1 are
both Gaussian, the Feldman–Hájek dichotomy (Feldman, 1958) establishes that their
respective laws are either mutually singular (so we have near-perfect classification,
with an optimal error of 0) or equivalent (so in this case there is an expression for the
Bayes classification rule in terms of the Radon-Nikodym derivatives).

In Berrendero, Cuevas, and Torrecilla, 2018, the near-perfect classification is de-
fined in terms of the previous condition of mutually singular measures. The authors
note that although this case rarely appears in multivariate data problems, it is nev-
ertheless very common in the functional case. Moreover, they prove that for the
particular homoscedastic problem in Equation (2.78), with Gaussian processes, and
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if we denote asHk the RKHS associated with the common covariance function k, we
have P0 ⊥ P1 ⇔ µ 6∈ Hk.

Functional classifiers

The differences between multivariate and functional data prevent some of the classi-
fiers traditionally used in the former setting to be directly applicable to the latter. For
example, the linear discriminant analysis (LDA) and quadratic discriminant analy-
sis (QDA) classifiers, widely used in multivariate statistics, require the inversion of
the covariance matrix of the data. As the covariance operator is not invertible in
the functional setting in general, these methods are ill defined, and numerical prob-
lems may arise when applying them to discretized functional data. LDA and QDA
are also interesting from a theoretical point of view, as for binary classification with
multivariate Gaussian data (the multivariate analog of Equation (2.76)) they achieve
the minimal (Bayes) error in the homoscedastic and heteroscedastic cases, respec-
tively. In Chapter 4 we explore how this result can be generalized to functional data.

A rich family of classifiers in the multivariate setting are those based on the com-
putation of distances between observations. These classifiers can be applied to func-
tional data in a space with a suitable metric, such as those defined in Section 2.2. For
example, nearest centroid classifiers are simple methods that assign to a given ob-
servation x the label of the class whose centroid (the mean) µc, c = 0, . . . , C is closest
to it:

ŷ = argmin
c=0,...,C

d(x, µc), (2.89)

where d ( · , · ) is a functional distance. In spite of their simplicity, they can achieve
optimal results for some classification problems (Delaigle and Hall, 2012).

The k-nearest neighbors (k-NN) classifier can also be extended to the functional
case by using a functional metric to find the neighbors. The main idea of this method
is to choose a number k and a metric d. Given a test observation x, the method first
finds the k nearest observations according to d in the train dataset, x[1], . . . , x[k], with
respective class labels y[1], . . . , y[k]. The class is predicted by majority voting:

ŷ = arg max
y

k

∑
i=1

Iy[i]=y. (2.90)

The k-nearest neighbors (k-NN) classifier has been shown to be consistent under
mild assumptions (Cérou and Guyader, 2006). It can be considered a sort of ref-
erence method for supervised classification in FDA (Baíllo, Cuevas, and Fraiman,
2010). Some of the reasons for it are its simplicity, ease of motivation and the fact
that it typically does not lead to gross classification errors.

Logistic regression, a widely used method in the multivariate setting, has been
also extended to the functional domain. A recent contribution in this area is detailed
in Berrendero, Bueno-Larraz, and Cuevas, 2022. In that work an extended model of
logistic regression for binary classification is constructed using the theory of RKHS,
as

P(Y = 1 | X) =
1

1 + exp(−β0 − 〈β, X〉k)
β0 ∈ R, β ∈ Hk, (2.91)

were again the inner product 〈 · , · 〉k has to be interpreted using Loève’s isometry in
Equation (2.43).

Another classification strategy is labelling observations according with their cen-
trality in the populations: the more central an observation is in a sample, the more
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probable is that it belongs to that sample. The notion of centrality is quite natural in
one-dimensional data, but it becomes fuzzy in higher dimensions. This effect is par-
ticularly critical in the infinite dimensional spaces of function where nothing similar
to a natural order exists. Fortunately, there is a bunch of statistical depth functions
that allow us to quantify this centrality in order to define the median, detect outliers
or classify.

In this context, the simpler proposals for classifying are the so called maximum
depth methods (Cuevas, Febrero, and Fraiman, 2007). They assign a new observa-
tion into the class in which it is deeper. That is, the class label assigned to x is

ŷ = argmax
c=0,...,C

Dc(x), (2.92)

where Dc denotes the depth measure in the c-th class.
A different approach to depth-based classification in the binary case (C = 1), the

depth vs depth (DD) classifier, is described in Li, Cuesta-Albertos, and Liu, 2012.
They propose to first transform each observation to a 2-dimensional vector whose
coordinates are the depth of the datum inside each class. In that space, they try
to find the polynomial of a particular degree which best separates the data points.
Maximum depth can then be seen as a particular case of this method in which the
polynomial used is the line y = x. This approach is thus more flexible, but compu-
tationally more costly, and restricted to the binary classification case.

A generalized version of the DD classifier is followed by the generalized depth-
depth classifier (DDG) (Cuesta-Albertos, Febrero-Bande, and Oviedo de la Fuente,
2017). This methodology consists in projecting the functional data into a lower-
dimensional space of depths and then, use any multivariate classification rule. The
features in this reduced space are the depth values of the trajectories in each class,
for one or more depth measures. In other words, given a functional observation x
and a set of depth functions D1, . . . , DG, the DDG classifier performs the transforma-
tion x → (Dg

c (x)), g = 1, . . . , G, c = 0, . . . , C, before classifying.
Finally, more advanced multivariate methods have been adapted to the func-

tional setting. These include SVM classifiers (Rossi and Villa, 2006) and neural net-
works (Rossi and Conan-Guez, 2005). In SVMs, one can use kernels that only need
the Hilbert space structure of the functional data, by computing inner products or
norms. For neural networks, it is possible to construct a first functional layer in the
network using the inner product, and keep the hidden layers multivariate.

2.3.5 Clustering

Clustering consists in identifying groups of observations (clusters) that exhibit some
sort of similarity. This is an example of an unsupervised problem, with categorical
prediction (the cluster label). As opposed to supervised problems, such as classifi-
cation, in clustering we receive a dataset {xi}N

i=1, with every xi ∈ X , without any
predefined label. The objective is to assign to each observation xi a particular clus-
ter label ŷi ∈ Y = {0, . . . , C}. However in this case the assignment is done purely
looking at the structure of the observations, as no prior labels are known. This also
means that a particular cluster label has no predefined meaning: any relabeling of
the clusters that produces the same partition of the data is essentially the same clus-
tering. Finally, note that altough some clustering methods are capable of finding the
“right” number of clusters that should be used, most classical clustering methods
require that the number of clusters is known a priori.
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The k-means algorithm (Hartigan and Wong, 1979) is perhaps the best-known
clustering procedure (Jacques and Preda, 2014). In this algorithm the number of
clusters C should be known in advance. Starting from C cluster centroids, which are
selected at random from the observations, the algorithm proceeds by iterating until
convergence the following two steps:

1. Assign each datum to the cluster whose centroid is the nearest one, given a
distance measure.

2. Recompute the cluster centroids as the means of the observations belonging to
each cluster.

This procedure can be used both for multivariate and functional data (Tokushige,
Yadohisa, and Inada, 2007).

Fuzzy C-means (FCM) is a variant of the previous algorithm in which each ob-
servation is assigned to all C clusters with different degrees of membership (Dunn,
1973; Bezdek, 1981). In this setting, the degree of membership uij of the datum xi to
the cluster cj is in the range [0, 1], with the restriction ∑C

j=1 uij = 1. A new parameter
ω ≥ 1, called the fuzzifier, controls the level of fuzziness of the result. A value ω = 1
corresponds to crisp results, similar of those achieved by k-means. Higher values
of ω lead to increased fuzziness in the solution. The algorithm works in the same
fashion as k-means, with modified computations of the cluster assignment and cen-
troid recalculation steps to take into account the fuzzy membership. In Chapter 6,
the algorithm is described in detail, and its application to functional data is studied.

Other family of clustering methods for functional data includes the so-called hi-
erarchical clustering methods (Ferreira and Hitchcock, 2009). In these method, a
measure of similarity between clusters, based on a distance d is defined. Then,
the data is clustered using one of two possible approaches. It is possible to start
with individual clusters for each of the observations and successively merge the two
clusters which are more similar, until the desired number of clusters is achieved
(agglomerative clustering). Alternatively, it is possible to start with one big cluster
containing all observations and sucessively perform the split that creates the most
dissimilar clusters (divisive clustering).
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Chapter 3

Functional datasets

This chapter describes some functional datasets that are used in the current work.
They arise in applications in a variety of fields such as biology, meteorology, chemo-
metrics or medicine. In this work, they are used to illustrate the methods and tools
developed and for benchmarking.

3.1 Berkeley Growth Study

In this dataset, shown in Figure 3.1, the heights of 54 girls and 38 boys have been
recorded at 31 non equidistant ages between 1 and 18 (Tuddenham and Snyder, 1954;
Ramsay and Silverman, 2005). This dataset has been widely used as an example in
binary classification, where the goal is to predict the sex of each observation from
the height trajectory (Ramsay and Silverman, 2005; López Pintado and Romo, 2005;
Cuevas, Febrero, and Fraiman, 2007; Baíllo and Cuevas, 2008; Cuesta-Albertos and
Nieto-Reyes, 2010; Baíllo, Cuevas, and Fraiman, 2010; Sguera, Galeano, and Lillo,
2014; Berrendero, Cuevas, and Torrecilla, 2016b; Cuesta-Albertos, Febrero-Bande,
and Oviedo de la Fuente, 2017; Mosler and Mozharovskyi, 2017). Additionally, this
dataset is a clear example where misalignment can occur in a natural way. As the
growth pattern is different for each kid, we observe that natural landmarks, such as
the puberty peak in growth speed, happen at distinct points in time for each child.
One can consider that instead the growth is a function of a “biological time” inherent
to each kid. Representing the data as a function of this intrinsical time would be
the objective of an elastic registration procedure (Srivastava et al., 2011). Note that
in this case the warping funtions obtained from registration would be useful for
classification, as puberty tends to occur earlier for girls than for boys.

3.2 Medflies dataset

In this dataset the trajectories correspond to daily egg-laying patterns of flies (Carey
et al., 1998; Müller et al., 2001). They are 512 30-day curves (beginning at day 5) of
flies which live at most 34 days and 266 curves of long-lived flies (that reach the day
44). The curves correspond to the daily count of eggs produced, and the objective
is to predict if the fly would be long-lived or not. The original hypothesis was that
flies that lay more eggs on the first days would be short-lived, which would justify
treating this dataset as a binary classification problem. However, this correlation
was found to be very weak, which makes this problem notoriously difficult (Müller
and Stadtmüller, 2005; Baíllo and Cuevas, 2008; Baíllo, Cuevas, and Fraiman, 2010;
Mosler and Mozharovskyi, 2017). The trajectories are also not very smooth, as they
come from a counting process. Nevertheless, displaying the aggregate eggs layed
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FIGURE 3.1: Berkeley Growth dataset. On the left, the original
dataset, with the trajectories of the boys in blue and the girls in or-
ange. On the right, the first derivative, corresponding to growth
speed. Here the puberty peak is clearly visible, as well as the fact

that in general girls reach puberty earlier than boys.

(which would be analog to taking the integral of the data) shows a more natural-
looking functional pattern. We can observe 80 of these curves on Figure 3.2.
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FIGURE 3.2: Medflies dataset. On the left, 80 of the original curves,
with the trajectories of short lived flies in blue and the long-lived ones
in orange. On the right, the aggregated version of them (with the total

eggs laid), in which its functional nature is more apparent.

3.3 Phoneme dataset

The trajectories in this dataset are 1717 log-periodograms constructed from 32 mil-
lisecond long recordings of males pronouncing several phonemes: “sh” as in “she”
(872 curves), “dcl” as in “dark” (757 curves), “iy” as the vowel in “she” (1163 curves),
“aa” as the vowel in “dark” (695 curves), and “ao” as the first vowel in “water”
(1022 curves) (Hastie, Tibshirani, and Friedman, 2009). Those trajectories are dis-
cretized at 256 equidistant points. This data serves to illustrate the potential role of
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functional data analysis (FDA) in voice recognition, in a multiclass classification set-
ting. A binary classification version of this dataset is often obtained by keeping the
most difficult phonemes to discriminate between: “aa” and “ao”. It is well known
that in this dataset the relevant information is on the first variables, corresponding
with lower frequencies. Thus, some authors truncate it to the first 150 grid points
(Baíllo and Cuevas, 2008; Sguera, Galeano, and Lillo, 2014; Galeano, Joseph, and
Lillo, 2015), while others keep only the first 50 (Delaigle and Hall, 2012; Cuesta-
Albertos, Febrero-Bande, and Oviedo de la Fuente, 2017; Berrendero, Cuevas, and
Torrecilla, 2018). Figure 3.3 illustrates all these different versions of this dataset.
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FIGURE 3.3: Phoneme dataset. In the top row the multiclass classi-
fication problem is plotted, showing only the first 10 curves. In the
bottom row we show the binary classification version of this dataset,
again showing only 10 curves. In both cases, from left to right we
represent the original data, the data truncated to the first 150 vari-

ables and the data truncated to the first 50 variables, respectively.

3.4 Tecator dataset

A regression dataset that consists of 215 near-infrared absorbance spectra of differ-
ent pieces of finely chopped meat (Borggaard and Thodberg, 1992; Ferraty and Vieu,
2006), as well as their moisture, fat and protein contents. The trajectories are sampled
at 100 equally spaced points. The objective is to predict the fat percent of the meat
from the spectra. A binary classification version of this dataset can be obtained by
discriminating between high fat concentration (above 20%) and low concentration,
as proposed in Ferraty and Vieu, 2006. For this dataset the magnitude of the original
curves presents very low correlation with the target. Thus, it is often a good choice
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to discard this information and work instead with the first or the second derivatives
(Ferraty and Vieu, 2006; Berrendero, Cuevas, and Torrecilla, 2016b). Both the regres-
sion and classification versions of this dataset, including the derivatives, can be seen
in Figure 3.4.
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FIGURE 3.4: Tecator dataset. In the top row we represent the regres-
sion problem, using a gradient for the target, with more red curves
indicating a greater percent of fat. The second row is the binary clas-
sification version of this dataset. In both cases, from left to right we
represent the original data, the first derivative and the second deriva-

tive, respectively.

3.5 Wheat dataset

This dataset contains near-infrarred spectra of 100 samples of wheat and is thus anal-
ogous to the previously mentioned Tecator dataset (Kalivas, 1997). These curves
have been measured from 1100 nm to 2500 nm in 2 nm intervals, obtaining a to-
tal of 701 different wavelengths. The objective of the original regression problem
is to predict the measured protein content of the samples from the curve informa-
tion. A binary classification version of this dataset was created in Delaigle and Hall,
2012, by splitting the data in the observations whose protein content is less than
15 (41 curves) and those with higher content (59 curves). In the same article, the
authors recommend working with the first derivative of the data, as in the Teca-
tor dataset. Moreover, they show that in this case the dataset can be considered a
real-world problem in which near-perfect classification (see Section 2.3.4) arises. All
versions of the dataset are illustrated in Figure 3.5. The binary problem, using the
first derivatives, has been employed afterwards in several other classification studies
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(Delaigle and Hall, 2013; Cuesta-Albertos, Febrero-Bande, and Oviedo de la Fuente,
2017; Berrendero, Cuevas, and Torrecilla, 2018) and is the one used in this work.
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FIGURE 3.5: Wheat dataset. The top row shows the original prob-
lem, with the percent of protein depicted as a color gradient, as in
Figure 3.4. The second row shows the binary classification version of
the problem. In both cases the left plot shows the original curves, and

the right plot shows the first derivatives.

3.6 Canadian Weather dataset

In this dataset the anual temperatures at 35 different locations in Canada are av-
eraged over 1960 to 1994 (Ramsay and Silverman, 2005). The measurements are
performed daily, and thus we have 365 equally spaced points. This dataset con-
tains additional information about the location and climates of the different stations,
which is useful for illustrating clustering with functional data. The dataset also in-
cludes precipitation data that we do not use in this work. The temperature curves
are shown in the left part of Figure 3.6. Note that the curves exhibit the typical pat-
tern of temperatures in the northern hemisphere, with the lowest temperatures in
winter, at the beginning and end of the year, and higher summer temperatures in
the middle.

3.7 AEMET dataset

This dataset is very similar to the previously mentioned Canadian weather dataset.
The data are taken from the State Meteorological Agency of Spain (AEMET) and
contain several meteorological observations (temperature, precipitation and wind
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FIGURE 3.6: On the left, the temperarure curves of the Canadian
Weather dataset are shown. We can compare them with the temper-
atures in the AEMET dataset, on the right. Note that both datasets
present similar annual variations in temperature, corresponding to

the seasonal pattern of the north hemisphere.

speed) at 73 weather stations throughout Spain. These indicators are measured daily
(M = 365) between 1980 and 2009 and averaged over years. Only the temperature
data, shown in the right plot of Figure 3.6, as well as the station locations are used
in this work. As opposed to Canadian weather, this dataset presents a very marked
cluster with curves that have different shape than the others, with winters not as
pronunciated. These are the stations in the Canary Islands, with a very distinctive
subtropical climate.

3.8 Australian Weather dataset

This binary classification dataset consists again in averages of yearly measurements
from different Australian weather stations. However, the measured quantity is now
the precipitation instead of temperature, and the average is taken for all the years
that each particular station has been operating (Bureau of Meteorology, 1992). From
the original 191 stations, one has been removed because it is considered an outlier,
according to Delaigle and Hall, 2010. Using these data, a classification problem has
been made, consisting on predicting if the weather station is on the north (43 curves)
or the south (147 curves) given a particular precipitation pattern (Delaigle and Hall,
2012). From the precipitation plots shown in Figure 3.7, it is clear that usually sta-
tions in the north present a more “tropical” pattern, in which the largest precipita-
tions appear in the last summer months, while the stations on the south have the
majority of the rain taking places at the cooler months1.

3.9 Electrocardiogram (ECG) dataset

This dataset, shown in Figure 3.8, was extracted from the data in the MIT-BIH Ar-
rhythmia Database (Moody and Mark, 2001). This database, compiled originally
in 1980, and distributed ever since in several media, is an important resource for
medical analysis, and illustrates the potential applications of FDA to this field. The

1Note that, as Australia is in the southern hemisphere, summer and winter are reversed with re-
spect to stations in the northern hemisphere, such as in the Canadian weather and AEMET datasets
previously mentioned.
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FIGURE 3.7: Precipitation curves of the australian weather dataset.
On the left, all curves are displayed. On the middle and right plots

the north and south stations are depicted, respectively.

ECG dataset itself contains the measurements recorded by one electrode during one
heartbeat. There are 2026 different records, each containing 85 points. It presents
a binary classification problem in which we have 520 curves labeled as abnormal
and 1506 labeled as normal by a group of cardiologists (Wei and Keogh, 2006). This
dataset has been used by several authors in the context of functional classification
(Baíllo and Cuevas, 2008; Baíllo, Cuevas, and Fraiman, 2010) and outlier detection
(Dai and Genton, 2019).
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FIGURE 3.8: ECG dataset. On the left, the first ten heartbeats of a
particular record in the MIT-BIH Arrhythmia Database are shown.
The right plot depicts some of the trajectories from the ECG dataset,
containing only one heartbeat, labeled as either abnormal (blue) or

normal (orange).

3.10 Mitochondrial calcium overload (MCO) dataset

This dataset contains periodic measurements of mitochondrial calcium overload
(MCO) for 89 isolated mouse cardiac cells (Ruiz-Meana et al., 2003). High levels
of MCO indicated a higher protection against the ischemia process. The measure-
ments have been taken at 10 second intervals during an hour of simulated ischemia.
The objective of the original study was to test the effectiveness of a drug (Cari-
poride), that selectively blocks ion exchange and was conjectured to increase the
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MCO, and thus offer protection to ischemia. To that end, 44 cells have been treated
with the drug while the remaining 45 ones were kept as a control group. The data
has been analized with analysis of variance (ANOVA) to check that there are dif-
ferences between the two groups, obtaining a positive result (Cuevas, Febrero, and
Fraiman, 2004). In the graph of the curves, shown in Figure 3.9 it is also possible
to detect visually a general increase in MCO magnitude in the treatment group, as
well as a difference in the shape of the curves between both groups. Posterior works
have used this dataset in the context of binary classification, to differentiate between
these groups (Baíllo and Cuevas, 2008; Baíllo, Cuevas, and Fraiman, 2010; Cuesta-
Albertos, Febrero-Bande, and Oviedo de la Fuente, 2017), as well as a prototypical
example of functional data (Cuevas, 2014).
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FIGURE 3.9: MCO dataset. On the left, all the measured curves have
been plotted together. On the middle and right, the curves in the

control and treatment groups, respectively.

3.11 Cell dataset

This dataset, obtained in Spellman et al., 1998, contains 90 curves corresponding
to the expression of different genes involved in the cell cycle of the yeast “Saccha-
romyces cerevisiae”. The expression levels have been measured every 7 minutes
during 119 minutes, obtaining a total of 18 time measurements per functional ob-
servation. Thus, this is another example of a functional dataset not very densely
measured. The genes observed are related with the different phases and phase tran-
sitions of the cell cycle: the first gap (G1) phase, in which the cell grows larger; the
synthesis (S) phase, in which a copy of the DNA is synthetized in the nucleus; the
second gap (G2), involving additional cell growth; and the mitosis (M) phase, in
which the cell divides in two. In particular, the dataset contains 44 genes involved
in phase G1, 8 involved in phase S, 6 involved in the S/G2 transition, 14 involved
in the G2/M transition and 18 involved in the M/G1 transition. The differences be-
tween these genes can be observed in Figure 3.10. A balanced binary classification
problem can be constructed by discriminating the 44 G1-related genes from the 46
remaining ones, as shown in the top left plot of the figure. This classification prob-
lem has been studied in the functional data literature (Leng and Müller, 2006; Rincón
Hidalgo and Ruiz-Medina, 2012; Cuesta-Albertos, Febrero-Bande, and Oviedo de la
Fuente, 2017).
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FIGURE 3.10: Cell dataset. The top left plot shows the binary classi-
fication problem consisting on differentiating the genes involved in
the G1 phase from the rest. The remaining plots depict separately
the genes involved in each phase or transition, in the order they take

place.

3.12 NOx dataset

The curves in this dataset are hourly measurements of nitrogen oxides (NOx) during
different days in Poblenou, a neighborhood in Barcelona in the surroundings of an
industrial area. This is thus an example of functional data which is not very densely
observed, as there are only 24 points per observation. From the original 127 daily
curves, only 115 observations were complete and kept in the dataset. Of these, 39 are
non-working days, including Saturdays, Sundays and festive days, and the remain-
ing 76 correspond to working days. These curves are displayed in Figure 3.11. The
levels of NOx increase in the morning, peaking at 8:00, decrease until 14:00 and in-
crease again afterwards. This suggest a strong dependence on the traffic patterns.
This is further evidenced when comparing the curves on the working and non-
working days, as the decrease on traffic on the latter can be observed as lower NOx
levels. This dataset has been used in functional outlier detection (Febrero, Galeano,
and González-Manteiga, 2008; Sguera, Galeano, and Lillo, 2016). As the two groups
are not very unbalanced, this dataset is also useful for binary classification.

3.13 UCR datasets

The UCR/UEA time series classification archive (Dau et al., 2019; Bagnall et al., 2018)
is one of the most well known repositories for time series and functional datasets.
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ing to working and non-working days, respectively.

Created originally by the University of California Riverside, the repository con-
tained univariate functional classification problems. This was later expanded to in-
clude also multivariate functional datasets, with the addition of new datasets from
the University of East Anglia. It is now hosted at www.timeseriesclassification.
com. In this work we use several of the datasets located in this repository. Some of
them are depicted in Figure 3.12.

www.timeseriesclassification.com
www.timeseriesclassification.com
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Part I

Methodological advances





49

Chapter 4

Classification of Gaussian
processes

In this chapter we introduce a procedure to derive optimal rules for the discrimina-
tion of trajectories sampled from two Gaussian processes (Torrecilla et al., 2020). To
derive these rules we first consider the problem of classifying the discrete-time pro-
cess that results from monitoring the Gaussian process at a finite set of times. Since
the joint distribution of the values of the discretely monitored process is a multivari-
ate Gaussian random variable, the Bayes classification rule is the quadratic discrim-
inant (Hastie, Tibshirani, and Friedman, 2009). By taking the limit of this quadratic
discriminant as the set of monitoring points becomes dense, one obtains an optimal
rule for the classification of the continuous-time Gaussian processes. In the general
case, this is a singular limit because some of the terms in the discriminant rule di-
verge. Carrying out a detailed analysis of these optimal classification rules and their
singularities in the dense monitoring limit, we provide novel derivations of some
known results and gain insight into the mechanisms by which near-perfect classi-
fication occurs (Delaigle and Hall, 2012). This singular limit is a consequence of
the orthogonality of the probability measures associated to the stochastic processes
from which the trajectories are sampled. As a further novel result of this analysis,
we formulate rules to determine whether two Gaussian processes are equivalent or
mutually singular (orthogonal).

The structure of this chapter is as follows: the functional classification problem
and the discretization methodology are presented in Section 4.1. The procedure for
deriving optimal rules for the classification of Gaussian processes based on discrete
monitoring is introduced in Section 4.2. The type of classification problem that is
obtained depends on whether the Gaussian processes are equivalent (non-singular
classification) or orthogonal (singular, near-perfect classification). For this reason,
the conditions for the equivalence of Gaussian processes are discussed in Section 4.3.
Sections 4.4 and 4.5 are devoted to homoscedastic and heteroscedastic classification
problems, respectively. An experimental evaluation of the limit rules derived in this
work and a comparison with other functional classification methods is presented in
Section 4.6 for both simulated and real-world problems. Finally, Section 4.7 provides
a summary of the conclusions of this work.

4.1 Statement of the problem

Consider the binary classification problem in which the data instances are character-
ized by trajectories x, sampled from one of two different Gaussian processes (GPs)
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defined on the interval T = [0, T] in the real line{
(X(t) | Y = 0) = Z0(t) with probability 1− p
(X(t) | Y = 1) = µ(t) + Z1(t) with probability p,

(4.1)

where Z0(t) and Z1(t) are zero-mean Gaussian processes, whose covariance func-
tions are k0 and k1.

If P1 is absolutely continuous with respect to P0, the optimal classification rules
can be expressed in terms of the Radon-Nikodym derivative of the measures:

g∗(x) = I{ dP1
dP0

(x)> 1−p
p

}. (4.2)

In other cases, an expression of the optimal classification rule that is valid in all cases
is not known. Nevertheless, one can consider classification rules that are of the same
form as Equation (4.2), in the hope that they approximate the optimal classification
rule in some limit. In particular Delaigle and Hall, 2013; Galeano, Joseph, and Lillo,
2015; Dai, Müller, and Yao, 2017 propose to use density ratios of finite dimensional
projections. The derivation of explicit forms for the optimal rule for a limited class of
functional classification problems of this type has also been considered earlier in the
literature mainly in the homoscedastic (k0 = k1 = k) setting (Kailath, 1966; Kailath,
1971). However, the derivation of optimal classification rules in the heteroscedastic
setting (k0 6= k1) and for singular cases in which near-perfect classification is ob-
tained remains elusive (Delaigle and Hall, 2012; Delaigle and Hall, 2013; Dai, Müller,
and Yao, 2017; Berrendero, Cuevas, and Torrecilla, 2018; Cuesta-Albertos and Dutta,
2022).

4.2 Optimal rules for Gaussian process classification

Consider a stochastic process X defined by Equation (4.1) with Z0(t) and Z1(t) zero-
mean Gaussian processes whose covariance functions are k0 and k1, respectively. As-
sume that the trajectories of this process are monitored at a set of appropriately cho-
sen distinct discrete times tM = {tm}M

m=1 ∈ T M. Let X represent the M-dimensional
random column vector whose components are the discretely monitored values of
the trajectories

XT = (X(t1), X(t2), . . . , X(tM)) , (4.3)

where the superscript T indicates the standard transposition of matrices. By the
properties of Gaussian processes, the class-conditioned distribution of X is a multi-
variate Gaussian

X | Y = 0 ∼ N (0, K0) w. p. 1− p
X | Y = 1 ∼ N (µ, K1) w. p. p

(4.4)

where
µT = (µ(t1), µ(t2), . . . , µ(tM)) (4.5)

is a row vector whose components are the values of mean of the class 1 trajectories
at the monitoring times. The corresponding column vector is denoted by µ.

The quantities K0 and K1 are the corresponding M × M Gram matrices. The
elements of these matrices are the autocovariances of the discretely monitored pro-
cesses

(Ki)mn = ki(tn, tm) = E [Zi(tn)Zi(tm)] , (4.6)
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for i = 0, 1, and n, m = 1, 2, . . . M. Since they characterize the structure of autoco-
variances, Gram matrices are positive-semidefinite (i.e., their eigenvalues are non-
negative). If they have zero eigenvalues, in what follows, the derivations apply
to the space spanned by the eigenvectors corresponding to the positive (non-zero)
eigenvalues.

In the general heteroscedastic case, the Bayes rule for this multivariate Gaussian
binary classification problem is the quadratic discriminant (see, e.g., Hastie, Tibshi-
rani, and Friedman, 2009)

g∗(x) = I{
− 1

2 log |K1|
|K0| −

1
2 xT(K−1

1 −K−1
0 )x+xTK−1

1 µ− 1
2 µTK−1

1 µ>log 1−p
p

}, (4.7)

where I is the indicator function and |K0| , |K1| are the determinants of the corre-
sponding covariance matrices.

We conjecture that this rule tends to the optimal rule for the functional case when
M→ ∞ and the set of monitoring points tM = {tm}M

m=1 becomes dense in T . In that
case, the limit of this rule can be formally written as

g∗(x) = I{
− 1

2 log |K1|
|K0| −

1
2 (〈x,x〉k1

−〈x,x〉k0)+〈x,µ〉k1
− 1

2 〈µ,µ〉k1
>log 1−p

p

}. (4.8)

The angular brackets 〈 · , · 〉ki denote the inner product inHki , the reproducing kernel
Hilbert space (RKHS) associated to the kernel ki, or, if such quantity is ill-defined,
the extension mapping defined in Equation (2.43). The quantity |K1|

|K0| represents the

asymptotic form of the ratio of determinants of the Gram matrices |K1|
|K0| in the limit of

dense monitoring (see Appendix A).
In general cases, this limit is singular. A first type of singularity occurs if µ /∈ Hk1 .

In such case, the terms 〈x, µ〉k1 and 〈µ, µ〉k1 in Equation (4.8) diverge. A second type
of singularity appears in the quadratic terms of the discriminant when the Hilbert
space Hki is infinite-dimensional. In that case, the trajectories of the process X do
not belong to Hki with probability one (Kailath, 1971; Berlinet and Thomas-Agnan,
2004). Therefore, in the dense monitoring limit, the quantities 〈x, x〉ki also diverge.
Finally, also for infinite-dimensional Hki , the determinant of the corresponding co-
variance operator, |Ki|, vanishes and its logarithm diverges.

As illustrated in this work, these singularities are in fact at the origin of the near-
perfect classification phenomenon (Delaigle and Hall, 2012). Specifically, if the sin-
gularities present in the classification rule Equation (4.8) cancel out, the measures of
the two underlying Gaussian processes are equivalent. Otherwise, they are mutually
singular (orthogonal) and near-perfect classification is obtained.

From these observations, we note that Equation (4.8), which can be seen as the
functional generalization of the quadratic discriminant for multivariate data, should
be viewed only as a mnemonic for Equation (4.7) in the limit of dense monitoring. In
subsequent sections, the singular limit of this rule is analyzed in detail for different
classification problems in both the homo- and heteroscedastic settings. In particular,
the conditions for the equivalence between the two Gaussian processes are discussed
in Section 4.3. In Section 4.4 we analyze homoscedastic classification problems, for
which k0 = k1 = k. In this case, if µ = µ1 − µ0 ∈ Hk, the laws P0 and P1 are equiv-
alent. In consequence, the classification problem is not singular and Equation (4.8)
is the Bayes rule (Berrendero, Cuevas, and Torrecilla, 2018). Near-perfect classifica-
tion is obtained when µ does not belong to Hk. In such case the singularities in the
terms that involve µ dominate in Equation (4.8). Nonetheless, it is still possible to
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derive optimal classification rules by carrying out a careful analysis of the behavior
of those divergent terms in this singular limit. The general heteroscedastic classifi-
cation problem k0 6= k1 is analyzed in Section 4.5. Near-perfect classification can be
obtained by an alternative mechanism that involves the quadratic terms of the dis-
criminant, which are singular. As in the homoscedastic case, if the singularities in
Equation (4.8) cancel out, P0 and P1 are equivalent, and the classification problem is
not singular.

4.3 Equivalence of Gaussian processes

From the form of the optimal classification rule introduced in the previous section
it is possible to derive conditions for the equivalence of the probability measures P0
and P1 associated to the Gaussian processes GP(µ0, k0) and GP(µ1, k1), respectively.

The derivation starts from the observation that P0 and P1 are equivalent if the
corresponding classification problem is not singular (Baíllo, Cuevas, and Cuesta-
Albertos, 2011; Berrendero, Cuevas, and Torrecilla, 2018). In that case, the optimal
classification rule is the one in Equation (4.2).

If µ0 6= 0 it is possible to determine whether the trajectory x ∈ X has been
sampled either from GP(µ0, k0) or from GP(µ1, k1) using Equation (4.8) with the
replacements x− µ0 for x and µ = µ1 − µ0. The classification rule becomes

g∗(x) = I{
− 1

2 log |K1|
|K0| −

1
2

(
‖x−µ1‖2

k1
−‖x−µ0‖2

k0

)
>log 1−p

p

}, (4.9)

where ‖x− µi‖2
ki

= 〈x − µi, x − µi〉ki , with i = 0, 1, which are the functional ana-
logues of the Mahalanobis distance (Galeano, Joseph, and Lillo, 2015; Berrendero,
Bueno-Larraz, and Cuevas, 2020). Again, the quantities that appear in this expres-
sion exhibit singularities and should therefore be interpreted as the corresponding
discrete approximations in the limit of dense monitoring.

A first type of singularity in this classification rule arises when µ = µ1 − µ0 /∈
Hk0 ∩ Hk1 . Consider the case in which µ /∈ Hk0 . If X ∼ GP(µ1, k1), then it can be
written as X = µ1 +Z1, where Z1 is the zero-mean Gaussian process GP(0, k1). In the
expression of ‖x− µ0‖2

k0
one would get, among others, the term ‖µ1 − µ0‖2

k0
, which

diverges because µ = µ1 − µ0 /∈ Hk0 . Note that this singularity cannot be cancelled
by any other term in Equation (4.9). A parallel argument can be used when µ /∈ Hk1 ,
interchanging the subindices 0 and 1.

Even if one assumes that µ = µ1 − µ0 ∈ Hk0 ∩Hk1 , which implies that the diver-
gences described in the previous paragraph are not obtained, a second type of sin-
gularity can appear in the quadratic terms of Equation (4.9). Specifically, the terms
‖x− µi‖2

ki
, i = 0, 1 diverge when Hki is infinite dimensional (Berrendero, Bueno-

Larraz, and Cuevas, 2020). However, if the Gaussian processes are equivalent, the
singularities in the term

(
‖x− µ1‖2

k1
− ‖x− µ0‖2

k0

)
cancel out, so that the classifica-

tion rule given by Equation (4.9) is well defined.
A related singularity affects also the term that involves the ratio of the determi-

nants of the covariance operators. If the Hilbert space Hki is infinite dimensional,
zero is an accumulation point of the spectrum of the covariance operator ki (Spence,
1975). Therefore, the individual determinants of the covariance operators vanish

|Ki| ≡ lim
D→∞

D

∏
j=1

λij = 0, i = 0, 1, (4.10)
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where
{

λ0j
}∞

j=1 and
{

λ1j
}∞

j=1 are the eigenvalues of K0 and K1, respectively. There-
fore, the condition for equivalence between P0 and P1 is that the ratio of the deter-
minants

|K0|
|K1|

= lim
M→∞

|K0|
|K1|

= lim
D→∞

D

∏
j=1

λ0j

λ1j
, (4.11)

be finite and different from zero. The last equality in Equation (4.11), which involves
the limit of dense monitoring, was derived in Appendix A.

In summary, if the processes are equivalent, the classification problem is not sin-
gular. Therefore,

µ = µ1 − µ0 ∈ Hk0 ∩Hk1 , (4.12)

so that the terms that depend solely on the means in Equation (4.9) are well-defined,
and the singularities of the quadratic terms cancel out

‖x− µ1‖2
k1
− ‖x− µ0‖2

k0
< ∞, (4.13)

0 <
|K0|
|K1|

= lim
D→∞

D

∏
j=1

λ0j

λ1j
< ∞. (4.14)

If these conditions do not hold, the classification problem is singular and the mea-
sures are not equivalent. In consequence, according to the Hájek-Feldman dichotomy
(Hájek, 1958; Feldman, 1958), they are mutually singular (orthogonal).

For processes that are equivalent, combining Equations (4.2) and (4.9), the Radon-
Nikodym derivative of P1 with respect to P0 is

dP1

dP0
(x) =

( |K0|
|K1|

)1/2

exp
(
−1

2

(
‖x− µ1‖2

k1
− ‖x− µ0‖2

k0

))
. (4.15)

Furthermore, the inner products in Hk0 and Hk1 , the RKHS corresponding to the
kernels k0 and k1, respectively, are related by the expression

〈 f , g〉k1 = 〈 f , g〉k0 − 〈 f , 〈δk, g〉k1〉k0 , f , g ∈ Hk0 ∩Hk1 , (4.16)

where δk = k1 − k0. This relation can be proven making use of the reproducing
property of k0 inHk0 , and of k1 inHk1 :

Let f ∈ Hk0 ∩Hk1 . Using g(·) = k1(x, ·) in Equation (4.16)

〈 f (·), k1(x, ·)〉k1 = 〈 f (·), k1(x, ·)〉k0 − 〈 f (·), 〈δk(·, ·), k1(x, ·)〉k1〉k0

= 〈 f (·), k1(x, ·)〉k0 − 〈 f (·), δk(x, ·)〉k0

= 〈 f (·), k0(x, ·)〉k0

= f (x).

Using these results for equivalence, we now proceed to analyze the classification
of Gaussian processes in both the homo- and heteroscedastic settings.

4.4 Homoscedastic classification problems

In homoscedastic classification problems, the kernels of the Gaussian processes for
the two classes are equal k0 = k1 = k. Therefore, the quadratic terms of the func-
tional discriminant function (i.e., the first two terms on the left-hand side of the
expression inside the indicator function in Equation (4.7)) cancel out. The optimal
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rule for the discretely monitored process is Fisher’s linear discriminant

g∗(x) = I{
xTK−1µ− 1

2 µTK−1µ>log 1−p
p

}. (4.17)

In the limit of dense monitoring the decision rule can be formally written as

g∗(x) = I{〈x,µ〉k− 1
2 〈µ,µ〉k>log 1−p

p

}. (4.18)

The angular brackets, 〈·, ·〉k denote the inner product in Hk, the RKHS associated
to the kernel k, or, if such quantity is ill-defined, the extension mapping defined in
Equation (2.43). Note that this is the same rule as in Equation (B.28), obtained from
prior work.

In what follows, the Bayes rule will be derived for general non-singular ho-
moscedastic GP classification problems. Then we will illustrate how to derive opti-
mal rules in specific singular instances of such problems.

4.4.1 Non-singular homoscedastic classification

In a homoscedastic setting, the classification problem is not singular if µ = µ1− µ0 ∈
Hk (Lemma 5d of Parzen, 1961b). In that case, P0 and P1 are equivalent. Provided
that an appropriate interpretation is given to its constituents, Equation (4.18) is the
Bayes rule for this functional classification problem. The error of this optimal rule,
which is the infinite-dimensional analogue of Fisher’s linear discriminant, was given
in Equation (2.86).

As mentioned earlier, the terms in Equation (4.18) need to be given an appropri-
ate interpretation in the limit of dense monitoring. Let’s consider first the term that
involves the inner product of µ

lim
M→∞

µTK−1µ = 〈µ, µ〉k = ‖µ‖2
k . (4.19)

The convergence of the discretized approximation to the square norm of µ ∈ Hk can
be proven for monotone increasing (nested) sets of monitoring times using Lemma
5c of Parzen, 1961b.

If the RKHS is infinite dimensional, the trajectories of the random process do not
belong to Hk with probability one (Kailath, 1971; Lukić and Beder, 2001; Berlinet
and Thomas-Agnan, 2004). In such case, 〈x, µ〉k cannot represent an inner product
inHk. Nonetheless, since µ ∈ Hk, we have

E
[

Z(tm)
(

xTK−1µ
)]

= µ(tm), tm ∈ tM

E
[

Z(t)
(

xTK−1µ
)]

= µ̂(t), t /∈ tM,
(4.20)

where Z(t) is a random function sampled from a zero-mean Gaussian process with
a kernel function k. The quantity µ̂(t) is the optimal prediction for µ(t) with t ∈
T , assuming that {µ(tm)}M

m=1, the values of the mean at the monitoring times, are
known (Rasmussen and Williams, 2005). In the limit of dense monitoring

lim
M→∞

E
[

Z(t)
(

xTK−1µ
)]

= µ(t), ∀t ∈ T , (4.21)



4.4. Homoscedastic classification problems 55

for any µ ∈ Hk. Extending by continuity this relation to all t ∈ T , and using Equa-
tion (2.44), the dense-monitoring limit of this linear functional defines Loève’s isom-
etry

〈x, µ〉k = lim
M→∞

xTK−1µ = ψ−1
x (µ). (4.22)

The spectral form of this congruence inner product is (Berlinet and Thomas-Agnan,
2004)

〈x, µ〉k =
∞

∑
j=1

µjξ j

λj
, (4.23)

where
{

λj
}∞

j=1 are the eigenvalues of K, and
{

µj
}∞

j=1,
{

ξ j
}∞

j=1 are the coefficients of
the Karhunen-Loève expansions

µ(t) =
∞

∑
j=1

µjφj(t), (4.24)

x(t) =
∞

∑
j=1

ξ jφj(t), (4.25)

respectively.

4.4.2 Singular (near-perfect) homoscedastic classification

When µ /∈ Hk, the measures P0 and P1 are mutually singular (orthogonal). In this
case, near-perfect classification is obtained (Parzen, 1961a; Kailath, 1966; Kailath,
1971; Berrendero, Cuevas, and Torrecilla, 2018). The terms 〈x, µ〉k and 〈µ, µ〉k di-
verge. These divergences, which are of the same type, dominate in Equation (4.18).
Therefore the term that depends on the class priors, which is non-singular for 0 <
p < 1, can be dropped out. With an appropriate interpretation of the limit, the
decision rule is

g∗(x) = I{η∗(x)>0}

η∗(x) = lim
µ̂H→µ

(
〈x, µ̂H〉k −

1
2
〈µ̂H , µ̂H〉k

)
,

(4.26)

where µ̂H ∈ Hk is an approximation to the mean µ /∈ Hk, whose squared norm is
〈µ̂H , µ̂H〉k. The quantity 〈x, µ̂H〉k is defined through Loève’s isometry.

The limit in Equation (4.26) needs to be understood as follows: since the ele-
ments of Hk are dense in L2(T ) when k has no zero eigenvalues (Cucker and Zhou,
2007), it is possible to build a sequence of approximating classification problems
with µ̂H ∈ Hk that converges to µ ∈ L2(T ). The singular homoscedastic classifi-
cation problem with µ /∈ Hk can be seen as the limit of a sequence of classification
problems involving functions µ̂H ∈ Hk in the approximating sequence (Theorem 6
of Berrendero, Cuevas, and Torrecilla, 2018). An optimal classification rule for these
related problems is given by Equation (4.18). Since 〈µ, µ〉k diverges, the correspond-
ing classification errors, which are given by limit of Equation (2.86), tend to zero.

Brownian processes with different means

This singular limit can be illustrated in the discrimination of trajectories sampled
from one of two Brownian motions with the same variance but different means. Let
us consider a homoscedastic classification problem in which the class 0 trajectories
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are realizations of a zero-mean Brownian motion in t ∈ [0, T] and the class 1 trajec-
tories are sampled from a Brownian motion with a piecewise linear mean

µ(t) =


0 0 ≤ t < t1

µT
t−t1
t2−t1

t1 ≤ t < t2

µT t2 ≤ t < T
, (4.27)

with µT = µ(T), a constant, and 0 < t1 ≤ t2 < T. Its derivative is

µ′(t) =


0 0 ≤ t < t1

µT
1

t2−t1
t1 ≤ t < t2

0 t2 ≤ t < T
. (4.28)

Recall from Section 2.1.1 that the Brownian motion kernel is

kBM(s, t) = σ2 min(s, t), σ > 0. (4.29)

The RKHS associated with this kernel is HBM, the Sobolev space of absolutely
continuous functions x with t ∈ [0, T], such that x(0) = 0, and whose derivatives, de-
fined in the weak sense, are square integrable in that time interval (i.e. x′ ∈ L2[0, T]).
The corresponding inner product between x1, x2 ∈ HBM is

〈x1, x2〉BM =
1
σ2

∫ T

0
x′1(t)x′2(t)dt. (4.30)

The mean µ given by Equation (4.27) is in HBM provided that t1 < t2. In such case,
its squared norm is

〈µ, µ〉BM =
1
σ2

∫ T

0

∣∣µ′(t)∣∣2 dt =
µ2

T
σ2

1
t2 − t1

. (4.31)

Recall that since HBM is an infinite-dimensional RKHS, the sample trajectories x do
not belong to that space with probability one (Lukić and Beder, 2001). In the case
of Brownian motion it is clear that the sample trajectories, which are continuous
but non-differentiable, are not in HBM. In consequence, we need to understand the
operation 〈x, µ〉BM, using Loève’s isometry, as explained in Section 2.3.4. In this
particular case, using Equation (4.30), the inner product can be written as

〈x, µ〉BM =
1
σ2

∫ T

0
µ′(t)x′(t)dt. (4.32)

Note that this is only a formal expression because x(t) is not differentiable. Never-
theless, identifying x′(t)dt with dx(t), one can interpret Equation (4.32) as

〈x, µ〉BM =
1
σ2

∫ T

0
µ′(t)dx(t) =

µT

σ2
1

t2 − t1

∫ t2

t1

dx(t)

=
µT

σ2
x(t2)− x(t1)

t2 − t1
,

(4.33)
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(A) Homoscedastic classification: zero-mean Brownian motion vs. Brownian motion with a piecewise
linear mean.
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(B) Homoscedastic near-perfect classification: zero-mean Brownian motion vs. Brownian motion with
a step function mean.

FIGURE 4.1: Examples of homoscedastic classification with Brownian
motion and different means.

where µ′(t) is given by Equation (4.28). Using Equations (4.18), (4.31), and (4.33), the
Bayes classification rule becomes

g∗(x) = I{ µT
σ2 ((x(t2)−x(t1))− µT

2 )>(t2−t1) log 1−p
p

}.

A non-singular classification problem of this type is depicted in Figure 4.1a, where
T = 1, µT = 1, t1 = 0.3, t2 = 0.7, and σ = 1.

In the limit t2 → t+1 , the mean exhibits a finite discontinuity at t1 and therefore,
is not inHBM. In this case, the decision rule is

g∗(x) = I{(x(t+1 )−x(t1))>
µT
2 }, (4.34)

and near-perfect classification (zero asymptotic error) is obtained. As is apparent
from Figure 4.1b, this rule has an obvious interpretation: one needs to compare the
values of trajectory immediately before and after the jump of µ(t) at t = t1. Class 0
trajectories should be continuous. Class 1 trajectories should exhibit the same dis-
continuity as the mean. This rule guarantees perfect classification provided that the
values of the trajectories can be monitored with arbitrarily high resolution in t.
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4.5 Heteroscedastic classification problems

In contrast with the homoscedastic case, which has received wide attention in the lit-
erature (Parzen, 1961a; Kailath, 1966; Kailath, 1971; Delaigle and Hall, 2012; Berren-
dero, Cuevas, and Torrecilla, 2018), most work on the heteroscedastic case is fairly
recent and limited to specific examples (Delaigle and Hall, 2012; Delaigle and Hall,
2013; Dai, Müller, and Yao, 2017; Berrendero, Cuevas, and Torrecilla, 2018). In fact,
no general rule has been proposed in the literature for this setting, even in the non-
singular case. The difficulty lies in the interpretation of the singular terms that ap-
pear in the optimal rule (Equation (4.8)). As discussed in Section 4.3, when the diver-
gences cancel out, we have a non-singular classification problem. By contrast, if the
divergences do not cancel out, an optimal decision rule can be derived by balancing
the singular terms. In this singular case near-perfect classification is obtained. We
shall now proceed to study these cases separately and in detail.

4.5.1 Non-singular heteroscedastic classification

A heteroscedastic classification problem is non-singular if the Gaussian process laws
P0 and P1 are equivalent. For this to be the case, µ ∈ Hk0 ∩ Hk1 , so that the terms
that involve µ in Equation (4.8) must be well-defined. Furthermore, the singularities
of the quadratic terms in the optimal rule need to cancel out: on the one hand, the
limit

lim
M→∞

xT
(

K−1
1 −K−1

0

)
x ≡ 〈x, x〉k1 − 〈x, x〉k0 (4.35)

should be finite when the set of monitoring points becomes dense in T . On the other
hand, the limit

lim
M→∞

M

∏
j=1

λ1j

λ0j
≡ |K1|
|K0|

(4.36)

should exist and be different from zero.
If these conditions are obtained, the divergences in the individual terms of Equa-

tion (4.8) cancel out and the resulting classification rule is well defined. Formally, it
can be written as

g∗(x) = I{
− 1

2 log |K1|
|K0| −

1
2 (〈x−µ,x−µ〉k1

−〈x,x〉k0)>log 1−p
p

}. (4.37)

In the following subsection, this non-singular limit will be illustrated using the stan-
dard Brownian motion and the standard Brownian bridge processes in the interval
[0, T], which are known to be equivalent when 0 ≤ T < 1 (Varberg, 1961; Shepp,
1966). Therefore, for this range of values of T, the problem is heteroscedastic, but
not singular. It becomes singular at T = 1.

Standard Brownian vs. Brownian bridge processes

Recall from Section 2.1.1 that the standard Brownian bridge in [0, 1] is a zero-mean
Gaussian process whose kernel is

kBB(s, t) = min(s, t)− st, s, t ∈ [0, 1]. (4.38)
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The corresponding RKHS is

HBB =

{
x : x(t) =

∫ t

0
x′(s)ds; x(1) = 0; x′ ∈ L2[0, 1]

}
.

This process, if considered in the interval [0, T], with T < 1, has the inner product

〈x1, x2〉BB =
∫ T

0
x′1(t)x′2(t)dt +

x1(T)x2(T)
1− T

. (4.39)

In this interval, the Brownian bridge is equivalent to the standard Brownian motion,
whose kernel is

kBM(s, t) = min(s, t), (4.40)

and whose associated RKHS is

HBM =

{
x : x(t) =

∫ t

0
x′(s)ds; x′ ∈ L2[0, 1]

}
. (4.41)

When restricted to the interval [0, T], its inner product is

〈x1, x2〉BM =
∫ T

0
x′1(t)x′2(t)dt. (4.42)

Let x be a trajectory in the [0, T] interval that is either a sample from a Brownian
motion, with probability 1 − p (class 0), or from a Brownian bridge process, with
probability p (class 1). Trajectories from either of these processes are continuous
but not differentiable. Therefore, they do not belong to the corresponding Hilbert
spaces. In consequence, the individual inner products 〈x, x〉ki , for i ∈ {0, 1} are
singular. However, the difference

〈x, x〉BB − 〈x, x〉BM =
(x(T))2

1− T
, (4.43)

is well defined for 0 ≤ T < 1 because the singular terms in Equations (4.39) and
(4.42), which involve the derivatives x′1 and x′2, are identical, and therefore cancel
out.

To derive the expression for the ratio of determinants in Equation (4.37) we con-
sider the discretely monitored process in the interval [ 1

M , T] at regularly spaced times
{tm = m∆T}T

m=1, with ∆T = T
M for some integer M, which will eventually be made

to approach ∞. The point t0 = 0 is excluded because both processes take the same
deterministic value (i.e., x(t = 0) = 0).

The Gram (autocovariance) matrix of such a discretely monitored standard Brow-
nian motion is

(KBM)mn = ∆T min(m, n), m, n = 1, . . . , M. (4.44)

The determinant of this matrix is

|KBM| = (∆T)M . (4.45)

The corresponding Gram matrix for the discretely monitored standard Brownian
bridge is

(KBB)mn =
T
M

(
min(m, n)−mn

T
M

)
, (4.46)
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for m, n = 1, . . . , M. The determinant of this matrix is

|KBB| = (1− T) (∆T)M . (4.47)

Thus, the ratio of the determinants of the covariance matrices for the discretely
monitored standard Brownian motion and the standard Brownian bridge is

|KBB|
|KBM|

= 1− T, ∀M > 0. (4.48)

Therefore,
|KBB|
|KBM|

= lim
M→∞

|KBB|
|KBM|

= 1− T. (4.49)

Using this result in Equation (4.8), we get the optimal classification rule for this
problem (see, e.g., Berrendero, Cuevas, and Torrecilla, 2018)

g∗(x) = I{
− 1

2 log(1−T)− 1
2
(x(T))2

1−T >log 1−p
p

}. (4.50)

The error of this rule is

L∗ =(1− p)
(

1− 2 cdf
(−D√

T

))
+ p

(
2 cdf

(
−D√

T(1− T)

))
,

(4.51)

where cdf is the cumulative distribution function of a standard normal distribution,
and

D =

√
−2(1− T)

(
log
(

1− p
p

)
+

1
2

log(1− T)
)

.

Note that in the limit T → 1−, the two terms on the left of the expression within
the indicator function diverge, and dominate the classification rule. These diver-
gences signal that near-perfect classification is obtained in this limit. Dropping the
term that involves the priors, which is not singular, the optimal rule in the limit
T → 1− becomes

g∗(x) = I{(x(T))2<(1−T) log 1
1−T}. (4.52)

Since (x(T))2 ≥ 0 and the term on the right hand side approaches zero, the optimal
rule for T = 1 is

g∗(x) = I{x(1)=0}. (4.53)

That is, one needs to inspect the value of x(1). This quantity is 0 for Brownian bridge
trajectories, and different from 0 with probability 1 for Brownian trajectories.

Finally, using the result given by Equation (4.15), the Radon-Nikodym derivative
of the Brownian bridge measure with respect to the Brownian motion measure is

dPBB

dPBM
(x) =

(
1

1− T

) 1
2

exp

{
−1

2
(x(T))2

1− T

}
. (4.54)
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It is straightforward to also verify that the inner-products of the two processes
are related by Equation (4.16) with δk(s, t) = −st

−〈x1, 〈x2, δk〉BB〉BM =
∫ T

0
x′1(t)

d
dt

[∫ T

0
x′2(s) t ds +

x2(T) Tt
1− T

]
dt

= x1(T)
[

x2(T) +
x2(T)T
1− T

]
=

x1(T)x2(T)
1− T

= 〈x1, x2〉BB − 〈x1, x2〉BM.

4.5.2 Singular (near-perfect) heteroscedastic classification

In the heteroscedastic setting a first type of singular classification problem arises
when µ = µ1 − µ0 /∈ Hk0 ∩Hk1 (Delaigle and Hall, 2012). In this case, the analysis
made in Section 4.4.2 remains valid and near-perfect classification is obtained. For
this case, an optimal classification rule is (4.26) with k = k1.

A second mechanism for near-perfect classification is obtained if the singularities
in the terms log |K1|

|K0| and (〈x, x〉k0 − 〈x, x〉k1), do not separately cancel out. In this
case, the measures induced by GP(0, k0) and GP(µ, k1) are mutually singular. The
decision rule Equation (4.8) is dominated by the divergent terms. One can therefore
drop the terms that involve µ and the class priors, which are non-singular, and obtain
the near-perfect classification rule

g∗(x) = I{ 〈x,x〉k0
−〈x,x〉k1

log |K1|−log |K0|>1
}. (4.55)

In this rule, the ratio of divergent terms needs to be understood as

g∗(x) = I{
limM→∞

xT(K−1
0 −K−1

1 )x

log |K1|−log |K0| >1

}, (4.56)

in the limit of dense monitoring.
In what follows, the validity of Equation (4.56) is illustrated in the classification

of two Brownian motions with equal mean and different variances, which are known
to be mutually singular.

Classification of Brownian motions with different variances

Consider the heteroscedastic functional classification problem

X(t) =

{
Z0(t) w. p. 1− p,
Z1(t) w. p. p,

(4.57)

for t ∈ [0, T], where Z0(t) and Z1(t) are zero-mean Brownian motions of variances σ2
0

and σ2
1 , respectively. Since all trajectories start at the same level X(0) = 0, they need

to be monitored only at times {tm = m∆T}M
m=1 with ∆T = T/M. The autocovariance

matrices of the discretely monitored processes are

(Ki)mn = σ2
i ∆T min(m, n), m, n = 1, . . . , M, (4.58)

for i = 0, 1. The determinant of this matrix is

|Ki| =
(
σ2

i ∆T
)M

. (4.59)
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The corresponding inverses are symmetric tridiagonal matrices

K−1
i =

1
σ2

i ∆T



2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0

. . .
0 0 0 . . . 2 −1
0 0 0 . . . −1 1

 . (4.60)

The term in the denominator of Equation (4.56) is

log |K1| − log |K0| =
M

∑
j=1

log
σ2

1

σ2
0
=

T
∆T

log
σ2

1

σ2
0

, (4.61)

where we have used that M = T
∆T . Similarly,

xTK−1
i x =

T
∆T

σ2
x(M)

σ2
i

, (4.62)

where

σ2
x(M) =

1
M

M

∑
m=1

(x(tm)− x(tm−1))
2

∆T
. (4.63)

For this problem, if the non-singular terms are dropped, Equation (4.7) becomes

g∗(x) = I{σ2
x (M)>θ}, (4.64)

with θ =
(

1
σ2

0
− 1

σ2
1

)−1
log σ2

1
σ2

0
. In the limit M → ∞ (therefore, ∆T → 0+), the optimal

classification rule is
g∗(x) = I{σ2

x>θ}, (4.65)

where σ2
x = limM→∞ σ2

x(M). This near-perfect classification rule can be written
also in terms of Kullback-Leibler divergences between normal distributions with the
same mean and different variances

g∗(x) = I{KL(N(0,σ2
x ),N(0,σ2

1 ))<KL(N(0,σ2
x ),N(0,σ2

0 ))}. (4.66)

As in the homoscedastic case, this rule guarantees perfect classification only if the
values of the trajectories can be measured with arbitrarily high resolution in time.

We will now analyze the convergence of the singular decision rule for the dis-
cretely monitored Brownian motions (Equation (4.64)) to its asymptotic limit (Equa-
tion (4.65)). Without loss of generality, we will assume σ2

1 > σ2
0 . The accuracy of the

prediction rule given by Equation (4.64) as a function of M, the number of monitor-
ing points, is

Acc(M) = pP
(
σ2

x(M) > θ | Y = 1
)

+ (1− p) P
(
σ2

x(M) < θ | Y = 0
)

.
(4.67)



4.6. Empirical evaluation 63

Since (X(tm)− X(tm−1)) ∼ N
(
0, σ2

X∆T
)
, then M σ2

X
σ2

i
follows a chi-square distribution

with M degrees of freedom. In consequence,

Acc(M) = p
[

1− cdfχ2

(
M

θ

σ2
1

, M
)]

+ (1− p) cdfχ2

(
M

θ

σ2
0

, M
)

,
(4.68)

where cdfχ2 (z, ν) is the cumulative distribution function of a χ2 distribution with
ν degrees of freedom evaluated at z. In the asymptotic limit of a densely moni-
tored process limM→∞ Acc(M) = 1, which means that near-perfect classification is
obtained.

To illustrate this convergence, we have performed a set of experiments with
simulated trajectories of zero-mean Brownian motions of variances σ2

0 = 1 and
σ2

1 ∈ {1.05, 1.5, 5} in the time interval [0, 1], starting from 0 at t = 0. Each experiment
consists in generating N = 50 trajectories from each of these classes. The trajectories
are sampled at M regularly spaced times, including the origin, with M = 2b + 1,
0 ≤ b ≤ 10. Then, the decision rule given by Equation (4.64) is used to classify
the 2N trajectories generated. The whole process was repeated 1000 times so that,
for each M, the expected accuracy and its standard deviation of the accuracy on the
sample of 2N = 100 trajectories can be computed. In a sample of 2N trajectories the
number of correctly classified cases follows a binomial distribution with a success
probability equal to Acc(M). Since the variance of the number of successes in the
binomial distribution is given by 2NAcc(M) (1− Acc(M)), the standard deviation
of the observed accuracy of the decision rule given by Equation (4.64) in a sample of

size 2N is
√

Acc(M)·(1−Acc(M))
2N with Acc(M) given by Equation (4.68).

Figure 4.2 displays the dependence of the accuracy of the optimal decision rule
as a function of M, for the different values of the ratio σ2

1 /σ2
0 considered. From the

analysis of these plots one concludes that sample estimates are in good agreement
with the theoretical values of the expected accuracy and their standard deviations.
Furthermore, it is apparent that the larger the differences between σ2

1 and σ2
0 are, the

faster the approach to the asymptotic regime in which near-perfect classification is
obtained.

4.6 Empirical evaluation

In this section we compare the performance of the limit rules derived in this work
with functional classifiers proposed in the literature. As test-bed for comparison we
use simulated data and a real-world problem from quantitative finance. To make it
possible to reproduce the results, the code for the experiments is available at https:
//github.com/GAA-UAM/GP-Bayes-Rules-Experiments. The simulated data corre-
spond to the classification problems considered in Subsections 4.4.2 (homoscedas-
tic and singular), 4.5.1 (heteroscedastic and equivalent), and 4.5.2 (heteroscedastic
and singular). Assuming that the classes are balanced (p = 1 − p = 1/2), we
generate Ntrain trajectories in the interval [0, T] and their corresponding class labels,
{(xi, yi)}Ntrain

i=1 , according to Equation (4.1). To investigate how the accuracies of the
different methods depend on the amount of data available for induction, experi-
ments with different training set sizes (Ntrain ∈ {50, 200, 1000}) have been carried

https://github.com/GAA-UAM/GP-Bayes-Rules-Experiments
https://github.com/GAA-UAM/GP-Bayes-Rules-Experiments
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FIGURE 4.2: Classification accuracy for the discrimination of Brow-
nian motions with equal means and different variances (Equa-
tion (4.57)). The solid lines trace the dependence of the accuracy, aver-
aged over 1000 replications of the problem, as a function of M− 1, the
number of monitoring intervals. The shaded band corresponds to one
standard deviation above and below this average. The dashed lines
correspond to the theoretical expected accuracy. Finally, the red dot-
ted lines correspond to the expected accuracy plus/minus one stan-

dard deviation.

out. The trajectories {x(t), t ∈ [0, T]} are monitored discretely on a regular grid

x(tm), tm = ∆Tb, m = 0, 1, . . . , Nb, (4.69)
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FIGURE 4.3: Classification accuracy for the discrimination of Brown-
ian motions with equal variance and different means (zero mean, and
step function mean). The solid lines trace the dependence of the accu-
racy, averaged over 100 replications of the problem, as a function of
Nb, the number of monitoring intervals, for different values of Ntrain,
the size of the training data. The shaded bands correspond to one

standard deviation above and below the corresponding averages.

where ∆Tb = T
Nb

. The dependence on the size of the monitoring grid is analyzed
by considering different numbers of discretization intervals; namely Nb = 2b, b =
1, . . . , 10. Unbiased estimates of the generalization accuracy are made in test sets of
size Ntest = 1000, which are generated independently of the training data. The val-
ues reported are averages over 100 independent replications, with the corresponding
standard deviations.

The financial classification problem consists in the discrimination between the
stocks of different car manufacturing companies (BMW, GM, and Tesla) on the basis
of the time series of their market prices. According to expert knowledge, in this real-
world example, the log-differences of the asset prices are expected to approximately
follow a Brownian motion (Osborne, 1959; Fama, 1965). The standard deviations
of these processes, or, in financial terminology, their volatilities, should be different.
Therefore, an appropriate model for their classification is given by Equation (4.57);
i.e., two Brownian motions with different variances. In this case, besides the com-
parison of methods, the experiments serve also as an empirical validation of this
Brownian hypothesis.

The classifiers that are compared in this section are the following:

• Linear discriminant analysis (LDA): The standard multivariate linear discrim-
inant applied to the discretely monitored trajectories.

• Quadratic discriminant analysis (QDA): The standard multivariate quadratic
discriminant applied to the discretely monitored trajectories.

• Partial least squares (PLS)+Centroid: This classifier consists in applying a cen-
troid rule to the output of a partial least squares regression model. It is one of
the most accurate methods among those considered in the seminal paper by
Delaigle and Hall, 2012.

• Principal components analysis (PCA)+QDA: This classifier is based on a pro-
posal by Galeano, Joseph, and Lillo, 2015 to compute the functional analogue
of the Mahalanobis distance. In that paper, the authors argue that this method
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is equivalent to applying a quadratic discriminant to the first few principal
components of the trajectories to be classified.

• Reproducing kernel classification (RKC): The Reproducing Kernel classifica-
tion rule is based on first performing variable selection by reproducing kernel-
based variable selection (RKVS), a criterion that involves the Mahalanobis dis-
tance (see Section 2.3.2 for details), and then applying a linear discriminant
analysis (Berrendero, Cuevas, and Torrecilla, 2018). The name reflects the
fact that it has a natural interpretation in the corresponding RKHS. This rule
has been proven to be optimal if the functional classification problem is ho-
moscedastic and the probability measures are equivalent.

• Limit-Rule: Classification rule derived from the analysis of the quadratic dis-
criminant for the discretized process (Equation (4.7)) in the limit of dense mon-
itoring.

The different methods have been implemented in Python. LDA, QDA, PCA and
PLS regression make extensive use of objects and functions in the scikit-learn package
(Pedregosa et al., 2011). The RKC method has been freshly implemented following
Berrendero, Cuevas, and Torrecilla, 2018. Functional data objects have been manip-
ulated with the tools provided by the scikit-fda package (Ramos-Carreño et al., 2023).
The number of components of the dimensionality reduction methods (PCA, PLS and
RKC) is determined by 10-fold cross-validation in the range 1 to 20.

We now proceed to present a summary of the results of this empirical evaluation
for the different cases analyzed in this work.

4.6.1 Brownian motions with different means

We first study a homoscedastic problem of the form given by Equation (2.78), in
which Z0(t) = Z1(t) = Z(t) is a standard Brownian Motion process in [0, 1] and
µ(t) a step function

µ(t) =

{
0, 0 ≤ t ≤ t∗
µT, t∗ < t ≤ 1

(4.70)

with µT a constant level. This corresponds to the problem analyzed in Subsection
4.4.2, with t2 → t+1 , t1 = t∗ in Equation (4.27), and T = 1. In such limit, the
probability measures of the two Gaussian processes are mutually singular and near-
perfect classification is obtained. In the experiments carried out, the step is located
at t∗ = 0.5 and has a height of µT = 0.3.

The limit-rule for this problem is given by Equation (4.34). It depends only on
the location and the size of the discontinuity. For this rule, t∗, the time instant at
which the discontinuity occurs, is estimated from the training data. Specifically, a
two sided t-test is used to determine whether the difference of the sample means in
class 1 trajectories between consecutive monitoring points are significantly different
from zero. The discontinous jump is assumed to be within the interval

[
t̂∗, t̂∗ + ∆Tb

]
,

where
{

t̂∗, t̂∗ + ∆Tb
}

is the pair of consecutive points for which this test yields the
lowest p-value. The height of the step µT is estimated as the empirical mean of the
values of the class 1 trajectories right after the step

µ̂T =
1

N[1]
train

Ntrain

∑
i=1

xi(t̂∗ + ∆Tb)I{yi=1}, (4.71)
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FIGURE 4.4: Classification accuracy for the discrimination of stan-
dard Brownian and Brownian bridge processes in [0, T] with T =
0.95. The solid lines trace the dependence of the accuracy, averaged
over 100 replications of the problem, as a function of Nb, the number
of monitoring intervals, for different values of Ntrain, the size of the
training data. The shaded bands correspond to one standard devia-

tion above and below the corresponding averages.

where N[1]
train = ∑Ntrain

i=1 I{yi=1} is the number of class 1 trajectories in the training set.
The curves plotted in Figure 4.3 display the dependence of the average accura-

cies of the different classifiers as a function of the number of discretization intervals
for different training set sizes. The shaded bands correspond to deviations of one
standard deviation above and below the average accuracies. The black horizontal
dotted line marks the optimal accuracy, which in this case is 1.0. From the results
obtained we observe that the limit rule approaches this value asymptotically, for
sufficiently dense monitoring. The RKC method performs remarkably well in this
problem and also approaches perfect accuracy for large training samples and dense
monitoring. For Brownian motions, the RKC method can be shown to be optimal
for a difference of means that is a continuous piecewise linear function starting at
0 (Berrendero, Cuevas, and Torrecilla, 2018). The problem considered in our simu-
lation is not of this form, because the step function exhibits a discontinuity, albeit
finite. Nevertheless, as discussed in Subsection 4.4.2, the discontinuous jump can
be obtained as the limit of a sequence of such continuous functions. Therefore, it is
reasonable that RKC performs as well as the limit rule, which is optimal.

The differences between the accuracies of these two methods and the remaining
ones, which are small for coarse monitoring, become larger as Nb increases. The
superior performance of RKC and the limit rule also at small training sizes resides
in the fact that they require estimating fewer parameters. In this problem, all the
information needed for discrimination is in the difference of means between the two
Brownian motions. For this reason, the classifiers that require the estimation of the
covariance matrix, especially QDA, and PCA+QDA, which furthermore do not as-
sume homoscedasticity, obtain very poor results. This is consistent with previous
observations in the literature on the limited accuracy of quadratic discriminant func-
tions when the dimensions are large and the sample sizes for the estimation of the
covariances are small (Marks and Dunn, 1974; Wahl and Kronmal, 1977; Berrendero
and Cárcamo, 2019). For larger values of Nb, PCA+QDA, which involves a dimen-
sionality reduction step before the quadratic determinant function is computed, be-
comes more accurate than standard QDA. This behavior is consistently observed for
all the classification problems analyzed.
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FIGURE 4.5: Classification accuracy for the discrimination of Brow-
nian motions of different variances. The solid lines trace the depen-
dence of the accuracy, averaged over 100 replications of the problem,
as a function of Nb, the number of monitoring intervals, for different
values of Ntrain, the size of the training data. The shaded bands corre-
spond to one standard deviation above and below the corresponding

averages.

The accuracies of PLS+Centroid and LDA are also low when the training sets are
small. Both are global methods, which are not well adapted to problems in which
the discriminant information is concentrated at a single point. Nonetheless, their
accuracy markedly improves (especially that of PLS+Centroid) as the size of the
training data becomes larger.

Finally, note that even though QDA and LDA are optimal for the multivariate
version of this problem, the collinearity inherent to functional data has a marked
negative impact in their predictive performance for finite training sample sizes. The
reason is that these methods require the inversion of the empirical covariance matrix.
This inversion is numerically unstable when the number of variables (monitoring
times) increases for a fixed size of the training sample. By contrast, the accuracies of
PLS+Centroid, PCA+QDA, and RKC (which makes use of LDA) do not deteriorate
with increasing Nb, because they involve a dimensionality reduction in a previous
step.

4.6.2 Brownian motion vs. Brownian bridge

The problem addressed in this second batch of experiments is the discrimination of
trajectories sampled from a standard Brownian motion and from a Brownian bridge
process in the interval [0, T]. As described in Section 4.5.1, these processes are equiv-
alent for T < 1. In the experiments carried out the value selected is T = 0.95. There-
fore, this is a standard classification problem with a non-zero Bayes error. Specifi-
cally, for the current simulation Equation (4.51) yields L∗ = 0.193. The limit rule is
Equation (4.50). It depends only on the class priors and on the value of the trajectory
to be classified at T.

In Figure 4.4 we present the comparison between the classifiers described in the
introduction of the current section. As expected, the average accuracy obtained with
the limit rule classifier is close to the optimal value of 1− L∗ = 0.807 for all values
of Ntrain and Nb. In this case, since both processes have the same mean, the informa-
tion that is useful for discrimination is in the covariance structure. Therefore linear
classifiers, such as LDA, PLS+Centroid, and RKC are unable to predict better than
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random guessing. Both QDA and PCA+QDA obtain good results when the num-
ber of monitoring intervals is small and the size of the training data is large. Their
predictive performance deteriorates as Nb becomes larger. As in the previous case,
the reason can be traced to the estimation of the covariance matrix from the sample,
which becomes unreliable at higher dimensions. PCA+QDA is more robust than
QDA because of the dimensionality reduction step.

4.6.3 Brownian motions with different variances

We now address the classification of trajectories sampled from two zero-mean Brow-
nian motions of different variances. The problem, which has been analyzed in detail
in Section 4.5.2, is singular and exhibits near-perfect classification. The limit rule is
given by Equation (4.65). It requires the estimation of σ2

0 , σ2
1 and σ2

x from the training
data. The variance of each trajectory is estimated using Equation (4.63). The vari-
ances σ2

0 and σ2
1 are estimated as the averages of the variances in the class 0 and class

1 trajectories, respectively. In the experiments performed the class 0 trajectories are
realizations of a standard Brownian motion with σ2

0 = 1. The class 1 trajectories are
sampled from a Brownian motion with σ2

1 = 1.5.
The overall comparison of the different classifiers considered in this study for

this problem is presented in Figure 4.5. As in the previous set of experiments, since
the two processes have the same mean, this is a purely heteroscedastic classifica-
tion problem. In consequence, the linear methods, such as LDA, PLS+Centroid, and
RKC, which are based solely on the differences between means, are equivalent to
random guessing.

The predictions of QDA and PCA+QDA are better than random and improve
with the size of the training data. Nonetheless, both methods are suboptimal. In
particular, the accuracy of QDA severely deteriorates with the number of monitoring
points, because of the increased dimension of the problem and the high collinearity
of the functional data.

In this singular case, the limit rule approaches perfect accuracy when the num-
ber of monitoring intervals is sufficiently large even for small training samples. The
reason is that the estimation given by Equation (4.63) approaches the exact value of
the variance in the limit M → ∞ for a single trajectory. Therefore, the classifica-
tion rule achieves perfect accuracy asymptotically, in the limit of dense monitoring,
independently of the size of the training data.

4.6.4 Near-perfect classification of financial time series

We now provide an illustration of near-perfect classification with real-world data.
The goal is to discriminate between time series of market prices of financial assets.
In our experiments, the daily closing prices of General Motors (GM) from the New
York Stock Exchange (NYSE), Tesla from NASDAQ, and BMW from Xetra, between
January 1, 2014 and January 31, 2018, are used. The data have been retrieved via
the Google Finance API (https://finance.google.com). Days in which not all three
asset price quotations were available have been discarded. A more sophisticated
treatment of missing values (e.g., linear or Brownian bridge interpolation) does not
lead to significant changes of the results.

For each asset, the sample consists of N = 30 time series of market prices during
non-overlapping periods of NB = 25 = 32 days. These series are displayed in the top
plots of Figure 4.6. They are computed as follows: let {Si(t0), Si(t1), . . . , Si(tL)} be
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FIGURE 4.6: Discrimination of financial assets on the basis of the time
series of their market prices (top plots). The curves that trace the
dependence of the accuracies of different classifiers as a function of
Nb, the number of monitoring intervals, are displayed in the bottom

plots.

the complete time series of asset market prices for stock i monitored at the equally-
spaced instants

tm = t0 + m∆T; m = 0, 1, . . . , L,

where L = N(NB + 1) − 1. In the data analyzed ∆T is one day. Therefore, the
quantity Si(tm) is the closing price of the corresponding stock on the m-th day of the
period considered.

The time series is broken up into N segments of length NB + 1, with NB = 2B for
some integer B {

Si(t
[j]
0 ), Si(t

[j]
1 ), . . . , Si(t

[j]
NB
)
}N

j=1
,

where t[j]m = tm+(j−1)NB
, with m = 0, 1, . . . , NB, and j = 1, 2, . . . , N. These N time

series of NB + 1 prices are then transformed into the corresponding time series of
log-returns {

Xi(t
[j]
0 ), Xi(t

[j]
1 ), . . . , Xi(t

[j]
NB
)
}N

j=1
, (4.72)

where

Xi(t
[j]
m ) = log

Si(t
[j]
m )

Si(t
[j]
0 )

, m = 0, 1, . . . NB.

The goal is to discriminate between different stocks on the basis of the corresponding
time series of log-returns. In particular, we will analyze how the accuracy of the
predictions depends on the monitoring frequency. For this reason, discrimination is
made on the basis of Nb + 1 subsampled values within each segment{

Xi(t
[j]
0 ), Xi(t

[j]
nb), Xi(t

[j]
2nb

), . . . , Xi(t
[j]
Nbnb

)
}

,
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where Nb = 2b, and nb = 2B−b with b = 0, 1, . . . , B. As an illustration, for b = 0, only
two inputs in each time series are used for discrimination{

Xi(t
[j]
0 ), Xi(t

[j]
NB
)
}

.

For b = B (nB = 1) the complete time series given by Equation (4.72) is used as
input to the different classifiers. The higher monitoring the frequency is, the closer
the problem is to a functional paradigm.

There is ample empirical evidence that the time series of stock prices approxi-
mately follow a geometric Brownian motion (Osborne, 1959; Fama, 1965). Conse-
quently, their log-differences (i.e. the log-returns) follow an arithmetic Brownian
motion. According to standard financial wisdom, financial assets are characterized
mainly by their volatility, which is the financial term used for the standard deviation
of these log-returns. By contrast, the expected returns (i.e., the drift of the Brow-
nian motion) are much less reliable for discrimination. Therefore, Equation (4.57),
which corresponds to Brownian motions with different standard deviations (volatil-
ities), should provide a suitable model for the classification problem. We can test the
validity of these observations by comparing the accuracies of the classification meth-
ods described in the introduction to the current section and the limit rule given by
Equation (4.64). In this limit rule, the information on the means (expected returns) is
discarded. Classification is made solely in terms of the sample estimates of the asset
volatilities.

The results of the empirical evaluation are summarized in the bottom plots of
Figure 4.6. In each of the columns in this figure a different binary classification prob-
lem is considered. From left to right: BMW vs. GM, BMW vs. Tesla, and GM vs.
Tesla. The inputs for classification are the discretely monitored trajectories of as-
set log-returns, computed as described before. The accuracy of different classifiers
is estimated using 10-fold stratified cross validation. The plots display the curves
that trace the dependence of the accuracy of the different classifiers as a function
of Nb ∈ {1, 2, 4, 8, 16, 32}, the number of monitoring intervals. The value Nb = 32
corresponds to daily intervals, which is the highest monitoring resolution that can
be employed with the available data. For reference, we provide the theoretical ac-
curacy curves for the corresponding Brownian motions with the same mean and
volatility as each of the financial asset returns. Uncertainty intervals of one and two
standard deviations above and below the theoretical accuracy curves are given as
shaded bands.

In the first classification problem considered, BMW vs. GM, all classifiers per-
form poorly, close to random guessing. The reason is that these two assets have
similar volatilities (σ2

BMW = 2.545 · 10−4 and σ2
GM = 2.183 · 10−4, respectively) and,

in consequence, are difficult to distinguish. This should be expected because both
companies are car manufactures that have comparable profiles and are exposed to
the same risk factors. Therefore, the prices of their stock should exhibit similar char-
acteristics. By contrast, Tesla is a highly specialized manufacturer of electric cars,
whose main asset is technological innovation. Correspondingly, it exhibits higher
volatility than the other two (σ2

Tesla = 6.147 · 10−4). The characteristics of the BMW
vs. Tesla and the GM vs. Tesla classification tasks are similar. In these two problems,
the limit rule given by Equation (4.64) has the best overall results. By contrast, the
methods that rely on the difference of means (LDA, PLS+Centroid, and RKC) for
discrimination have poor accuracies, at the level of random guessing. This means
that the sample means (expected log-returns) are not useful to discriminate between
these assets. The quadratic discriminant with a covariance matrix estimated from
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FIGURE 4.7: Comparison of QDA, Brownian QDA and the limit rule
in the GM vs. Tesla classification problem (left plot). The right plot
corresponds to the same comparison for simulated data of the same

characteristics as the real-world problem.

the sample (QDA) has slightly better accuracy than random guessing for interme-
diate values of Nb. However, for larger values of Nb the results deteriorate. As in
the synthetic data examples, this is a consequence of the poor quality of the sample
estimates of the covariance matrices in higher dimensions and the high collinearity
of functional data (Marks and Dunn, 1974; Wahl and Kronmal, 1977; Berrendero and
Cárcamo, 2019). The PCA+QDA method does not exhibit this degradation thanks
to the fact that the dimension of the problem is reduced by selecting a few principal
components before the quadratic discriminant rule is applied.

One way to avoid this limitation of the quadratic discriminant rule is to use ex-
pert knowledge and assume that the covariance matrix has a Brownian structure.
Taking advantage of this structure, the elements of the covariance matrix need not
be estimated separately. They can be computed in terms of the volatilities of the
assets, which are the only parameters that are actually estimated from the training
sample. To illustrate this point, the accuracy of this method (Brownian-QDA) is com-
pared with the standard QDA, in which the individual elements of the covariance
matrix are estimated separately, and the limit rule given by Equation (4.64) in the
GM vs. Tesla classification problem. The results of this comparison are displayed in
the plot on the left-hand side of Figure 4.7. By contrast with the behavior of the stan-
dard QDA, the accuracy of Brownian-QDA improves with the monitoring frequency.
Nevertheless, comparable or better accuracies are achieved if we use the limit rule,
in which only the singular terms in the quadratic discriminant are retained.

The time series of log-returns analyzed do not necessarily follow a Brownian
motion. Therefore, one may wonder whether the conclusions obtained with the
real-world data are reliable. To clarify this point, we carried out simulations of the
classification problem using trajectories from two Brownian motions with the same
volatilities as the GM and Tesla assets. The results of these experiments are pre-
sented in the plot on the right-hand side of Figure 4.7. To obtain these results the
different classifiers (QDA, Brownian QDA, and the limit rule) are trained under the
same conditions as in the experiments with the real-world data. Their accuracies
are then computed on a test set of size 1000. The values reported are averages over
100 replications of the classification problem. Uncertainty intervals of one standard
deviation above and below the averages are plotted as shaded bands. From these
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results one concludes that the behavior observed in the experiments with real-world
data is not spurious: The predictive accuracy of the standard quadratic discriminant
rule eventually deteriorates as Nb increases. By contrast, the accuracies of Brownian-
QDA and the limit rule given by Equation (4.64) improve with denser monitoring.
Note, however, that even for the largest values of Nb considered, these classifiers
do not achieve perfect classification. There are several reasons for this shortfall:
First, the number of trajectories available for induction is very small (30 instances
per class). Unfortunately, it is not possible to use much longer periods for which the
hypothesis of constant volatility holds even in an approximate manner. Second, the
daily monitoring is insufficiently dense. However, higher frequency data cannot be
used because the intra-day series of prices exhibits discontinuities and large devia-
tions from the log-normal model. Finally, systematic deviations from the Brownian
model are observed in the data. In the period considered, the Brownian assumption
holds only in an approximate manner. Empirically, one observes that the time se-
ries exhibit heteroscedasticity in time and the log-returns are leptokurtic. Therefore,
a more accurate model should account for the stochastic dynamics of the volatil-
ity (Bollerslev, Chou, and Kroner, 1992) and the heavy-tailedness of the log-returns
(Cont, 2001). In spite of these limitations, when the volatilities are sufficiently differ-
ent, the limit rule given by Equation (4.64), performs quite well in practice.

4.7 Conclusions

In this chapter we have addressed the problem of learning by induction from data
that are characterized by functions of a continuous parameter. In particular, we have
derived optimal classification rules for binary classification problems in which the
instances are trajectories sampled from different Gaussian Processes, depending on
the class label. The problem has been addressed earlier in the literature in both the
homo- and heteroscedastic settings (see, e.g., Delaigle and Hall, 2012; Delaigle and
Hall, 2013; Dai, Müller, and Yao, 2017; Berrendero, Cuevas, and Torrecilla, 2018).
However, the procedure proposed in this work, which is based on the asymptotic
analysis of the optimal rules for the discretely monitored trajectories in the limit of
dense monitoring, is new. Furthermore, this procedure has been used to gain insight
into the emergence of near-perfect classification, which was first analyzed in De-
laigle and Hall, 2012 for differences in means. The current research expands on that
work by analyzing cases in which near-perfect classification arises from the covari-
ance (quadratic) components as well. Specifically, a detailed analysis of the dense
monitoring limit reveals that some of the terms that appear in such rules diverge. If
the Gaussian processes are equivalent these divergences cancel out and non-singular
optimal classification rules are obtained. By contrast, if the Gaussian processes are
orthogonal the divergences do not cancel out. As a matter of fact, the singular terms
dominate and near-perfect classification is obtained. In this latter context, optimal
rules that achieve zero prediction error asymptotically (i.e. for sufficiently large sam-
ple sizes) have been derived by considering only the terms that diverge in the limit
of dense monitoring.

To illustrate the validity of the analysis, explicit rules are given for some classi-
fication problems involving Brownian and Brownian bridge processes. In the cases
that such optimal rules were known, the limit of dense monitoring provides a novel
procedure for their derivation. We also provide explicit rules for cases in which
near-perfect classification is obtained. The accuracy of such limit rules has been
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evaluated in extensive simulations and in the classification of time series of financial
asset prices, which are modeled as geometric Brownian motion.

Even though the asymptotic analysis of the classification rules for the discretely
monitored trajectories in the limit of dense monitoring has been introduced in the
context of Gaussian processes, the procedure may be applicable to more general
stochastic processes, which are not necessarily Gaussian. This is a promising line of
research that will be addressed in future work.
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Chapter 5

Recursive maxima hunting:
Variable selection for functional
data classification

Recursive maxima hunting (RMH) is a filter variable selection method for super-
vised learning with functional data (Torrecilla and Suárez, 2016). RMH is based
on the same ideas as maxima hunting (MH) (Berrendero, Cuevas, and Torrecilla,
2016b). In both methods the dependence of the class label on the values of the func-
tional observations at a specific point is utilized to guide the selection process. The
functional nature of the data is exploited by excluding points in the neighborhood
of the selected ones. Because of continuity, these points generally provide redun-
dant information. The main difference between MH and RMH is the manner in
which the impact points are identified. In MH, this process is carried out in par-
allel: the points selected correspond to the local maxima of a suitable defined rele-
vance function. By contrast, RMH is a sequential process whose first step consists
in identifying the global maximum of the relevance function. This is a much simpler
problem than finding a local one. Before selecting additional variables, the depen-
dencies of the class label on the previously selected ones are removed by correcting
the trajectories that characterize the observations. By removing such dependencies,
previously hidden dependencies can be uncovered. The subsequent point selected is
the global maximum of the relevance function for the corrected process. The process
is repeated until no significant dependencies of the class label and the values of the
corrected trajectories remain. In this chapter we analyze the properties of RMH for
binary classification problems. Furthermore, we show that, for some specific cases,
RMH selects the variables that appear in the optimal classification rule. Finally, an
empirical comparison between RMH and other variable selection methods is also
performed using both synthetic and real-data examples.

The structure of this chapter is as follows: the problem of variable selection in
supervised classification problems is introduced in Section 5.1. In Section 5.2 we
review maxima hunting (MH). Recursive maxima hunting (RMH) is introduced in
Section 5.3 with special attention to the computational details of the algorithm. The
theoretical properties of RMH are analyzed in Section 5.4. The proofs of the propo-
sitions stated in this section can be found in Appendix B. Section 5.6 presents the
results of an empirical evaluation of the method in a series of experiments with both
simulated and real-world data. Finally, the conclusions of this chapter are presented
in Section 5.7.
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5.1 Statement of the problem

Consider a classification problem in which the observations are random continuous
trajectories X ∈ X , drawn from the model{

P0 : (X(t)|Y = 0) = µ0(t) + Z(t) with probability 1− p,
P1 : (X(t)|Y = 1) = µ1(t) + Z(t) with probability p,

(5.1)

where µ0 and µ1 are deterministic functions, and Z is a zero-mean noise process
with a continuous covariance function k(s, t) = E(Z(s)Z(t)). The domain of the
random trajectories is T = [0, T]. Classification consists in determining to which
population an unlabeled trajectory X belongs. This determination is made by mea-
surable functions g : X → {0, 1}, called classifiers. The goal is to induce a classifier
that minimizes the classification error rate, which is defined as the probability of
misclassification:

g∗ = argmin
g

P [g(X(t)) 6= Y] . (5.2)

Assuming that µ0 is known, one can consider, without loss of generality, the
equivalent classification problem{

P0 : (X(t)|Y = 0) = Z(t) with probability 1− p,
P1 : (X(t)|Y = 1) = µ(t) + Z(t) with probability p,

(5.3)

where µ(t) = µ1(t)− µ0(t). If the class 0 mean, µ0, is not known, it can be estimated
from the sample.

The goal of variable selection is to identify a set of impact points, t = {t1, . . . , tD},
which capture the bulk of the information for discrimination in the original trajecto-
ries. Subsequently, the original functional datum X is replaced by the attribute vec-
tor X(t) = (X(t1), . . . , X(tD)), whose components are the values of the trajectory at
the selected impact points. This vector of attributes is then used as input of a multi-
variate classifier for prediction. Several benefits of this dimensionality reduction are
obtained. First, it makes it possible to take advantage of off-the-shelf multivariate
models for classification and regression, such as those implemented in caret (Kuhn,
2008), and mlr (Bischl et al., 2016), in R, or scikit-learn, in Python (Pedregosa et al.,
2011). Second, training and prediction can be made with lower computational costs.
In addition, the predictive model is typically more interpretable. Finally, the accu-
racy of the model trained in the lower-dimensional representation can be compara-
ble to the predictors induced from the original functional data. In some problems,
variable selection has a regularization effect, so overfitting is reduced and more ac-
curate predictors can be built.

A literature review of state-of-the-art methods for variable selection in the func-
tional setting can be found in Section 2.3.2. The next section introduces maxima
hunting (MH), the algorithm that serves as inspiration for the RMH algorithm pro-
posed in this chapter.

5.2 Maxima hunting

Maxima hunting (MH) is a variable selection method for functional data that can be
applied in supervised learning settings (Berrendero, Cuevas, and Torrecilla, 2016b).
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It is a filter method (i.e., independent of the classifier), non-parametric (it only re-
quires the piecewise continuity of the trajectories), and takes into account the func-
tional structure of the data. Furthermore, it has an intuitive interpretation and good
empirical performance, which is backed by some appealing statistical properties.

MH is based on identifying the points at which the dependence of the class la-
bel on the corresponding function values presents a local maximum (Berrendero,
Cuevas, and Torrecilla, 2016b). The relevance of X(t), the value of the process at time
t ∈ [0, T], is quantified in terms of Rel(X(t), Y), a suitable non-negative measure of
statistical dependence with the class label. Then, MH selects the local maxima of this
measure

{t1, . . . , tD} =
{

t : ∃(a, b) ⊂ [0, T], t = argmax
s∈(a,b)

Rel(X(s), Y)

}
. (5.4)

In Berrendero, Cuevas, and Torrecilla, 2016b, the distance covariance V2(X(t), Y),
or the distance correlation R2(X(t), Y), introduced by Székely, Rizzo, and Bakirov
(2007) were employed for measuring this relevance. The rationale behind selecting
local maxima is that these summarize the features of the functions in the neigh-
borhood of the selected points. Relevant variables close to the selected ones are
excluded because they provide redundant information. MH was originally formu-
lated in the context of binary classification. Nevertheless, the method can be readily
extended to regression with functional predictors and scalar response (Kneip, Poss,
and Sarda, 2016; Berrendero, Bueno-Larraz, and Cuevas, 2019).

To illustrate this method, consider a set of functional observations drawn from
two different stochastic processes, as in Equation (5.3). In this example, we assume
that Z is a standard Brownian motion, and the class 1 mean is the piecewise linear
function

µ(t) =


5
4 t− 1

4 , 1
5 ≤ t < 2

5 ,
−10t + 17

4 , 2
5 ≤ t < 1

2 ,
15
4 t− 21

8 , 1
2 ≤ t < 7

10 ,
0 , otherwise.

(5.5)

Some trajectories of class 0 (blue lines) and class 1 (orange lines) are displayed in
the left plot of Figure 5.1. Superimposed are the corresponding means (thick lines).
In this example, the measure of dependence between X(t), the functional covariate,
and Y, the class label, is Rel(X(t), Y) = V2(X(t), Y), the square-distance covariance
(Székely, Rizzo, and Bakirov, 2007). The plot of V2(X(t), Y) as a function of t is
displayed at the right of this figure. The locations of the selected variables, which
correspond to local maxima of V2(X(t), Y), are marked by vertical dashed lines.

In spite of its intuitive quality, appealing theoretical properties, and good empir-
ical performance, MH presents some drawbacks. In practice, the empirical estimates
of the relevance function can be rather irregular because of noisy measurements or
sampling fluctuations. This makes it difficult to identify the true local maxima. In
Berrendero, Cuevas, and Torrecilla, 2016b, one attempts to exclude spurious maxima
by selecting only points tmax that are also maxima in the interval (tmax− h, tmax + h),
where h is a smoothing parameter. As an alternative, in Ordóñez et al., 2018 the rel-
evance function is smoothed by using a truncated expansion in the basis of splines.
Then, the local maxima of this smoothed relevance curve are calculated using the
STEM (Smoothing and TEsting of Maxima) algorithm (Schwartzman, Gavrilov, and
Adler, 2011).
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FIGURE 5.1: Application of MH to the classification problem defined
in Equation (5.3), with Brownian motion noise and class 1 mean given
by Equation (5.5). On the left plot, class 0 and class 1 trajectories and
the corresponding means (thicker lines) are displayed in blue and or-
ange, respectively. The plot on the right-hand side displays the graph
of V2(X(t), Y) as a function of t. MH selects the values of t that are
local maxima of this function. These are marked in both graphs with

vertical dashed lines.

A more fundamental limitation is that MH cannot identify variables that are not
relevant by themselves, but become relevant when considered jointly. This limita-
tion is illustrated in Figure 5.1. In this example, MH selects the two most important
variables for prediction, X(2/5) and X(1/2). However, optimal classification can
be achieved only by considering all the non-differentiable points of µ1(t) (Berren-
dero, Cuevas, and Torrecilla, 2018), which include X(1/5) and X(7/10). These are
not selected in MH because, when considered in isolation, they are statistically inde-
pendent of the class; that is, V2(X(1/5), Y) = V2(X(7/10), Y) = 0. However, they
become relevant when taken in combination with X(2/5) and X(1/2).

In recursive maxima hunting, the method that is described in the following sec-
tion, this limitation is addressed by first removing the contribution of the selected
variable before proceeding to select new ones. This reveals variables whose rele-
vance becomes apparent only when considered in combination with other variables
that have been selected previously.

5.3 Recursive maxima hunting

Recursive maxima hunting (RMH) is a filter variable selection method that takes
maxima hunting as its starting-point. As in MH, the first variable selected is the
one that maximizes a measure of dependence of the class label and X(t) globally.
Then, before searching for a new variable, one removes from the trajectories the
information on the class provided by the variable that has been selected. This is
achieved by subtracting from the original trajectories the expectation of the process
conditioned on the values observed at the selected point. The next variable selected
is the one that maximizes the dependence between the class label and the value of
the modified process at that point. The selection process proceeds until the desired
number of variables has been selected or some stopping criterion is met.
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To formalize the algorithm, it is useful to introduce some notation: Let X[0] = X
and Z[0] = Z denote the original stochastic processes defined in (5.3). Assume that ti
is the variable selected at the i-th iteration of the algorithm. The quantities X[i] and
Z[i] represent the processes that result from applying the sequence of corrections
made to the original ones up to the i-th step of the algorithm. In terms of these
quantities, the pseudocode for RMH is

Algorithm 1 Recursive maxima hunting

Input:
X: The random trajectory.
Y: The class labels.
Z: The noise process.
Rel: A univariate variable relevance function.

Output:
{t1, . . . , tD}: List of impact points, in the order of selection.

1: i← 0
2: X[0](t)← X(t)
3: Z[0](t)← Z(t)
4: repeat
5: i← i + 1
6: ti ← argmaxt∈[0,T] Rel(X[i−1](t), Y)
7: Update the trajectories:

X[i](t)←X[i−1](t)−E
[

Z[i−1](t) | Z[i−1](ti) = X[i−1](ti)
]

(5.6)

8: Update the noise process

Z[i](t)←
[

Z[i−1](t) | Z[i−1](ti) = 0
]

(5.7)

9: until the stopping condition is met.
10: D ← i
11: return {t1, . . . , tD}

If, as assumed in (5.3), Z is a zero-mean Gaussian process whose covariance func-
tion is k(s, t), the correction in Equation (5.6) at the i-th step of the algorithm is

E
[

Z[i−1](t) | Z[i−1](ti) = X[i−1](ti)
]
=

k[i−1](t, ti)

k[i−1](ti, ti)
X[i−1](ti). (5.8)

In this expression, k[i−1](s, t) is the covariance function associated with Z[i−1], which
is also a zero-mean Gaussian process. For i = 1, Z[0](t) = Z(t), and k[0](s, t) = k(s, t).
Note that, after applying this correction to X[i−1](t), X[i](ti) = 0.

There are two key differences between this algorithm and MH. The first one is
the maximization step: in contrast to MH, where local maxima of Rel(X(t), Y) are
sought, the goal of RMH is to identify the global maximum of Rel(X[i−1](t), Y). If the
sample fluctuations are large or the data are noisy, there can be local maxima that are
spurious. Furthermore, nearby local maxima are likely to be redundant and should
therefore not be selected simultaneously. To alleviate these difficulties several regu-
larization strategies have been proposed. These strategies require the determination
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of either a lengthscale to define the local maxima (Berrendero, Cuevas, and Tor-
recilla, 2016b), or a smoothing parameter (Ordóñez et al., 2018). In RMH, one seeks
a global optimum, which is a much simpler problem and does not require to specify
any hyperparameter. The second difference is that, since X[i](ti) = 0, the correction
made at each step removes the information on the class provided by the values of the
trajectories at ti. In this manner, it is possible to identify variables that are relevant
not only by themselves, but also when considered jointly with previously selected
ones.

A simple example

Before delving into the details of the method, we illustrate the workings of RMH in
a simple example. As in Figure 5.1, consider the problem of discriminating between
standard Brownian motion trajectories (P0) and Brownian motion trajectories with
the piecewise linear mean given in Eq. (5.5) (P1). Following Berrendero, Cuevas,
and Torrecilla (2018), the optimal classification rule for this problem is

g∗(X) = 〈X, µ〉k −
1
2
‖µ(t)‖2

k − log
(

1− p
p

)
= −5

4
X
(

1
5

)
+

45
4

X
(

2
5

)
− 55

4
X
(

1
2

)
+

15
4

X
(

7
10

)
− 105

16
− log

(
1− p

p

)
.

(5.9)

This optimal rule depends only on the variables X
( 1

5

)
, X
( 2

5

)
, X
( 1

2

)
and X

( 7
10

)
.

The stepwise application of RMH is displayed in the sequence of plots in Fig-
ure 5.2. Each row corresponds to an iteration of the algorithm. The plots in the
left column display the trajectories of the process, which are modified at each iter-
ation by applying the correction given by Equation (5.6). The original trajectories
are shown in the first row of this column. Subsequent plots in the left column corre-
spond to corrected trajectories at each step of the algorithm. In this case, Brownian
bridges appear with each conditioning of the original Brownian motion trajectories.
In each of these plots, class 0 and class 1 trajectories are depicted in blue and orange,
respectively. The thicker lines correspond to the empirical mean functions of the
trajectories in each class.

The plots in the right column display the dependence between the class label and
the values of X[i](t) as a function of t. The squared distance covariance V2

(
X[i](t), Y

)
is used as a measure of dependence. At each iteration, the value of ti that maximizes
this quantity is located. This value is marked in the plots with a dashed vertical line.

In this example, RMH finds all the variables involved in the optimal classifica-
tion rule given in Eq. (5.9) and only those. Note that the importance of the vari-
ables X(7/10) and X(1/5), as quantified by an univariate measure of dependence,
is revealed only after conditioning to X(1/2) and X(2/5), respectively. This is an
example of the types of relevant variables that cannot be identified using MH. Once
the features that appear in the optimal classification rule have been selected, the rel-
evance function is zero up to sample fluctuations. Therefore, RMH stops once all
relevant variables have been identified.
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FIGURE 5.2: Example of the execution of RMH with Brownian motion
trajectories corresponding to two classes with different means.
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5.4 Properties of RMH

In this section we derive some important properties of the RMH corrections with
the assumptions that the classification problem is of the form given by (5.3), and
Z is a zero-mean Gaussian process. Note that the Gaussianity assumption for Z is
not overly restrictive. In many cases of interest, it is possible to approximate the
underlying noise in functional classification problems by a Gaussian process with
the covariance function k(s, t) = E [Z(s)Z(t)]. Furthermore, RMH can be applied
even if Z is not Gaussian or the model is different from (5.3). However, in that case
there are no guarantees that properties derived in this section hold. The proofs of all
propositions and theorems stated are in Appendix B.

Recursivity

An important property of RMH under the assumption that the classification problem
is of the form given by (5.3) with Z a zero-mean Gaussian process, is its recursive
nature. This is formally stated in the following theorem:

Theorem 1. Consider the process

X(t) =

{
Z(t) if Y = 0,
µ(t) + Z(t) if Y = 1, i ≥ 1,

(5.10)

with µ a deterministic function, and Z a zero-mean Gaussian process whose covariance func-
tion is k(s, t). The modified process

X[i](t) = X[i−1](t)−E
[

Z[i−1](t) | Z[i−1](ti) = X[i−1](ti)
]

, i ≥ 1 (5.11)

with X[0] = X and Z[0] = Z is of the same form as the original one:

X[i](t) =

{
Z[i](t) if Y = 0,
µ[i](t) + Z[i](t) if Y = 1, i ≥ 1,

(5.12)

with µ[i] a deterministic function, and Z[i] a zero-mean Gaussian process.

In this expression, the noise term Z[i], is the zero-mean Gaussian process that
results from conditioning to Z[i−1] being 0 at ti:

Z[i](t) = Z[i−1](t)−E
[

Z[i−1](t) | Z[i−1](ti)
]

=
[

Z[i−1](t) | Z[i−1](ti) = 0
]
= Z[i−1](t)− k[i−1](t, ti)

k[i−1](ti, ti)
Z[i−1](ti),

(5.13)

with Z[0] = Z. The kernel function of this modified noise process is

k[i](s, t) = E
[

Z[i](s)Z[i](t)
]

= k[i−1](s, t)− k[i−1](s, ti)k[i−1](ti, t)
k[i−1](ti, ti)

,
(5.14)
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with k[0](s, t) = k(s, t). The function µ[i] is the mean of the modified class 1 trajecto-
ries that results from applying the i-th correction in RMH:

µ[i](t) = E
[

X[i](t) | Y = 1
]
= µ[i−1](t)− k[i−1](t, ti)

k[i−1](ti, ti)
µ[i−1](ti), i ≥ 1, (5.15)

with µ[0] = µ. Note that, as a result of the successive corrections

X[i](tj) = 0, j = 1, . . . , i, (5.16)

for both Y = 0 and Y = 1. Therefore, the values
{

X[i](tj)
}i

j=1
cannot be used any

longer to discriminate between the two classes.

Simultaneous application of the corrections

A naïve approach to computing the modified process at the i-th step of RMH is
to use recursion (5.14) from Z[0] = Z. However, assuming that the values of the
impact points {t1, . . . , ti} are known, the corrections at the i-th step of RMH can be
computed directly from Z:

Z[i](t) = Z(t)− [Z(t) | Z(t1), . . . Z(ti)]

= [Z(t) | Z(t1) = 0, . . . Z(ti) = 0].
(5.17)

The correction applied to Z to obtain Z[i] can be expressed as the sum of the
subsequent corrections

E [Z(t) | Z(t1), . . . , Z(ti)] =
i−1

∑
k=0

E
[

Z[k](t) | Z[k](tk+1)
]
. (5.18)

It is also possible to derive the form of the mean at step i from Equation (5.17), as

µ[i](t) = µ(t)−E [Z(t) | Z(t1) = µ(t1), . . . , Z(ti) = µ(ti)] . (5.19)

In a similar way as in Equation (5.18), the total correction over the mean at step i
is

E [Z(t) | Z(t1) = µ(t1), . . . Z(ti) = µ(ti)] =
i−1

∑
k=0

E
[

Z[k](t) | Z[k](tk+1) = µ[k](tk+1)
]
.

(5.20)
This property is illustrated in Figure 5.3.

According to this equation, at the i-th iteration of the algorithm, the expression

µ̂i(t) = E
[

Z(t) | Z(t1) = µ(t1), . . . , Z(ti) = µ(ti)
]

(5.21)

provides an approximation of µ by interpolation from {(t1, µ(t1)) , . . . , (ti, µ(ti))}.
The form of the approximation depends on the type of Gaussian process considered.
This is illustrated in Figure 5.4, which displays interpolations of the sine function
assuming different types of Gaussian Processes.

If, after D iterations of RMH, µ(t) ≈ µ̂D(t), then µ[D](t) = µ(t)− µ̂D(t) ≈ 0. That
is, the corrected trajectories of both classes have approximately the same mean. In
such case, the dependencies between X[D](t) and Y are small and RMH halts. This
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FIGURE 5.3: Simultaneous application of the RMH corrections. This
figure illustrates Equation (5.20). On the left column, the corrections
for the mean of class 1 at each step of the algorithm are shown, for the
example in Figure 5.2. The total correction performed after the four
steps is depicted on the right. As it can be seen on top, it is possible
to compute this correction directly from the original data when the
selected points are known, without computing the correction at each

step.
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observation offers a novel perspective on RMH as providing an approximation of
µ(t) from {(t1, µ(t1)) , . . . , (tD, µ(tD))}.

Of special interest is the case in which µ is in the Reproducing Kernel Hilbert
Space (RKHS) whose kernel is the covariance function of Z. In this case, it is possible
to derive the following theorem.

Theorem 2. Under the conditions specified in Theorem 1, if

µ(t) = ∑
d≥1

mdk(td, t), (5.22)

with md > 0 and td 6= td′ for d 6= d′, and one applies the RMH corrections for {t1, . . . , ti},
then

µ[i](t) = ∑
d≥i+1

mdk[i](td, t). (5.23)

Furthermore, if the linear combination in Equation (5.22) is finite

µ(t) =
D

∑
d=1

mdk(τd, t), (5.24)

and one applies the RMH corrections for {τd}D
d=1, then µ[D](t) = 0. This means

that, if the impact points {τ1, . . . , τD} are selected in the first D iterations, not nec-
essarily in that order, then RMH halts. This is an important result because the vari-
ables {X(τ1), . . . , X(τD)} are precisely those involved in the Bayes classification rule
(Berrendero, Cuevas, and Torrecilla, 2018, Theorem 7a). As shown in the following
section, this property is obtained when Z(t) is a Brownian motion, or an Ornstein-
Uhlenbeck Gaussian process.

5.5 RMH with different types of Gaussian Processes

In what follows, we explore the properties of RMH with different assumptions for
the Gaussian process noise Z. First, we analyze the properties of RMH with Markov-
Gaussian processes. As a particular case, we consider Brownian motion noise. Then,
we analyze RMH with Ornstein-Uhlenbeck noise. This case is of particular interest
because it is the only stationary Gaussian process with a continuous covariance func-
tion that has the Markov property (Doob, 1942).

5.5.1 RMH with Markovian noise

Consider the process X defined in Equation (5.3) with Z a zero-mean Gauss-Markov
process. The corrected process at the i-th step of RMH, Z[i], is also Markovian. As
a consequence of this property, after the i-th correction, X[i](s) with s ∈ [0, ti] and
X[i](t) with s ∈ [ti, T] are independent. A proof of this result is given in Appendix B.
To prove this independence of these quantities, it is sufficient to prove the following
property for Z:

Proposition 1. Let Z be a zero-mean Gaussian process with the Markov property. The
process Z̃(t) = Z(t) − E [Z(t) | Z(τ)], with s < τ < t verifies that Z̃(s) and Z̃(t) are
independent.

In consequence, the next steps in RHM can be carried out separately to the right
and to the left of ti. This can be exploited to parallelize the algorithm by processing
each of these intervals separately (Torrecilla and Suárez, 2016).
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FIGURE 5.4: Interpolation of f (t) = sin(2πt) in [0, 1] (shown as a
dashed line) based on its values at t1 = 0.2, t2 = 0.3, t3 = 0.7, t4 = 0.9
(marked with red vertical lines) assuming different Gaussian pro-
cesses. From top to bottom and from left to right: Brownian motion,
spline, Ornstein-Uhlenbeck and RBF, the last two with lengthscales

0.01, 0.1, 1.0 and 10.0.
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FIGURE 5.5: The first row shows an iteration of RMH using the Brow-
nian correction, which has the Markov property. It is apparent that
the correction over the right interval does not change the left interval.
The second row shows an RBF correction, which is not Markovian. In

this case the correction affects the two intervals.

This property is illustrated in Figure 5.5, which shows the result of applying the
correction at t2 = 0.4 for a process conditioned after having selected t1 = 0.5. The
first row in this figure corresponds to the example analyzed in Section 5.3, in which
Z is Brownian motion. Since Brownian motion is Markovian, conditioning on the
values of the process at t2 does not alter the trajectories, X[2](t), in the subinterval
t > t1. In the second row Z is a zero-mean Gaussian process with an RBF kernel
(Rasmussen and Williams, 2005). This process is not Markovian. As a consequence,
applying the correction at t2, modifies the values of X[2](t), the modified trajectories,
not only for t < t1, but also for t > t1.

5.5.2 RMH with Brownian noise

Brownian motion is a Gauss-Markov process. Therefore, as discussed in the previ-
ous subsection, the successive RMH corrections can be applied in parallel. Further-
more, as stated in the following theorem, when µ is piecewise linear with µ(0) = 0,
and the distance covariance is used as the univariate relevance measure, RMH se-
lects the variables that appear in Bayes rule and then halts.

Theorem 3. Consider the classification problem defined by Equation (5.3) in the interval
T = [0, ∞). Let Z be a zero-mean Brownian motion, whose covariance function is

kBM(s, t) = σ2 min(s, t). (5.25)
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Assume that µ is the piecewise linear function

µ(t) =


µ1

t
τ1

if t ∈ [0, τ1)

µd

(
1− t−τd

τd+1−τd

)
+ µd+1

t−τd
τd+1−τd

if t ∈ [τd, τd+1), d = 1, . . . D− 1

µD if t ≥ τD

(5.26)

with 0 < τ1 < . . . < τD. Then,

(i) The class 1 mean belongs to the RKHS associated to the Brownian motion kernel and
is of the form

µ(t) =
D

∑
d=1

mdkBM(τd, t), with md 6= 0 d = 1, . . . , D. (5.27)

(ii) RMH, using distance covariance as a relevance function, selects {τ1, . . . , τD}, not
necessarily in that order, and then halts.

(iii) The points selected by RMH are the ones that appear in Bayes rule for the classification
problem defined in (5.3) and only those.

The derivation of these properties, which is given in Appendix B, hinges on the
fact that, in this case, the optimal classifier is Fisher’s linear discriminant applied to
{X(τd)}D

d=1, the projections of X at the impact points {τd}D
d=1 (Berrendero, Cuevas,

and Torrecilla, 2018, Theorem 7a).
This theorem provides support for the application of RMH with Brownian cor-

rections in Torrecilla and Suárez, 2016. However, the assumption µ(0) = 0, is too
restrictive: it implies that all trajectories start at zero (X(0) = 0), a condition that is
rarely the case in practice. In the following section, we will show that similar proper-
ties are obtained when Z is an Ornstein-Uhlenbeck process with the advantage that,
with in this case, model (5.3) can be used for classification problems in which X(0)
can be different from 0.

5.5.3 RMH with Ornstein-Uhlenbeck noise

In this section, we derive some properties of RMH in the case that the noise Z is
a zero-mean Ornstein-Uhlenbeck (OU) process. The OU process has some special
properties that make it useful in RMH even when in the actual Z is a general stochas-
tic process whose form is not known. In particular, it has the Markov property.
Therefore, one can take adavantage of the properties of RHM with Gauss-Markov
process derived in Section 5.5.1. A second important property is its stationarity, a
condition that holds in many problems of interest. Even if the data are not station-
ary, they can be rendered approximately stationary through the use of some trans-
formation, such as taking derivatives, logarithms, or removing trends and seasonal
components (Kokoszka and Reimherr, 2017).

Finally, assuming that Z is OU, and that the distance covariance is used as the
univariate relevance measure, RMH selects the variables that appear in Bayes rule
in the conditions specified by the following theorem

Theorem 4. Consider the classification problem defined in Equation (5.3) defined in the
whole real line T = R. Let Z be an Ornstein-Uhlenbeck process, whose covariance function
is

kOU(s, t) = σ2 exp
(
−|t− s|

l

)
. (5.28)
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Assume that µ is in the RKHS whose reproducing kernel is k(s, t), and has the form

µ(t) =
D

∑
d=1

mdkOU(τd, t), md 6= 0 d = 1, . . . , D, (5.29)

with τ1 < . . . < τD. Under these conditions, RMH using distance covariance as a relevance
measure selects {τd}D

d=1, which are the points that appear in Bayes rule, and only those.

As in the case of Brownian motion, the optimal classifier in this case is Fisher’s
linear discriminant applied to {X(τd)}D

d=1 (Berrendero, Cuevas, and Torrecilla, 2018,
Theorem 7a).

Note that, since the RKHS associated to the OU kernel assumption is dense in L2,
the assumption (5.29) is not overly restrictive if (5.29) provides a sufficiently accurate
approximation of µ. The parameter σ2 does not affect the correction of the trajecto-
ries (Equation (5.6)), or the update of the noise process (Equation (5.13)). Therefore,
without loss of generality one can use any value of σ in Equation (5.28). By contrast,
the value of the lengthscale parameter l needs to be known. If l is not known, it can
be estimated from the data.

The interpretation of RMH as a process that yields a sequence of approximations
of µ, which are progressively more accurate, suggests a different prescription for the
choice of σ2 and l. Specifically, the limit

σ2 → ∞, l → ∞, with
σ2

l
= constant, (5.30)

corresponds to making no prior assumptions on the form of µ. In this limit, the
dominant term in the OU kernel is

kOU(s, t) ≈ σ2. (5.31)

Using this constant kernel, the correction given by Equation (5.8) at the first step of
RMH is simply X(t1). Thus, the updated trajectories become

X[1](t) = X(t)− X(t1). (5.32)

Also in this limit, the process Z[1] is a two-sided Brownian motion emanating from
t1 (Mörters and Peres, 2010). This result is stated in the following theorem:

Theorem 5. Let Z be a zero-mean Ornstein-Uhlenbeck process whose kernel is

kOU(s, t) = σ2 exp
(
−|t− s|

l

)
. (5.33)

In the limit l → ∞, σ2 → ∞ with 2σ2

l = 1, The process Z′(t) = [Z(t) | Z(τ) = 0] is
two-sided standard Brownian motion whose origin is τ.

Because of these properties, we will use the term uniform Brownian to denote the
OU correction in the limit given by Equation (5.30).

The approximation of µ at the i-th step of RMH with the uniform Brownian cor-
rection is the piecewise linear function

µ̂i(t) =


µ1 if t ≤ t[1]
µj

(
1− t−t[j]

t[j+1]−t[j]

)
+ µj+1

t−t[j]
t[j+1]−t[j]

if t ∈ [t[j], t[j+1]], j = 1, . . . i− 1

µi if t ≥ t[i]

(5.34)
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where t[1] < . . . < t[i], are the ordered values t1, . . . ti. This can be appreciated in
Figure 5.4, where increasing the lengthscale of the Ornstein-Uhlenbeck process gives
interpolations that approximate to this equation.

An advantage of considering this limit for Z is that it is not necessary to deter-
mine the value of any hyperparameter in RMH. The class 1 mean, µ, is approximated
by a piecewise linear function, which is a simple, flexible, robust, and generally ac-
curate interpolation method. Finally, as illustrated in the experiments carried out in
Section 5.6, this prescription has excellent performance in the classification problems
considered.

5.6 Empirical study

To assess the performance of recursive maxima hunting, we conducted experiments
on both simulated and real datasets. Firstly, we compared different configurations
of RMH, considering several alternatives for calculating the correction and stop-
ping criteria. After selecting a representative configuration, we compared the per-
formance of RMH with the former MH and two variable selection techniques avail-
able in the FDA literature: RKVS (Berrendero, Bueno-Larraz, and Cuevas, 2019) and
mRMR (Ding and Peng, 2005).

In all cases, the predictive power of the selected variables has been evaluated
using three multivariate classifiers with the reduced datasets. We consider classi-
fiers that represent different approaches to the classification problem: Linear Dis-
criminant Analysis (LDA), k-Nearest Neighbors (k-NN) with Euclidean distance and a
Support Vector Machine (SVM) with Gaussian kernel. LDA is a classical and simple
method that, despite its simplicity, achieves good results in many real problems of
low dimension and is optimal in homoscedastic problems with Gaussian processes
(Berrendero, Cuevas, and Torrecilla, 2018). On the other hand, k-NN is a simple
non-parametric classification rule with reasonable overall predictive accuracy that is
usually used as a benchmark in the FDA literature. Finally, SVM is one of the state-
of-art classifiers in machine learning literature and presents a much more flexible
approach than the previous ones.

The results shown represent the accuracy obtained with each method, dataset,
and classifier, averaged over 200 independent repetitions. The methodology used
presents slight differences between synthetic and real data, which will be specified
in the corresponding subsections. These differences are due to the absence of restric-
tions to generate new simulated data, which allows us, among other things, to study
the effect of sample size on the variable selection. The number of nearest neigh-
bors k, is selected by 10-fold Cross Validation (10CV) as an odd number in the range
[1,
√

Ntrain], where Ntrain is the number of trajectories in the training set. Likewise,
the SVM’s hyperparameters γ and C are chosen by 10CV from the exponential grid
{10−3, 10−2, . . . , 102, 103}.

The experiments are implemented in Python, using the variable selection algo-
rithms provided by the scikit-fda library (Ramos-Carreño et al., 2023). This package
will be further explained in Chapter 8. Synthetic datasets were also generated us-
ing this package. Furthermore, the validation tools and classification algorithms
utilized are sourced from the scikit-learn package (Pedregosa et al., 2011). Let us
recall that the default implementation of LDA in that library uses a singular value
decomposition (SVD) solver, in which dimensions whose singular values are small
are discarded. This mitigates the poor results that one would expect when applying
LDA to functional data, whose covariance operator is non-invertible.



5.6. Empirical study 91

Synthetic data

We have considered different variants of the general homoscedastic model described
in Equation (5.3) with P(Y = 0) = P(Y = 1) = 1/2, using the standard Brownian
motion B as the noise process for Z,{

P0 : B(t) , t ∈ [0, 1],
P1 : µ(t) + B(t) , t ∈ [0, 1],

(5.35)

where µ denotes the deterministic class-1 mean function, which can be also inter-
preted as the difference between the means of the two classes. In addition to the
importance of Brownian motion in modeling and simulation in various fields of sci-
ence and engineering, the study of these models offers several advantages. The first
and primary advantage is the possibility of obtaining the explicit expression of the
optimal classification rule, or Bayes rule (g∗), and the associated Bayes error L∗ when
the probability measures are equivalent (Mörters and Peres, 2010; Baíllo, Cuevas,
and Cuesta-Albertos, 2011). Following Berrendero, Cuevas, and Torrecilla, 2018 we
can obtain an expression for this rule in terms of an stochastic integral,

g∗(x) = I{η∗(x)>0}, (5.36)

with

η∗(x) =
∫ 1

0
µ′dB− 1

2
‖µ′‖2, (5.37)

where µ′ denotes the derivative of the mean function. The associated Bayes error is

L∗ = 1−Φ
(‖µ′‖

2

)
(5.38)

where Φ(·) is the cumulative distribution function of a standard normal (further de-
tails of these derivations are given in Appendix B.2). In this way, we can control
the difficulty of the problems and evaluate the performance of methods accurately.
We can even construct problems in which the optimal solution depends on a finite
number of variables g∗(X) = g∗(X(t1), . . . , X(tD)), and therefore, the optimal solu-
tion involves variable selection (Berrendero, Cuevas, and Torrecilla, 2018). Thus, we
have defined two problems in which the Bayes rule depends only on a few variables
(peak and peak2), and two others in which it depends on the complete trajectories
(square and sine), which should not favor variable selection. The models differ in the
specification of the mean function µ:

• peak: µ(t) = 2Φ3,3(t), where

Φm,k(t) =
∫ t

0

√
2m−1

[
I( 2k−2

2m , 2k−1
2m ) − I( 2k−1

2m , 2k
2m )

]
, m, k ∈N, 1 ≤ k ≤ 2m−1.

(5.39)
This corresponds to a piecewise linear function that forms a “peak” between
t = 1/2 and t = 3/4, with its maximum at t = 5/8. The Bayes rule depends
only on the values of the trajectories at these three points,

η∗(X) = 2X
(

5
8

)
− X

(
1
2

)
− X

(
3
4

)
− 1

2
, (5.40)

and the associated error is L∗ ' 0.1587.
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FIGURE 5.6: Some sample trajectories and class means (thick lines) of
the synthetic problems.

• peak2: µ(t) = 2Φ3,2(t) + 3Φ3,3(t)− 2Φ2,2(t), a piecewise linear function. The
optimal rule depends on six variables through

η∗(X) = 4X
(

3
8

)
− 2X

(
1
4

)
−
(

5−
√

2
)

X
(

1
2

)
+ 6X

(
5
8

)
−
(

3 + 2
√

2
)

X
(

3
4

)
+
√

2X(1)− 17
4

,
(5.41)

and L∗ ' 0.0196.

• square: µ(t) = 2t2. In this case, the Bayes rule depends on the whole trajectory,

η∗(X) = X(1)−
∫ 1

0
X(t)dt− 2

3
, (5.42)

with L∗ ' 0.1241.

• sine: µ(t) = 1
2 sin(2πt). Again, the optimal rule depends on the complete

trajectory,

η∗(X) = X(1) + 2
∫ 1

0
sin(2πt)X(t)dt− π

4
. (5.43)

In this case, the Bayes error is L∗ ' 0.1333.

Complete calculations of the corresponding Bayes rules and errors can be found
in Appendix B.2. Examples of trajectories for each of these models are shown in
Figure 5.6.

Finally, the flexibility of the simulation setting allows us to study the effect of
the sample size in the performance of the methods. For each dataset, we generate
incremental training sets with sizes Ntrain = 50, 100, 200, 500, and 1000, and inde-
pendent test sets of size Ntest = 1000. The trajectories were discretized in a grid of
200 regularly-spaced points. The reported accuracy values are the average of 200
independent repetitions.

Experiments on real-world data

We utilized a variety of real datasets frequently employed in functional data clas-
sification studies, chosen to represent diverse data types without striving for ex-
haustiveness. The datasets employed include Phoneme, Wheat, and Australian, which
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Australian Berkeley Cell ECG MCO Medflies NOx Phoneme Tecator Wheat
#Class 0 43 39 46 520 45 246 76 695 138 41
#Class 1 147 54 44 1506 44 266 39 1022 77 59
#Variables 365 31 18 85 360 30 24 50 100 701

TABLE 5.1: Number of samples per class and number of points per
curve in the real-data examples.
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FIGURE 5.7: Trajectories of the real classification problems consid-
ered.

have been previously used in studies such as Delaigle, Hall, and Bathia, 2012 and
Berrendero, Cuevas, and Torrecilla, 2018. We followed these studies by smoothing
and truncating the Phoneme trajectories to the first 50 variables, and differentiating
the Wheat data. In addition, we follow Delaigle and Hall, 2010 and discard the ob-
servation 190, which corresponds to a known outlier in the Wheat dataset. We have
also included Cell (Leng and Müller, 2006; Rincón Hidalgo and Ruiz-Medina, 2012),
NOx (Febrero, Galeano, and González-Manteiga, 2008; Sguera, Galeano, and Lillo,
2016), Berkeley, ECG, MCO, Medflies and Tecator datasets (Ferraty and Vieu, 2006). For
the Medflies dataset, we removed atypical constant zero observations. As usual, we
consider the second derivatives of the Tecator dataset. The datasets are shown in Fig-
ure 5.7, and Table 5.1 summarizes the most relevant information about the datasets
used.

All datasets were discretized to points in the interval [0, 1] with a uniform sep-
aration. A random stratified split was performed to create a train set comprising 2

3
of the observations and a test set comprising 1

3 of the observations. This partitioning
process was repeated 200 times, and the reported accuracies are averages over these
different partitions.

RMH setup

The objective of this section is to propose a default configuration of RMH that ex-
hibits good overall performance across all datasets. This configuration will serve as
a reference for comparison with other variable selection methods in the next section.
To this end, we discuss the election of the relevance measure and other implementa-
tion details, and evaluate the performance of the RMH algorithm with several types
of corrections and stopping conditions. In the comparison, we consider two main



94
Chapter 5. Recursive maxima hunting: Variable selection for functional data

classification

criteria: the accuracy of the posterior prediction and the ability to select a small
number of variables.

Relevance measure. We will employ the squared distance covariance V2 (Székely,
Rizzo, and Bakirov, 2007) to calculate the relevance curve Rel(X(t), Y). This de-
pendence measure has been shown to possess some optimality properties when
used in combination with RMH, as stated in Theorem 4. Furthermore, Berrendero,
Cuevas, and Torrecilla, 2016b, Th.2 proves the uniform convergence of the estima-
tion V2

N(X(t), Y) with respect to t, ensuring the convergence of the empirical local
maxima to the true ones. Distance covariance has already been successfully uti-
lized for variable selection in various algorithms, including MH (Li, Zhong, and
Zhu, 2012; Kong, Wang, and Wahba, 2015; Berrendero, Cuevas, and Torrecilla, 2016a;
Berrendero, Cuevas, and Torrecilla, 2016b), and has a simple estimator V2

N that can
be efficiently computed (Huo and Székely, 2016). Here we use the fast implemen-
tation provided by dcor library (Ramos-Carreño and Torrecilla, 2023), presented in
Chapter 9.

Correction. We compare the performance of several correction methods assum-
ing a known covariance structure for the noise process Z. The corrections under
comparison include the standard Brownian motion (B) described in Section 5.5.2
(as in Torrecilla and Suárez, 2016), the Ornstein-Uhlenbeck process (OU) described
in Section 5.5.3, the uniform Brownian correction (UB) defined in Theorem 5, and
the radial basis function (RBF) (Rasmussen and Williams, 2005). While assuming a
known covariance structure simplifies estimation, it can lead to accuracy loss if the
data deviates from the assumptions. In addition, we also consider a method that
estimates the correction from (5.8) using sample estimators for the covariances, (S).
This proposal assumes that Z is a zero-mean Gaussian process, without any further
structural assumptions. The lengthscale and variance parameters of OU and RBF ker-
nels are estimated by maximum likelihood from the training set using the package
GPy (GPy, 2012). Note that B and UB do not present hyperparameters by definition.

Stopping criterion. Choosing a stopping criterion for variable selection algorithms
is an open problem in the literature that does not have a unique solution. One
common strategy is to set the number of variables through cross-validation, al-
though this method involves the classifier in a supposedly model-free filter selection
method. Another typical approach is to establish a minimum relevance threshold so
that RMH stops when the relevance of the new variable to be selected does not ex-
ceed this threshold. Nonetheless, this also introduces a new parameter that requires
tuning. By chance, the properties of distance covariance for characterizing indepen-
dence allow us to define a new stopping criterion that is completely data-driven.
Specifically, before selecting the variable X[i](ti), we conduct a test of independence
with Y (Székely and Rizzo, 2009). RMH stops if this independence cannot be re-
jected. The rejection condition of the test in the i-th iteration is given by

N
V2

N(X[i](ti), Y)
T2

N(X[i](ti), Y)
≥ χ2

1,1−α, (5.44)
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where N is the sample size, V2
N is the sample estimator for V2, χ2

1,1−α denotes the
(1− α) quantile of the Chi-square distribution with 1 degree of freedom, and

T2
N(X[i](ti), Y) =

1
N2

N

∑
j,k=1
|X[i]

j (ti)− X[i]
k (ti)|

1
N2

N

∑
j,k=1
|Yj −Yk|.

This new proposal also involves tuning a parameter, the significance level α. This
parameter should be low enough to avoid excluding variables that are not very rel-
evant marginally but are relevant in combination with others, and high enough to
avoid including irrelevant variables. Exploratory analysis showed very similar re-
sults for the standard values of α considered in the literature. Therefore, in the re-
maining experiments, we set α = 0.01.

Additional experiments showed that this new proposal performs similarly to the
CV-based approach, with the advantage of selecting fewer variables and achieving
better accuracy rates in most cases. The only exception is the RBF kernel where
CV slightly outperforms the independence criterion by selecting more variables.
Furthermore, the proposed independence-based criterion is able to select the ex-
act number of variables involved in the optimal rule in peak and peak2 problems.
Lastly, the new proposal has a lower computational cost as the significance level can
be pre-fixed without significant loss in performance in most cases, and maintains
the model-free aspect of RMH. Hence, we will use the stopping criterion based on
Equation (5.44) with α = 0.01 in our future experiments.

min_redundancy. In practice, the successive corrections applied by the RMH algo-
rithm may introduce undesired numerical artifacts that distort the variable selection.
Particularly, after the correction step, contiguous variables may emerge as artificially
relevant. This can occur due to numerical issues, such as divisions close to zero, or
because the real maximum may lie between two discretization points, rendering the
correction partially ineffective. To circumvent this problem, we leverage the high re-
dundancy between nearby variables derived from the continuity of functional data.
Specifically, after selecting the i-th variable X(ti), we exclude from future RMH it-
erations all variables X(t) in a neighborhood of X(ti) whose redundancy with the
selected variable exceeds a certain threshold min_redundancy. In other words,

Red (X(t), X(ti)) ≥ min_redundancy. (5.45)

Here, Red is a univariate measure of dependence that quantifies the redundancy
between two variables. In this case, we cannot use V2 as a measure of redun-
dancy since it is unbounded. Instead, we use the distance correlation R2, a di-
mensionless version of V2 rescaled between 0 and 1 (Székely, Rizzo, and Bakirov,
2007). Thus, to eliminate the most redundant variables, we must set a value of
min_redundancy close to 1. Preliminary results showed very similar behavior for
threshold values between 0.8 and 0.99 in most cases. However, extreme values of the
parameter presented some difficulties with trajectories that were especially smooth
or rough. To minimize these possible issues in extreme cases, in our experiments,
we set min_redundancy = 0.9.

Comparison. Once the stopping criterion was fixed, we evaluated the different
correction methods by examining the classification accuracy results obtained with
LDA, k-NN, and SVM, presented in Tables 5.2, 5.3, and 5.4, respectively. For each
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RMH-RBF RMH-S RMH-BM RMH-OU RMH-UB
peak (1000) 0.715± 0.058(2.4) 0.834± 0.011(3.3) 0.835 ± 0.011(3.1) 0.835 ± 0.011(3.1) 0.835 ± 0.011(3.2)
peak2 (1000) 0.960± 0.007(7.7) 0.976± 0.005(11.1) 0.978 ± 0.005(6.3) 0.977± 0.005(6.3) 0.977± 0.005(6.3)
sine (1000) 0.835± 0.012(13.4) 0.859 ± 0.011(7.9) 0.859 ± 0.011(7.5) 0.859 ± 0.011(8.7) 0.859 ± 0.011(8.5)
square (1000) 0.873 ± 0.011(10.9) 0.872± 0.011(4.2) 0.873 ± 0.010(4.0) 0.872± 0.011(4.1) 0.873 ± 0.010(4.7)
Australian 0.902± 0.035(9.6) 0.907 ± 0.032(5.5)∗ 0.898± 0.032(6.9) 0.897± 0.032(7.0) 0.898± 0.032(6.9)
Berkeley 0.884± 0.045(1.5) 0.953± 0.033(2.5) 0.955± 0.032(4.2) 0.954± 0.034(4.3) 0.959 ± 0.030(3.8)∗
Cell 0.856± 0.055(5.7) 0.868 ± 0.057(1.1) 0.861± 0.055(4.1) 0.862± 0.055(4.1) 0.854± 0.059(5.0)
ECG 0.974± 0.006(20.0) 0.990 ± 0.004(20.0)∗ 0.982± 0.005(20.0) 0.984± 0.004(20.0) 0.982± 0.005(20.0)
MCO 0.893± 0.133(10.8) 0.958± 0.035(19.3) 0.961± 0.053(8.4) 0.985 ± 0.023(9.5) 0.983± 0.024(9.7)
Medflies 0.610 ± 0.041(1.6) 0.606± 0.036(1.4) 0.609± 0.037(1.9) 0.604± 0.037(1.8) 0.593± 0.034(2.1)
NOX 0.847± 0.069(4.8) 0.904 ± 0.051(3.7)∗ 0.844± 0.064(4.0) 0.892± 0.055(3.9) 0.881± 0.057(4.7)
Phoneme 0.819 ± 0.013(6.1) 0.819 ± 0.013(4.6) 0.817± 0.013(6.0) 0.818± 0.013(6.0) 0.816± 0.013(5.5)
Tecator 0.934± 0.029(4.0) 0.941± 0.023(4.0) 0.933± 0.028(5.4) 0.952 ± 0.023(19.1)∗ 0.936± 0.026(5.4)
Wheat 1.000 ± 0.000(10.8) 0.999± 0.006(11.6) 0.999± 0.005(10.6) 1.000 ± 0.000(11.1) 1.000 ± 0.000(12.0)
accuracy (average) 0.865 0.892 0.886 0.892 0.889
rank (average) 3.429 2.500 2.714 2.286 2.571
# vars (median) 6.883 4.420 5.662 6.147 5.445

TABLE 5.2: Comparison between RMH variants using the LDA clas-
sifier.

RMH-RBF RMH-S RMH-BM RMH-OU RMH-UB
peak (1000) 0.682± 0.052(2.4) 0.810± 0.014(3.3) 0.813 ± 0.013(3.1) 0.813 ± 0.013(3.1) 0.811± 0.014(3.2)
peak2 (1000) 0.914± 0.010(7.7) 0.926± 0.019(11.1) 0.952 ± 0.007(6.3) 0.952 ± 0.007(6.3) 0.952 ± 0.007(6.3)
sine (1000) 0.814± 0.014(13.4) 0.833± 0.013(7.9) 0.834 ± 0.012(7.5) 0.828± 0.013(8.7) 0.827± 0.014(8.5)
square (1000) 0.844± 0.012(10.9) 0.855± 0.013(4.2) 0.856 ± 0.012(4.0) 0.853± 0.013(4.1) 0.852± 0.012(4.7)
Australian 0.941± 0.029(9.6) 0.944 ± 0.026(5.5) 0.931± 0.030(6.9) 0.932± 0.031(7.0) 0.931± 0.031(6.9)
Berkeley 0.868± 0.056(1.5) 0.929± 0.043(2.5) 0.943± 0.041(4.2) 0.941± 0.036(4.3) 0.944 ± 0.037(3.8)
Cell 0.879± 0.057(5.7) 0.830± 0.057(1.1) 0.857± 0.061(4.1) 0.857± 0.057(4.1) 0.883 ± 0.049(5.0)
ECG 0.997 ± 0.002(20.0) 0.996± 0.003(20.0) 0.997 ± 0.002(20.0) 0.997 ± 0.003(20.0) 0.997 ± 0.002(20.0)
MCO 0.860± 0.104(10.8) 0.889± 0.061(19.3) 0.896± 0.067(8.4) 0.916 ± 0.053(9.5) 0.914± 0.052(9.7)
Medflies 0.597± 0.042(1.6) 0.588± 0.041(1.4) 0.603 ± 0.038(1.9)∗ 0.599± 0.039(1.8) 0.596± 0.037(2.1)
NOX 0.811± 0.059(4.8) 0.885 ± 0.052(3.7)∗ 0.820± 0.062(4.0) 0.873± 0.054(3.9) 0.847± 0.058(4.7)
Phoneme 0.808± 0.014(6.1) 0.815 ± 0.013(4.6)∗ 0.808± 0.015(6.0) 0.812± 0.013(6.0) 0.812± 0.014(5.5)
Tecator 0.970± 0.018(4.0) 0.977 ± 0.021(4.0) 0.975± 0.016(5.4) 0.974± 0.017(19.1) 0.973± 0.017(5.4)
Wheat 0.999± 0.004(10.8) 0.995± 0.012(11.6) 0.996± 0.013(10.6) 1.000 ± 0.004(11.1) 0.999± 0.007(12.0)
accuracy (average) 0.856 0.877 0.877 0.882 0.881
rank (average) 3.857 3.143 2.286 2.143 2.571
# vars (median) 6.883 4.420 5.662 6.147 5.445

TABLE 5.3: Comparison between RMH variants using the k-NN clas-
sifier.

dataset (rows) and correction method (columns), the average accuracy and standard
deviation over 200 repetitions are shown, along with the mean number of selected
variables in parentheses. The best performing method is highlighted in bold, while
the second-best is underlined. Asterisks indicate statistically significant differences
between the mean accuracies, as determined by a paired t-test with a 95% confidence
level. In addition, for each correction method, we provide the average accuracy, po-
sitional ranking (the lower the better), and the median number of selected variables
over all the considered problems. The use of the median in the latter case is an at-
tempt to prevent the effect of the atypical ECG dataset. We only included simulated
datasets with the largest sample size Ntrain = 1000 to avoid biasing the results with
multiple versions of the same problem.

RMH-RBF RMH-S RMH-BM RMH-OU RMH-UB
peak (1000) 0.711± 0.059(2.4) 0.832± 0.012(3.3) 0.833 ± 0.012(3.1) 0.833 ± 0.011(3.1) 0.832± 0.011(3.2)
peak2 (1000) 0.957± 0.007(7.7) 0.974± 0.006(11.1) 0.976 ± 0.005(6.3) 0.975± 0.005(6.3) 0.975± 0.005(6.3)
sine (1000) 0.832± 0.013(13.4) 0.856± 0.011(7.9) 0.857 ± 0.012(7.5) 0.857 ± 0.011(8.7) 0.857 ± 0.011(8.5)
square (1000) 0.870± 0.011(10.9) 0.870± 0.011(4.2) 0.871 ± 0.011(4.0) 0.870± 0.011(4.1) 0.871 ± 0.011(4.7)
Australian 0.942± 0.028(9.6) 0.947 ± 0.029(5.5)∗ 0.920± 0.032(6.9) 0.920± 0.030(7.0) 0.919± 0.031(6.9)
Berkeley 0.869± 0.055(1.5) 0.940± 0.035(2.5) 0.950 ± 0.035(4.2)∗ 0.946± 0.032(4.3) 0.946± 0.033(3.8)
Cell 0.868 ± 0.058(5.7) 0.861± 0.061(1.1) 0.850± 0.062(4.1) 0.855± 0.062(4.1) 0.865± 0.055(5.0)
ECG 0.998± 0.002(20.0) 0.998± 0.002(20.0) 0.998± 0.002(20.0) 0.999 ± 0.002(20.0) 0.998± 0.002(20.0)
MCO 0.901± 0.125(10.8) 0.975± 0.029(19.3) 0.948± 0.062(8.4) 0.977 ± 0.032(9.5) 0.977 ± 0.033(9.7)
Medflies 0.614± 0.042(1.6) 0.617± 0.038(1.4) 0.623 ± 0.036(1.9)∗ 0.619± 0.038(1.8) 0.618± 0.037(2.1)
NOX 0.850± 0.072(4.8) 0.903 ± 0.051(3.7)∗ 0.829± 0.064(4.0) 0.876± 0.058(3.9) 0.887± 0.053(4.7)
Phoneme 0.817 ± 0.013(6.1) 0.817 ± 0.013(4.6) 0.816± 0.014(6.0) 0.817 ± 0.014(6.0) 0.816± 0.014(5.5)
Tecator 0.982± 0.014(4.0) 0.983 ± 0.017(4.0) 0.978± 0.016(5.4) 0.980± 0.016(19.1) 0.979± 0.015(5.4)
Wheat 0.998± 0.008(10.8) 0.996± 0.011(11.6) 0.997± 0.010(10.6) 0.999± 0.005(11.1) 1.000 ± 0.003(12.0)
accuracy (average) 0.872 0.898 0.889 0.895 0.896
rank (average) 3.429 2.786 2.714 2.071 2.357
# vars (median) 6.883 4.420 5.662 6.147 5.445

TABLE 5.4: Comparison between RMH variants using the SVM clas-
sifier.
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The results indicate that all proposed corrections exhibit similar overall perfor-
mance, with the exception of the RBF method, which is clearly outperformed by
the other methods (although it may perform well in specific cases). The algorithms’
behavior is relatively stable across the three classifiers, with slightly lower average
accuracy levels observed for the k-NN classifier. This generalization capacity is ex-
pected from the variables selected with filter methods, although it is not always
achieved in practice. In this sense, it is worth noting that the number of selected
variables is independent of the classifier due to the use of the stopping criterion
based on the independence test.

On average, the OU correction obtains the best results, ranking first in all three
classifiers, although it tends to select one or two more variables than its direct com-
petitors, RMH-UB and RMH-S. RMH-UB behaves almost identically to RMH-OU for
all datasets, selecting fewer variables and without requiring any parameter tuning.
This presents several advantages in terms of interpretability and computational cost,
albeit with a slight decrease in accuracy in some cases. On the other hand, RMH-S,
which estimates the covariance function directly from the training sample, also per-
forms very well in terms of accuracy by selecting the smallest number of variables.
However, it is more irregular and exhibits both the most statistically significant vic-
tories and the worst performance in some problems (excluding RBF). Although the
Brownian correction is the clear winner in synthetic datasets, it loses accuracy when
faced with real-world problems that do not perfectly fit the model. Nevertheless, it
achieves good results with a similar number of variables as RMH-UB.

Based on the results, the OU, UB, or S corrections could all be good default op-
tions for RMH. However, we choose the uniform Brownian correction due to its
good theoretical properties and its ability to achieve similar accuracy rates to the
best alternatives with a comparable number of variables, without the need to esti-
mate any parameters from the sample.

Comparison between variable selection methods

The variable selection methods to be compared are as follows:

• Recursive maxima hunting (RMH): Based on the conclusions of the previous sec-
tion, the representative of RMH methods in the comparison uses the uniform
Brownian correction. We also use the distance covariance V2 and the distance
correlation R2 to calculate relevance with the class and redundancy between
variables, respectively. In both cases, we use the fast versions available in the
dcor library (Ramos-Carreño and Torrecilla, 2023), presented in Chapter 9. The
stopping criterion is based on the independence contrast defined by (5.44) with
α = 0.01, and min_redundancy is fixed to 0.9.

• Maxima hunting (MH): The variable selection method described in Section 5.2.
We follow the implementation guidelines given in Berrendero, Cuevas, and
Torrecilla, 2016b, employing the distance covariance as the measure for rele-
vance. To identify local maxima, the smoothing parameter h is selected via
10-fold cross-validation from the set of values {1, 3, 5, 7, 10}. Like RMH, MH
does not require tuning the number of variables since it returns as many vari-
ables as there are local maxima (up to a maximum of 20).

• Minimum Redundancy Maximum Relevance (mRMR): mRMR is a popular multi-
variate feature selection method proposed by Ding and Peng, 2005 which has
been successfully used with functional data (Gómez-Verdejo, Verleysen, and
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Fleury, 2009; Berrendero, Cuevas, and Torrecilla, 2016a). It attempts to choose
a subset of the original variables that jointly maximizes the relevance with the
class and minimizes the redundancy between the selected variables. We use the
MID (Mutual Information Difference), which has been reported to be more sta-
ble (Gulgezen, Cataltepe, and Yu, 2009). The MI score is estimated by binning
and using the estimator available in scikit-learn.

• Reproducing Kernel Variable Selection (RKVS): RKVS is a filter method for vari-
able selection recently proposed by Berrendero, Cuevas, and Torrecilla, 2018
in the context of binary functional classification (see Section 2.3.2). It aims to
maximize the Mahalanobis distance between the (multivariate) means of the
classes resulting after variable selection. In practice, RKVS has shown excellent
performance and presents optimality properties for the classification problem
of homoscedastic Gaussian processes if LDA is applied after variable selection.

• Base: Finally, we introduce a benchmark approach that classifies the complete
original trajectories (discretized) without any dimensionality reduction. For
this purpose, we use a functional version of k-NN with the L2 distance. The
standard version of LDA does not perform well with functional data due to
the non-invertibility of the covariance operator. However, the regularization
included in the implementation of scikit-learn enables its utilization with dis-
cretized functions. In contrast, SVM has been successfully used with this type
of data in prior literature (Rossi and Villa, 2006).

For these experiments, we followed the methodology described in previous sec-
tions. Additionally, the number of variables selected for mRMR and RKVS is chosen
through 10-fold cross-validation, up to a maximum of 20 variables. The selected
variables are standardized to have zero-mean and variance equals to 1 before classi-
fication using LDA, k-NN, and SVM. The variable selection methods and functional
k-NN are implemented using scikit-fda (Ramos-Carreño et al., 2023), while the mul-
tivariate classification algorithms are from scikit-learn (Pedregosa et al., 2011).

In this section, we study the impact of sample size on the performance of feature
selection methods using synthetic datasets. Figure 5.8 shows the results obtained
with SVM. The top row displays the mean error evolution (averaged over 200 inde-
pendent repetitions) of the algorithms for different sample sizes Ntrain = 50, 100, 200,
500, and 1000. The horizontal dashed lines indicate the Bayes error for each prob-
lem. The bottom row plots show the average numbers of variables selected by each
method for each sample size. In this case, Base is excluded from the graphs since it
always uses the 200 variables of the problems, making it impossible to appreciate
the differences between the other methods.

RMH stands out as the overall winner in terms of classification error and num-
ber of selected variables (with a data-driven stopping criterion), followed closely
by RKVS, which performs slightly worse in peak2 and square for small sample sizes.
As expected, both methods exhibit excellent performance on the first two datasets,
where they are able to identify the variables on which the optimal rule depends.
However, they also obtain the best results on square and sine, which are theoretically
unfavorable for variable selection since the optimal classifier involves the complete
trajectories. At the other end of the spectrum is mRMR, which performs poorly in
terms of both accuracy and the number of variables selected. MH exhibits somewhat
irregular behavior. It is close to the performance of the Base method on the first two
datasets, works quite well on square, and is the worst-performing method on sine
asymptotically. Finally, it can be observed that the Base approach is only competitive
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FIGURE 5.8: The results of the experiments on synthetic classifica-
tion problems, using the SVM classifier. On the first row, the error of
each method for each dataset is plotted against the size of the train
set. Bayes error rate is shown with a dashed line. In the second row,
the number of variables after the variable selection step is shown is

plotted against the size of the train set.

in sine (although it is eventually surpassed by RMH and RKVS) and is clearly out-
performed on the datasets where variable selection is optimal, as well as on square,
which seems to be able to be explained very well with the values of the trajectories
at a few points.

The results obtained with LDA and k-NN are very similar to those obtained with
SVM. The main difference is a deterioration in the performance of Base (specially for
low sample sizes), since LDA is not the best option for functional data even with
regularization, and k-NN requires more observations to obtain good results. In ad-
dition to this, there is a slight synergy between LDA and RMH, and between k-NN
and RKHS.

Now we compare the performance variable selection with all considered datasets.
The accuracy results obtained with LDA, k-NN, and SVM, are presented in Tables
5.5, 5.6, and 5.7, respectively. As in the previous section, for each dataset (rows) and
correction method (columns), the average accuracy and standard deviation over 200
repetitions are shown, along with the mean number of selected variables in paren-
theses. The best performing method is highlighted in bold, while the second-best is
underlined. Asterisks indicate statistically significant differences between the mean
accuracies, as determined by using a paired t-test with a 95% confidence level. In
addition, for each correction method, we provide the average accuracy, positional
ranking (the lower the better), and the median number of selected variables over
all the considered problems. The use of the median in the latter case is an attempt
to prevent the effect of the atypical datasets. We only included simulated datasets
with the largest sample size Ntrain = 1000 to avoid biasing the results with multiple
versions of the same problem.

The results are consistent with those observed in the synthetic data. RMH and
RKVS remain the best algorithms in terms of accuracy, and along with MH, they are
also the ones that use the least variables, with RMH having a slightly lower average
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Base mRMR RKVS MH RMH-UB
peak 0.790± 0.014(200.0) 0.785± 0.019(18.4) 0.833± 0.012(5.8) 0.808± 0.018(16.8) 0.835 ± 0.011(3.2)∗
peak2 0.962± 0.007(200.0) 0.959± 0.008(17.6) 0.977 ± 0.005(9.2) 0.961± 0.010(15.1) 0.977 ± 0.005(6.3)
sine 0.822± 0.013(200.0) 0.852± 0.014(17.9) 0.856± 0.011(9.5) 0.837± 0.022(15.6) 0.859 ± 0.011(8.5)∗
square 0.833± 0.013(200.0) 0.870± 0.010(13.5) 0.870± 0.011(6.1) 0.869± 0.011(8.1) 0.873 ± 0.010(4.7)∗
Australian 0.896± 0.034(365.0) 0.901 ± 0.032(8.3)∗ 0.897± 0.034(6.1) 0.879± 0.028(3.3) 0.898± 0.032(6.9)
Berkeley 0.865± 0.062(31.0) 0.952± 0.034(4.9) 0.940± 0.037(4.4) 0.944± 0.044(3.9) 0.959 ± 0.030(3.8)∗
Cell 0.823± 0.065(18.0) 0.841± 0.062(6.8) 0.842± 0.057(4.4) 0.856 ± 0.055(2.5) 0.854± 0.059(5.0)
ECG 0.994 ± 0.003(85.0)∗ 0.979± 0.006(19.4) 0.990± 0.004(17.8) 0.941± 0.022(13.0) 0.982± 0.005(20.0)
MCO 0.983 ± 0.022(360.0) 0.977± 0.036(11.7) 0.972± 0.030(6.3) 0.915± 0.066(13.7) 0.983 ± 0.024(9.7)
Medflies 0.581± 0.033(30.0) 0.606 ± 0.031(4.6) 0.600± 0.036(4.2) 0.602± 0.031(3.4) 0.593± 0.034(2.1)
NOX 0.852± 0.051(24.0) 0.880± 0.052(10.7) 0.915 ± 0.044(3.6)∗ 0.861± 0.061(4.3) 0.881± 0.057(4.7)
Phoneme 0.822 ± 0.013(50.0)∗ 0.819± 0.014(12.7) 0.819± 0.013(10.3) 0.817± 0.014(2.4) 0.816± 0.013(5.5)
Tecator 0.941± 0.027(100.0) 0.942± 0.025(12.7) 0.943 ± 0.025(12.0) 0.936± 0.024(6.7) 0.936± 0.026(5.4)
Wheat 0.961± 0.041(701.0) 0.996± 0.020(1.3) 1.000 ± 0.000(1.0) 1.000 ± 0.000(2.2) 1.000 ± 0.000(12.0)
accuracy (average) 0.866 0.883 0.889 0.873 0.889
rank (average) 3.714 2.929 2.214 3.500 2.071
# vars (median) 150.000 12.180 6.088 5.498 5.445

TABLE 5.5: Comparison between variable selection methods using
the LDA classifier.

Base mRMR RKVS MH RMH-UB
peak 0.713± 0.015(200.0) 0.642± 0.020(13.7) 0.813 ± 0.013(3.5)∗ 0.709± 0.033(6.0) 0.811± 0.014(3.2)
peak2 0.910± 0.010(200.0) 0.874± 0.014(14.4) 0.952 ± 0.008(6.3) 0.930± 0.010(3.7) 0.952 ± 0.007(6.3)
sine 0.837 ± 0.012(200.0)∗ 0.802± 0.015(16.5) 0.832± 0.014(8.1) 0.821± 0.017(14.1) 0.827± 0.014(8.5)
square 0.848± 0.012(200.0) 0.841± 0.012(10.1) 0.859 ± 0.011(3.0) 0.858± 0.012(3.4) 0.852± 0.012(4.7)
Australian 0.941± 0.027(365.0) 0.942 ± 0.031(7.0) 0.938± 0.028(7.4) 0.914± 0.031(3.5) 0.931± 0.031(6.9)
Berkeley 0.952 ± 0.032(31.0)∗ 0.939± 0.037(6.3) 0.935± 0.041(6.7) 0.909± 0.056(3.9) 0.944± 0.037(3.8)
Cell 0.932 ± 0.042(18.0)∗ 0.912± 0.052(10.6) 0.906± 0.055(12.6) 0.871± 0.054(4.0) 0.883± 0.049(5.0)
ECG 0.998 ± 0.002(85.0)∗ 0.995± 0.003(12.2) 0.997± 0.002(12.7) 0.993± 0.003(10.5) 0.997± 0.002(20.0)
MCO 0.814± 0.072(360.0) 0.907± 0.059(11.3) 0.908± 0.056(4.6) 0.857± 0.066(11.4) 0.914 ± 0.052(9.7)
Medflies 0.550± 0.033(30.0) 0.601 ± 0.041(4.1) 0.594± 0.037(5.2) 0.590± 0.035(4.1) 0.596± 0.037(2.1)
NOX 0.882± 0.051(24.0) 0.843± 0.058(10.2) 0.884 ± 0.043(4.1) 0.830± 0.057(3.8) 0.847± 0.058(4.7)
Phoneme 0.816 ± 0.014(50.0)∗ 0.810± 0.015(9.0) 0.814± 0.014(8.1) 0.803± 0.014(2.6) 0.812± 0.014(5.5)
Tecator 0.977± 0.016(100.0) 0.974± 0.020(3.8) 0.974± 0.020(4.7) 0.990 ± 0.012(1.2)∗ 0.973± 0.017(5.4)
Wheat 0.956± 0.038(701.0) 0.996± 0.018(1.2) 1.000 ± 0.000(1.0) 1.000 ± 0.003(2.2) 0.999± 0.007(12.0)
accuracy (average) 0.866 0.863 0.886 0.862 0.881
rank (average) 2.643 3.500 2.071 3.786 2.714
# vars (median) 150.000 10.143 5.732 3.828 5.445

TABLE 5.6: Comparison between variable selection methods using
the k-NN classifier.

Base mRMR RKVS MH RMH-UB
peak 0.819± 0.012(200.0) 0.778± 0.020(17.8) 0.832 ± 0.012(5.7) 0.803± 0.019(16.7) 0.832 ± 0.011(3.2)
peak2 0.970± 0.006(200.0) 0.955± 0.008(16.8) 0.974± 0.006(9.9) 0.958± 0.010(14.7) 0.975 ± 0.005(6.3)∗
sine 0.857 ± 0.012(200.0) 0.850± 0.014(18.1) 0.855± 0.012(11.5) 0.837± 0.021(15.9) 0.857 ± 0.011(8.5)
square 0.865± 0.011(200.0) 0.866± 0.011(13.5) 0.869± 0.011(6.9) 0.867± 0.012(7.9) 0.871 ± 0.011(4.7)∗
Australian 0.846± 0.025(365.0) 0.938± 0.027(9.7) 0.946 ± 0.029(9.0)∗ 0.927± 0.029(3.3) 0.919± 0.031(6.9)
Berkeley 0.953 ± 0.031(31.0)∗ 0.946± 0.037(5.7) 0.939± 0.038(5.9) 0.931± 0.047(4.1) 0.946± 0.033(3.8)
Cell 0.917 ± 0.043(18.0)∗ 0.890± 0.055(10.6) 0.895± 0.053(11.8) 0.853± 0.063(4.1) 0.865± 0.055(5.0)
ECG 0.998 ± 0.002(85.0) 0.996± 0.003(15.2) 0.997± 0.002(15.0) 0.994± 0.003(10.9) 0.998 ± 0.002(20.0)
MCO 0.500± 0.000(360.0) 0.966± 0.037(11.0) 0.964± 0.037(5.4) 0.905± 0.073(13.2) 0.977 ± 0.033(9.7)∗
Medflies 0.515± 0.015(30.0) 0.615± 0.037(4.8) 0.609± 0.034(5.3) 0.607± 0.039(4.5) 0.618 ± 0.037(2.1)
NOX 0.667± 0.000(24.0) 0.887± 0.051(12.8) 0.902 ± 0.043(6.0)∗ 0.852± 0.069(4.2) 0.887± 0.053(4.7)
Phoneme 0.819 ± 0.014(50.0) 0.818± 0.014(12.8) 0.819 ± 0.013(10.6) 0.813± 0.015(2.6) 0.816± 0.014(5.5)
Tecator 0.983± 0.015(100.0) 0.978± 0.014(5.2) 0.978± 0.019(7.1) 0.990 ± 0.011(2.0)∗ 0.979± 0.015(5.4)
Wheat 1.000 ± 0.000(701.0) 0.992± 0.031(1.2) 0.993± 0.012(1.0) 0.997± 0.009(2.1) 1.000 ± 0.003(12.0)
accuracy (average) 0.836 0.891 0.898 0.881 0.896
rank (average) 2.786 3.357 2.429 3.929 1.929
# vars (median) 150.000 11.905 6.982 4.362 5.445

TABLE 5.7: Comparison between variable selection methods using
the SVM classifier.
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FIGURE 5.9: Critical difference (CD) diagrams comparing the results
of the variable selection methods for the different classifiers. From
left to right, the CD diagrams of the LDA, k-NN and SVM classifiers.

number of variables selected. Again, it is observed that, in general, mRMR and MH
are largely outperformed by the other proposals. However, when real data is taken
into consideration, mRMR outperforms MH, although MH selects the least number
of variables of all proposals.

The best results are obtained by combining RMH or RKVS with LDA, which
are very close to those obtained with SVM. In both scenarios, the average accuracy
between RMH and RKVS is almost identical, but RMH gets better ranking results
(achieving more significant victories) and selects fewer variables. When using k-
NN, the accuracy rates are lower for all variable selection methods, and the decrease
is slightly higher for RMH than for RKVS. In all three tables, variable selection tech-
niques are superior to the Base approach, with better, more stable, and more inter-
pretable results. The best results from the Base approach are obtained with functional
k-NN, surpassing mRMR and MH in average accuracy, and ranking second only be-
hind RKVS and very close to RMH. This better performance of k-NN makes sense
since it is the only classifier fully adapted to the functional context, confirming the
importance of considering the functional nature of the data in classification models.
However, its performance is still very irregular in the different datasets (many sig-
nificant victories and many last positions), and it does not have the advantages of
dimensionality reduction and interpretability of variable selection approaches.

A different summary of these results can be seen in the critical distance (CD) dia-
grams presented in Figure 5.9. In these diagrams, the variable selection methods are
sorted based on their average rank in the comparison, and are connected by a thick
dark line when the distance between their ranks is less than the critical distance,
indicating that the difference may not be significant (Demšar, 2006). From these di-
agrams, it is evident that RMH significantly outperforms the original MH method,
which was one of the main goals of developing RMH.

5.7 Conclusions

In this chapter we have presented recursive maxima hunting (RMH), a novel feature
selection algorithm in the context of binary classification with functional data. This
algorithm takes into account the functional nature of the data. The method improves
on the ideas outlined in the maxima hunting algorithm (Berrendero, Cuevas, and
Torrecilla, 2016b). As in maxima hunting, RMH computes a dependency measure
between the functional data and the class labels. However, instead of selecting the
local maxima, as in maxima hunting, RMH selects the global maximum. Then, the
functional data is corrected to subtract the influence of the selected point, and it pro-
ceeds iteratively, until no more relevant features are found. This procedure improves
over maxima hunting in several ways. First, there is no need to estimate which
points are local maxima. That was not an easy task, as in that case the data should
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classification

be smoothed to prevent false local maxima to appear because the observations are
noisy. As RMH only selects the global maxima, this problem is avoided. More im-
portantly, it was shown that maxima hunting was not capable to select points that
are not relevant by themselves, but are relevant once another points are selected. The
iterative nature of RMH reveals those points, and this provides its biggest advantage
over maxima hunting.

We have proved that RMH is optimal in an important family of problems. Specif-
ically, in homoscedastic functional binary classification problems, where the func-
tional data comes from an Ornstein-Uhlenbeck or Brownian process, with a different
mean for each class, and where the mean difference is a finite linear combination of
the covariance function of this process evaluated at some point. In that case, RMH
selects just the points that appear in the Bayes rule, and thus the best possible accu-
racy can still be achieved after the variable selection step.

Moreover, we have tested RMH against other variable selection methods with
real-world datasets. RMH consistently selected a small number of variables in the
problems investigated, and achieved a very good accuracy compared with the other
methods considered. This result is more impressive when taken into account that all
the tested procedures except RMH required that a parameter is estimated by cross-
validation, while the version of RMH that we propose does not have that advantage.
We thus propose to use RMH as a preferred feature selection method in functional
data, given its remarkable properties.
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Fuzzy clustering of functional data

Fuzzy C-means (FCM) is a generalization of the k-means clustering algorithm in
which each instance can be simultaneously assigned to different clusters with a dif-
ferent degree of membership (Nayak, Naik, and Behera, 2015). The algorithm was
previously observed to have convergence problems in the multivariate case, when
the number of desired clusters or the number of dimensions of the data are high.
In this chapter we present an empirical study of FCM in clustering problems with
functional data (Ramos-Carreño, 2023). The data consists of trajectories sampled
from stationary Gaussian processes, in which correlations are short-ranged and de-
cay with a characteristic lengthscale, in discretized form. In the case that the grid
spacing is large relative to the lengthscale at which correlations decay, one observes
that FCM applied to these types of functional data has similar convergence prob-
lems as with high dimensional multivariate data. We posit that, since the values
of the process at neighboring points are approximately independent, the functional
observations behave as if they were samples of a high-dimensional random vector.
As the dimension of the multivariate data becomes larger, it is more difficult to find
initial estimates of the cluster centers for which FCM converges to the correct so-
lution. In contrast, when the lengthscale parameter is comparable or greater than
the distance between discretization points, nearby measurements are strongly corre-
lated, which means that the functional nature of the data becomes apparent. In this
case, the convergence of FCM becomes smoother, as if it were a clustering problem
in lower dimensions. This not only indicates that FCM is suitable as a clustering
method for functional data, but also illustrates how functional data differs from tra-
ditional multivariate ones.

The structure of this chapter is as follows: first, in Section 6.1 we explain the FCM
algorithm, and the prior results that motivate this study. Second, a qualitative study
of the behavior of the method with functional data in some synthetic experiments
is performed in Section 6.2. A brief mathematical analysis of the observed behavior
is summarized in Section 6.3. Finally, some concluding remarks are provided in
Section 6.4.

6.1 Fuzzy C-means

Fuzzy clustering algorithms assign, for each datum, a degree of membership to each
of the clusters of the data. This is useful for several reasons. First, in some problems
the boundaries between clusters are not crisp. This is the case, for example, when
the clusters correspond to concepts that can overlap, such as in document clustering,
or when there is a smooth transition between clusters, as in the classification of bio-
logical organisms. Secondly, using fuzzy models make the cost function continuous,
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which allows the use of optimization algorithms that utilize derivatives. These al-
gorithms have generally better numerical convergence than the algorithms that can
be used when this cost function is discontinuous.

Fuzzy C-means (FCM) is one of the most widely used fuzzy clustering algo-
rithms. It can be used for observations in a metric space X with a distance function
d. FCM receives as input a dataset D = {xi ∈ X}N

i=1 and the number C of desired
clusters. In addition a ω parameter, the fuzzifier, controls the degree of fuzziness. Its
minimum value ω = 1 corresponds to the crisp partition of k-means. The complete
pseudocode of the algorithm is

Algorithm 2 Fuzzy C-means (FCM)

Input:
D = {xi}N

i=1: Dataset.
d: Distance function.
ω: Fuzzifier.

Output:
{q1, . . . , qC}: List of cluster centers.

1: Initialize {qi}C
i=1 at random

2: repeat
3: Compute distances:

dij ← d(xi, qj). (6.1)

4: Update membership matrix:

Uij ←
 (

dij
) 2

1−ω

∑C
k=1 (dik)

2
1−ω

 i = 1, . . . , N j = 1, . . . , C. (6.2)

5: Update cluster centers:

qj ←
∑N

i=1
(
Uij
)ω xi

∑N
i=1
(
Uij
)ω . (6.3)

6: until the cluster centers qj converge.
7: return {q1, . . . , qC}.

The algorithm as stated optimizes the inertia function

J(D, U, ω) =
N

∑
i=1

C

∑
j=1

(
Uij
)ω d2

ij. (6.4)

It was observed that for high dimensional multivariate data, the algorithm failed
to converge to a good solution when the number C of clusters was big enough. In
that case, some initializations of the cluster centers exhibited instead convergence
towards the center of gravity of the dataset, µ̂ = 1

N ∑N
i=1 xi. In Winkler, Klawonn, and

Kruse, 2010, this behavior was studied with the help of synthetic datasets. Instead of
initializing the cluster centers randomly, they situated them manually at a location
between the center of gravity and the actual clusters. Thus each cluster center qi is
initialized as

qi(α) = αci + (1− α)µ̂, (6.5)
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FIGURE 6.1: Plots J(α), the inertia function as a function of α, for
a synthetic dataset (D2), using different values of C, the number of
clusters, and M, the dimension of the data. In this dataset, C = N,
the number of observations in the sample. The cluster centers have
been sampled from a standard multivariate normal distribution and
then normalized. The curves of the left plot correspond to different
number of clusters for a fixed dimension M = 100. The curves on the
right plot correspond to different dimensions for a fixed number of

clusters C = 100.

where ci is the true location of the cluster center in the synthetic dataset and the
parameter α determines the closeness of each initialization to the true cluster center.
The value α = 0 corresponds to placing all centers in the center of gravity. Setting
α = 1 corresponds to placing them in their true locations. The distances between
the data and the clusters, dij(α) i = 1, . . . , N, j = 1, . . . , C depend also on this α
parameter. The objective function can now be expressed as a function of α,

J(D, α) =
N

∑
i=1

C

∑
j=1

(
Uij(α)

)ω (dij(α)
)2

=
N

∑
i=1

C

∑
j=1

 (
dij(α)

) 2
1−ω

∑C
k=1 (dik(α))

2
1−ω

ω

d2
ij(α). (6.6)

As illustrated in Figure 6.1, for multivariate data, increasing C, the number of clus-
ters, or M, the number of dimensions of the data, results in the appearance of a local
minimum for low values of α, and a global maximum in the middle. Thus, for ini-
tializations at the left side of the maximum, the algorithm converges to a degenerate
configuration in which all the clusters are at the center of mass. For initializations
at the right side, we have a correct convergence of the algorithm in which each clus-
ter center converges to its true value. Note that the range of values for which the
degenerate solution is obtained becomes larger as C goes to infinity.

In this chapter, we extend the study of Winkler, Klawonn, and Kruse, 2010 for
functional data. In particular, we appy FCM to samples of trajectories from an
Ornstein-Uhlenbeck process. As explained in 2.1.1, the Ornstein-Uhlenbeck process
is a Gaussian process whose covariance function,

kOU(s, t) = σ2 exp
(
−‖s− t‖

l

)
, (6.7)

depends on l, a lengthscale parameter that determines the extent of the correlations.
Specifically, for |t− s| � l, the correlations are small (corr(X(s), X(t)) � 1). This
effect can be seen in Figure 6.2.

As shown in Section 2.1.1, when l → 0, the resulting process approximates white
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FIGURE 6.2: From left to right, plots of trajectories sampled from an
Ornstein-Uhlenbeck process with lengthscales of 0.1, 1 and 10, respec-
tively. Compare the results with those obtained in Figure 2.4, for a

radial basis function (RBF) process.

noise. In this case, when the observations are discretized to M points, they can be
considered as multivariate M-dimensional vectors whose coordinates are indepen-
dent, as the correlation between them is 0. This case thus exhibits the same behavior
as in the original study. On the contrary, when l → ∞, the observations will be con-
stant functions. In that case, as the function takes the same value in all the discretiza-
tion points, the effective dimension is one. The behavior in this case is then the same
as for univariate data, in which the convergence problem was not observed. Thus, it
is tempting to assume that between the multivariate behavior, with l → 0, in which
the effective dimension of the data is M and the constant case, with l → ∞, that
behaves as univariate data, all other values of l will have an intermediate behavior
in this problem corresponding to particular finite dimensionalities.

6.2 Study of synthetic experiments

Our goal in this section is to replicate the synthetic experiments done in Winkler,
Klawonn, and Kruse, 2010 with functional data, to explore how the algorithm per-
forms in this case. We introduce the two datasets from the original study that we are
considering, as well as their extension to the functional case. The results obtained
are explained after each dataset is introduced. The value of the fuzzifier parameter
of FCM is fixed at ω = 2 in these experiments.

In Winkler, Klawonn, and Kruse, 2010, the authors used four synthetic datasets
to illustrate the shortcomings of FCM with high dimensional multivariate data. Of
these, two are of particular interest, as their generalization to functional data is pos-
sible.

Dataset D2 has one observation per cluster (N = C). The samples are distributed
in an M-dimensional hypersphere. This can be done by generating the observation-
s/clusters using a standard (multivariate) normal distribution and then projecting
them to the unit sphere via normalization:

xi = ci =
zi

‖zi‖
, zi ∼ N(0, I) i = 1, . . . , N. (6.8)

In the original article, a number higher than the number of desired clusters was gen-
erated, and then k-means was used to find C well separated cluster centers. We have
ommited this step, as we found that it was not necessary to achieve the same results,
especially in high dimensions. This dataset presents an idealized case, in wich the
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FIGURE 6.3: Inertia as a function of α, for cluster centers generated as
a normalized Gaussian process with an exponential covariance func-
tion and different values for the lengthscale. The plot has N = 50
with one point per cluster (N = C = 50) The number of discretiza-

tion points M = 100 is fixed.

clusters are compact (there is only one observation per cluster), well separated, and
also far from the center of gravity of the data. Note that this center of gravity is at 0,
due to the symmetrical generation of the data. The plots in Figure 6.1 explained in
the previous section correspond to this model.

This dataset can be generalized to functional data by replacing the use of a mul-
tivariate normal distribution with a Gaussian process with a stationary covariance
function. In particular, we have used the Ornstein-Uhlenbeck process, as mentioned
before, but the same results are obtained with other stationary processes such as
RBF. The lengthscale parameter l of the process controls the extent of the correlation
between nearby points. As explained in Section 2.1.1, a small lengthscale would cor-
respond to curves with low correlation, obtaining white noise in the limit towards
0. As the curves are discretized in an M-dimensional grid, this would correspond to
the M-dimensional multivariate case. A larger lengthscale corresponds to smoother,
more functional curves. Thus, this setting allows us to explore the transition be-
tween multivariate and functional data, and its effects in the FCM algorithm, in a
smooth way.

In Figure 6.3, we can observe the evolution of the objective function of this prob-
lem by changing the lengthscale parameter l. When l → 0 the same convergence
problems as in the multivariate case arise. However, by increasing the lengthscale,
the local minimum at the left dissapears, and the algorithm converges to the correct
solution. This indicates that the algorithm works better for more functional datasets.

In Figure 6.4 we present the results obtained in this dataset D2 by fixing the
lengthscale l and varying the number of clusters, as was previously done in the left
plot of Figure 6.1 for the multivariate case. Again, for a fixed l the local minimum at
the center of mass can appear as the number of clusters increases, and the maximum
moves to the right of the plot. This makes more difficult to obtain a good random
initialization. The results for lower lengthscales are the same as in the multivari-
ate case. For higher lengthscales, however, the number of clusters necessary for the
minimum to appear is too high to be a concern in practice.

We have also studied how the number M of discretization points affects the ob-
jective function, as shown in Figure 6.5. When the number M of discretization points
is small, the correlations of the points are small and thus the data behaves like multi-
variate data of M dimensions. However, as M increases the functional nature of the
data becomes apparent, and the objective function essentially stops changing. Thus,
the behavior is no longer the one of an M-dimensional vector. Instead, the behavior
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FIGURE 6.4: In this plot the effect of increasing the number of clusters
C is shown for different values of the lengthscale l (0.1, 0.5, 1, and 10).
When l is higher, the effect of increasing the number of clusters is
much less dramatic than in the case that l � ∆t, requiring a very

large C for the convergence to fail.

of this method with functional data is similar to the one that can be found in lower
dimensional multivariate observations.
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FIGURE 6.5: The plot in Figure 6.3 is recalculated for different values
of M: from left to right, M = 5, M = 10, M = 100 (same as the

original plot). As in the original plot, N = C = 50.

A second dataset, D4 is also presented in Winkler, Klawonn, and Kruse, 2010.
This intends to provide a more realistic example, in which the clusters can now
be located anywhere and overlap. This dataset has NC samples per cluster. The
cluster centers are generated from a standard (multivariate) normal distribution
cj ∼ N(0, I) j = 1, . . . , C. The cluster elements are generated using a multivari-
ate normal distribution centered at the cj:

xji ∼ N(cj, σ2I) j = 1, . . . , C i = 1, . . . , NC, (6.9)
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FIGURE 6.6: Inertia as a function of α, for cluster centers sampled
from a Gaussian process with an exponential covariance function and
different values for the lengthscale. The left plot has the original
curves, while the ones in the right plot have been rescaled to have
the same origin and thus be easier to compare with the ones on Fig-

ure 6.3. In both cases N = C = 50 and M = 100.

where the parameter σ controls the variance of the data.
We can see that this dataset differs from dataset D2 in two ways. First, there is no

normalization for the cluster centers to project them to a hypersphere. Second, there
can be more than one sample per cluster, generated using a second normal distribu-
tion (or Gaussian process in the functional case), whose variance is controlled by σ.
We have studied these two differences separately.

First, we note that without normalization one obtains similar results as in the
normalized case. In Figure 6.6 we explore the variation of the lengthscale, as in Fig-
ure 6.3. We can observe that, although the curves are not exactly the same, starting
now at different values, their shape is very similar. If we rescale the curves to have
the same origin, we can compare them to the ones on Figure 6.3, and we observe that
the two plots are alike. Thus, our analysis can focus on the normalized case, which
is easier to study.

We show in Figure 6.7 the result of increasing NC , the number of observations
per cluster. This has the effect of raising the right minimum, up to a limit that de-
pends on C, l and the dispersion inside a cluster (σ). When the dispersion is small,
this has no big impact, and the results of our prior analysis are still valid. When the
dispersion σ is moderately high and the lengthscale is small, the observations gener-
ated from the different clusters can mix, and the right location of the centers ceases to
be a minimum of the objective function, as seen in the right plot of Figure 6.7. In this
case, every initialization of the algorithm will fail to converge. Note that the effect of
the dispersion is again smaller for higher lengthscales, for which the algorithm still
converges to the correct solution.

In all the synthetic experiments considered, the algorithm FCM exhibits bet-
ter behavior for higher lengthscales, corresponding to data in which the functional
structure is more apparent, than for lower lengthscales. In this last case, the be-
haviour is the same as for the multivariate case, and convergence problems arise.
For higher lengthscales, FCM tends to converge to the right solution. Thus, this
seems to indicate that FCM works well for functional data. The convergence prob-
lems that arose for high dimensional data will appear more rarely in this context.
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FIGURE 6.7: Inertia as a function of α, for cluster centers generated as
a normalized Gaussian process with an exponential covariance func-
tion and different values for the lengthscale. The plots consists on
N = 500 observations. The number of clusters is C = 50, which
means that there are 10 points per cluster. They have been gener-
ated using a second Gaussian process placed at the cluster center
with variances σ = 0.05 (left) and σ = 0.1 (right). The number of

discretization points M = 100 is fixed.

6.3 Analysis

We have performed a brief analysis of the results obtained in the synthetic experi-
ments. In particular, we analyzed the functional version of dataset D2, with fixed
fuzzifier ω = 2. We explored the extreme cases l → ∞ and l → 0. We now present
the main results obtained for these cases. The details are explained in Appendix C.

For l → ∞, we studied the objective function in terms of the distribution of
distances between observations. We observe that in this case the objective function
approximates

J(D, α) ≈ 2(1− α)2(1 + α)2

((1− α)2 + (1 + α)2)
, (6.10)

which does not depend on the parameters C or M, and present no convergence prob-
lems.

For l → 0, an analysis of the derivative of the objective function shows that con-
vergence problems may start arising in this problem when the number of clusters
is at least 12, which coincides to the results observed in practice. Thus, we would
expect this minimum number of clusters required for the convergence problems to
arise, to increase with the lengthscale. For higher lengthscales, corresponding with
more functional data, the number of clusters required will be unattainable in prac-
tice.

6.4 Conclusions

The algorithm of fuzzy C-means (FCM) has been shown to present convergence
problems for high dimensional multivariate data. In particular, the objective func-
tion presents an additional minimum in that case, corresponding to a degenerate
solution, in which all the cluster centers are situated at the same position. The range
of initializations of these centers for which the algorithm converges to this degener-
ate solution increases with the number of clusters.

In this chapter we have carried out an empirical study to determine whether sim-
ilar difficulties appear for functional data, which is in principle infinite-dimensional.
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This transformation between the multivariate and functional domains has been car-
ried out in an experimental setting using discretized Gaussian processes with sta-
tionary covariance functions and varying the lengthscale of these processes. The
lengthscale parameter measures the scale of decay of the correlations between nearby
points. We observed that when this parameter is much lower than the spacing of the
discretization grid, the functional FCM presents convergence problems that are sim-
ilar to the multivariate case. This can be explained because in that case the values of
the trajectories are approximately independent. When the scale of decay of the corre-
lations is increased, and thus starts to be comparable to grid spacing, the functional
nature becomes more apparent and the convergence is similar to low dimensional
data.

The observed behavior has also been derived analytically for the limits of very
small lengthscales (corresponding to the truly M dimensional case) and infinite length-
scale (corresponding to constant covariance). In that last case we see that the ob-
served behavior is the same as for one-dimensional data.
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Part II

Computational tools
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Chapter 7

scikit-datasets and rdata: datasets
for machine learning in Python

In this chapter we introduce the Python libraries scikit-datasets (Díaz-Vico and Ramos-
Carreño, 2022) and rdata (Ramos-Carreño, 2022). The package scikit-datasets pro-
vides utilities for fetching and caching of datasets from several sources, such as the
UCI, KEEL or LIBSVM repositories. As part of the work in this thesis, this pack-
age has been enhanced with functionality for loading functional and multivariate
datasets from different sources, such as the UCR or R packages in the CRAN repos-
itory. This functionality is used to load these datasets in the scikit-fda package for
functional data analysis, that will be presented in Chapter 8. Additionally new util-
ity functions for running Machine Learning experiments with the fetched data and
displaying the resulting scores have been created. These functions have been used
to run the experiments in Section 8.6, and to create the tables in Section 8.6 and
Chapter 5.

The package rdata (Ramos-Carreño, 2022) allows to parse data in the RData for-
mat, which is widely used in R packages, and convert it to Python objects. It is used
by scikit-datasets to fetch datasets from CRAN. This provides direct access to most
datasets included in R packages, which facilitates the comparison of the results of
empirical evaluations carried out in either of these two languages.

7.1 Storage and loading of datasets

In order to meaningfully test statistics and machine learning algorithms, it is advis-
able to use a common set of classification and regression problems, so that different
algorithms can be compared in equal terms. Thus, several data repositories and
benchmarks have been collected along the years in a variety of formats (Dua and
Graff, 2017; Chang and Lin, 2011; Alcalá-Fdez et al., 2010). Unfortunately most of
them are not provided in a standardized format, nor can they be easily accessed
programatically.

Several efforts have been made in recent years to organize and make these data
sets and benchmarks available within the Statistics and Machine Learning commu-
nities. A very promising approach is OpenML (Vanschoren et al., 2014), which tries
to collect existing datasets, along with the associated tasks, workflows and bench-
mark results. Although this is without doubt a very useful way to organize datasets
and algorithms performance, OpenML currently requires that all datasets are stored
in their servers in table format. Moreover sometimes the same dataset is uploaded
with different modifications, which makes it more difficult to ensure that the data
being tested is the same as in the original articles.
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Instead the package scikit-datasets (Díaz-Vico and Ramos-Carreño, 2022) offers
programmatic access in Python to several repositories currently in active use, such
as the CRAN repository of R packages and the UCI repository. For most of them it
is unreasonable to expect that they will be fully migrated to OpenML in the near fu-
ture, both because they have a high number of datasets and because not all the infor-
mation therein can be completely represented inside OpenML. With scikit-datasets
those datasets can be downloaded with an API similar to the one provided in the
popular Machine Learning package scikit-learn (Pedregosa et al., 2011; Buitinck et
al., 2013), and the loaded datasets are cached and available for offline use.

The additional package rdata (Ramos-Carreño, 2022) has been developed in or-
der to parse the RData file format, used in R datasets, and convert the resulting
objects to their Python counterpart. This package is used by scikit-datasets to parse
CRAN datasets, but can also be installed and used as a standalone package.

scikit-datasets has been used in the experimental setup of several scientific arti-
cles (Díaz-Vico, Figueiras-Vidal, and Dorronsoro, 2018; Díaz-Vico et al., 2019; Díaz-
Vico et al., 2020; Díaz-Vico and Dorronsoro, 2020; Díaz-Vico, Fernández, and Dor-
ronsoro, 2021), and it powers the dataset fetching module of the functional data
package scikit-fda (Ramos-Carreño et al., 2022). rdata has been used to translate
RData datasets in the packages Pypath (Saez Lab, 2021) and Navis (Schlegel et al.,
2021). This chapter presents both packages, scikit-datasets and rdata, and illustrates
their usage.

We will further explain the main functionalities of scikit-datasets in Section 7.2,
including a description of its Application Programming Interface (API), the available
repositories and the provided utility functions. The rdata package will be explained
in Section 7.3. Finally in Section 7.4 we discuss briefly the relevance of these pack-
ages and the future plans for them.

7.2 scikit-datasets: Machine Learning repositories

scikit-datasets provides access to several repositories of data, widely used in the
Machine Learning community. It downloads the data from the original source the
first time it is accessed, caching it in a system folder for subsequent accesses. This
way, it ensures that previously used datasets can be quickly loaded or even used of-
fline. For most repositories, data can be coerced to a common representation, which
will be explained in Section 7.2.1. This representation is based in the scikit-learn
API for dataset fetching, with optional extra fields for information about partitions
or cross validation that is sometimes provided by the repository. We also summarize
the most relevant repositories that can be accesed by scikit-datasets at the moment
of writing in Section 7.2.2, and explain their particular characteristics. Finally, we
provide a brief explanation of additional utility functions available for executing ex-
periments with the data and displaying the results in a scientific article.

7.2.1 API

For those repositories where the data is organized in a predictable way, the package
scikit-datasets returns the data in a common format. That format is based in the one
used by the popular Machine Learning package scikit-learn for loading its exam-
ple datasets. The fetch functions return a dictionary-like class that allows attribute
access and has the following keys:
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• data: Matrix of observed data. It is a bidimensional NumPy array, with one
observation per row and one observed feature per column.

• target: Target vector. It is a unidimensional NumPy array (except for multi-
output problems), with one item per observation. This is the value that should
be predicted for each observation, either a real value for regression problems
or a different integer per class for classification problems.

• DESCR: A human readable description of the dataset.

• feature_names: The list of the feature names, when this information is avail-
able.

• target_names: The list of class names in classification problems.

• train_indices: For problems that include a separate set for train, the indices
of the train samples.

• validation_indices: For problems that incorporate a validation set, the in-
dices of the validation samples.

• test_indices: For problems in which a test set is available, the indices of the
validation samples.

• inner_cv: A scikit-learn cross-validator object to use in combination with hy-
perparameter tuning utilities in order to employ specific data in validation.
Only available for datasets with a validation set.

• outer_cv: A Python iterable over train/test partitions for different folds. Only
available for datasets with explicit folds already separated.

In addition, using the parameter return_X_y the user can request that only the
data and target attributes are returned, as a tuple.

There are repositories, such as CRAN, where the data may be in arbitrary format,
and it is not possible to convert it automatically. In that case the data is returned in
a format as similar as possible to the original one.

7.2.2 Available repositories

The package scikit-datasets provides programmatic access to several widely used
repositories of Machine Learning datasets. These include datasets for classification
and regression problems, both for multivariate and functional data. The repositories
available from scikit-datasets will be briefly described now.

CRAN repository of R packages

The CRAN repository is the main repository of libraries written in the R language.
Along with source code, library authors usually upload datasets that can be used
to illustrate the algorithms implemented. This makes CRAN a common and widely
used source of statistical data for R programmers. However, as the data is normally
written in the R-specific RData format, Python users commonly have difficulties to
load the data, usually by manually opening the dataset in R and exporting it again
in a less specific file format, such as CSV.

The package scikit-datasets alleviates those problems, by automatically down-
loading datasets from CRAN and converting the data in RData format to suitable
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FIGURE 7.1: Scatter plot between the Na and Si columns in Glass
dataset, from the mlbench R package.

Python objects. This last conversion step is performed by the rdata package, which
has been built with this purpose in mind and is described in Section 7.3.

As an example, the following code loads the Glass dataset from the R package
mlbench (Leisch and Dimitriadou, 2021). This dataset contains a classification prob-
lem in the context of criminological investigation, where the class of a particular
glass fragment must be predicted from its chemical composition. Here the quantity
of sodium (Na) is plotted against its silicon (Si) in a scatter plot, in Figure 7.1. Each
glass category is plotted with a different color.� �

1 import matplotlib.pyplot as plt
2

3 from skdatasets.repositories.cran import fetch_dataset
4

5 bunch = fetch_dataset(
6 dataset_name="Glass",
7 package_name="mlbench",
8 )
9

10 bunch["Glass"].plot(
11 "Na", "Si",
12 kind="scatter",
13 c="Type",
14 colormap="Dark2",
15 )
16 plt.show()� �

Note that the datasets in the mlbench package are organized as one R data frame,
which on Python is converted to a Pandas data frame (Pandas Development Team,
2020). Most CRAN packages, however, are not structured in this way, and the trans-
formed data mimics the original structure. Thus, it is not possible to automatically
convert them to a common format. For example, the Berkeley Growth functional
dataset of Chapter 3, available in the fda (Ramsay et al., 2020) package, contains the
growth curves for boys and girls, measured since their birth until they were 18 years



7.2. scikit-datasets: Machine Learning repositories 119

2.5 5.0 7.5 10.0 12.5 15.0 17.5
age

80

100

120

140

160

180

200

FIGURE 7.2: Growth curves for boys in the Berkeley Growth dataset,
from the fda R package.

old. The data for boys and girls, as well as the ages when the measurements took
place are stored as different attributes: “hgtm”, “hgtf” and “age”, respectively. Thus
the following code needs to manually preprocess the data of the boys before plotting
it in Figure 7.2.� �

1 import matplotlib.pyplot as plt
2

3 from skdatasets.repositories.cran import fetch_dataset
4

5 bunch = fetch_dataset(
6 dataset_name="growth",
7 package_name="fda",
8 )
9

10 boys = bunch["growth"]["hgtm"]
11 girls = bunch["growth"]["hgtf"]
12 ages = bunch["growth"]["age"]
13

14 boys_new_coord = boys.rename(
15 {"dim_0": "age"},
16 ).assign_coords ({"age": ages})
17

18 boys_new_coord.to_pandas ().plot(legend=False)
19 plt.show()� �

UCI

The UCI repository (Dua and Graff, 2017) is a collection of databases and data gener-
ators hosted by the University of California Irvine (UCI). Created as an FTP archive
in 1987 by David Aha and other university students, nowadays it hosts hundreds of
datasets and has been cited over 1000 times. It is one of the most important sources
of Machine Learning datasets, hosting widely known and used ones, such as the Iris
and Wine datasets. It contains datasets for regression, classification and clustering.
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FIGURE 7.3: Scatter plot of two features of the Iris dataset, obtained
from the UCI repository.

As an example, the following code can be used to plot the classical Iris dataset,
obtained from the UCI. Note that the UCI repository does not provide the feature
names in a structured way, so they have to be manually specified. The resulting plot
is shown in Figure 7.3.� �

1 import matplotlib.pyplot as plt
2

3 from skdatasets.repositories.uci import fetch
4

5 iris = fetch("iris")
6

7 formatter = plt.FuncFormatter(
8 lambda i, *args: iris.target_names[int(i)]
9 )

10

11 plt.figure ()
12 plt.scatter(iris.data[:, 0], iris.data[:, 1], c=iris.target)
13 plt.colorbar(ticks=[0, 1, 2], format=formatter)
14 plt.xlabel("Sepal length (cm)")
15 plt.ylabel("Sepal width (cm)")
16

17 plt.tight_layout ()
18 plt.show()� �

LIBSVM

The LIBSVM data repository (Chang and Lin, 2011), hosted by the National Taiwan
University contains datasets originally intended to be used along with the LIBSVM
library for Support Vector Machines (SVMs). Thus, this repository is heavily ori-
ented towards classification problems, although it provides also a few regression
datasets.

In this repository some datasets have training and test partitions, and some have
even a validation partition. In this last case the inner_cv attribute can be used to
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perform hyperparameter selection using the validation partition, as the following
example shows. Here, the DNA multiclass dataset is being used to train an SVM
from the scikit-learn package. In this problem a sequence of DNA is given in each
observation, where each nucleobase (A, T, C, G) is represented using binary markers.
The objective is to predict if the sequence corresponds to an exon/intron boundary,
an intron/exon boundary, or neither. The regularization parameter C is a hyperpa-
rameter optimized over the validation set. Then, the final score is obtained compar-
ing the predicted class of the samples in the test set with their real class, giving a
result of 0.956:� �

1 from sklearn.model_selection import GridSearchCV
2 from sklearn.svm import SVC
3

4 from skdatasets.repositories.libsvm import fetch
5

6 data = fetch("multiclass", "dna.scale")
7

8 train_val_indices = data.train_indices + data.validation_indices
9 X_train = data.data[train_val_indices]

10 y_train = data.target[train_val_indices]
11 X_test = data.data[data.test_indices]
12 y_test = data.target[data.test_indices]
13

14 classifier = SVC()
15 grid_search = GridSearchCV(
16 classifier ,
17 param_grid ={
18 "C": [1e-2, 1e-1, 1, 1e1, 1e2],
19 },
20 cv=data.inner_cv ,
21 )
22 grid_search.fit(X_train , y_train)
23 score = grid_search.score(X_test , y_test)� �

KEEL

The KEEL-dataset repository (Alcalá-Fdez et al., 2010), hosted at the Universidad
de Granada, contains classification, regression and time series datasets as well as
semi-supervised and unsupervised learning problems. In particular, it offers a large
number of classification problems that present additional difficulties, such as imbal-
anced classes or noise contamination.

This repository provides already separated folds for many datasets. Users can
request these predefined folds passing the parameter nfolds with a value of 5 or
10. In that case the predefined folds will be returned in the outer_cv attribute. The
usage of this feature is illustrated in the following code with the Titanic dataset. This
is a classification problem where information about passengers aboard the Titanic is
used to predict whether they survived or not. The data is already split in five folds,
and a score of a linear discriminant classifier is predicted for each of them.� �

1 from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
2

3 from skdatasets.repositories.keel import fetch
4

5 data = fetch("classification", "titanic", nfolds=5)
6

7 scores = []
8
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FIGURE 7.4: Curves of the GunPoint dataset from UCR, with a differ-
ent color per class.

9 for X_train , y_train , X_test , y_test in data.outer_cv:
10

11 classifier = LinearDiscriminantAnalysis ()
12 classifier.fit(X_train , y_train)
13 scores.append(classifier.score(X_test , y_test))� �

UCR

As mentioned in Chapter 3, the UCR/UEA time series classification archive (Dau
et al., 2019; Bagnall et al., 2018) is one of the most well known repositories for time
series and functional datasets. Created originally by the University of California
Riverside, the repository contained univariate time series classification problems.
This was later expanded to include also multivariate time series with the addition
of new datasets from the University of East Anglia, and it is now hosted at www.
timeseriesclassification.com.

The following code illustrates the GunPoint time series classification problem
from UCR. In this dataset the right hand position of different actors is tracked while
they perform two different classes of tasks: pointing a replicate gun to a target or
pointing their index finger instead. The curves are plotted in Figure 7.4, with a
different color per class.� �

1 import matplotlib.pyplot as plt
2

3 from skdatasets.repositories.ucr import fetch
4

5 data = fetch("GunPoint")
6

7 plt.plot(data.data[data.target == 1].T, color="C0")
8 plt.plot(data.data[data.target == 2].T, color="C1")
9

10 plt.show()� �

www.timeseriesclassification.com
www.timeseriesclassification.com
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FIGURE 7.5: The synthetic Banana dataset from the Rätsch bench-
mark.

Rätsch

The benchmark datasets used in Rätsch, Onoda, and Müller, 2001; Mika et al., 1999
can also be managed with scikit-datasets. The datasets are hosted in GitHub (Di-
ethe, 2015), and mainly consist in binary classification problems. Train-test split
indices are provided to repeat each of the iterations used in the aforementioned ar-
ticles. As an example, the code to plot the synthetic Banana dataset in Figure 7.5 is
shown below:� �

1 import matplotlib.pyplot as plt
2

3 from skdatasets.repositories.raetsch import fetch
4

5 data = fetch("banana")
6 plt.scatter(data.data[:, 0], data.data[:, 1], c=data.target)
7 plt.show()� �

Wrappers for existing libraries

In addition to the aforementioned repositories, scikit-datasets wraps the example
datasets in the packages scikit-learn and keras (Chollet et al., 2015), exposing a
similar API for manipulating them. It also provides access to currency exchange
information time series from the foreign exchange market (Forex) by means of the
package forex-python (MicroPyramid, 2021).

7.2.3 Utilities

In addition to fetching datasets, scikit-datasets offers several utilities to help work-
ing with them. Users can easily launch experiments for combinations of datasets
and scikit-learn estimators by means of the Sacred package (Greff et al., 2017). The
resulting scores can be used by scikit-datasets to generate comparison tables with
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automated ranking or to create hyphotesis testing tables, ready to be included in
publications.

For example, Table 7.1, comparing cross-validation results for several classifi-
cation methods in three datasets from the Rätsch benchmark, has been generated
using the scores_table() function of the package. Note that it is possible to cus-
tomize the ways in which the results are displayed. In this case different formatting
is used depending on the rank (bold for best results and underline for second posi-
tion). Moreover, significant results with respect to the next in the rank are marked
with an asterisk. It is also possible to add additional summary rows.

lda qda 3-nn 5-nn
banana 0.38 ± 0.15 (4) 0.46 ± 0.10 (3) 0.73 ± 0.10 (1) 0.73 ± 0.09 (1)
breast_cancer 0.73 ± 0.02 (1) 0.70 ± 0.04 (2) 0.66 ± 0.03 (4) 0.68 ± 0.05 (3)
ringnorm 0.75 ± 0.06 (2)* 0.98 ± 0.00 (1)* 0.70 ± 0.03 (3) 0.68 ± 0.04 (4)
Average rank 2.33 2.00 2.67 2.67

TABLE 7.1: Example of a score table generated with scikit-datasets.

These utility functions have been used in this work to execute the experiments
in Section 8.6 and to display the results in the tables of Section 8.6 and Chapter 5.

7.3 rdata: Parsing R datasets

The datasets from the CRAN repository are stored in the R specific format RData. In
Python, there were a few packages that could parse this file format, albeit all of them
presented some limitations.

The package rpy2 can be used to interact with R from Python. This includes the
ability to load data in the RData format, and to convert these data to equivalent
Python objects. Although this is arguably the best package to achieve interaction
between both languages, it has many disadvantages if one wants to use it just to
load RData datasets. In the first place, the package requires an R installation, as it
relies in launching an R interpreter and communicating with it. Secondly, launching
R just to load data is inefficient, both in time and memory. Finally, this package
inherits the GPL license from the R language, which is not compatible with most
Python packages, typically released under more permissive licenses.

The recent package pyreadr also provides functionality to read some R datasets.
It relies in the C library librdata in order to perform the parsing of the RData format.
This adds an additional dependency from C building tools, and requires that the
package is compiled for all the desired operating systems. Moreover, this package is
limited by the functionalities available in librdata, which at the moment of writing
does not include the parsing of common objects such as R lists and S4 objects. The
license can also be a problem, as it is part of the GPL family and does not allow
commercial use.

As existing solutions were unsuitable for the needs of scikit-datasets, the pack-
age rdata was developed to parse data in the RData format. This is a small, exten-
sible and very complete implementation in pure Python of a RData parser, that is
able to read and convert most datasets in the CRAN repository to equivalent Python
objects. It has a permissive license and can be extended to support additional con-
versions from custom R classes.

The package rdata is intended to be both flexible and easy to use. In order to be
flexible, the parsing of the RData format and the conversion of the parsed structures
to appropriate Python objects have been splitted in two steps. This allows advanced
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users to perform custom conversions without losing information. Most users, how-
ever, will want to use the default conversion routine, which attempts to convert data
to a standard Python representation which preserves most part of the information.

The following code illustrates the loading of a dataset in the RData format. The
function parse_file() of the parser module is used to parse the RData file, return-
ing a tree-like structure of Python objects that contains a representation of the basic R
objects conforming the dataset. The function convert() of the conversion module
transforms that representation to the final Python objects, such as lists, dictionaries
or dataframes, that users can manipulate.� �

1 import rdata
2

3 parsed = rdata.parser.parse_file("dataset.rda")
4 converted = rdata.conversion.convert(parsed)� �

In addition to the aforementioned functions, the function parse_data() can be
used when a dataset in RData format is stored in a buffer in memory, instead of on a
file in disk.

Advanced users will probably require loading datasets which contain non stan-
dard S3 or S4 classes, translating each of them to a custom Python class. This is easy
to achieve using rdata by simply creating a constructor function that receives the
converted object representation and its attributes, and returns a Python object of the
desired type. As an example, consider the following simple code that constructs a
Pandas Categorical object from the internal representation of an R factor.� �

1 import pandas
2

3

4 def factor_constructor(obj , attrs):
5 values = [attrs[’levels ’][i - 1] if i >= 0 else None for i in obj]
6

7 return pandas.Categorical(values , attrs[’levels ’], ordered=False)� �
Then, a dictionary containing as keys the original class names to convert and as

values the constructor functions can be passed as the constructor_dict parameter
of the convert() function. In the previous example, this could be done using the
following code:� �

1 converted = rdata.conversion.convert(
2 parsed ,
3 constructor_dict ={"factor": factor_constructor},
4 )� �

When the default conversion routine is being executed, if an object belonging to
an S3 or S4 class is found, the appropriate constructor will be called passing to it the
partially constructed object. If no constructor is available for that class, a warning
will be emitted and the constructor of the most immediate parent class available
will be called. If there are no constructors for any of the parent classes, the basic
underlying Python object will be left without transformation.

By default, a dictionary named DEFAULT_CLASS_MAP is passed to convert() in-
cluding constructors for commonly used classes, such as data.frame, ordered or
the aforementioned factor. In case anyone wants different conversions for basic
R objects, it would be enough to create a subclass of the Converter class. Several
utility functions, such as the routines convert_char() and convert_list(), are ex-
posed by the conversion module in order for users to be able to reuse them for that
purpose.



126 Chapter 7. scikit-datasets and rdata: datasets for machine learning in Python

7.4 Conclusions

We have presented the main functionalities of the scikit-datasets and rdata pack-
ages. scikit-datasets can be used to fetch datasets from several widely used reposi-
tories. It also provides utilities for performing experiments on that data and visual-
izing comparison tables with the resulting scores. Using this package, it is simple to
compare new algorithms with existing ones using the same datasets.

In addition, the package rdata allows the parsing and conversion of datasets in
the RData format to Python structures. Using this package, scikit-datasets can fetch
almost every dataset in the CRAN repository of R packages with only one line of
code. As this repository receives constant uploads of state-of-the-art statistical pack-
ages, many of them including sample datasets, we feel that this is a very valuable
resource for researchers. Using scikit-datasets they can easily compare results for
the same problems between Python-based and R-based implementations.

In the context of this work, these packages provide the necessary software sup-
port for loading the data, running the experiments and presenting the results shown
in the rest of the thesis. In particular the package scikit-fda, presented in the next
chapter, uses scikit-datasets for loading the common functional datasets offered by
the library and presented in Chapter 3. The final comparative study of the same
chapter, makes also use of the utilities of scikit-datasets for experiment creation and
visualization of the results.
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Chapter 8

scikit-fda: a Python package for
functional data analysis

As part of this work, the library scikit-fda (Ramos-Carreño et al., 2023), a Python
package for functional data analysis (FDA) has been implemented. This library pro-
vides a comprehensive set of tools for representation, preprocessing, exploratory
analysis and machine learning for functional data. It is integrated in the scientific
Python ecosystem, and in particular with the widely used machine learning package
scikit-learn. As a result, it can take advantage of the functionality provided by this
package, such as pipelines, model selection, and hyperparameter tuning tools. The
scikit-fda package has been released as free and open-source software in order to
encourage contributions from the FDA community. It also includes extensive docu-
mentation, with tutorials and examples of use.

The structure of this chapter is as follows: In Section 8.1 we give an overview
of the libraries for FDA that are available. The tools that scikit-fda provides for
the representation of functional data are described in Section 8.2. In Section 8.3 the
tools provided for preprocessing, exploratory analysis and machine learning are de-
scribed in more detail, including example code snippets. The tools for ensuring
the quality of scikit-fda’s code and the documentation of the library are briefly ex-
plained in Section 8.4. In Section 8.5 the machine learning capabilities of the package
are illustrated, using the examples presented on Ramos-Carreño et al., 2022. Finally,
Section 8.6 presents a comparative study of classification methods (Ramos-Carreño,
Torrecilla, and Suárez, 2022), which has been carried out using the tools available in
scikit-fda, and thus provides a real-world example of its applicability and effective-
ness in FDA research.

8.1 Software for functional data analysis

Due to the growing interest in functional data, several specialized software tools for
functional data analysis (FDA) have emerged in recent years (Scheipl, 2021). One of
the main references in the field is the fda package, which is available in R and MAT-
LAB (Ramsay et al., 2020). This general-purpose library provides an implementation
of the methods described in Ramsay and Silverman, 2005 and Ramsay, Hooker, and
Graves, 2009. It utilizes a basis expansion representation of the functional observa-
tions. Another important reference in the FDA community is the fda.usc package
(Febrero-Bande and Oviedo de la Fuente, 2012), in which the non-parametric ap-
proach developed in Ferraty and Vieu, 2006 is adopted. One of the contributions
of this library is the introduction of a novel structure for the representation of func-
tional data in discrete form, as a collection of measurements at a grid of points. This
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R package provides an extensive range of FDA tools, including methods for regres-
sion and classification.

A more recent general-purpose R package is tidyfun (Scheipl, Goldsmith, and
Wrobel, 2020). In this library, a novel data structure (vectors of class tf ) is introduced
to represent functional observations. These tf vectors can be included as columns in
an R data frame alongside with other variables. Furthermore, they can be manipu-
lated using the tools of the tidyverse ecosystem (Wickham et al., 2019). Another recent
contribution is funData (Happ-Kurz, 2020). This package provides a representation
for discretized univariate and multivariate functional data of arbitrary dimensions
based on S4 R classes.

Finally, a variety of computational tools have been developed to address specific
problems in FDA. Some relevant examples are the packages refund (Goldsmith et
al., 2019), which, among others, provides tools for functional regression and princi-
pal component analysis (FPCA), FDboost (Brockhaus, Rügamer, and Greven, 2020),
focused on regression problems, funFEM (Bouveyron, Côme, and Jacques, 2015)
and funHDDC (Schmutz et al., 2020) for functional clustering, fpca (Peng and Paul,
2011) and fdapace (Carroll et al., 2020), which are mainly devoted to functional prin-
cipal component analysis (FPCA). The fdapace package available in R, and its MAT-
LAB counterpart PACE (Yao, Müller, and Wang, 2015), provide methods for both
sparsely or densely sampled random trajectories based on FPCA, via the Principal
Analysis by Conditional Estimation (PACE) algorithm. The package fdasrvf (Tucker,
2020b) contains tools for alignment, elastic registration, PCA, and regression with
functional data based on the square-root velocity framework (SRVF) described in
Srivastava and Klassen, 2016. This package is available under this name both in R
and in MATLAB, as fdasrsf (Tucker, 2020a) in Python, and as ElasticFDA (Tucker,
2021) in Julia. The package roahd (Ieva et al., 2019) includes a collection of meth-
ods for robust analysis of functional data. Outlier dectection tools are provided also
in fdaoutlier (Ojo, Lillo, and Fernandez Anta, 2021). Visualization tools, including
interactive ones, are provided also in the packages rainbow (Hyndman and Shang,
2010) and refund.shiny (Wrobel et al., 2016). A recent contribution is the R pack-
age mlrFDA described in Pfisterer et al., 2021, which gives access and extends the
machine learning framework mlr (Bischl et al., 2016) for the analysis of functional
data.

In recent years, the Python language has become more relevant in statistics, data
science, and machine learning. However, in contrast to the wide variety of alterna-
tives available for FDA in R, the options in Python are much more limited both in
number and functionality. Some Python libraries devoted to FDA are fdasrsf, which
has been described earlier, and the recently released FDApy (Golovkine, 2021), that
provides methods for principal component analysis and clustering.

In this context, we present scikit-fda (Ramos-Carreño et al., 2022), a general-
purpose library that makes functional data processing and analysis accessible to
the Python community. This package offers data structures for the representation
of functional data both in discretized form and as a basis expansion, and an ex-
tensive set of tools for preprocessing (smoothing, registration and dimensionality
reduction), and statistical analysis, including interactive visualization and outlier
detection tools. In addition, it provides infrastructure to facilitate the application of
the machine learning tools of scikit-learn to functional data. Comprehensive docu-
mentation is supplied that includes installation instructions, tutorials, API reference,
and illustrative examples.

In the short time since its inception, several libraries have been developed using
scikit-fda as their foundation (Bernard et al., 2021; Consagra, Venkataraman, and
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Qiu, 2022). In addition, it has been employed in a number of recent investigations
(Fermanian, 2022; Torrecilla et al., 2020; Tan et al., 2020; Tan et al., 2021; Pegoraro
and Beraha, 2021).

8.2 Representation of functional data in scikit-fda

The scikit-fda package provides tools for the representation of functional observa-
tions of the form x : T ⊆ Rp → Rq, with p ≥ 1, and q ≥ 1. The parameter p is the
dimension of the domain of the functions (p = 1 for curves, p = 2 for surfaces, etc.).
The parameter q is the dimension of the codomain; that is, the number of output
coordinates for vector-valued functions. For instance, a grayscale two-dimensional
image can be treated as a functional datum with p = 2, for the location of the pixels
in the image, and q = 1, for the intensity at each pixel. A color image consisting of
three channels (e.g., red, green, and blue) would have p = 2 and q = 3. The values
of p and q are the same for all the observations in a functional dataset. For the sake
of clarity, we focus on the case of real-valued univariate functions (that is, p = q = 1)
for which most of the functionality described in this section is implemented. We will
further assume that the functions are defined on a compact interval in the real line.
In higher dimensions, the domain is assumed to be rectangular.

Recall from Section 2 that a functional dataset {xi(t), t ∈ T }N
i=1 can be repre-

sented either in discretized form, or as a basis expansion. In the former represen-
tation, a functional observation consists of a set of measurements at a grid of points
t = (t1, . . . , tM) ∈ T M, which is common for all observations. This grid need not
be regularly spaced. The observation xi is then represented as the vector {xi(t)}N

i=1,
where xi(t) = (xi(t1), . . . , xi(tM)). Its representation as an expansion in a functional
basis {φb(t), t ∈ T }b≥1 would be instead

xi(t) = ∑
b≥1

cibφb(t), (8.1)

where the coefficients of the expansion {cib}b≥1 are different for each observation.
The package scikit-fda provides data structures for both types of representation:

the class FDataGrid for discretized data, and the class FDataBasis for expansions in
a functional basis. They are derived from the abstract class FData, which provides
common properties and methods. In what follows, these classes are described in
detail.

8.2.1 The class FData

In the class FData, the attributes and methods shared by the discretized and the basis
expansion representations of the functional dataset are collected. Thus, it provides
a common interface for both FDataGrid and FDataBasis objects. Specifically, objects
of the FData class have the following attributes:

• dataset_name: Name of the functional dataset.

• n_samples: Size (number of functional observations) of the dataset.

• dim_domain: Dimension of the domain in which the functions are defined (p ≥
1).

• argument_names: Names of each of the p arguments of the function (domain
dimensions).
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• domain_range: Limits of the intervals for each of the domain arguments. They
are used as the default ranges for plotting and numerical integration.

• dim_codomain: Dimension of the codomain q (output). For scalar functions,
q = 1. Values q > 1 correspond to vector-valued functions.

• coordinate_names: Names of the q codomain coordinates.

• extrapolation: Default extrapolation strategy; for instance, constant or peri-
odic. See Section 8.2.4 for details.

As an illustration of this data structure, consider the case of observations that
are bidimensional RGB images. For this functional dataset, dim_domain would be 2,
corresponding to the two dimensions of the image. The names of these dimensions
(e.g., “x” and “y”, or “horizontal” and “vertical”) would be stored in the attribute
argument_names. The attribute dim_codomain would be 3, corresponding to the three
color channels. The names of these channels (“R”, “G”, and “B”) would be stored in
the attribute coordinate_names.

The class FData provides also methods that are common to both representations;
for instance, methods for evaluation, addition, multiplication by a scalar, and plot-
ting. Since FData is abstract, it is not possible to directly instantiate an object of this
class. Instead, objects of one of its subclasses, FDataGrid or FDataBasis, need to be
created.

8.2.2 Discretized representation: The class FDataGrid

Functional data are often the result of monitoring a continuous process at a discrete
set of points. For the general case, x : Rp → Rq, with p, q ≥ 1, we assume that
the discretization grid in the jth dimension is tj = (t1, . . . , tMj), with j = 1, . . . , p.
In the scikit-fda library, the points in the grid need not be regularly spaced. The
grid has to be the same for all observations in the functional dataset. The dataset
{xi : Rp → Rq}N

i=1 is represented as an object of the class FDataGrid. The values of
the functional observations are stored in the tensor {xi(t) = (xi(t1), . . . , xi(tM))}N

i=1
of dimension N ×M1 × · · · ×Mp × q. In the case p = q = 1, the discretized sample
is simply an N ×M matrix.

In addition to those inherited from FData, objects of this class have the following
attributes:

• grid_points: Sequence of discretization grids, one for each domain dimen-
sion

(
t1, t2, . . . , tp

)
. The values of the functions are specified at the Cartesian

product of the 1-D arrays in the sequence.

• data_matrix: NumPy array of dimensions N × M1 × · · · × Mp × q in which
the values of the N functional observations are stored.

• interpolation: Default interpolation strategy for locations within the rectan-
gular discretization grid. See Section 8.2.4 for details.

Since the attribute data_matrix is a NumPy array, it is possible to carry out point-
wise operations, such as powers, exponentials, logarithms, and trigonometric func-
tions by directly applying the corresponding NumPy functions (Harris et al., 2020).

As an illustration, in the following code a FDataGrid object is created with three
functional observations measured at grid points t = (0, 0.1, 0.3, 0.4, 0.7, 1). These
data are depicted in Figure 2.1.
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� �
1 import skfda
2

3 grid_points = [0.0, 0.1, 0.3, 0.4, 0.7, 1.0]
4 data_matrix = [
5 [109.5, 115.8, 121.9, 130.0, 138.2, 141.1],
6 [104.6, 112.3, 118.9, 125.0, 130.1, 133.0],
7 [100.4, 107.1, 112.3, 118.6, 124.0, 126.5],
8 ]
9

10 fd = skfda.FDataGrid(
11 data_matrix=data_matrix ,
12 grid_points=grid_points ,
13 )� �

In the previous example, the discretization points and the values of the func-
tions are specified manually. The values of grid_points and data_matrix can be
imported from data files in standard formats, such as CSV, XLSX, ARFF, MATLAB
files, with the help of the corresponding functions from NumPy (Harris et al., 2020),
SciPy (Virtanen et al., 2020), pandas (Pandas Development Team, 2020), and sim-
ilar packages. An example of how to import data from a CSV file is provided in
https://fda.readthedocs.io/importing_data.

8.2.3 Basis expansion representation: The class FDataBasis

Assume that the functional observations in the daset considered belong toX , a sepa-
rable Hilbert space; for instance, L2. Under such assumption there exists a countable
basis {φi(t)}i≥1 that is complete, so that any x(t) ∈ X can be expressed as

x(t) = ∑
b≥1

cbφb(t), (8.2)

where {cb}b≥1, are the coefficients of basis expansion. The scikit-fda library pro-
vides support for such a representation in the constant, monomial, B-spline, and
Fourier bases. In addition, other types of bases can be implemented by the user. See
https://fda.readthedocs.io/create_new_bases for an example on how to define
new bases. The choice of basis should be made taking into consideration the char-
acteristics of the data at hand. For instance, the Fourier basis is well-suited to repre-
senting periodic functions. For non-periodic data, a representation in the B-splines
basis is probably more appropriate. The monomial basis is useful to represent poly-
nomials. Monomials are also the building blocks of the Maclaurin series. Therefore,
the monomial basis can be used to represent local approximations of analytic func-
tions. The first five elements of the different bases provided in scikit-fda are shown
in Figure 8.1.

In general, these types of representation are infinite-dimensional. In practice, the
expansion is truncated to the first B terms

x(t) ≈
B

∑
b=1

cbφb(t). (8.3)

Truncation often results in the smoothing of the original functional observations.
This smoothing effect can be beneficial for the representation of noisy data (see Sec-
tion 8.3.3).

https://fda.readthedocs.io/importing_data
https://fda.readthedocs.io/create_new_bases
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FIGURE 8.1: First five elements of the bases available in scikit-fda:
Monomial (left), B-splines (center), and Fourier (right).

In scikit-fda, the class FDataBasis is used to represent functional data as a finite
basis expansion. In addition to those inherited from FData, objects of this class have
the following attributes:

• basis: The basis for the representation of the functional observations. It is an
object of the class Basis, one of whose attributes, n_basis is the number of
elements of the basis considered. The bases available are Constant, Monomial,
BSpline and Fourier.

• coefficients: The N × B matrix that contains the coefficients of the basis ex-
pansion.

The following code is used to illustrate scikit-fda’s support for this type of rep-
resentation.� �

1 import skfda
2 from skfda.representation.basis import Fourier , BSpline
3

4 X, y = skfda.datasets.fetch_phoneme(return_X_y=True)
5

6 X.to_basis(BSpline(n_basis=5))
7 X.to_basis(Fourier(n_basis=5))� �

In this code, the Phoneme dataset (Hastie, Tibshirani, and Friedman, 2009) is used.
The curves in this dataset correspond to log-periodograms of the time series of utter-
ances of five different phonemes by different speakers. The functional observations
are transformed from their original discretized representation into different basis ex-
pansions. A sample of the transformed trajectories, together with the original ones,
is displayed in Figure 8.2. In these plots, the smoothing effect of the transformation
to the basis representations is apparent.

8.2.4 Interpolation and extrapolation

The scikit-fda package provides a variety of interpolation methods for functional
data in discretized form. By default, linear interpolation is performed. Other types
of interpolation can be specified in the attribute interpolation of the FDataGrid ob-
ject. Specifically, class SplineInterpolation offers support for spline interpolation.
It is also possible to employ other interpolation and extrapolation strategies defined
by the user. An example showing how to define such custom strategies is available
at https://fda.readthedocs.io/create_new_interpolation.

Different extrapolation strategies for FDataGrid and FDataBasis objects are avail-
able in scikit-fda. In particular, it is possible to specify a constant value (for instance,

https://fda.readthedocs.io/create_new_interpolation
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FIGURE 8.2: Different representations of the first ten trajectories of
the Phoneme dataset. From left to right: original trajectories, B-spline,
and Fourier basis representation. In both cases, 5 basis functions are

considered

the value of the function at one of the limits of the domain), or to assume a periodic
structure. In the case of FDataBasis objects, one can also directly evaluate the basis
expansion outside the domain. Finally, as in interpolation, user-defined extrapola-
tion strategies can be utilized.

8.2.5 Derivatives

The computation of derivatives is of particular importance in functional data analy-
sis. For instance, derivatives can reveal significant information that is not apparent
in the original curves. Furthermore, the norm of a derivative is a natural measure
of the function’s roughness (Ramsay and Silverman, 2005). For this reason, they
are often employed to define penalties for regularization. In the scikit-fda package,
the method derivative() can be used to perform this operation for both FDataGrid
and FDataBasis objects. In the case of FDataGrid objects, derivatives are approxi-
mated using finite differences. For FDataBasis objects, they are computed exactly
in terms of the derivatives of the basis functions. Therefore, if a new type of basis
is designed, it is necessary to implement the derivatives of the basis functions in the
corresponding class.

8.2.6 Regularization

Regularization methods consist in favoring simpler models to improve the quality
and robustness of the solutions of an optimization problem. In FDA, regularization
is used to obtain smooth functional approximations to noisy discrete data, for reg-
istration, and for principal component analysis, among others. For the purpose of
regularization, the complexity of a function can be quantified in terms of its norm,
or of a linear transformation thereof (e.g., the function derivatives). A penalty term
proportional to this measure of complexity is then added to the cost function to be
minimized. The package scikit-fda provides the necessary infrastructure to imple-
ment regularization based on the L2-norm of the function in class L2Regularization.
Alternatively, a linear operator can be passed as a parameter to the constructor of
L2Regularization objects. Some common linear operators are readily available in
scikit-fda’s operators module for that purpose. The following code illustrates this
type of regularization to obtain smooth representations of a set of functions in the
basis of B-splines. In this example, the L2-norm of second derivatives of the trajecto-
ries is used to penalize their curvature.� �

1 import skfda
2
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FIGURE 8.3: Smoothed representation of the first ten trajectories of
the Phoneme dataset in a B-spline basis with 40 basis functions for
different values for the regularization parameter λ ≥ 0; from left to

right: λ = 0 (no regularization), λ = 1, and λ = 10.

3 X, y = skfda.datasets.fetch_phoneme(return_X_y=True)
4 X = X.coordinates[0]
5

6 basis = skfda.representation.basis.BSpline(
7 domain_range=X.domain_range ,
8 n_basis=40,
9 )

10

11 regularization = skfda.misc.regularization.L2Regularization(
12 skfda.misc.operators.LinearDifferentialOperator(2),
13 regularization_parameter=1,
14 )
15

16 smoother = skfda.preprocessing.smoothing.BasisSmoother(
17 basis=basis ,
18 regularization=regularization ,
19 return_basis=True ,
20 )
21

22 X_basis = smoother.fit_transform(X)� �
The effect of this type of smoothing is illustrated in Figure 8.3. In this figure, 10

trajectories of the Phoneme dataset are represented in a B-spline basis composed of
40 basis functions for different values for the regularization parameter λ; from left to
right: λ = 0 (no regularization), λ = 1, and λ = 10. As shown in the left plot of this
figure, when the number of basis functions is large, the non-regularized trajectories
represented in this basis still exhibit significant fluctuations. Progressively smoother
basis representations are obtained as the regularization parameter λ > 0 increases.

8.3 Functionality of scikit-fda

In this section, an overview of the utilities for functional data analysis provided by
the scikit-fda package is given. The first step in the analysis is to generate func-
tional datasets or to retrieve them from external sources. In the scikit-fda package it
is possible to generate synthetic data, to simulate random trajectories from stochas-
tic processes, and to load data from files in standard formats and from repositories
of real-word datasets. The library provides also an extensive set of tools for the anal-
ysis of functional data both in discretized and basis expansion forms. In particular,
it offers methods for exploratory analysis, smoothing, registration, dimensionality
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reduction, the computation of functional depths, outlier detection, interactive visu-
alization, and machine learning, among others. An important feature of scikit-fda
is the integration with the extensive collection of scikit-learn’s tools for machine
learning, including data preprocessing, training, testing, and hyperparameter selec-
tion. Specifically, the methods provided are designed so that they can be utilized
in scikit-learn pipelines. In what follows these functionalities will be described in
detail.

8.3.1 Generation of synthetic data

A variety of methods for the generation of functional data, either from some simple
models or sampled from stochastic processes, are available in scikit-fda. In partic-
ular, the function make_multimodal_samples() can be used to generate functions
with several maxima. This is used in the synthetic registration example illustrated
in Figure 8.7. The function make_gaussian_process() can be used to simulate tra-
jectories sampled from a Gaussian process with a specified mean and covariance
function. Several commonly employed covariance functions, such as Brownian, ex-
ponential, radial basis function (RBF), Matérn, and polynomial kernels are supplied
in the package. Additional types of covariance functions can be defined by the user.

The following code illustrates the generation of 50 trajectories from standard
Brownian Motion, an Ornstein-Uhlenbeck process (a Gaussian process with an expo-
nential covariance function), and a Gaussian process with an RBF covariance func-
tion. A regular grid of 100 equally spaced points in T = [0, 1] is employed for the
discretized representation. The simulated trajectories are displayed in Figure 8.4.� �

1 import skfda
2 from skfda.misc.covariances import Brownian , Gaussian , Exponential
3

4 cov_dict = {
5 "Brownian": Brownian(variance=1),
6 "Exponential": Exponential(variance=1, length_scale=1),
7 "Gaussian (RBF)": Gaussian(length_scale=0.1),
8 }
9

10 for i, (name , cov) in enumerate(cov_dict.items ()):
11

12 fd = skfda.datasets.make_gaussian_process(
13 n_samples=50,
14 n_features=100,
15 mean=0,
16 cov=cov ,
17 random_state=0,
18 )
19

20 fd.plot()� �
8.3.2 Real-world data

The package scikit-fda provides tools to retrieve functional datasets from other li-
braries and public access repositories. The datasets themselves are retrieved us-
ing the package scikit-datasets (Díaz-Vico and Ramos-Carreño, 2022), explained in
Chapter 7. The data are downloaded only once and cached on disk, so as to reduce
network traffic and make it possible to work with the data offline. They are then
converted to the FData format for further processing and analysis. For instance,
the function fetch_cran() can be used to retrieve datasets from R packages in the
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FIGURE 8.5: Real datasets fetched with scikit-fda. From left to right:
GunPoint, Canadian Weather, and the Berkeley Growth Study.

CRAN repository. Datasets from the UCR & UEA Time Series Classification Archive
(Dau et al., 2019; Bagnall et al., 2018; Bagnall et al., 2021) can be accessed making
use of the function fetch_ucr(). Moreover, there exist specific functions to import
some widely-used datasets (see Chapter 3) such as fetch_growth() for the Berkeley
Growth Study dataset (Tuddenham and Snyder, 1954) and fetch_weather() for the
Canadian Weather dataset (Ramsay and Silverman, 2005).

The following code illustrates the functionality described for three well-known
datasets: GunPoint from the UCR repository, Canadian Weather, and the Berkeley
Growth Study. scikit-fda’s functions are used to load the data and plot some of the
datasets’ trajectories. Note that the Canadian Weather dataset has two codomain di-
mensions (q = 2): temperature and precipitation. In this example, the first is selected
using the coordinates property of an FData object.� �

1 import skfda
2

3 dataset = skfda.datasets.fetch_ucr("GunPoint")
4 dataset["data"].plot(group=dataset["target"])
5

6 X, _ = skfda.datasets.fetch_weather(return_X_y=True)
7 X.coordinates[0].plot()
8

9 X, y = skfda.datasets.fetch_growth(return_X_y=True)
10 X.plot(group=y)� �
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8.3.3 Preprocessing

Functional observations often need to be subject to some form of processing to fa-
cilitate ulterior manipulation. To this end, the scikit-fda package provides utilities
for smoothing, registration, and dimensionality reduction. In what follows, these
utilities are described in detail.

Smoothing

Smoothing consists in replacing the original observation x(t) with a smoothed ver-
sion x̂(t). This replacement yields a more manageable, possibly more faithful, rep-
resentation of the underlying process. In particular, smoothing can be used to re-
cover the signal component from noisy measurements. Furthermore, smoothed ap-
proximations with continuous derivatives can be used for regularization (Wang,
Chiou, and Müller, 2016). The methods of scikit-fda’s classes BasisSmoother and
KernelSmoother can be employed to this end. The package provides also utilities to
determine an appropriate degree of smoothing using some form of statistical vali-
dation.

As discussed in Section 8.2, the approximation of a function by a truncated basis
expansion, as in Equation (8.3), is a form of smoothing. The coefficients of the finite
basis expansion can be estimated by least squares (Ramsay and Silverman, 2005).
This kind of smoothing is performed in scikit-fda by the class BasisSmoother. Fur-
ther smoothing can be achieved by a regularization approach based on roughness
penalties, as described in Section 8.2.6 (Green and Silverman, 1993; Ramsay and Sil-
verman, 2005).

Smoothing can be achieved also by performing a linear transformation of the
original functional observations

x̂(t) =
∫
T

st(τ)x(τ)dτ. (8.4)

The weighting function st(τ) quantifies the contribution of the value of the function
at τ to the smoothed value at t. This weighting function should be localized, so that
the values of the function at points close to t contribute more to the average.

For functional data in discretized form, Equation (8.4) can be expressed as a ma-
trix transformation

x̂ = Sx, (8.5)

where x = x(t) is the vector of values of the function at the discretization points
t = (t1, . . . , tM), the vector x̂ consists of the smoothed function values at a grid of
points, which can be different from the original ones, and S is the smoothing ma-
trix. By default, the grid at which the smoothed values are computed is t, the set of
sampling points. The smoothing matrix S is sometimes referred to as the “hat” ma-
trix, a name borrowed from regression analysis because it transforms the dependent
variable vector x into its fitted version x̂ (Ramsay and Silverman, 2005).

Smoothing with local weights can be implemented using kernels (Wasserman,
2006). Kernel smoothing is implemented in class KernelSmoother. It receives as a pa-
rameter the estimator of the hat matrix, a subclass of the class HatMatrix. The library
scikit-fda provides three of these: Nadaraya-Watson (NadarayaWatsonHatMatrix),
local linear regression (LocalLinearRegressionHatMatrix), and k nearest neighbors
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(KNeighborsHatMatrix) estimators. As an illustration, for the Nadaraya-Watson es-
timator, the hat matrix is

Sij(h) =
K
(

ti−tj
h

)
∑M

m=1 K
(

ti−tm
h

) , 1 ≤ i, j ≤ M, (8.6)

where K is the kernel function and h is the parameter that controls the degree of
smoothing. Commonly used kernels, such as Gaussian, uniform, and Epanechnikov,
are available in scikit-fda. It is also possible to employ user-defined kernels for this
type of smoothing.

In these methods, the value of the smoothing parameter needs to be carefully ad-
justed to avoid under- or oversmoothing. In scikit-fda this value can be determined
by statistical validation with the help of the class SmoothingParameterSearch. Par-
ticular scoring criteria, such as classes for the computation of leave-one-out cross-
validation (LinearSmootherLeaveOneOutScorer) or, alternatively, generalized cross-
validation (LinearSmootherGeneralizedCVScorer) are provided to guide the search.
The criterion that is maximized in leave-one-out cross validation is

CVloo(h) =
1
M

M

∑
m=1

(
x(tm)− x̂(tm; h)

1− Smm(h)

)2

, (8.7)

where h is the smoothing parameter and x̂(tm; h) is the smoothed value.
The generalized cross validation (GCV) criterion is

GCV(h) = Ξ(S(h))
1
M

M

∑
m=1

(x(tm)− x̂(tm; h))2 , (8.8)

where Ξ is a penalty function. By default, the penalty is

Ξ(S(h)) =
1

(1− trace(S(h))/M)2 . (8.9)

Additional penalty functions, such as Akaike’s information criterion (AIC), imple-
mented as akaike(), or Shibata’s model selector, implemented as shibata(), are
provided as well.

In the code that follows, the smoothing functionality provided by scikit-fda is
illustrated using the functions of the Phoneme dataset (Hastie, Tibshirani, and Fried-
man, 2009), which are rather noisy.� �

1 import skfda
2 from skfda.preprocessing.smoothing import (
3 KernelSmoother ,
4 validation ,
5 )
6 from skfda.misc.hat_matrix import KNeighborsHatMatrix
7

8 X, y = skfda.datasets.fetch_phoneme(return_X_y=True)
9

10 grid = validation.SmoothingParameterSearch(
11 KernelSmoother(KNeighborsHatMatrix ()),
12 [2, 3, 4, 5],
13 scoring=validation.LinearSmootherGeneralizedCVScorer(
14 validation.shibata ,
15 ),
16 param_name="kernel_estimator__n_neighbors"
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FIGURE 8.6: Five trajectories of the Phoneme dataset before (left) and
after (right) nearest neighbors smoothing.

17 )
18

19 grid.fit(X)
20 X_smooth = grid.transform(X)� �

In this example, the k nearest neighbors kernel estimator is used to smooth the
data. The optimal number of neighbors is selected between the values 2, 3, 4, and
5. Finally, the LinearSmootherGeneralizedCVScorer with the shibata() penalty
function is used for model selection. The first five original curves and the smoothed
ones are displayed in Figure 8.6.

Registration

Another type of preprocessing, which is especially relevant in FDA, is registration.
As explained in Section 2.3.1, registration consists in applying transformations to the
raw data so that the functional observations are properly aligned. There is a variety
of reasons why misalignment can occur. In some cases, it is the result of errors in the
measurement process. In others, the domain has to be warped because the functions
depend on an internal parameter, which is different from the one observed. For pe-
riodic functions, such as the signal of a heartbeat, the starting time for the different
measurements could be different. A number of strategies can be used for registra-
tion. For instance, maxima, minima, zeros, and other landmarks can be used as
reference points for alignment. Alternatively, some measure of dispersion between
the observations can be minimized. It is also possible to register a set of functional
observations to a reference function. After registration, it may be necessary to eval-
uate the functional observations at points in the domain that are different from the
ones in the original grid. This can be made utilizing the interpolation and extrap-
olation techniques described in Section 8.2.4. To carry out such an alignment, the
package scikit-fda offers support for shift registration, and for elastic registration.

Shift registration consists in aligning the functional observations by a translation

x̃i(t) = xi(t + δi), i = 1, . . . , N, (8.10)

where δi is the time shift applied to xi(t), and x̃i(t) is the registered function (Ramsay
and Silverman, 2005). Shifting modifies the lower and upper bounds of the interval
on which the function observations are defined. The values of the shifted functions
that lie outside the original interval are discarded. For the subinterval in which the
function values are not available, they are estimated by extrapolation. The method
for extrapolation can be provided as an input.
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The shifting constants {δi}N
i=1 can be determined using different procedures. If

a single landmark, such as a maximum, a minimum, or a zero crossing, is present
in every curve, and their locations, {τi}N

i=1, are known, then the i-th curve can be
shifted by δi = τi − τ∗. After registration, the location of the landmark is τ∗ for
every curve,

x̃i(τ
∗) = xi(τi), i = 1, . . . , N. (8.11)

In scikit-fda, the function landmark_shift_registration() can be used to carry out
this transformation. The function landmark_shift_deltas() can be used to retrieve
the values of the δi.

Alternatively, the values δi can be computed by minimizing a least squares crite-
rion (Ramsay and Silverman, 2005)

REGSSE =
N

∑
i=1

∫
T
[x̃i(t)− µ̂(t)]2dt, (8.12)

where µ̂(t) is the sample mean of the registered data {x̃i(t)}N
i=1. This type of shift

registration can be performed using class LeastSquaresShiftRegistration. Instead
of the sample mean, which is the default value, a user-defined template function can
be employed. In this case, the values for the δi are stored as the attribute deltas_
after the registration.

Another type of registration available in the package scikit-fda is elastic regis-
tration. In elastic registration, one attempts to align the data by applying a warping
transformation

x̃i(t) = xi(γi(t)), i = 1, . . . , N. (8.13)

The warping γi is a monotonically increasing function defined in T = [a, b]. As-
suming that the values of the function at the endpoints of this interval are fixed, it
obeys the constraints γi(a) = a and γi(b) = b. If the locations of some landmarks are
known, the warping function for elastic registration can be approximated by mono-
tonically increasing splines (Ramsay and Silverman, 2005). Besides the boundary
constraints specified earlier, the spline interpolator for the i-th functional observa-
tion has to satisfy

x̃i(τ
∗
l ) = xi(τil), l = 1, . . . , L, (8.14)

where {τil}L
l=1 are the landmark locations in the i-th observation, and τ∗l = γ−1

i (τil)
is the location of the l-th landmark in the registered curves. In scikit-fda this type of
registration can be carried out using the landmark_elastic_registration() proce-
dure. Function landmark_elastic_registration_warping() can be used to retrieve
the warpings themselves. A drawback of this approach is that the landmarks and
their locations need to be identified beforehand.

An alternative type of elastic registration is to align the observations to a refer-
ence template. This has the advantage that no information on landmarks is needed.
In the elastic registration method described in Srivastava et al. (2011), the template
is defined in terms of the Karcher mean under the Fisher-Rao metric (Srivastava
and Klassen, 2016). Then, an energy function depending on the Fisher-Rao distance
between each curve and the template is minimized. To efficiently compute this dis-
tance, the square root velocity function (SRVF) transform is introduced (Joshi et al.,
2007). The main reason for introducing this transform is that the Fisher–Rao distance
between two functions is given by the L2 distance between their SRVF representa-
tions. The scikit-fda’s class FisherRaoElasticRegistration includes methods for
this particular type of registration. The warping functions used are stored in the
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FIGURE 8.7: Elastic Fisher-Rao registration with synthetic data: The
original curves are shown in the left panel. The registered curves are

displayed in the right panel.

warping_ attribute of this class. The implementation makes use of the dynamic pro-
gramming routines for alignment to a template from the Python package fdasrsf
(Tucker, 2020a). This type of elastic registration is illustrated in Figure 8.7 with syn-
thetic data. The original trajectories, which are displayed on the left plot, exhibit two
local maxima whose relative locations are different in each of the curves. In conse-
quence, alignment cannot be achieved via a simple shift. Note that after this type of
elastic registration curves are well aligned even without previous information about
the location of the landmarks.

The results of applying shift registration by least squares and elastic Fisher-Rao
registration to the Berkeley Growth Study data (Tuddenham and Snyder, 1954) are
compared in Figure 8.8. This figure has been generated using the following code:� �

1 import skfda
2 from skfda.preprocessing.registration import (
3 ElasticRegistration ,
4 ShiftRegistration ,
5 )
6

7 X, y = skfda.datasets.fetch_growth(return_X_y=True)
8

9 X_aligned_elastic = ElasticRegistration ().fit_transform(X)
10 X_aligned_shift = ShiftRegistration ().fit_transform(X)
11

12 X.plot()
13 X_aligned_shift.plot()
14 X_aligned_elastic.plot()� �

The curves displayed in the left panel of Figure 8.8 trace the evolution of the
heights of 54 girls and 39 boys since their birth until their 18th birthday. The nomi-
nal ages at which the measurements are made coincide for all individuals. However,
each child has a different growth profile. In particular, landmark features manifest
themselves at different ages. For instance, even though most curves exhibit a growth
spurt at puberty, the precise ages at which this occurs are different for each individ-
ual. Therefore, an elastic deformation of the actual age axis may uncover an internal
age, which is more meaningful from a biological perspective. The effects of shift and
elastic registration based on the Fisher-Rao distance are displayed in the middle and
right panels of Figure 8.8 respectively.
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FIGURE 8.8: Registration of the Berkeley Growth Study data with differ-
ent methods. From left to right: the original curves, shift registration

by least squares and elastic Fisher-Rao registration.

Dimensionality reduction

Let us recall the relevance of dimensionality reduction techniques in FDA, as ex-
plained in Section 2.3.2. Functional data are infinite-dimensional objects. Even in the
case that they are represented by a set of discrete measurements, their dimension-
ality is typically very high. In addition, nearby observations exhibit a large degree
of dependence. Due to these characteristics, technical and computational difficul-
ties arise in the analysis of these types of data. To alleviate such difficulties one
can represent the functional data in a lower-dimensional space while preserving as
much information as possible. The use of dimensionality reduction methods leads to
gains in efficiency and, in some cases, improvements in interpretability and predic-
tive capacity. Furthermore, in this lower-dimensional representation, the methods
of multivariate statistics can be employed (Vieu, 2018).

A simple dimensionality-reduction method is to select a set of impact or design
points that are relevant for the task at hand; for instance, the most informative points
for clustering, classification, or regression (Delaigle, Hall, and Bathia, 2012; Ferraty,
Hall, and Vieu, 2010; Kneip, Poss, and Sarda, 2016). Specifically, scikit-fda’s class
EvaluationTransformer can be used to evaluate the functions as a set of points in the
domain of the function. Alternatively, a truncated basis representation can be used
(Biau, Bunea, and Wegkamp, 2005; Poskitt and Sengarapillai, 2013). The coefficients
of a functional data object represented as a basis expansion can be extracted using
the methods of the class CoefficientsTransformer. Besides these, the scikit-fda
package provides methods for functional principal components analysis (FPCA) and
variable selection methods. These types of methods are described in what follows.

Functional principal components analysis. Functional principal component anal-
ysis (FPCA) is a widely used dimensionality reduction method in FDA. With this
procedure, the individual functions are represented in the orthonormal basis of eigen-
functions of the stochastic process’ covariance operator. Dimensionality reduction is
achieved by retaining the projections of the original functions onto the subspace of
L2 spanned by the set of eigenfunctions that correspond to the largest eigenvalues.
This representation is the one, among those of the same dimension, that explains the
most of the data’s variance.

A random function X ∈ L2(T ) can be represented as

X(t) = µ(t) +
∞

∑
b=1

ξbφb(t), (8.15)
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where µ(t) = E [X(t)], φb(t) is the b-th principal component, and ξb =
∫
T (X(t)−

µ(t))φb(t)dt, denotes the projection (score) along the b-th principal component. By
the Karhunen-Loève Theorem, the scores {ξb}b≥1 are uncorrelated random variables
(Wang, Chiou, and Müller, 2016). Smoothed versions of the principal components
can also be computed by applying the regularization penalties described in Sec-
tion 8.2.6, using the procedure described in Section 9.4.2 of Ramsay and Silverman,
2005. The smooth principal components are obtained by optimizing a function that
takes into account not only the sample variance but also a term that penalizes the
roughness of the principal components. A reduction of the dimension of the data
can be achieved by truncating the basis expansion in Equation (8.15), so that only
the first B components are included

X(t) = µ(t) +
B

∑
b=1

ξbφb(t). (8.16)

In scikit-fda, functional principal component analysis can be carried out using
the methods of class FPCA. The following code illustrates this functionality for the
Berkeley Growth Study data:� �

1 import skfda
2 import matplotlib.pyplot as plt
3

4 X, y = skfda.datasets.fetch_growth(return_X_y=True)
5

6 fpca = skfda.preprocessing.dim_reduction.feature_extraction.FPCA(
7 n_components=2,
8 )
9 fpca.fit(X)

10

11 skfda.exploratory.visualization.fpca.FPCAPlot(
12 X.mean(), fpca.components_ , multiple=30,
13 ).plot()
14

15 scores = fpca.transform(X)
16 scores_class_0 = scores[y==0]
17 scores_class_1 = scores[y==1]
18

19 plt.figure ()
20 plt.scatter(scores_class_0[:, 0], scores_class_0[:, 1])
21 plt.scatter(scores_class_1[:, 0], scores_class_1[:, 1])� �

In this example, the first two principal components are computed. Then, the
functional observations are projected onto the two-dimensional subspace spanned
by these components. A numerical quadrature is used to compute the corresponding
inner products. Class FPCAPlot is used to display the curves {µ(t)± φb(t); b = 1, 2},
which are the result of adding and subtracting the b-th eigenfunction to the sample
mean. In the case of the Berkely growth study, the first component captures overall
deviations (either positive or negative) with respect to the mean. The second one
reveals patterns associated to differences of growth speed. In particular, it exhibits
a maximum followed by a sign change at around puberty. The resulting plots are
shown in the left and middle panels in Figure 8.9. Finally, the projection of the curves
onto the first two principal components is obtained using the transform method of
the class FPCA. The scores of these two components are displayed as points in the
right panel of Figure 8.9. Note that, with some exceptions, boys (blue) and girls
(orange) appear grouped in two separate clusters in this plot.
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FIGURE 8.9: Principal components analysis for the Berkeley Growth
Study data. The first and second principal components are plotted
in the leftmost panel as perturbations around the mean (in blue). In
the right panel, the scores of individual functional observations for
the first two components are plotted. The orange and blue points

correspond to girls’ and boys’ growth curves, respectively.

Variable selection. The package scikit-fda provides a variety of tools to carry out
variable selection. A simple approach is to apply a multivariate variable selec-
tion method to the discretized representation of the functional observations (Berren-
dero, Cuevas, and Torrecilla, 2016a; Jiménez-Cordero and Maldonado, 2021). The
scikit-fda class EvaluationTransformer can be used to transform FData objects into
NumPy arrays. Then, any Python library for multivariate variable selection can be
used. If this approach does not take into account the functional nature of the data,
there can be difficulties in the analysis (Aneiros and Vieu, 2016). A multivariate
method that takes into account the redundancy that arises from the continuity of
functional data is minimum-redundancy-maximum-relevance (mRMR) (Ding and
Peng, 2005; Peng, Long, and Ding, 2005; Berrendero, Cuevas, and Torrecilla, 2016a).
This method is available in scikit-fda, as the MinimumRedundancyMaximumRelevance
class. The dependence measures that quantify the relevance and the redundancy can
be specified by the user.

In addition, the scikit-fda package includes a collection of variable selection
methods that specifically take into account the functional nature of the data: re-
producing kernel-based variable selection (RKVS), maxima hunting (MH), and re-
cursive maxima hunting (RMH).

The RKVS method, implemented in the class RKHSVariableSelection, was intro-
duced for binary classification problems (Berrendero, Cuevas, and Torrecilla, 2018).
For a specified value of P, the goal is to identify the set of points t = (t1, . . . , tP)

> ∈
T P and select the corresponding function values, X(t1), . . . , X(tP), that maximize
the Mahalanobis distance between groups

(µ1(t)− µ0(t))>k(t, t)−1(µ1(t)− µ0(t)), (8.17)

where µ0(t), µ1(t), and k(t, t) are the mean functions of each class and the covariance
function evaluated at t1, . . . , tP, respectively. In homoscedastic binary classification
problems, with a fixed dimension P this selection is optimal in terms of classification
error. In practice, the exploration of all possible combinations is often infeasible. To
reduce the computational costs, a greedy search is implemented.

In MH (Berrendero, Cuevas, and Torrecilla, 2016b; Ordóñez et al., 2018) one se-
lects the values of t ∈ T that correspond to local maxima of a non-negative depen-
dence measure between X(t) and the class label. The selected variables are thus the
most relevant in a region. Furthermore, the values of X(t) that are close to these
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local maxima, which generally provide redundant information, are automatically
discarded. In Berrendero, Cuevas, and Torrecilla, 2016b, the distance correlation
(Székely, Rizzo, and Bakirov, 2007) is used as the dependence measure. This variable
selection method is implemented in the class MaximaHunting, using the implementa-
tion of distance correlation function provided by the dcor package (Ramos-Carreño,
2020), that will be explained in Chapter 9. MH is an interpretable, fully functional
method with optimal performance in an important class of functional classification
problems. In spite of its simplicity and good performance, MH has some limitations.
Specifically, there can be numerical difficulties to identify the local maxima of the de-
pence measure. Futhermore, MH takes into account only the marginal relevance of
a single variable. Variables that are only relevant when selected in combination with
other cannot be identified by these procedures.

RMH (Torrecilla and Suárez, 2016) addresses these limitations by assuming a
particular form of the stochastic process from which the trajectories are sampled.
The algorithm proceeds as follows: First the value of t that is the global maximum
of the dependence between the variable X(t) and the class label is selected. Let t∗ be
such optimum and, therefore, X(t∗) the variable selected. The information conveyed
by X(t∗) is removed by subtracting from the trajectories the conditional expectation
of the process given the value of the selected variable. Then, the global maximum of
the resulting process is identified. The algorithm proceeds in this iterative manner
until a pre-specified number of variables have been selected, or until a convergence
criterion is fulfilled. A more complete explanation and analysis of the algorithm is
provided in Chapter 5. In scikit-fda, the class RecursiveMaximaHunting provides an
enhanced, very customizable implementation of this method.

8.3.4 Exploratory analysis

Exploratory analysis methods are used to identify salient features, visualize, and
describe the data from a statistical point of view. Specifically, the scikit-fda pack-
age provides tools for the computation of summary statistics, including robust ones,
interactive tools for visual analysis, and outlier detection.

Summary statistics

Common summary statistics, such as the sample mean function and the sample co-
variance function can be estimated using the tools provided by scikit-fda. Consider
a set of functional observations {xi(t)}N

i=1. The sample mean,

µ̂(t) =
1
N

N

∑
i=1

xi(t), (8.18)

can be computed by applying the function mean() to the FData object in which the
data are stored. The functional observations can be either in discrete form or in a
basis representation. The resulting mean function is a FData object of the same type
as the input (i.e., discretized or in a basis representation).

The sample covariance function k̂,

k̂(t, s) =
1

N − 1

N

∑
i=1

(xi(t)− µ̂(t))(xi(s)− µ̂(s)), (8.19)
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FIGURE 8.10: Centrality statistics of the Canadian Weather dataset.
The shaded band corresponds to one standard deviation around the

mean.

can be computed applying the function cov() to the corresponding FData object.
Similarly, the function var() can be used to computed the sample variance, k̂(t, t).
Irrespective of the representation of the functional observations, the sample variance
and covariance are returned in discretized form. Instead of the functions mean(),
cov() and var(), the FData methods of the same name can be used to compute
these summary statistics.

Figure 8.10 presents an illustration of this functionality for the Canadian Weather
dataset. The sample estimate of the mean temperature curves is shown as a blue
curve. The shaded area corresponds to one standard deviation around the estimated
mean. Other measures of centrality, such as the trimmed mean, the geometric mean,
and the median, are displayed in this figure as well. These robust statistics will be
described in some detail next in this section.

Depth measures

Depth measures quantify the centrality of a function in relation to a set of functions.
These measures are used for exploratory analysis, to compute robust statistics, de-
tect outliers, and for data visualization (e.g., the functional box-plot). In contrast
to the univariate case, a variety of definitions of functional depth can be given that
yield different orderings of the functional observations in the sample. Each of these
functional depths lead to different definitions of robust statistics and of degrees of
outlyingness.

Some common functional depth measures are implemented in the scikit-fda
package. In particular, the methods of class IntegratedDepth can be used to com-
pute integrated depth measures (Fraiman and Muniz, 2001), which are averages of
univariate depths. Specifically, the integrated depth of the function x is

ID(x) =
∫
T

D(x(t))dt. (8.20)
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where D is an univariate depth function. This function can be selected by the user.
The default is the measure proposed by Fraiman and Muniz, 2001:

D(x(t)) = 1−
∣∣∣∣12 − FX(t)(x(t))

∣∣∣∣ , (8.21)

where FX(t) denotes the distribution function of the marginal.
An alternative definition is the band depth (BD), introduced by López-Pintado

and Romo, 2009. To compute this functional depth, one needs to identify the bands
that are delimited by all possible pairs of functional observations in the sample. The
BD value is the fraction of bands that completely encompass the curve. In scikit-
fda, this quantity can be computed using methods of the class BandDepth. A related,
less restrictive measure, is the modified band depth (MBD). This measure takes into
account not only the number of bands that contain x, but also the time that x lies
within each band. The MBD has better statistical properties than the original BD,
in part because it is an integrated depth measure (Nagy et al., 2016). In scikit-fda,
MBD is implemented in the class ModifiedBandDepth.

Robust statistics

The package scikit-fda provides support for the computation of robust statistics. Ro-
bust statistics may provide a better characterization of the data than non-robust ones
(e.g., the mean or the covariance functions), especially in the presence of outliers.
One of the most important robust statistics is the geometric median (Lardin-Puech,
Cardot, and Goga, 2014)

median = arg min
z∈X

N

∑
i=1
‖xi − z‖ . (8.22)

It can be computed with the function geometric_median(). Alternatively, the me-
dian can be defined as the deepest point in the sample. Different depth measures
yield different definitions of the median. These types of medians can be computed
with the function depth_based_median().

Functional depth measures can be used also to define the degree of outlyingness
of a function in a sample: the larger the depth value the more central the functional
observation is. Finally, funcional depth measures can be used to define trimmed
means (Fraiman and Muniz, 2001). A trimmed mean is a robust version of the stan-
dard mean in which the most outlying functional observations (the ones with the
lowest depth values) are discarded. In scikit-fda, the trimmed mean is implemented
in function trim_mean().

The geometric median, the MBD-based median, and the MBD-based trimmed
mean in which 10% of the data are discarded, of the Canadian Weather dataset are
shown in Figure 8.10.

Interactive visualization tools and outlier detection

Visualization tools can be used to gain insight into the data. In particular, trends,
salient features, and other patterns in the data can be identified simply by inspec-
tion. Visualization tools can be utilized also to single out functional observations that
are markedly different from the other observations in the sample (outliers). Outlier
detection is useful to identify rare events, novel patterns, anomalies, or erroneous
measurements. The package scikit-fda provides a number of interactive tools for
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data visualization and outlier detection. Their implementation utilizes the function-
ality provided by matplotlib (Hunter, 2007).

Functional data objects have a plot() method that can be used to graph the
curves. Some customization options, such as group colors or labels, are available
for this method. An illustration of its use with the Berkeley Growth Study dataset is
shown on the left-hand panel of Figure 8.11. For FDataGrid objects, the scatter()
method can be used to display the values of the function as individual points in a
graph. This method was used to generate Figure 2.1.

Another tool for visual exploration provided by scikit-fda is the functional box-
plot (Sun and Genton, 2011). This is an generalization of the univariate boxplot for
functional data. The functional boxplot consists of a graph of the functional me-
dian (i.e., the deepest curve in the sample) surrounded by a central envelope, which
encompasses the deepest 50% of the observations, and a maximum non-outlying en-
velope. The width of this outer envelope is determined by scaling the central one by
a constant factor. This constant factor can be selected by the user. Its default value is
1.5. In scikit-fda, the class Boxplot can be used to generate and customize functional
boxplots. In this plot, a trajectory is marked as an outlier if it lies beyond the maxi-
mum non-outlying envelope for some interval. The class BoxplotOutlierDetector
can be used for outlier detection based on this criterion. Some customizable elements
of Boxplot objects are the depth measure, and the definition of centered bands that
encompasses a user-specified fraction of the deepest observations. The following
code provides an illustration of these functionalities with the Berkeley Growth Study
dataset. The plots that result from the execution of this code are displayed in Fig-
ure 8.11.� �

1 import skfda
2

3 X, _ = skfda.datasets.fetch_growth(return_X_y=True)
4

5 X.plot()
6

7 boxplot = skfda.exploratory.visualization.Boxplot(
8 X,
9 depth_method=skfda.exploratory.depth.ModifiedBandDepth (),

10 )
11 boxplot.plot()
12

13 boxplot = skfda.exploratory.visualization.Boxplot(
14 X,
15 depth_method=skfda.exploratory.depth.ModifiedBandDepth (),
16 prob=[0.75, 0.5, 0.25],
17 )
18 boxplot.plot()� �

An additional tool for functional data visualization and outlier detection is the
magnitude-shape plot (MS-plot) (Dai and Genton, 2018; Dai and Genton, 2019). In
this method, the degree of outlyingness of a functional observation is characterized
in terms of two quantities: the magnitude outlyingness (MO) and the shape outly-
ingness (VO). The MS-plot is the scatter plot of the values MO and VO for each func-
tional observation. This two-dimensional representation of the data can be used, for
instance, to identify clusters of functions, or detect potential outliers, either in shape
or in magnitude.

The following code can be used to display the MS-plot for the temperature curves
of the Canadian Weather dataset together with the original trajectories. Additionally,
outliers are identified according to the MS-plot criterion and marked in red. The
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FIGURE 8.11: Functional boxplots of the Berkeley Growth Study
dataset. The original curves are depicted in the left panel. The stan-
dard functional boxplot is shown in the central panel. In this panel,
The black line stands for the functional median. The central envelope
is displayed as a pink band around the median. The blue whiskers
and their fences mark the maximum non-outlying envelope. Outliers
are shown as a red dashed lines. In the right panel, different shades

of pink are used for the deepest 25%, 50%, and 75% of the data.
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class MagnitudeShapePlot generates the MS-plot and uses internally the methods
of the class MSPlotOutlierDetector for outlier detection. The resulting plots are
shown in Figure 8.12.� �

1 import skfda
2

3 X, y = skfda.datasets.fetch_weather(return_X_y=True)
4 X = X.coordinates[0]
5

6 ms_plot = skfda.exploratory.visualization.MagnitudeShapePlot(X)
7 ms_plot.plot()
8

9 fig = X.plot(
10 group=ms_plot.outliers ,
11 group_colors =["blue", "red"],
12 )� �

The class Outliergram provides an additional method for data visualization and
detection of shape outliers (Arribas-Gil and Romo, 2014). The graph is defined in
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FIGURE 8.13: Outliergram of the yearly temperature curves for the
Canadian Weather dataset. The original trajectories are in the left panel
and the corresponding outliergram is shown in the right panel. The
blue line corresponds to the reference parabola. The orange dashed

line separates the typical curves (above) from the outliers (below).

terms of two related quantities: the modified epigraph index (MEI) and the MBD.
The MEI of a trajectory is the average over time of the fraction of curves in the sample
that lie above it. Each curve is a point (MEI, MBD) in the scatter plot. The outlier-
gram takes advantage of the fact that points corresponding to typical functional ob-
servations lie on a parabola, whose analytical form is known. This parabola is used
as a reference for the identification of shape outliers. Specifically, the degree of out-
lyingness of a curve is quantified in terms of its vertical distance to the parabola. The
scikit-fda’s classes Outliergram and OutliergramOutlierDetection can be used to
generate the outliergram and to detect outliers by using this criterion, respectively.
The following code illustrates this functionality with the temperatures of the Cana-
dian Weather dataset. The original trajectories and the corresponding outliergram are
shown in Figure 8.13.� �

1 import skfda
2 import matplotlib.pyplot as plt
3

4 X, y = skfda.datasets.fetch_weather(return_X_y=True)
5 X = X.coordinates[0]
6

7 fig = X.plot()
8 fig = skfda.exploratory.visualization.Outliergram(X).plot()� �

In addition to standard plotting capabilities, most graphs generated with scikit-
fda incorporate some interactive features. For example, the cursor can be placed at
a point in the graph to display the actual coordinate values and the label of the ob-
servation. In addition, if different plots are used for visual exploration of some func-
tional dataset, selecting a particular curve in one plot highlights the corresponding
curve in the other active plots. Finally, widgets such as sliders can be used to select
curves by some property, such as the label of the observation, or their depth in the
sample.

An illustration of this interactive functionality is presented in Figure 8.14. In
this figure, three different kinds of plots are displayed for the temperature curves
of the Canadian Weather dataset: a graph of the sample trajectories, the MS-plot, and
the outliergram. In the lower right side a slider has been created that displays the
MBD value of the selected curve. A functional observation can be selected either



8.3. Functionality of scikit-fda 151

0 100 200 300
day

30

20

10

0

10

20

te
m

pe
ra

tu
re

 (º
C)

Trajectories

7.5 5.0 2.5 0.0 2.5 5.0 7.5
MO

2

0

2

4

6

8

VO

MS-Plot

0.0 0.2 0.4 0.6 0.8 1.0
MEI

0.0

0.2

0.4

0.6

0.8

1.0

M
BD 28 (Pr. Rupert): (0.368, 0.308)

Outliergram

MBD 0.308

0.0577 0.533

FIGURE 8.14: Interactive features in multiple plots for the Canadian
Weather dataset.

by choosing a value in the slider widget or by clicking on the corresponding point
in the MS-plot or in the outliergram. The datum selected is then highlighted in all
plots. Finally, the cursor has been placed at a point in the MS-plot. This brings up a
tooltip in which relevant information of the corresponding functional observation is
displayed.

8.3.5 Machine learning

The package scikit-fda offers computational tools for both supervised (regression
and classification) and unsupervised learning (clustering). We have implemented
linear and kernel regression models, as well as neighbor-based algorithms for both
regression and classification. In addition, logistic regression and centroid-based clas-
sification methods have been also included. The available clustering models include
k-means, hierarchical clustering and the fuzzy C-means (FCM) algorithm discussed
in Chapter 6. This part of the library is currently being extended to incorporate mod-
els such as regularized extensions of the linear and quadratic discriminants, partial
least squares regression (Febrero-Bande, Galeano, and González-Manteiga, 2017) or
linear regression with functional responses (Ramsay and Silverman, 2005).

The classes, methods, and functions in scikit-fda have been especially designed
in accordance to the application programming interface (API) of the machine learn-
ing library scikit-learn. This design facilitates their integration in pipelines, and
their use with other utilities provided by scikit-learn, such as cross-validation and
grid search for hyperparameter selection. The package scikit-fda includes tools for
dimensionality reduction and feature construction, by means of which the functional
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observations are transformed into lower-dimensional attribute vectors. This repre-
sentation can then be used as input to standard multivariate machine learning meth-
ods provided by scikit-learn, as part of the same pipeline, allowing joint optimiza-
tion of the hyperparameters.

Some of the methods provided for regression, classification and clustering re-
quire the computation of distances between functions. Examples of these are k-
nearest neighbors (k-NN) and kernel regression methods, nearest centroids classi-
fiers, and k-means clustering. Thus, several functional distances have been imple-
mented in the package that can be employed as an hyperparameter for these meth-
ods. These distances include the Lp distances defined in Section 2.2, the angular
distance

dangular(x1, x2) =
1
π

arccos
( 〈x1, x2〉
‖x1‖‖x2‖

)
, (8.23)

and the α-Mahalanobis distance described in Berrendero, Bueno-Larraz, and Cuevas,
2020.

Regression

For regression, scikit-fda offers linear models, k-NN algorithms and kernel regres-
sion. The package includes a functional linear model with scalar response, and both
multivariate and functional covariates,

yi = β0 +
p1

∑
j=1

β jxij +
p

∑
j=p1+1

∫
Tj

β j(t)xij(t)dt + εi, i = 1, . . . , N. (8.24)

This model is implemented as the LinearRegression class. This class accepts as
covariates either a FDataBasis object, containing a functional covariate expressed in
a functional basis, or a combination of FDataBasis objects and vectors of attributes.
The regularization tools described in Section 8.2.6 can be applied to penalize the
complexity of the β j coefficients.

The use of LinearRegression is illustrated in the following example using the
Tecator dataset. The regression problem consists in predicting the percent of fat
content of several pieces of meat from their near-infrared absorbance spectra. In
order to compute the β j coefficients, the algorithm minimizes a cost function that
includes both the sum of squared residuals and a term that penalizes the curvature
of the β j, related with their second derivative.� �

1 import skfda
2 from skfda.misc.operators import LinearDifferentialOperator
3 from skfda.misc.regularization import L2Regularization
4 from skfda.ml.regression import LinearRegression
5 from skfda.representation.basis import BSpline
6

7 from sklearn.model_selection import train_test_split
8 from sklearn.pipeline import Pipeline
9

10

11 X, y = skfda.datasets.fetch_tecator(return_X_y=True)
12

13 y = y[:, 0]
14

15 basis = BSpline(n_basis=20)
16 X = X.to_basis(basis)
17

18 X_train , X_test , y_train , y_test = train_test_split(
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19 X, y, random_state=0)
20

21 regression = LinearRegression(
22 regularization=L2Regularization(
23 LinearDifferentialOperator(2)))
24

25 regression.fit(X_train , y_train)
26

27 score = regression.score(X_test , y_test)
28

29 print(f"{score :.3}")� �
Out:

0.951

The historical linear model studied on Malfait and Ramsay, 2003 is also imple-
mented in class HistoricalLinearRegression, as

yi(t) = β0(t) +
∫ t

s0(t)
β1(t, s)xi(s)ds + εi, i = 1, . . . , N, (8.25)

where s0(t) = max(0, t− δ) and δ is a predefined time lag that prevent points far in
the past to affect the predicted value. This model can be used in the cases in which
for a particular value t ∈ T , the prediction of the value of the response at t should
not be made using the values of the covariate at points s > t. This is commonly
the case where the parameter is time, as it makes little sense to predict the response
using values in the future.

The k-NN regression algorithm is also implemented in scikit-fda, in the class
KNeighborsRegressor. Alternatively, the class RadiusNeighborsRegressor can be
employed so that the neighbors that are at most at a specified distance are used for
prediction. Both classes extend the ones of the same name available in scikit-learn to
the functional case, by accepting functional data either as the covariate, the response,
or both, as well as a functional distance to be used.

In addition, scikit-fda offers also support for kernel regression using the class
KernelRegression. As with smoothing (see Section 8.3.3), there are several kernel
estimators that can be used: Nadaraya-Watson (class NadarayaWatsonHatMatrix),
k-nearest neighbors (class KNeighborsHatMatrix) and local linear regression (class
LocalLinearRegressionHatMatrix) kernels.

Classification

Some of the classification methods described in Section 2.3.4 have also been imple-
mented in scikit-fda. In particular it provides k-NN algorithms, nearest centroid
methods, a logistic regression model, and classifiers based on statistical depth.

The library offers classes that wrap the nearest centroid and neighbor-based
methods avaliable in scikit-learn and extend them to accept functional observa-
tions in both discretized and basis forms. The classes KNeighborsClassifier and
RadiusNeighborsClassifier provide functional versions of k-NN and radius neigh-
bors classifiers, respectively. The class NearestCentroid extends also the nearest
centroid classifier in this way. In addition, the nearest centroid variant distance to
trimmed means (DTM) (López Pintado and Romo, 2005) is implemented in the class
DTMClassifier.
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The package also features the class LogisticRegression, which implements a
functional version of logistic regression for binary classification problems (Berren-
dero, Bueno-Larraz, and Cuevas, 2022). The method used performs variable selec-
tion as part of the classification process. It uses a greedy approach in which the
points that sequentially maximize the likelihood are selected. A final multivariate
logistic regression is then performed using the selected points.

Another group of classification methods supported in scikit-fda is the family
of depth-based classifiers, introduced in Section 2.3.4. They use the statistical depth
measures described in Section 8.3.4. The maximum-depth method (Cuevas, Febrero,
and Fraiman, 2007), a simple classifier which predicts the class in which the new
observation has a greater depth, is implemented in class MaximumDepthClassifier.
The depth vs depth (DD) classifier proposed by Li, Cuesta-Albertos, and Liu, 2012
is available as class DDClassifier. Finally, the class DDGClassifier implements the
more flexible generalized depth-depth classifier (DDG) (Cuesta-Albertos, Febrero-
Bande, and Oviedo de la Fuente, 2017).

The following code illustrates the usage of the DDG classifier using the Berkeley
Growth dataset. Here, an instance of the class DDGClassifier receives two depths
to consider. In this case BD and MBD have been used. The multivariate classifier to
be used in the depth space is specified upon instantiation as well. In this case, the
multivariate k-NN classifier with a fixed number (5) of neighbors is employed.� �

1 import skfda
2 from sklearn.model_selection import train_test_split
3 from sklearn.neighbors import KNeighborsClassifier
4 from skfda.exploratory.depth import BandDepth , ModifiedBandDepth
5

6 X, y = skfda.datasets.fetch_growth(return_X_y=True)
7

8 X_train , X_test , y_train , y_test = train_test_split(
9 X, y, random_state=0)

10

11 clf = skfda.ml.classification.DDGClassifier(
12 depth_method =[
13 ("BD", BandDepth ()),
14 ("MBD", ModifiedBandDepth ()),
15 ],
16 multivariate_classifier=KNeighborsClassifier(
17 n_neighbors=5,
18 ),
19 )
20 clf.fit(X_train , y_train)
21 clf.score(X_test , y_test)� �

Out:
0.8333333333333334

Clustering

The package scikit-fda provides generalizations of standard clustering algorithms
for functional data, such as k-means, fuzzy C-means (FCM), and hierarchical cluster-
ing. In particular, the class KMeans, allows the use of functional distances in k-means.
The following code illustrates the application of this algorithm to the yearly temper-
ature curves of the Canadian Weather dataset, with the number of clusters equal to
3. The result is plotted in the left plot of Figure 8.15.� �

1 import skfda
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FIGURE 8.15: The left plot shows the curves of the Canadian Weather
dataset. The color of each curve indicates to which cluster it is as-
signed in k-means. The darker curves are the centroids of each cluster.
The right plot shows the degrees of membership of each of the curves
to each cluster, when fuzzy C-means (FCM) is applied. The length of
a segment indicates the degrees of membership of a particular curve

to the corresponding cluster.

2

3 X, y = skfda.datasets.fetch_weather(return_X_y=True)
4 X = X.coordinates[0]
5

6 kmeans = skfda.ml.clustering.KMeans(n_clusters=3, random_state=0)
7 kmeans.fit(X)
8

9 fig = skfda.exploratory.visualization.clustering.ClusterPlot(
10 kmeans ,
11 X,
12 ).plot()� �

FCM, the fuzzy version of k-means described in Chapter 6, is also implemented
in scikit-fda, in the class FuzzyCMeans. Visualization functions are also provided to
plot the degrees of membership to each of the clusters of the curves. The follow-
ing code illustrates the application of the FCM algorithm to the Canadian Weather
dataset, again with 3 clusters.� �

1 import skfda
2 import matplotlib.pyplot as plt
3

4 X, y = skfda.datasets.fetch_weather(return_X_y=True)
5 X = X.coordinates[0]
6

7 fuzzycmeans = skfda.ml.clustering.FuzzyCMeans(
8 n_clusters=3,
9 random_state=0,

10 )
11 fuzzycmeans.fit(X)
12

13 fig = plt.figure(figsize =(10, 5))
14 skfda.exploratory.visualization.clustering.ClusterMembershipPlot(
15 fuzzycmeans ,
16 X,
17 fig=fig ,
18 ).plot()� �

The result of the execution of this code is displayed in Figure 8.15.
Finally the class AgglomerativeClustering for agglomerative hierarchical clus-

tering is also provided. This is a wrapper of the scikit-learn class of the same name
so that it can be used with functional inputs and functional distances.
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Integration with scikit-learn for machine learning

The scikit-fda package has been especially designed for seamless integration with
scikit-learn (Pedregosa et al., 2011). Specifically, there are a number of methods that
transform the functional data into a two-dimensional array so that scikit-learn’s ma-
chine learning algorithms can be applied. For instance, the method transform() of
the EvaluationTransformer class returns an array whose elements are the values of
the functions in the sample at a specified set of points. If the data are in a basis repre-
sentation, the expansion coefficients can be extracted using the methods of the class
CoefficientsTransformer. Additionally, other scikit-fda methods, such as variable
selection, can be used to provide a multivariate characterization of the functional
observations.

The classes and methods provided for preprocessing and machine learning con-
form to scikit-learn’s API (Buitinck et al., 2013). An advantage of adopting this
standard is that they can be employed in scikit-learn pipelines (class Pipeline). The
following code illustrates how to build such a pipeline for a classification problem
with functional data:� �

1 import skfda
2

3 from sklearn.model_selection import GridSearchCV , train_test_split
4 from sklearn.pipeline import Pipeline
5 from sklearn.svm import SVC
6

7 import skfda.preprocessing.smoothing as smoothing
8 import skfda.preprocessing.dim_reduction as dimred
9

10 X, y = skfda.datasets.fetch_phoneme(return_X_y=True)
11

12 X_train , X_test , y_train , y_test = train_test_split(
13 X, y, random_state=0)
14

15 smoothing_step = smoothing.kernel_smoothers.KNeighborsSmoother ()
16 dimred_step = dimred.feature_extraction.FPCA()
17 classification_step = SVC()
18

19 pipeline = Pipeline ([
20 (’smoothing ’, smoothing_step),
21 (’dimred ’, dimred_step),
22 (’classification ’, classification_step)])
23

24 grid = GridSearchCV(
25 pipeline ,
26 param_grid ={
27 ’smoothing__smoothing_parameter ’: [3, 5, 7],
28 ’dimred__n_components ’: [1, 2, 3],
29 ’classification__C ’: [0.001, 0.01, 0.1, 1, 10],
30 })
31

32 grid.fit(X_train , y_train)
33

34 score = grid.score(X_test , y_test)
35

36 print(f"{score :.3}")� �
Out:

0.879
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In this pipeline, the following sequence of operations is applied: kernel smooth-
ing using the nearest-neighbors estimator, dimensionality reduction by functional
principal components analysis (FPCA), and, finally, a standard (multivariate) sup-
port vector machine (SVM) classifier with an RBF kernel. The hyperparameters of
the complete model, including those that correspond to preprocessing, are tuned by
cross-validation using scikit-learn’s class GridSearchCV. Specifically, the number of
neighbors in the nearest-neighbors kernel smoother is selected between the values
3, 5, and 7. The number of principal components considered ranges from 1 to 3. The
grid [0.001, 0.01, 0.1, 1.0, 10.0] is explored to determine the regularization parameter
of the SVM. Then, the best values of the hyperparameters are used to fit the model
using the complete training set. Finally, the accuracy of the classifier is computed
and printed.

8.4 Code quality and documentation

The scikit-fda library has been designed to provide a powerful, self-contained, flex-
ible, stable, and easy-to-use framework for the analysis of functional data in Python.
The package is built as a SciPy Toolkit (SciKit)1. It is fully integrated in the Scientific
Python software ecosystem2. Scientific Python is a collection of free and open-source
Python packages for scientific and technical computing (Oliphant, 2007; Millman
and Aivazis, 2011). Standard coding and naming practices are used throughout the
project (Van Rossum, Warsaw, and Coghlan, 2001; Goodger and Van Rossum, 2001).
This not only improves the legibility of the code and simplifies its maintenance, but
also facilitates external contributions to the development of the package. When-
ever appropriate, the design conforms to scikit-learn specifications (Pedregosa et al.,
2011), so that the machine learning tools implemented in that package can be readily
applied to functional data. To ensure the quality and robustness of the software, a
comprehensive suite of unit and integration tests is provided. These automated tests
are executed regularly in a continuous integration environment. We have attempted
also to minimize the number of dependencies and to provide flexible interfaces that
are intuitive and consistent throughout the application.

The scikit-fda package is free and open-source software distributed under the
OSI-approved 3-Clause BSD license3. The GitHub page of scikit-fda (https://
github.com/GAA-UAM/scikit-fda) is the main communication channel with the de-
velopers of the package for questions, bug reports, and feature requests. Contribu-
tions from the members of the FDA community are encouraged, as are comments
and suggestions to improve the quality of the software.

To facilitate the use of scikit-fda, exhaustive documentation, including installa-
tion instructions, tutorials, API references, and illustrative examples are provided.
The documentation, which is available online at https://fda.readthedocs.io, is
built with the Python tool Sphinx (Sphinx Development Team, 2020). The examples
and tutorials have been devised with Sphinx-Gallery (Nájera et al., 2020). They can
be viewed online or downloaded as interactive Jupyter notebooks (Kluyver et al.,
2016). In Figure 8.16, two screenshots of the documentation pages are shown: A
reference page for the Brownian covariance function and an example of use of the
functional boxplot functionality are displayed on the left and right panels of the fig-
ure, respectively.

1See https://svn.scipy.org/scikits.html for further details on SciKits (Accessed 2023-05-18)
2https://scientific-python.org/ (Accessed 2023-05-18)
3https://opensource.org/licenses/BSD-3-Clause (Accessed 2023-05-18)

https://github.com/GAA-UAM/scikit-fda
https://github.com/GAA-UAM/scikit-fda
https://fda.readthedocs.io
https://svn.scipy.org/scikits.html
https://scientific-python.org/
https://opensource.org/licenses/BSD-3-Clause
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FIGURE 8.16: scikit-fda documentation: On the left panel, the refer-
ence page of the Brownian covariance function is shown. On the right

one, an illustration of the functional boxplot functionality.

8.5 Examples of use

The goal of this section is to illustrate the machine learning capabilities of scikit-
fda, by addressing a representative set of machine learning problems with func-
tional data, including clustering, regression, and classification, from different areas
of application. These problems also serve to illustrate the special properties and the
difficulties posed by the analysis of these types of data.

This section is based on the work presented at Ramos-Carreño et al., 2022. For
the sake of reproducibility, the code used in this section is available at https://fda.
readthedocs.io/ictai-examples, as part of the documentation of the package, and
can be executed in the cloud using the link in the bottom part of each example.
Import statements are ommited in the code for clarity.

8.5.1 Meteorological data: data visualization, clustering, and FPCA

We now use the annual temperature curves of the AEMET dataset (see Chapter 3) to
illustrate some of the functionalities offered by scikit-fda for visualization, cluster-
ing and functional principal component anaysis (FPCA). We can download the data
directly with scikit-fda by using the following code. The result is an object of class
FDataGrid which contains the functional data in a discretized form.� �

1 X, _ = fetch_aemet(return_X_y=True)� �
This is an example of the scikit-fda tools for fetching datasets, based on the pack-

age scikit-datasets (Díaz-Vico and Ramos-Carreño, 2022), explained in Chapter 7.
Now, we select the temperature curves (the first coordinate function) and plot

them in the upper part of Figure 8.17.� �
1 X = X.coordinates[0]
2 X.plot()� �

https://fda.readthedocs.io/ictai-examples
https://fda.readthedocs.io/ictai-examples
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FIGURE 8.17: Functional temperature observations from the AEMET
dataset (up) as well as its corresponding boxplot (bottom).

In this figure, one can see that all stations present the typical behavior of the north-
ern hemisphere, with higher temperatures in summer that descend during winter.
However, temperatures at some stations are atypical with respect to the majority:
a purple curve with a significantly lower temperature than the others, and a set of
flatter curves with warmer winters. In fact, these are outliers of magnitude and
shape, respectively. The first one belongs to the Navacerrada station, at 1894 me-
ters in height near a ski resort, while the others correspond to stations in the Canary
Islands, known for their subtropical climate.

One way to detect and visualize magnitude outliers is to use the functional box-
plot proposed in Sun and Genton, 2011.� �

1 Boxplot(
2 X, depth_method=ModifiedBandDepth (),
3 ).plot()� �

The resulting plot is in the bottom part of Figure 8.17. This is an extension of the
classical univariate boxplot to the functional case. In pink, the central envelope of
the data contains the deepest 50% of observations. The outlying envelope, bounded
by the most external blue curves, separates the typical trajectories from magnitude
outliers such as Navacerrada, in red.

The centrality, or depth, of a curve is quantified by statistical depths measures.
For instance, the deepest observation in a dataset corresponds to the median (de-
picted in black in Figure 8.17), while outliers have depth values tending to zero.
There are many proposals of functional depths, each of which defines different me-
dian and envelopes, and verifies different properties (Gijbels and Nagy, 2017). In
scikit-fda are available integrated depths (Fraiman and Muniz, 2001), as well as the
band and the modified band depths (López-Pintado and Romo, 2009). The last one
is used in the previously shown boxplot.
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The functional boxplot is not very suitable for detecting shape outliers. To this
end, the magnitude-shape plot (Dai and Genton, 2018) and the outliergram (Arribas-
Gil and Romo, 2014), both available in the library, can be used. All these visual tools
can be combined and used interactively.

We now center our attention in grouping the stations by climate using the an-
nual temperatures. This is a clustering problem that can be addressed adapting
the classical k-means algorithm to the functional setting, using a distance between
functions. The library scikit-fda also provides hierarchical clustering, and fuzzy C-
means (FCM), a variant of k-means in which each observation has a degree of mem-
bership to each cluster. The package offers a variety of functional distances. Here,
we use the L2 distance. In the following code, the k-means algorithm is executed for
5 clusters (climatic regions). As the algorithm is sensitive to the initialization of the
cluster centers, the best of 10 different initializations is chosen.� �

1 kmeans = KMeans(
2 n_clusters=5,
3 n_init=10,
4 metric=l2_distance ,
5 )
6 clusters = kmeans.fit_predict(X)� �

A map of Spain with the location of the weather stations is displayed in Fig-
ure 8.18. The colors indicate to which cluster each station is assigned. The clusters
are in good correspondence with the climatic regions of Spain. The red points, lo-
cated only in the Canary Islands, would correspond to the subtropical climate. The
green points, in the north of mainland Spain, could represent the Atlantic climate.
Yellow stations are located mostly along the Balearic Islands, the south, and the west-
ern coast of the Iberian peninsula, suggesting the so-called Mediterranean climate.
Orange points generally appear at inland locations whose climate is continental. Fi-
nally, the purple stations are scattered on the coldest points of Spain, including some
mountain ranges, and are thus examples of cold or high mountain climates.

Focusing on the Canary Islands, we can observe the presence of two points
(yellow-mediterranean and purple-mountain) that, at a first glance, seem to be mis-
labeled. A closer inspection, however, shows that the “Mediterranean” station is the
airport of Los Rodeos, characterized for having dense fog and a lower temperature
than their surroundings (Romeo and Marzol Jaén, 2014). The cold-mountain station
corresponds to an observatory located on an altitude of 2390 meters above sea level,
at the slopes of Mount Teide, the highest mountain in Spain.

Although the clustering is strongly aligned with the climes of Spain, it is diffi-
cult to understand how the labels have been assigned. Dimensionality reduction
techniques may be useful, because they allow us to identify features for the interpre-
tation of the results. The most popular dimensionality reduction method is, proba-
bly, principal components analysis (PCA). In PCA, the data are projected along the
(orthogonal) directions of maximal variance. In functional principal components
analysis (FPCA), the idea remains the same, but calculations need to be adapted.
As an example, projections are made with the L2 inner product (see Section 2.2)
〈x1, x2〉L2 =

∫
T x1(t)x2(t)dt. The following code obtains the first two principal com-

ponents (fit) and projects the data on these directions (transform). Finally, to get
some information about the components, the mean of temperatures (blue lines), and
the result of adding and subtracting the principal components (orange and green
lines) are plotted in Figure 8.19.� �

1 fpca = FPCA(n_components=2)
2 fpca.fit(X)
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Esri, USGS | Instituto Geográfico Nacional, Esri, HERE, Garmin, FAO, NOAA, USGS | Earthstar
Geographics

Esri, USGS | GEOMATIC, Esri, HERE, Garmin, FAO, NOAA, USGS | Earthstar Geographics

FIGURE 8.18: Weather stations clusters based on temperature curves
in mainland Spain (top) and on the Canary Islands (bottom).
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FIGURE 8.19: Mean of AEMET temperatures (blue )± principal com-
ponents (orange and green)

3 X_red = fpca.transform(X)
4 FPCAPlot(
5 fpca.mean_ , fpca.components_ ,
6 ).plot()� �

The first component captures the average temperature. The second one marks
the difference between summer (maximum of temperatures) and winter (minimum).
In some sense, it measures the thermal amplitude. Moreover, dimensionality reduc-
tion allows us to visualize the data in the reduced space. For example, Figure 8.20
shows a scatter plot of the temperatures in the space of the first two principal compo-
nents. Colors are those of the clusters obtained previously with k-means. Following
the previous discussion, we can interpret the first component (x axis) as the average
temperature, from colder (left) to warmer (right) locations. On the other hand, the
second component (y axis) represents the thermal amplitude, from small variations
(bottom) to higher differences (top) between summer and winter. We can see that
stations from Canary Islands (red points) are quite different to the others (as seen
in Figure 8.17), with warmer average temperatures and low variation, which are
characteristics of the subtropical climate. Green points have colder temperatures,
but have low thermal amplitude too. These points correspond to the northern coast
of mainland Spain, having an Atlantic climate. Continental and Mediterranean cli-
mates (orange and yellow) present a much more pronounced amplitude, with the
difference that continental climate has lower overall temperatures. However, two
stations identified as Mediterranean by k-means seem to be mislabeled in this PCA
representation. With a closer inspection, we see that one of these outliers is, precisely,
the already mentioned airport of Los Rodeos, which has “Mediterranean” average
temperature, with the low annual variations of the Canary Islands, where it is lo-
cated. The other corresponds to Tarifa, in the Strait of Gibraltar. It is a very windy
place which receives the cold water from the Atlantic. This causes Tarifa to have
its own micro-climate characterized by smoother annual temperatures, as shown in
the scatter plot. Finally, purple locations (cold-mountain climate) exhibit a variety
of amplitudes, but are characterized for the lowest average temperatures. In partic-
ular, the leftmost point corresponds to Navacerrada station, the magnitude outlier
detected in Figure 8.17.
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FIGURE 8.20: AEMET data projected to their first two principal com-
ponents.

8.5.2 Spectrometric data: derivatives, regression, and variable selection

In this section we use the Tecator dataset (see Chapter 3) to illustrate the regression
problem and some new functionalities. In this case, response variables are retrieved
jointly with the functional data. We only keep the fat content as target for regression
(Ferraty and Vieu, 2006). Trajectories are plotted in the upper part of Figure 8.21
using a color gradient for the fat content.� �

1 X, y = fetch_tecator(return_X_y=True)
2 y = y[:, 0]
3 X.plot(gradient_criteria=y)� �

We can appreciate that the magnitude of each curve bears almost no correlation
with its fat contents. Nevertheless, it is well known in the literature that this problem
becomes easier by using the second derivative of the trajectories (Ferraty and Vieu,
2006). This can be a convenient preprocessing which is exclusive of functional data.
So, we compute the second derivative of the data:� �

1 X_der = X.derivative(order=2)� �
The resulting derivatives are in the middle plot of Figure 8.21. After differentia-
tion, the fat content is clearly proportional to the magnitude of the curves at several
points.

Before performing regression, as explained in Ramsay and Silverman, 2005, a
common approach to prevent overfitting when working with continuous regression
coefficients is to use the representation in a basis expansion. As an example, we
represent the original data in a B-spline basis with B = 10 elements with scikit-fda:� �

1 basis = BSpline(n_basis=10)
2 X_der_basis = X_der.to_basis(basis)� �
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FIGURE 8.21: On top, the curves of the Tecator dataset. A color gra-
dient indicates the fat content. The middle plot shows the second
derivative of these curves. The bottom plot shows the dependency of
the target on each function point. The two points of higher depen-

dency have been marked with vertical black lines.

We can split the data in train and test partitions using, for example, the function
train_test_split from scikit-learn, which is able to deal with the functional ob-
jects of scikit-fda. Then we use the standard functional linear regression model with
scalar response y = β0 +

∫
T β1(t)x(t)dt (Ramsay and Silverman, 2005). The follow-

ing code fits the regression model, obtains the predicted values for the test partition,
and compute the score of the prediction in terms of the coefficient of determination
R2:� �

1 regressor = LinearRegression ()
2 regressor.fit(X_train , y_train)
3 y_pred = regressor.predict(X_test)
4 score = r2_score(y_test , y_pred)� �

Some alternatives available in the library include nonparametric models based
on nearest neighbors or kernel regression. It is even possible to add additional reg-
ularization terms for the coefficients, if needed. Nevertheless, even with this simple
model, we are able to obtain an R2 score of 0.951 by using the second derivatives of
the Tecator trajectories.

Although this model has a good performance, it lacks interpretability. In the
plot of the derivatives, it is easy to identify a couple of points that should provide
a good prediction by themselves. Thus, we would expect that a variable selection
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procedure could find those points of interest and reduce the dimensionality of the
data obtaining a more interpretable model. Many classical multivariate methods
for variable selection do not work with continuous functional data due to the high
redundancy between close variables. The package scikit-fda offers several variable
selection methods that prevent this problem, from adaptations of multivariate meth-
ods that take redundancies into account, such as minimum-redundancy-maximum-
relevance (mRMR) (Berrendero, Cuevas, and Torrecilla, 2016a), to purely functional
methods that consider the nature of these data, such as a proposal based on repro-
ducing kernel Hilbert spaces (Berrendero, Cuevas, and Torrecilla, 2018) or recursive
maxima hunting (Torrecilla and Suárez, 2016). Here, we use the method maxima
hunting (MH), that computes the relevance of each point x(t) as its relation with the
response variable (quantified with a measure of statistical dependence). MH selects
the local maxima of the resultant relevance function, what automatically removes
redundant variables (Berrendero, Cuevas, and Torrecilla, 2016b). In the following
example we use MH to select the two most relevant local maxima.� �

1 var_sel = MaximaHunting(
2 local_maxima_selector =(
3 RelativeLocalMaximaSelector(
4 max_points=2,
5 )
6 )
7 )
8 X_mv = var_sel.fit_transform(X_der , y)� �

In the bottom plot of Figure 8.21 we can see the relevance function for Tecator deriva-
tives with the distance correlation measure (Székely, Rizzo, and Bakirov, 2007), and
the two selected variables. These are also marked over the derivative curves in the
middle plot, where we can appreciate that they correspond to points where the fat
content was proportional to the magnitude of the curves.

After selection we can apply any multivariate regression model from the scikit-
learn library. For example, the standard linear model obtains a R2 score of 0.917. This
is slightly worse than the score obtained with the whole trajectories, but it is using
only two variables, what entails a significant gain in interpretability. Moreover, we
could even use regression trees or any other method available in the scikit-learn to
try to improve the performance without losing interpretability.

8.5.3 Voice signals: smoothing, registration, and classification

The binary version of the Phoneme dataset, restricted to the first 150 variables (see
Chapter 3) was chosen to illustrate smoothing, functional data registration (align-
ment) and classification. Analogously to previous examples, we download the data
using the fetch_phoneme function. The top plot in Figure 8.22 shows the first 20
curves with a different color per class.� �

1 X[:20].plot(group=y)� �
We can observe that phoneme trajectories are particularly noisy, which may com-

plicate further analysis. This can be solved by smoothing the curves, for example,
using a weighted average of neighbouring points x̂(t) =

∫
T wt(s)x(s)ds, where x̂ is

a smoothing estimation of the underlying signal and wt(s) has its maximum at s = t
and decreases monotonically from that point. Several smoothing strategies are avail-
able in scikit-fda ranging from different kernel smoothers, widely used in density
estimation, to smoothing via representation in a basis, which also allows penaliz-
ing the curvature to achieve additional smoothness. Here, we smooth the Phoneme



166 Chapter 8. scikit-fda: a Python package for functional data analysis

0 1 2 3 4

10

20

lo
g
-p
e
ri
o
d
o
g
ra
m

0 1 2 3 4

10

15

20

lo
g
-p
e
ri
o
d
o
g
ra
m

0 1 2 3 4
Frequency

10

15

20

lo
g
-p
e
ri
o
d
o
g
ra
m

FIGURE 8.22: Ten curves from the Phoneme dataset with classes “aa”
(in blue) and “ao” (in orange). We can see original curves (top),
smoothed curves (middle), and the curves after per-class registration
(bottom). Class means are plotted in thick darker lines in the last two

plots.

observations with a Nadaraya-Watson kernel smoother. The bandwith parameter
controls the degree of smoothing, and has to be adjusted to prevent infra or over-
smoothing.� �

1 smoother = KernelSmoother(
2 NadarayaWatsonHatMatrix(
3 bandwidth=0.1,
4 kernel=normal ,
5 ),
6 )
7 )
8 X_smooth = smoother.fit_transform(X)� �

The first 20 smoothed curves are shown in the middle plot of Figure 8.22. We can
see that the per-class means have much less pronounced maxima and minima than
the individual observations. This can be an indicator of misalignment. Misalign-
ment is a new challenge that did not appear in multivariate statistics. It affects not
only to the mean estimation, but methods such as variable selection, that assume
aligned data to start with. Functional data registration is the process for which the
data is aligned so that maxima, minima, or other relevant landmarks appear at the
same points in each observation (Marron et al., 2015). The package scikit-fda offers
shifting and elastic registration procedures. In this case we do not have information
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about the landmarks of interest, so we can use an advanced elastic registration pro-
cedure based on the properties of the Fisher-Rao distance (Srivastava et al., 2011).
For example, the following code registers together all curves from the first class:� �

1 reg = FisherRaoElasticRegistration(
2 penalty=0.01,
3 )
4 X_reg = reg.fit_transform(X_smooth[y==0])� �

The result of the per-class registration is displayed in the bottom plot of Figure 8.22.
We can see that the registered curves have now their landmarks properly aligned,
and the class means more closely resemble a typical trajectory of the correspond-
ing class. More importantly, we can appreciate more clearly that the disposition of
maxima and minima is different between classes. Hence, we should not attempt to
register all curves together.

As we have just seen, aligning all the curves at the same time entails a loss of
discriminant information. Therefore, for the classification task, we consider the un-
aligned smoothed functions of the middle plot in Figure 8.22. Moreover, a classi-
fier that is resilient to unaligned data should be preferable. The package scikit-fda
offers a variety of classification algorithms for functional data: distance-based clas-
sifiers such as nearest centroids or k-nearest neighbors; depth-based classifiers, in-
cluding maximum-depth (Cuevas, Febrero, and Fraiman, 2007) and the DDG clas-
sifier (Cuesta-Albertos, Febrero-Bande, and Oviedo de la Fuente, 2017); or even
functional logistic regression (Berrendero, Bueno-Larraz, and Cuevas, 2022). As an
example, we use a k-nearest neighbors classifier with the functional Mahalanobis
distance proposed in Berrendero, Bueno-Larraz, and Cuevas, 2020.� �

1 classifier = KNeighborsClassifier(
2 n_neighbors=67,
3 metric=MahalanobisDistance ())� �

The sample is split in train and test, leaving the 30% of the data as the test partition.
We then fit the model and compute the predictions, obtaining an accuracy score of
0.805:� �

1 classifier.fit(X_train , y_train)
2 y_pred = classifier.predict(X_test)
3 score = accuracy_score(y_test , y_pred)� �

For simplicity, we have fixed the number of neighbors to
√

N. In a complete analysis
it is often better to choose the values for the number of neighbors and the smoothing
parameter via a cross validation procedure. As most objects in scikit-fda have the
same application programming interface (API) as scikit-learn classes (Buitinck et al.,
2013), the hyperparameter selection and cross validation utilities of that package can
be directly applied, making this an easy task.

8.6 A comparative study of functional classifiers with scikit-
fda

The goal of this section, based on the work presented in Ramos-Carreño, Torrecilla,
and Suárez, 2022, is to compare the predictive performance of different classifiers for
these types of data, using the tools provided in scikit-fda. Most off-the-shelf meth-
ods, such as the ones implemented in the Python library scikit-learn (Pedregosa et
al., 2011), assume that the instances to be classified are characterized by vectors of
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TABLE 8.1: Characteristics of the datasets considered.

N M C Majority
class (%) Reference

ArrowHead 211 251 3 38.39 Dau et al., 2019
Australian 190 365 2 77.37 Bureau of Meteorology, 1992
Cell 90 18 2 51.11 Spellman et al., 1998
Coffee 56 286 2 51.79 Dau et al., 2019
ECG 2026 85 2 74.33 Baíllo, Cuevas, and Fraiman, 2010
Fish 350 463 7 14.29 Dau et al., 2019
Growth 93 31 2 58.06 Baíllo, Cuevas, and Fraiman, 2010
GunPoint 200 150 2 50.00 Dau et al., 2019
MCO 89 360 2 50.56 Baíllo, Cuevas, and Fraiman, 2010
Medflies 534 30 2 52.06 Baíllo, Cuevas, and Fraiman, 2010
NOx 115 24 2 66.09 Febrero, Galeano, and González-Manteiga, 2008
Phoneme 4509 256 5 25.79 Baíllo, Cuevas, and Fraiman, 2010
Phoneme (bin) 1717 50 2 59.52 Baíllo, Cuevas, and Fraiman, 2010
Plane 210 144 7 14.29 Dau et al., 2019
Symbols 1020 398 6 17.75 Dau et al., 2019
Tecator 215 100 2 64.19 Ferraty and Vieu, 2006
Tecator (2nd der) 215 100 2 64.19 Ferraty and Vieu, 2006
Yoga 3300 426 2 53.64 Dau et al., 2019

attributes. The direct application of these methods to functional data in discretized
form does not take advantage of their continuous structure, and can be problem-
atic from a theoretical and practical perspective. A possible approach is to use a
dimensionality reduction method and then apply a standard multivariate classifier
(Berrendero, Cuevas, and Torrecilla, 2018). Alternatively, the classification method
can be adapted to the functional setting. For instance, a nearest-centroid classifier
can be built using the per-class functional means as prototypes and a functional
metric to compute distances (Delaigle and Hall, 2012). It is also possible to uti-
lize functional measures of centrality in a sample to design depth-based classifiers
(Cuevas, Febrero, and Fraiman, 2007; Cuesta-Albertos, Febrero-Bande, and Oviedo
de la Fuente, 2017). In k-NN, a functional distance can be used to identify the nearest
neighbors (Baíllo, Cuevas, and Fraiman, 2010). Random forest (Breiman, 2001) can
be directly employed with functional data by using the values of the functions as
attributes.

The performance of these different types of classifiers has been tested using a
wide range of functional classification problems from different areas of application.
A total of 5 multiclass datasets (arrowheads, fish, phoneme, plane and symbols)
and 13 binary classification problems are used in this comparison. These datasets
themselves are some of the ones described in Chapter 3. A summary of the char-
acteristics of these datasets is presented in Table 8.1. In this table, N is the sample
size, M the size of the grid, and C the number of classes. For the Phoneme dataset
the data has been smoothed by applying a Nadaraya-Watson smoother to the orig-
inal curves. The binary version of this dataset truncated to the first 50 features has
also been included in the study (Delaigle and Hall, 2012). We also include the sec-
ond derivatives of Tecator, as for this dataset they contain most of the information
(Ferraty and Vieu, 2006). To compute the derivatives, the original curves have been
approximated using B-splines.

In this study, four different families of classifiers are considered: nearest centroid
classifiers (Delaigle and Hall, 2012), a functional variable selection method (Berren-
dero, Cuevas, and Torrecilla, 2018) used in combination with different multivariate
classifiers, classifiers based on the notion of depth (Cuevas, Febrero, and Fraiman,
2007; Cuesta-Albertos, Febrero-Bande, and Oviedo de la Fuente, 2017), and k-NN
classifiers that employ different functional distances (Baíllo, Cuevas, and Fraiman,
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2010). In what follows, we first compare classifiers within each of these families.
From each of these families the classifier that has the best overall predictive perfor-
mance in the problems considered is selected. Finally, the selected predictors are
compared between each other and with random forest, which is one of the best off-
the-shelf classifiers (Fernández-Delgado et al., 2014).

The infrastructure for the empirical evaluation is provided by the scikit-datasets
Python package (Díaz-Vico and Ramos-Carreño, 2022). The classifiers are built using
scikit-fda (Ramos-Carreño et al., 2023), a Python package that offers a comprehen-
sive set of tools for statistical analysis and machine learning for functional data, in
combination with scikit-learn (Pedregosa et al., 2011). For each of the classification
problems, stratified sampling is used to partition the data into a training set, which
includes 70% of the instances available for learning, and a test set with the remain-
ing ones. When necessary, 5-fold cross-validation within the training set is used to
determine the values of the hyperparameters of the different classifiers.

The results reported consist of the mean accuracy and standard deviation over
100 random partitions for each particular classifier-dataset combination. To account
for sample variability, the classifiers are trained and tested using the same partitions.
For each dataset, the scores of the best and second best predictors are highlighted in
boldface and underlined, respectively. An asterisk is used to indicate statistically
significant differences at the 5% level using a paired t-test.

An overall comparison of the different classification methods is made in terms
of their average accuracy and rank. A Friedman test is used to determine whether
the overall differences between average ranks are statistically significant. If signif-
icant differences are detected by this test a pairwise post-hoc Nemenyi test is used
(Demšar, 2006). The results of these tests are summarized in critical distance (CD)
diagrams generated with the autorank Python package (Herbold, 2020).

8.6.1 Nearest centroid classifiers

Nearest centroid classifier (NC), defined in Section 2.3.4, conform the first family of
methods in the comparison. In all these methods, the class of a particular observa-
tion is predicted as the one whose mean (computed from the training data) is closer
to it. The closeness is measured using a metric. Four different metrics are considered
(see Section 2.2 for the definitions):

• NC-L1 uses the L1-distance

dL1(x1, x2) =
∫
T
|x1(t)− x2(t)|dt. (8.26)

• NC-L2 with the L2-distance:

dL2(x1, x2) =

√∫
T
|x1(t)− x2(t)|2dt. (8.27)

• NC-Mah uses the α-Mahalanobis distance (Berrendero, Bueno-Larraz, and Cuevas,
2020). In the multivariate case, the Mahalanobis distance is

dMah(x1, x2) =
√
(x1 − x2)TΣ−1(x1 − x2) =

√
〈Σ−1/2(x1 − x2), Σ−1/2(x1 − x2)〉,

(8.28)
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TABLE 8.2: Comparison between nearest centroids classifiers.

NC-L1 NC-L2 NC-Mah NC-Ang

ArrowHead 0.734 ± 0.045 (4) 0.765 ± 0.054 (3) 0.782 ± 0.043 (1)* 0.765 ± 0.054 (2)
Australian 0.864 ± 0.038 (3) 0.852 ± 0.041 (4) 0.903 ± 0.040 (2) 0.906 ± 0.034 (1)
Cell 0.861 ± 0.069 (3) 0.861 ± 0.065 (2) 0.869 ± 0.063 (1) 0.818 ± 0.067 (4)
Coffee 0.955 ± 0.049 (4) 0.959 ± 0.048 (2) 1.000 ± 0.000 (1)* 0.959 ± 0.048 (2)
ECG 0.780 ± 0.025 (4) 0.840 ± 0.016 (2) 0.971 ± 0.006 (1)* 0.790 ± 0.028 (3)
Fish 0.616 ± 0.041 (4) 0.635 ± 0.045 (3) 0.716 ± 0.041 (1)* 0.640 ± 0.044 (2)
Growth 0.742 ± 0.102 (4) 0.777 ± 0.093 (3) 0.958 ± 0.032 (1)* 0.934 ± 0.039 (2)
GunPoint 0.712 ± 0.060 (2) 0.706 ± 0.058 (3) 0.770 ± 0.051 (1)* 0.684 ± 0.055 (4)
MCO 0.635 ± 0.079 (4) 0.637 ± 0.078 (3) 0.986 ± 0.026 (1)* 0.839 ± 0.068 (2)
Medflies 0.551 ± 0.031 (3) 0.556 ± 0.030 (1) 0.548 ± 0.034 (4) 0.553 ± 0.032 (2)
NOx 0.726 ± 0.077 (4) 0.782 ± 0.079 (3) 0.898 ± 0.052 (1)* 0.851 ± 0.057 (2)
Phoneme 0.851 ± 0.008 (4) 0.867 ± 0.007 (3) 0.910 ± 0.006 (1)* 0.869 ± 0.008 (2)
Phoneme (binary) 0.750 ± 0.017 (4) 0.762 ± 0.016 (3) 0.812 ± 0.015 (1)* 0.798 ± 0.015 (2)
Plane 0.954 ± 0.028 (2) 0.953 ± 0.027 (3) 0.969 ± 0.020 (1)* 0.949 ± 0.028 (4)
Symbols 0.887 ± 0.015 (3) 0.891 ± 0.015 (2) 0.920 ± 0.016 (1)* 0.878 ± 0.015 (4)
Tecator 0.681 ± 0.046 (4) 0.685 ± 0.045 (3) 0.953 ± 0.021 (1)* 0.860 ± 0.036 (2)
Tecator (2nd derivative) 0.961 ± 0.020 (2) 0.960 ± 0.022 (3) 0.959 ± 0.021 (4) 0.971 ± 0.017 (1)*
Yoga 0.519 ± 0.035 (4) 0.528 ± 0.038 (2) 0.578 ± 0.016 (1)* 0.527 ± 0.032 (3)

Average accuracy 0.766 0.779 0.861 0.811
Average rank 3.444 2.667 1.389 2.444

where Σ is its covariance matrix of a data distribution. However, it is not
posible to compute an equivalent functional version of the Mahalanobis dis-
tance because, in general, the covariance operator is not invertible. The α-
Mahalanobis distance is a regularized version of the Mahalanobis distance for
functional data, that depends on a regularization parameter α. The regulariza-
tion parameter α is fixed by cross validation in the range {10−i, i = 0, . . . , 6}.

• NC-Ang utilizes the angular distance

dangular(x1, x2) =
1
π

arccos
( 〈x1, x2〉
‖x1‖‖x2‖

)
. (8.29)

The results of these experiments are presented in Table 8.2 and summarized in a
CD diagram (Figure 8.23). NC with the α-Mahalanobis distance clearly outperforms
the other competitors. The average rank of NC-Mah is significantly better than NC-
L1 and NC-L2. It also obtains significant victories in a number of datasets.
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FIGURE 8.23: CD diagram of the nearest centroid classifiers. Classi-
fiers are grouped with a thick dark line if the differences among their

average ranks are not statistically significant.

8.6.2 Functional variable selection

A usual strategy to deal with functional data consists in applying a dimensionality
reduction method to transform the original trajectories into vectors. Then, any stan-
dard multivariate classifier can be used. Variable selection methodology provides
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TABLE 8.3: Comparison between RKVS-based classifiers.

RKVS+LDA RKVS+QDA RKVS+k-NN RKVS+RF

ArrowHead 0.787 ± 0.044 (4) 0.832 ± 0.043 (3) 0.855 ± 0.045 (1)* 0.834 ± 0.043 (2)
Australian 0.889 ± 0.035 (4) 0.890 ± 0.039 (3) 0.936 ± 0.029 (2) 0.937 ± 0.030 (1)
Cell 0.842 ± 0.059 (3) 0.841 ± 0.062 (4) 0.883 ± 0.062 (2) 0.891 ± 0.061 (1)
Coffee 0.974 ± 0.044 (1) 0.970 ± 0.045 (2) 0.968 ± 0.048 (3) 0.951 ± 0.052 (4)
ECG 0.982 ± 0.005 (4) 0.987 ± 0.006 (3) 0.997 ± 0.002 (1)* 0.993 ± 0.005 (2)
Fish 0.804 ± 0.039 (2) 0.824 ± 0.037 (1)* 0.786 ± 0.038 (3) 0.770 ± 0.041 (4)
Growth 0.951 ± 0.034 (2) 0.952 ± 0.038 (1) 0.944 ± 0.040 (3) 0.916 ± 0.054 (4)
GunPoint 0.881 ± 0.038 (4) 0.909 ± 0.042 (2) 0.892 ± 0.041 (3) 0.928 ± 0.039 (1)*
MCO 0.961 ± 0.044 (1) 0.959 ± 0.040 (2) 0.881 ± 0.060 (3) 0.855 ± 0.072 (4)
Medflies 0.591 ± 0.033 (2) 0.589 ± 0.033 (3) 0.568 ± 0.033 (4) 0.599 ± 0.032 (1)
NOx 0.914 ± 0.048 (2) 0.919 ± 0.037 (1) 0.890 ± 0.050 (3) 0.877 ± 0.049 (4)
Phoneme 0.922 ± 0.006 (4) 0.927 ± 0.005 (1)* 0.923 ± 0.005 (3) 0.924 ± 0.006 (2)
Phoneme (binary) 0.820 ± 0.015 (1)* 0.815 ± 0.015 (2) 0.806 ± 0.013 (3) 0.806 ± 0.014 (4)
Plane 0.971 ± 0.019 (2) 0.974 ± 0.020 (1) 0.960 ± 0.020 (4) 0.971 ± 0.021 (3)
Symbols 0.870 ± 0.015 (4) 0.950 ± 0.016 (3) 0.959 ± 0.010 (2) 0.961 ± 0.010 (1)
Tecator 0.938 ± 0.026 (2) 0.974 ± 0.019 (1)* 0.879 ± 0.035 (3) 0.833 ± 0.045 (4)
Tecator (2nd derivative) 0.936 ± 0.026 (4) 0.978 ± 0.015 (2) 0.980 ± 0.015 (1) 0.978 ± 0.017 (2)
Yoga 0.686 ± 0.019 (4) 0.752 ± 0.027 (3) 0.902 ± 0.011 (1)* 0.899 ± 0.010 (2)

Average accuracy 0.873 0.891 0.889 0.884
Average rank 2.778 2.111 2.500 2.556

interpretable reductions by replacing the original functions by their values at sev-
eral well chosen points. In this work, we have chosen the reproducing kernel-based
variable selection (RKVS) method proposed in Berrendero, Cuevas, and Torrecilla,
2018, and explained in Section 2.3.2, as a representative of this family of techniques.

Here, we use the greedy implementation of RKVS available in scikit-fda with
four standard multivariate classifiers included in scikit-learn: linear discriminant
analysis (LDA), quadratic discriminant analysis (QDA), k-nearest neighbors (k-NN)
with the Euclidean distance and random forest (RF). The number of variables se-
lected and the k of k-NN are chosen by cross-validation between 1 and 10. The num-
ber of trees in RF is fixed to 100. Finally, as RKVS is defined for binary problems, we
follow a one-versus-rest strategy for the multiclass datasets.

Accuracy results and ranking for each dataset are shown in Table 8.3. In general
terms, there are no such big differences as in the previous section. This is illustrated
in the associated CD diagram shown in Figure 8.24. However, RKVS+QDA and
RKVS+k-NN obtain better results with significant victories in three datasets each.
In particular, the application of QDA exhibits better global results as indicated by
the average rank. This difference it is not appreciated in the average accuracy by
the effect of the Yoga problem where the performance of RKVS+QDA is bad, maybe
because of a lack of Gaussianity.
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FIGURE 8.24: Critical distance diagram of the multivariate classifiers
applied after RKVS variable selection.
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TABLE 8.4: Comparison between depth-based classifiers.

MD-MBD MD-Mah DDG-MBD DDG-Mah

ArrowHead 0.722 ± 0.051 (4) 0.813 ± 0.048 (2) 0.739 ± 0.045 (3) 0.825 ± 0.043 (1)*
Australian 0.747 ± 0.055 (4) 0.870 ± 0.047 (3) 0.875 ± 0.040 (2) 0.898 ± 0.043 (1)*
Cell 0.764 ± 0.081 (4) 0.869 ± 0.063 (3) 0.878 ± 0.054 (1) 0.875 ± 0.058 (2)
Coffee 0.895 ± 0.068 (3) 0.978 ± 0.039 (1) 0.893 ± 0.065 (4) 0.972 ± 0.049 (2)
ECG 0.740 ± 0.024 (4) 0.909 ± 0.021 (2) 0.874 ± 0.010 (3) 0.942 ± 0.013 (1)*
Fish 0.453 ± 0.057 (4) 0.619 ± 0.042 (3) 0.633 ± 0.041 (2) 0.687 ± 0.044 (1)*
Growth 0.739 ± 0.100 (3) 0.941 ± 0.040 (1)* 0.718 ± 0.080 (4) 0.927 ± 0.044 (2)
GunPoint 0.536 ± 0.026 (4) 0.793 ± 0.058 (3) 0.829 ± 0.049 (2) 0.835 ± 0.053 (1)
MCO 0.634 ± 0.077 (4) 0.877 ± 0.070 (2) 0.636 ± 0.088 (3) 0.904 ± 0.053 (1)*
Medflies 0.529 ± 0.025 (2) 0.489 ± 0.037 (4) 0.552 ± 0.039 (1)* 0.515 ± 0.038 (3)
NOx 0.700 ± 0.072 (4) 0.809 ± 0.055 (2) 0.778 ± 0.052 (3) 0.863 ± 0.053 (1)*
Phoneme 0.813 ± 0.009 (4) 0.901 ± 0.006 (2) 0.847 ± 0.008 (3) 0.905 ± 0.006 (1)*
Phoneme (binary) 0.745 ± 0.018 (3) 0.797 ± 0.015 (2) 0.721 ± 0.022 (4) 0.804 ± 0.016 (1)*
Plane 0.901 ± 0.044 (4) 0.948 ± 0.027 (2) 0.963 ± 0.028 (1)* 0.937 ± 0.029 (3)
Symbols 0.722 ± 0.022 (4) 0.926 ± 0.016 (2) 0.922 ± 0.013 (3) 0.957 ± 0.011 (1)*
Tecator 0.684 ± 0.043 (3) 0.947 ± 0.028 (2) 0.621 ± 0.047 (4) 0.967 ± 0.024 (1)*
Tecator (2nd derivative) 0.964 ± 0.023 (4) 0.970 ± 0.018 (2) 0.967 ± 0.017 (3) 0.978 ± 0.017 (1)*
Yoga 0.588 ± 0.020 (4) 0.640 ± 0.016 (3) 0.659 ± 0.014 (2) 0.698 ± 0.015 (1)*

Average accuracy 0.715 0.839 0.784 0.860
Average rank 3.667 2.278 2.667 1.389

8.6.3 Depth-based classifiers

The next group to consider is the family of depth-based classifiers, described in Sec-
tion 2.3.4. We now compare the maximum depth (MD) methods and the generalized
depth-depth classifier (DDG) approach. In the latter case, we only consider the sim-
plest case with one depth measure in the comparison G = 1.

We have tested these two techniques with two different depth measures: mod-
ified band depth (MBD) (López-Pintado and Romo, 2009), and a depth measure
based on the previously commented α-Mahalanobis distance (Mah) (Berrendero,
Bueno-Larraz, and Cuevas, 2020). DDG is combined with a simple k-NN classifier
with the Euclidean distance. The number of neighbors is set by cross-validation be-
tween 1 and 10. Accuracy and rank positions by dataset are shown in Table 8.4. The
associated CD diagram is shown in Figure 8.25.

These results are quite straightforward. On the one hand, DDG methods clearly
beat their same depth MD counterparts. On the other hand, given a classifier, the α-
Mahalanobis depth versions outperform those using MBD. In summary, DDG-Mah
is the undoubted winner in this family with better performance in average and sig-
nificant victories in most datasets.
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FIGURE 8.25: Critical distance diagram of the depth-based classifiers.

8.6.4 Functional k-NN classifiers

As mentioned in Section 2.3.4, it is possible to extend the k-nearest neighbors (k-NN)
classifier to the functional setting by using a distance between functions to find the
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TABLE 8.5: Comparison between functional k-NN classifiers.

k-NN-L1 k-NN-L2 k-NN-Mah k-NN-Ang

ArrowHead 0.883 ± 0.038 (4) 0.892 ± 0.034 (3) 0.903 ± 0.031 (1)* 0.896 ± 0.034 (2)
Australian 0.945 ± 0.029 (3) 0.944 ± 0.024 (4) 0.951 ± 0.026 (2) 0.958 ± 0.028 (1)*
Cell 0.918 ± 0.050 (3) 0.935 ± 0.047 (1)* 0.924 ± 0.051 (2) 0.877 ± 0.055 (4)
Coffee 0.971 ± 0.041 (3) 0.978 ± 0.033 (2) 0.962 ± 0.049 (4) 0.979 ± 0.033 (1)
ECG 0.996 ± 0.002 (4) 0.998 ± 0.002 (2) 0.998 ± 0.002 (3) 0.999 ± 0.002 (1)*
Fish 0.796 ± 0.037 (3) 0.816 ± 0.032 (2) 0.776 ± 0.033 (4) 0.818 ± 0.032 (1)
Growth 0.957 ± 0.033 (1) 0.956 ± 0.036 (2) 0.921 ± 0.052 (3) 0.918 ± 0.042 (4)
GunPoint 0.951 ± 0.028 (1)* 0.938 ± 0.026 (3) 0.916 ± 0.031 (4) 0.938 ± 0.026 (2)
MCO 0.774 ± 0.079 (4) 0.801 ± 0.072 (3) 0.986 ± 0.025 (1)* 0.941 ± 0.036 (2)
Medflies 0.541 ± 0.036 (3) 0.540 ± 0.034 (4) 0.544 ± 0.035 (2) 0.550 ± 0.035 (1)
NOx 0.894 ± 0.046 (1)* 0.877 ± 0.046 (2) 0.871 ± 0.054 (3) 0.858 ± 0.049 (4)
Phoneme 0.909 ± 0.007 (2) 0.908 ± 0.006 (3) 0.911 ± 0.006 (1)* 0.894 ± 0.007 (4)
Phoneme (binary) 0.809 ± 0.014 (1) 0.808 ± 0.015 (2) 0.803 ± 0.015 (4) 0.806 ± 0.015 (3)
Plane 0.968 ± 0.021 (2) 0.964 ± 0.022 (4) 0.983 ± 0.014 (1)* 0.964 ± 0.021 (3)
Symbols 0.966 ± 0.008 (1) 0.962 ± 0.009 (4) 0.966 ± 0.009 (2) 0.962 ± 0.009 (3)
Tecator 0.798 ± 0.051 (4) 0.825 ± 0.048 (3) 0.952 ± 0.024 (1)* 0.939 ± 0.028 (2)
Tecator (2nd derivative) 0.980 ± 0.018 (1) 0.973 ± 0.019 (4) 0.980 ± 0.019 (3) 0.980 ± 0.017 (2)
Yoga 0.932 ± 0.008 (3) 0.933 ± 0.008 (1) 0.916 ± 0.009 (4) 0.933 ± 0.008 (2)

Average accuracy 0.888 0.892 0.903 0.901
Average rank 2.444 2.722 2.500 2.333

neighbors. We have tested the k-NN classifier implemented in scikit-fda with the
same metrics used for the NC classifiers (Subsection 8.6.1): L1, L2, α-Mahalanobis
and angular distance. Parameters k and α are selected by cross-validation as be-
fore. The results by classifier-dataset can be seen in Table 8.5, and the corresponding
critical distance diagram is shown in Figure 8.26.

Rank results show a certain equality between all the proposals, with no signifi-
cant differences (see Figure 8.26). However, versions with Mahalanobis and angular
distances obtain better results in terms of accuracy. These differences are mostly
motivated by the bad performances of L1 and L2 proposals in MCO and Tecator
datasets, which probably need a more global approach. Finally, we choose k-NN-
Mah over k-NN-Ang because of the number of significant victories.
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FIGURE 8.26: Critical distance diagram of the functional k-NN classi-
fiers.

8.6.5 Final comparison

In this section, a final comparison is made between the best classifiers of each family
and a random forest composed of 100 trees. The results are summarized in Table 8.6
and in Figure 8.27.

A first conclusion of this study is that the α-Mahalanobis distance, recently pro-
posed in Berrendero, Bueno-Larraz, and Cuevas, 2020, has very good properties for
classification when used by a distance-based functional classifier, such as nearest
centroids or k-NN. Furthermore, it has also proven to be useful to design depth-
based classifiers.
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TABLE 8.6: Final comparison between the classifiers.

NC-Mah RKVS+QDA DDG-Mah k-NN-Mah RF

ArrowHead 0.782 ± 0.043 (5) 0.832 ± 0.043 (3) 0.825 ± 0.043 (4) 0.903 ± 0.031 (1)* 0.852 ± 0.041 (2)
Australian 0.903 ± 0.040 (3) 0.890 ± 0.039 (5) 0.898 ± 0.043 (4) 0.951 ± 0.026 (2) 0.961 ± 0.026 (1)*
Cell 0.869 ± 0.063 (4) 0.841 ± 0.062 (5) 0.875 ± 0.058 (3) 0.924 ± 0.051 (1)* 0.911 ± 0.048 (2)
Coffee 1.000 ± 0.000 (1)* 0.970 ± 0.045 (4) 0.972 ± 0.049 (3) 0.962 ± 0.049 (5) 0.979 ± 0.029 (2)
ECG 0.971 ± 0.006 (4) 0.987 ± 0.006 (3) 0.942 ± 0.013 (5) 0.998 ± 0.002 (1)* 0.992 ± 0.003 (2)
Fish 0.716 ± 0.041 (4) 0.824 ± 0.037 (1)* 0.687 ± 0.044 (5) 0.776 ± 0.033 (3) 0.806 ± 0.037 (2)
Growth 0.958 ± 0.032 (1) 0.952 ± 0.038 (2) 0.927 ± 0.044 (3) 0.921 ± 0.052 (4) 0.917 ± 0.059 (5)
GunPoint 0.770 ± 0.051 (5) 0.909 ± 0.042 (3) 0.835 ± 0.053 (4) 0.916 ± 0.031 (2) 0.964 ± 0.022 (1)*
MCO 0.986 ± 0.026 (1) 0.959 ± 0.040 (3) 0.904 ± 0.053 (4) 0.986 ± 0.025 (2) 0.783 ± 0.081 (5)
Medflies 0.548 ± 0.034 (3) 0.589 ± 0.033 (2) 0.515 ± 0.038 (5) 0.544 ± 0.035 (4) 0.621 ± 0.027 (1)*
NOx 0.898 ± 0.052 (2) 0.919 ± 0.037 (1)* 0.863 ± 0.053 (5) 0.871 ± 0.054 (3) 0.869 ± 0.054 (4)
Phoneme 0.910 ± 0.006 (4) 0.927 ± 0.005 (1)* 0.905 ± 0.006 (5) 0.911 ± 0.006 (3) 0.924 ± 0.006 (2)
Phoneme (binary) 0.812 ± 0.015 (2) 0.815 ± 0.015 (1)* 0.804 ± 0.016 (4) 0.803 ± 0.015 (5) 0.810 ± 0.015 (3)
Plane 0.969 ± 0.020 (4) 0.974 ± 0.020 (3) 0.937 ± 0.029 (5) 0.983 ± 0.014 (1) 0.983 ± 0.017 (1)
Symbols 0.920 ± 0.016 (5) 0.950 ± 0.016 (4) 0.957 ± 0.011 (3) 0.966 ± 0.009 (2) 0.967 ± 0.011 (1)
Tecator 0.953 ± 0.021 (3) 0.974 ± 0.019 (1)* 0.967 ± 0.024 (2) 0.952 ± 0.024 (4) 0.810 ± 0.048 (5)
Tecator (2nd derivative) 0.959 ± 0.021 (5) 0.978 ± 0.015 (3) 0.978 ± 0.017 (4) 0.980 ± 0.019 (2) 0.990 ± 0.012 (1)*
Yoga 0.578 ± 0.016 (5) 0.752 ± 0.027 (3) 0.698 ± 0.015 (4) 0.916 ± 0.009 (2) 0.932 ± 0.008 (1)*

Average accuracy 0.861 0.891 0.860 0.903 0.893
Average rank 3.389 2.667 4.000 2.611 2.278

From the results, it is apparent that the best overall accuracy is achieved by the
functional version of k-NN that employs the α-Mahalanobis distance, random forest,
and the classifier that uses RKVS followed by QDA.

The depth-based classifier has the poorest performance between the methods
considered. This means that depth, while being a useful statistical concept, does not
capture all the information necessary for classification. It should therefore be used
in combination with additional features.

The performance of the nearest centroid classifier is affected by the poor accuracy
obtained when the mean is not a good prototype of the curves of a given class; for
example, if the distribution of the curves is asymmetric, multimodal or the curves
are not aligned, as in ArrowHead, GunPoint and Yoga.

Random forest (RF) achieves the best average rank in the problems considered.
This means that it is one of the best classifiers not only for multivariate, but also for
functional classification problems. A possible explanation is that RF takes advantage
of the high dimensionality of the data to build decision trees whose predictions are
complementary, in the sense that their individual errors tend to be independent and
are therefore averaged out in the final forest prediction. An interesting avenue of
exploration is to enhance the design of RF to take advantage of the functional nature
of the data.

The multivariate classifiers LDA, QDA, k-NN, and RF have an excellent overall
performance when used in combination with RKVS. This is probably a consequence
of the functional nature of this variable selection procedure. A further advantage is
that the data, in principle infinite dimensional, is represented in a low dimensional
space. This dimensionality reduction entails significant gains in efficiency, simplifies
the analysis, and improves the interpretability of the classifiers learned.

The functional k-NN classifier is robust and performs consistently well in the
classification problems considered, as evidenced by the fact that it has the highest
average accuracy. This provides further empirical support to the proposal made in
Baíllo, Cuevas, and Fraiman, 2010 for k-NN to be used as a benchmark method for
comparison in functional classification problems.

8.7 Conclusions

We have presented scikit-fda, a Python package that implements the useful tech-
niques for working with functional data developed in the area of functional data
analysis (FDA). This package include classes for representing functional data in a
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FIGURE 8.27: Critical distance diagram of the classifiers.

computer, in both discretized and basis expansion forms. It also provides tools for
preprocessing this data, including smoothing, registration and dimensionality re-
duction methods. Exploratory analysis techniques, such as robust statistics, outlier
detection algorithms and interactive visualization tools, have also been developed.
In addition, the package provides several machine learning methods, for performing
regression, classification and clustering tasks with functional data. These methods
have been designed to be compatible with and integrated in the scientific Python
ecosystem, one of the programming environments most widely used by machine
learning practitioners. In particular, it conforms to the application programming in-
terface (API) of scikit-learn, the go-to package for machine learning in Python, and
thus can reuse much of the functionality in that package. Furthermore, the scikit-fda
has been endowed with a comprehensive documentation, which includes examples,
tutorials and reference material.

The usage of scikit-fda has been illustrated with three real-data examples. More-
over, we performed an analysis of functional classification methods from different
families using the functionalities from this package. The results of this analysis show
that, at least in the problems considered, the family of functional k-NN classifiers ob-
tains very good accuracy, which is also fairly consistent accross datasets. Moreover,
we show that a random forest classifier can be applied to functional data, obtain-
ing also very good results. Finally, the strategy of performing functional variable
selection followed by a multivariate classifier is also very competitive against these
approaches.
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Chapter 9

dcor: distance correlation and
energy statistics in Python

This chapter presents dcor, an open-source Python package that provides tools to
compute statistics related to the energy distance, such as the distance covariance
and the distance correlation, and perform homogeneity and independence tests that
utilize these quantities (Ramos-Carreño, 2020; Ramos-Carreño and Torrecilla, 2023).
In particular, the dcor package was initially created in order to provide a fast im-
plementation of the distance covariance and the distance correlation, necessary to
implement the maxima hunting (MH) and recursive maxima hunting (RMH) algo-
rithms for functional dimensionality reduction discussed in Chapter 5. The package
was later enhanced with additional tools to compute related energy statistics. These
statistics include distances between distributions and the associated tests for homo-
geneity and independence. Some of the most efficient algorithms for the estimation
of these measures have been implemented relying on optimization techniques such
as vectorization, compilation, and parallelization. The performance of these estima-
tors is evaluated by comparison with alternative implementations in other packages.
The package is also designed to be compatible with the packages conforming the sci-
entific Python ecosystem. With that purpose in mind, dcor is an early adopter of the
Python array API standard.

9.1 Energy statistics

The so-called energy distance is a metric that can be used to compare the distri-
butions of two random vectors (Szekely, 1989). The name energy arises from the
connections of this metric with Newton’s potential energy (Szekely, 2002). It has
a number of desirable properties, such as rotational invariance, scale equivariance,
and characterizing the equivalence of distributions (i.e., it is equal to zero if and only
if the distributions are identical) (Székely and Rizzo, 2013a; Rizzo and Székely, 2016).
The first application of a distance between distributions is usually testing homo-
geneity. In this sense, nonparametric tests based on the energy distance have been
proposed for testing the equality of multiple multivariate distributions (Székely and
Rizzo, 2004) or for change point detection in time series (Kim et al., 2009), among
others. The energy distance has also been used to provide a nonparametric exten-
sion of the classical ANOVA (Rizzo and Székely, 2010) and goodness-of-fit tests for
several distributions (Székely and Rizzo, 2005; Rizzo, 2009; Yang, 2012). Meanwhile,
this metric can be also considered on its own, for example in hierarchical clustering
(Szekely and Rizzo, 2005).

In general, the statistics related to the energy distance are called energy statis-
tics, or E-statistics (Rizzo and Székely, 2016). The most popular energy statistics
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are distance covariance and correlation, which measure independence between two
random vectors (Székely, Rizzo, and Bakirov, 2007). They can be seen as a gener-
alization of the classical notions of covariance and Pearson’s correlation as they are
able to capture nonlinear dependencies and are defined for vectors of arbitrary di-
mensions. These measures have become very popular in recent years and have been
used in many application areas such causal analysis (Zhang et al., 2014), feature se-
lection (Yenigün and Rizzo, 2015; Berrendero, Cuevas, and Torrecilla, 2016b), robust
statistics (Kasieczka and Shih, 2020), and testing independence (Rizzo and Székely,
2016).

In this chapter we present the functionalities of dcor, a Python package dedicated
to E-statistics (Ramos-Carreño, 2020). The library dcor is an open source project that
seeks to provide statistical tools based on energy statistics to the Python community
in an easy-to-use way. It contains different estimators for some E-statistics, with
special attention to distance correlation and covariance, and nonparametric tests for
both homogeneity and independence. These statistical tools are briefly described in
Section 9.2. A complete description of all functionalities is provided in the package
documentation, available online at https://dcor.readthedocs.io/.

During the design of the library, we have tried to maximize compatibility with
other tools of the scientific Python ecosystem. Another focal point has been the qual-
ity and efficiency of the code, paying special attention to automated testing, code
vectorization and compilation, or parallelization, among others. Section 9.3 is de-
voted to the implementation details related to performance and extensibility. More-
over, the computational efficiency of the principal measures in dcor is compared
with the reference R package energy (Rizzo and Szekely, 2022) and recent alterna-
tive implementations in both R and Python. Finally, the impact of the package is
addressed in Section 9.4, and some general conclusions are drawn in Section 9.5.

9.2 Functionalities of the package

The main goal of the dcor package is to provide efficient estimators for distance
correlation and other E-statistics, such as the energy distance and partial distance
correlation. In addition, hypothesis tests for homogeneity and independence of dis-
tributions based on these measures are provided. A brief description of these func-
tionalities is given below.

9.2.1 Energy distance

Energy distance is a metric between the distributions of two random vectors X, Y
that take values in Rd (Székely and Rizzo, 2013a). It is defined as

E(X, Y) = 2E(‖X− Y‖)−E(
∥∥X− X′

∥∥)−E(
∥∥Y− Y′

∥∥), (9.1)

where ‖ · ‖ stands for the Euclidean norm, and X′ and Y′ denote independent and
identically distributed copies of X and Y, respectively.

Alternatively, denoting their respective characteristic functions by φX(t) = E
[
eitX]

and φY(t) = E
[
eitY], this measure can be rewritten as

E(X, Y) =
1
cd

∫
Rd

|φX(t)− φY(t)|2
‖t‖d+1 dt, (9.2)

where cd = π(1+d)/2

Γ((1+d)/2) is half the surface area of the unit sphere in Rd.

https://dcor.readthedocs.io/
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Let {xi}NX
i=1 and {yi}NY

i=1 be two samples of X and Y with sizes NX and NY, re-
spectively. An estimator of the energy distance based on the sample means can be
defined as

ENX,NY(X, Y) =
2

NXNY

NX

∑
i=1

NY

∑
j=1

∥∥xi − yj
∥∥

− 1
N2

X

NX

∑
i=1

NX

∑
j=1

∥∥xi − xj
∥∥− 1

N2
Y

NY

∑
i=1

NY

∑
j=1

∥∥yi − yj
∥∥.

(9.3)

The function energy_distance() implements this estimator. In order to improve
the robustness of the estimation, the dcor package allows the use of other centrality
measures, such as a trimmed mean or the median, as proposed in James, Kejariwal,
and Matteson, 2016. Moreover, an unbiased version of this estimator based on the
use of U-statistics is also available, as proposed in Matteson and James, 2014; James,
Kejariwal, and Matteson, 2016.

9.2.2 Distance covariance and correlation

Distance covariance V , and distance correlation R, are dependency measures be-
tween two random vectors, X and Y, with finite first moments (Székely, Rizzo, and
Bakirov, 2007; Székely and Rizzo, 2009). Unlike the classical Pearson correlation,
these measures can detect nonlinear dependencies. Indeed, they are equal to 0 if
and only if the random vectors are independent. Furthermore, V and R can be de-
fined for vectors of arbitrary dimensions, X ∈ Rp and Y ∈ Rq.

In this context, the squared distance covariance V2(X, Y) is defined as a weighted
distance between the joint characteristic function φX,Y(t, s) and the product of the
marginals φX(t) and φY(s). The distance covariance V(X, Y) is then the nonnegative
number that verifies

V2(X, Y) =
∫

Rp+q
|φX,Y(t, s)− φX(t)φY(s)|2w(t, s)dtds, (9.4)

where w(t, s) = (cpcq‖t‖1+p
p ‖s‖1+q

q )−1, ‖ · ‖d is the euclidean norm in Rd and cd is
again half the surface area of the unit sphere in Rd.

Analogously to classical Pearson correlation, distance correlation R(X, Y) is de-
fined from the distance covariance as

R2(X, Y) =


V2(X,Y)√

V2(X,X)V2(Y,Y)
if V2(X, X)V2(Y, Y) > 0,

0 if V2(X, X)V2(Y, Y) = 0.
(9.5)

In spite of the apparent complexity of these definitions, distance covariance and
correlation have a simple parameter-free estimator. This is an advantage over other
popular dependency measures, such as mutual information, which require the es-
timation of additional smoothing parameters (Vergara and Estévez, 2014; Laarne,
Zaidan, and Nieminen, 2021). Given a sample {(xi, yi)}N

i=1 of N observations of the
joint random vector (X, Y), we define the double centered distance matrices A and
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B as

Ai,j = ai,j −
1
N

N

∑
l=1

ail −
1
N

N

∑
k=1

akj +
1

N2

N

∑
k,l=1

akl ,

Bi,j = bi,j −
1
N

N

∑
l=1

bil −
1
N

N

∑
k=1

bkj +
1

N2

N

∑
k,l=1

bkl ,

where aij =
∥∥xi − xj

∥∥
p and bij =

∥∥yi − yj
∥∥

q. Then, the sample distance covariance is
the square root of

V2
N(X, Y) =

1
N2

N

∑
i,j=1

Ai,jBi,j. (9.6)

Likewise, the (squared) sample distance correlation is the standardized (squared)
sample covariance

R2
N(X, Y) =


V2

N(X,Y)√
V2

N(X,X)V2
N(Y,Y)

, if V2
N(X, X)V2

N(Y, Y) > 0,

0, if V2
N(X, X)V2

N(Y, Y) = 0.
(9.7)

Both estimators VN andRN converge almost surely to their population counterparts
V andR when N tends to infinity (Székely, Rizzo, and Bakirov, 2007).

Functions distance_covariance() and distance_correlation() implement the
estimators in Equation (9.6) and Equation (9.7), respectively. The library also pro-
vides unbiased and bias-corrected estimators of measures V2(X, Y) and R2(X, Y),
as functions u_distance_covariance_sqr() and u_distance_correlation_sqr()
(Székely and Rizzo, 2014). Note that in this case one cannot take the square root
as the estimator can take negative values. In addition, an affinely invariant version
of distance correlation is available as the distance_correlation_af_inv() function
(Dueck et al., 2014).

Despite of its simplicity, the main drawback of the estimator defined in Equa-
tion (9.6) is its high computational cost. Due to the evaluation of the distance matri-
ces, the complexity in both time and memory is O(N2). As an alternative, Huo and
Székely, 2016 and Chaudhuri and Hu, 2019 propose two different estimators of the
distance covariance based on the AVL-tree structure (Adelson-Velskii and Landis,
1962) and the mergesort algorithm, respectively. Both proposals have complexity
O(N log N), although they are restricted to univariate distributions (p = q = 1).
These fast algorithms are available in the distance covariance and correlation func-
tions by means of the parameter method, and are used by default when possible.

9.2.3 Partial distance correlation

Partial distance covariance and correlation are extensions of the aforementioned de-
pendency measures that allow for controlling for the effects of a third random vector
Z of arbitrary dimension (Székely and Rizzo, 2017).

Partial distance covariance is defined as

V∗(X, Y; Z) =

{
V2(X, Y)− V2(X,Z)V2(Y,Z)

V2(Z,Z) if V2(Z, Z) 6= 0,

V2(X, Y) if V2(Z, Z) = 0,



9.2. Functionalities of the package 181

while partial distance correlation is

R∗(X, Y; Z) =


R2(X,Y)−R2(X,Z)R2(Y,Z)√

1−R4(X,Z)
√

1−R4(Y,Z)
ifR4(X, Z) 6= 1 andR4(Y, Z) 6= 1,

0 ifR4(X, Z) = 1 orR4(Y, Z) = 1.

The estimators of these quantities proposed in Székely and Rizzo, 2014 are pro-
vided in partial_distance_covariance() and partial_distance_correlation()
functions, respectively.

Finally, note that these dependency measures should be used carefully as they
present some undesirable or counterintuitive properties (Székely and Rizzo, 2014,
Sec. 4.2). In particular, R∗(X, Y; Z) = 0 does not always imply that X and Y are
conditionally independent given Z and vice versa.

9.2.4 Hypothesis testing

One of the main applications of the distances between distributions is hypothesis
testing. In this sense, measures based on E-statistics are no exception. For example,
Székely and Rizzo, 2005 proposes a goodness-of-fit test for multivariate normality
based on the energy distance, and a test of independence can be found in Bakirov,
Rizzo, and Székely, 2006, both implemented in the energy R package. Meanwhile,
in the dcor package we can find three different tests: one for homogeneity and two
for independence.

First, the energy distance is used to define a permutation test of homogeneity
(Székely and Rizzo, 2004). This test is based on the properties of the statistic

T =
NXNY

NX + NY
ENX,NY(X, Y), (9.8)

where ENX,NY is the estimator of the energy distance defined in Equation (9.3). This
test, and its extension for more than two populations, is implemented in the function
homogeneity.energy_test().

Second, a permutation test for detecting independence between two distribu-
tions is constructed using the distance covariance (Székely, Rizzo, and Bakirov,
2007). The statistic used for this test is NV2

N , where V2
N is the estimator of the dis-

tance covariance defined in Equation (9.6). This test is implemented by function
independence.distance_covariance_test().

Finally, function independence.distance_correlation_t_test() provides an
asymptotic test of independence for high dimensional random vectors (Székely and
Rizzo, 2013b). This test relies on the convergence of the statistic

TN =
R∗N(X, Y)√

1− (R∗N(X, Y))2

√
N(N − 3)

2
− 1, (9.9)

whereR∗N(X, Y) is the bias-corrected version of the estimator of the squared distance
correlation proposed in Székely and Rizzo, 2014.

Some additional parameters of these tests can be adjusted by the user, including
the number of repetitions used in the permutation tests.
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FIGURE 9.1: Ring of data generated for the illustrative example.

9.2.5 Illustrative example

This section shows how to use the dcor package through a brief example with a toy
dataset.

1. Generation of the dataset In this case, we generate 1000 pairs of coordinates
(x, y) conforming an annulus (see Figure 9.1).� �

1 import numpy as np
2 import dcor
3

4 n_samples = 1000
5 random_state = np.random.default_rng(123456)
6 u = random_state.uniform(-1, 1, size=n_samples)
7

8 y = (np.cos(u * np.pi)
9 + random_state.normal(0, 0.01, size=n_samples))

10 x = (np.sin(u * np.pi)
11 + random_state.normal(0, 0.01, size=n_samples))� �

Hence, the random vectors X and Y are non independent, but identically distributed.

2. Distances Computation of E(X, Y) and R(X, Y) with the AVL algorithm. Re-
member that fast implementations are only valid for one-dimensional variables.� �

1 dcor.energy_distance(x, y)� �
Out:

0.00152....� �
1 dcor.distance_correlation(x, y, method="avl")� �

Out:
0.2097....

The close-to-zero value of the energy distance reflects the homogeneity of the dis-
tributions of X and Y. Meanwhile, the distance correlation indicates a small depen-
dency between them.
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3. Hypothesis testing Finally, we test homogeneity and independence to check if
the above conclusions are statistically significant.� �

1 dcor.homogeneity.energy_test(
2 x, y, num_resamples=100, random_state=random_state)� �

Out:
HypothesisTest(pvalue=0.3069..., statistic=0.7649...)� �

1 dcor.independence.distance_covariance_test(
2 x, y, num_resamples=100, random_state=random_state)� �

Out:
HypothesisTest(pvalue=0.0099..., statistic=13.5334...)

Tests in dcor return an object with the p-value and the value of the statistic. As
expected, with 95% confidence, we can accept the homogeneity (p-value ' 0.31)
and reject the independence (p-value ' 0.099).

To conclude, let us point out that the dcor package owns detailed examples for
most functionalities in the online documentation1. These examples include differ-
ent datasets, measurements of error and performance, and background about the
statistical methods.

9.3 Implementation details

The package dcor is implemented in Python 3.8 and released in Github (Ramos-
Carreño, 2020) under a MIT license. Releases are available both in PyPI2 and the
conda-forge channel from Anaconda3. In order to guarantee the quality of the li-
brary, it includes a comprehensive and automated collection of tests, and a complete
documentation. The code contains also type annotations for static analyzers. Some
additional features aiming at improving performance and extensibility are described
below.

9.3.1 Performance

The functions of the dcor package make a careful use of vectorization to guarantee
improved performance. In addition, fast algorithms for distance covariance and
correlation described in Section 9.2.2 make use of the Numba library (Lam, Pitrou,
and Seibert, 2015) to compile and optimize them, what entails further speed gains.

In this section we compare the performance of the dcor implementations of the
energy distance and distance correlation with their counterparts in other R and
Python proposals. The R package energy (Rizzo and Szekely, 2022) is the refer-
ence library when working with E-statistics. It is more similar to dcor than any
other software in terms of approach and scope. A detailed comparison between
dcor and energy is available in the documentation. The recent dcortools (Edelmann
and Fiedler, 2022) addresses the subset of E-statistics relying on distance covariance
and correlation with a very careful implementation. On the other hand, there are no
Python packages devoted to energy statistics or subsets of them. Nonetheless, some
isolated functionalities can be found in some statistical libraries. This is the case

1https://dcor.readthedocs.io/en/latest/auto_examples/index.html
2https://pypi.org/project/dcor
3https://anaconda.org/conda-forge/dcor

https://dcor.readthedocs.io/en/latest/auto_examples/index.html
https://pypi.org/project/dcor
https://anaconda.org/conda-forge/dcor
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FIGURE 9.2: Performance comparison between Python (dcor package)
and R (energy package) implementations of the energy distance.

of statsmodels (seabold+perktold_2010_statsmodels), hyppo (Panda et al., 2021),
and pingouin (Vallat, 2018), which include some few E-statistics among extensive
catalogs of statistical tools.

Since the complexity in terms of the dimensions, p and q, of X and Y does not
depend on the distance algorithms themselves, but to the implementation of the Eu-
clidean distance in each language (R and Python), we study only the effect of vary-
ing the sample size. Then, we consider p = q = 1 and the following sample sizes
N = NX = NY: 10, 50, 100, 250, 500, 750, 1000. Datasets are generated randomly
form a standard normal distribution, as data distribution has no effect in the com-
putational cost. For each example, we show the minimum of 100 independent single
calls of each estimator for each sample size. The choice of the minimum instead of
the sample mean or other statistics, responds to the objective of discarding the effects
of other running processes (see, e.g. Chen and Revels, 2016 for further details).

On the one hand, Figure 9.2 shows the comparison between dcor (Python) and
energy (R) implementations of the energy distance following the expression in Equa-
tion (9.3). At this moment, no other package in this study has a valid method for the
energy distance. On the other hand, Figure 9.3 is dedicated to distance correlation
implementations. Left panel presents the implementations of the original estima-
tor defined in Equation (9.6) joint with fast versions following both the AVL-based
algorithm (dcor, energy, and dcortools) proposed in Huo and Székely, 2016, and
the fast mergesort-based implementation (dcor, and hyppo) proposed in Chaudhuri
and Hu, 2019. The right panel focuses on fast algorithms, using a more appropriate
scale to appreciate the differences. Distance covariance is not explicitly considered
in the comparison as some of these packages do not expose that functionality to end
users. Nonetheless, the performance of distance correlation directly depends on the
performance of the distance covariance.

In all cases, dcor implementations clearly outperforms those in the reference
package energy and their Python counterparts (statsmodels, hyppo, and pingouin).
The recent R library dcortools is the only comparable with dcor. It exhibits also a
very good performance, being slightly inferior to dcor with small sample sizes, but
obtaining the best results with more than 250 observations. As expected, fast algo-
rithms obtain the best results, although they are limited to univariate random vec-
tors. In this context, dcor is the only library that implements the two fast algorithms,
AVL and mergesort. Their results are very similar although the mergesort-based
implementation shows a slightly, but consistently, better performance than the AVL
approach.
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FIGURE 9.3: Performance comparison between Python (packages
dcor, statsmodels, hyppo, and pingouin) and R (packages energy
and dcortools) implementations of distance correlation. On the left,
all estimators available in these packages. On the right, only fast al-

gorithms.

Finally, the dcor package can exploit some additional opportunities for paral-
lelization. A typical example is the repeated computation of a dependence measure,
such as distance covariance, which naturally arises in variable selection or in corre-
lation analysis. In this context, the function rowwise() can be used to handle each
pair of variables in parallel (employing several CPUs by means of the Numba li-
brary) when a fast algorithm for distance covariance is used. Another occasion for
parallelization appears in permutation tests, which also involve repeating calls to
the same function. The difference here is that the distances involved are the same
for each permutation, although in a different order, so they need to be computed
only once. We can then leverage the Joblib library (Joblib Development Team, 2020)
to launch the permutations in parallel with a configurable number of jobs. Note that
these examples belong to the so called embarrasingly parallel problems, where the
resultant speedup is directly proportional to the number of physical CPUs available.

9.3.2 Extensibility

A major concern in the scientific Python ecosystem is the proliferation of different
frameworks, each with its own similar, but incompatible, data structures. As a re-
sult, several implementations of the same non-trivial algorithms may arise, with the
subsequent mainteinance burden and fragmentation of the community. In the devel-
opment process of the dcor package we have addressed this problem in two ways.

First and foremost, dcor adheres to the Python array API standard (Consortium
for Python Data API Standards, 2022). This specification was created to offer a com-
mon interface for different implementations of arrays and tensors in Python. This is
a joint effort of the Python scientific community that tries to integrate, among oth-
ers, NumPy CPU-based arrays (Harris et al., 2020), CuPy GPU-based ones (Okuta
et al., 2017), Dask distributed arrays (Dask Development Team, 2016) and the dif-
ferent types of tensors available in deep learning libraries, such as Pytorch (Paszke
et al., 2019) or Tensorflow (Abadi et al., 2015). The package dcor accepts objects
that follow this standard, and therefore, it could be used in combination with these
libraries when they finish their standarization effort. In order to guarantee that inte-
gration, dcor has been tested against the numpy.array_api module, which contains
a minimal reference implementation of the Python array API standard.
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Furthermore, special care has been taken in dcor to allow the use of arrays of
arbitrary numeric type, including non-floating point types such as Fraction and
Decimal. As a consequence, the original types will be preserved along all computa-
tions and results.

The only exception to these approaches are those few functions which are com-
piled, as currently Numba supports only a subset of array and number types.

9.4 Impact and applications

During the last few years, E-statistics, and in particular distance correlation, have
attracted quite a bit of attention, accumulating thousands of citations and being used
in many different application areas. The package dcor gives the Python scientific
community access to a comprehensive set of significant measures and tests based
on E-statistics in a unified framework, previously available only in R through the
energy package. In addition, the library presents some differential characteristics
such as the adoption of the Python array API standard, and fast algorithms and code
optimizations which lead to better performances than those of their R and Python
counterparts in most cases. As a result, dcor could be very useful in the wide variety
of situations where E-statistics are. Indeed, it is already being used in a number of
relevant scientific publications, as well as several open source scientific packages.

Up to now, the use of dcor has been particularly frequent in areas related to
machine learning. For example, distance correlation is used in causal inference
(Markham, Chivukula, and Grosse-Wentrup, 2020; Runge, 2022) to detect the depen-
dence structure of the data. The energy distance and distance correlation have been
considered for word embeddings in natural language processing problems (Zhelez-
niak et al., 2019; Kayal, 2021). Recent works in bias detection (Synthesized, 2022)
make use of the distance correlation to uncover attributes that act as proxies for sen-
sitive data. Furthermore, distance covariance and correlation are commonly used in
dimensionality reduction strategies, both in multivariate (Menvouta, Serneels, and
Verdonck, 2023; Böhm, Berens, and Kobak, 2022) and functional (Ramos-Carreño et
al., 2023) frameworks.

Meanwhile, the package has also proven to be useful in identifying medicinal
plants (Kharyuk et al., 2018), analysing correlations between the Sustainable Devel-
opment Goals of the United Nations (Laumann et al., 2022) or in a financial context,
for either diversifying investments (Benowitz, 2020) or optimizing technical indica-
tors for prediction (John Richardson, 2022).

9.5 Conclusions

This chapter has introduced the package dcor, a package that provides functionali-
ties based on E-statistics to the Python scientific community. In addition to include
a varied set of statistical measures and hypothesis tests, the library has been de-
signed with efficiency and extensibility in mind. Some examples of this approach
are the flexibility about different array and numeric types and the auxiliary tools for
parallelization. The efficiency criterion is also reflected in code optimizations like
vectorization and compilation, which allow dcor to obtain better performance than
the alternatives in R.
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The interest in these statistical tools has been shown by the good reception of the
package in many different application areas since its first release in 2017. This atten-
tion made dcor a reference package for E-statistics in Python, and solidified our com-
mitment with the development and expansion of the package. To this respect, our
future plans include incorporating further developments derived from the theory of
E-statistics, enriching the existing documentation with more tutorials and additional
usage examples, and continue optimizing the existing functionalities.

To conclude, we want to emphasize our involvement with the open-source com-
munity, both addressing user comments and encouraging practitioners to contribute
to the development of the dcor package.
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Chapter 10

Conclusions and future work

Functional data are ubiquitous in many areas of application. Evidence of their im-
portance is given by the flurry of activity in both the statistics and machine learning
research communities. These types of data present special characteristics that are
markedly different from multivariate observations. On the one hand, they are in-
herently infinite-dimensional, which entails difficulties for their statistical analysis:
key quantities, such as the probability density function, or the likelihood ratio, are,
in most cases, ill-defined for random functions. On the other hand, they are highly
redundant, in the sense that nearby points in a function provide similar information.

A first approach to learning from functions is to apply multivariate methods to
the observations, which are either in discretized form or as a truncated basis ex-
pansion. However, it should be possible to design more effective machine learning
methods that take advantage of the continuous nature and underlying smoothness
of the functional observations. An idea that pervades this thesis is the importance
of incorporating the tools of FDA, the branch of statistics that deals with random
functions, into the design of machine learning methods with these types of data.
Based on this overarching principle, we have designed, implemented, and analyzed
statistical and machine learning models for functional data. In particular, the the-
sis presents novel methods and extensive analysis for classification, dimensionality
reduction, and clustering problems. Additionaly, open-source libraries have been
developed for statistical analysis and machine learning with functional data.

A first methodological contribution is the design of optimal classification rules
for the classification of Gaussian processes (GPs). The approach followed consists
in considering the quadratic discriminant classifier, which achieves the Bayes er-
ror when the functional observations are given in discretized form; i.e., as tables
of values. In the limit that the discretization becomes denser, the discriminant de-
fines a classification rule for Gaussian processes, which is optimal. The analysis
carried out provides a novel perspective of how the near-perfect classification phe-
nomenon (Delaigle and Hall, 2012) occurs in this context: the quadratic discriminant
contains terms that diverge as the discretization grid becomes finer. When the GPs
are equivalent these divergences cancel out and the optimal rule is given in terms
of the Radon-Nikodym derivative between the corresponding distributions (Baíllo,
Cuevas, and Cuesta-Albertos, 2011). When the GPs are orthogonal, an optimal rule
results from retaining only the singular terms in the quadratic discriminant, which
become dominant in this limit. This singular rule achieves, asymptotically, zero er-
ror in the population limit. Finally, as part of this work, the optimal classification
rules for some cases of interest have been derived.

A second contribution is the analysis of recursive maxima hunting (RMH), a filter
variable selection method, in the context of functional binary classification problems.
This method selects variables that are relevant not only by themselves but also when
considered in combination with others. Furthermore, we show that RMH selects
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precisely the points involved in the optimal classification rule for some homoscedas-
tic classification problems. These include the problems in which the common noise
is Brownian motion or an Ornstein-Uhlenbeck process, and the mean difference be-
tween classes belongs to the associated RKHS. An extensive empirical evaluation of
the method both in synthetic and real-world problems serves as an illustration of
the effectiveness of the method, which is comparable to other benchmark variable
selection methods.

A third contribution is an analysis of the clustering algorithm fuzzy C-means
when applied to functional data in discretized form. In particular, we consider Gaus-
sian processes whose correlations have a characteristic lengthscale; that is, the values
of the trajectories are approximately independent for distances much larger than this
lengthscale. By varying this parameter, we can explore different regimes: when the
characteristic length of the correlations is much smaller than the grid spacing, the
algorithm exhibits poor convergence. This behavior observed is similar to the mul-
tivariate case analyzed in Winkler, Klawonn, and Kruse, 2010. The reason is that,
since the grid points are further than the extent of the correlations, the function val-
ues at those points are uncorrelated. Therefore, the discretized trajectories are akin
to multivariate attribute vectors whose components are independent. By contrast,
the convergence improves as the correlation lengthscale increases and becomes com-
parable to the size of the discretization grid, a limit at which the functional nature of
the data is manifest.

These contributions are complemented with the design and development of com-
putational tools for statistical analysis and machine learning with functional data. In
particular, we have developed two Python libraries that facilitate the retrieval of both
multivariate and functional datasets. The package scikit-datasets allows the user to
download datasets from several widely used online repositories, such as UCR, for
functional data, or UCI, for multivariate data. It also provides utility functions for
carrying out large-scale comparative studies using these data and tools to summa-
rize and analyze the results. The rdata library can be used to convert datasets from
the internal format used in the R programming language to Python objects. In addi-
tion to being useful by itself, it is also used by the scikit-datasets package, in order
to allow the direct loading of datasets available in CRAN, the R packages repository.

The Python package scikit-fda is the most prominent practical contribution of
this thesis. This library provides a large set of computational tools for the analysis
of functional data. These include classes to represent the trajectories in either dis-
cretized form or as truncated basis expansions, preprocessing and exploratory anal-
ysis tools, and machine learning models for functional data. The library has been de-
veloped according to the specifications of the scientific Python ecosystem. Further-
more, it is compatible with the widely-used machine learning library scikit-learn.
In particular, the tools offered in scikit-fda can be used in scikit-learn pipelines and
hyperparameter selection methods.

The functionality of the scikit-fda package is illustrated through several exam-
ples from real-world applications. In addition, we carried out a comparative study
of different classification methods. This study not only illustrates the application of
the tools developed (scikit-datasets and scikit-fda), but also provides insights into
the weaknesses and strengths of the different methods.

Finally, motivated by the implementation of RMH, the dcor Python library was
developed. This library implements the distance covariance and distance correla-
tion, two measures of dependence between random vectors (Székely, Rizzo, and
Bakirov, 2007). Related measures of homogeneity and dependence, and their cor-
responding hypothesis tests are also provided. The dcor package is being used in
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several scientific studies (Kharyuk et al., 2018; Laumann et al., 2022; Böhm, Berens,
and Kobak, 2022) and software packages (John Richardson, 2022; Runge, 2022).

10.1 Future work

During the elaboration of this thesis, we have addressed many problems of interest
in the area of machine learning with functional data. Some of the work lends itself
to in-depth studies and extensions. This thesis has also opened up new avenues of
research.

In particular, the exploration of recursive maxima hunting has focused on bi-
nary classification problems. Nevertheless, the algorithm can be readily applied to
multiclass classification and regression problems. Additionally, the algorithm can
be extended to multivariate functional data, or to functional data that depend on a
continuous parameter in higher dimensions, such as surfaces or volumes.

Another interesting direction is an in-depth analysis of the relation between mul-
tivariate and functional problems. This has been done using two techniques. First,
in Chapter 4 we considered the functional case in a discretized representation. When
the discretization was coarse, we could analyze the data as a multivariate vector, ob-
taining an expression for the optimal classification rule. We studied how this rule
changed with finer and finer grids, obtaining in the limit the expressions for the
functional case. Secondly, in Chapter 6 we studied the variation of the lengthscale
parameter that characterized the decay of the correlations for Gaussian processes.
When the lengthscale was small, the behavior observed was similar than the one
exhibited by multivariate data, while for larger lengthscales the functional nature of
the data became apparent. We believe that the techniques employed in this thesis
to study this transition between the multivariate and functional worlds ought to be
analyzed in additional contexts in which there is a discrepance between the behavior
in the multivariate case and the one observed for functional data. For example, one
could analyze the behaviour of logistic regression in this transition to the functional
case, in which the maximum likelihood estimator does not exist in general (Berren-
dero, Bueno-Larraz, and Cuevas, 2022), as well as other methods that depend in
quantities that are ill-defined in the functional context, such as the mode.

From a practical perspective, there are many possible ways to extend the con-
tributions in this thesis. In particular, we intend to make several improvements of
the scikit-fda package. Specifically, we plan to include in the package tools for han-
dling irregular functional data in which the observed points are different for each
functional observation. These kinds of data require special techniques for their ef-
ficient representation and treatment, specially when the measurements are sparse.
We also want to extend the package functionalities to support cases in which each
observation consists of several functions and/or multivariate data. Moreover, we
would want to improve support for handling functional observations that depend
on several variables, such as images or surfaces.

New functional distances and statistical depth measures should also be consid-
ered for their inclusion in the package. Some examples are the extremal, or infi-
mal, depth (Mosler, 2013; Narisetty and Nair, 2016) or its flexible modifications
(Nagy et al., 2021). We also should define distances and depths for multivariate
functional data. Additional functional methods for clustering, classification and
regression should also be developed and included in the package, such as sup-
port vector machines (SVMs) (Rossi and Villa, 2006), generalized regression mod-
els (Scheipl, Gertheiss, and Greven, 2016), Gaussian process regression, or neural
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networks (Rossi and Conan-Guez, 2005; Kovachki et al., 2023). It would also be of
interest to study the possibility of developing generative functional data models,
such as variational autoencoders, that could be incorporated to the package.

The compatibility of scikit-fda with other software packages is also one of our
priorities. Most advances in FDA made by the statistics community end having im-
plementations in the R programming language. Even as we try to offer most part
of these functionalities in scikit-fda, it is certain that not all available tools will be
included, especially those that are very specific. Thus, it would be interesting to
explore ways in which we could combine the functional data tools in R and Python
in an effective way. In particular, it would be useful to integrate with the tools that
allow direct communication between Python and R interpreters in the same process,
such as rpy2, by offering efficient conversion functions between functional repre-
sentations in both languages. This would allow to move between these languages at
different points in the analysis and thus combine the strengths of both.

Finally, during the development of scikit-fda we noticed that functions in ei-
ther discretized form or as a basis expansions arise frequently in other areas. These
include branches of mathematics and physics, such as simulations of differential
equations, or computer graphics. While in some cases only one function or a vector
of functions are necessary, other contexts, such as the computation of the Jacobian,
the Hessian, and higher derivatives require matrices and tensors of functions. Thus,
we will consider creating a new Python package that can represent vectors, matri-
ces or tensors whose elements are themselves general functions, in discretized or
basis forms. This package should include also functions for operating with these
objects, performing algebra and computing quantities such as functional distances.
The package could then play the role for functions that NumPy (Harris et al., 2020)
plays for multivariate data. By carefully designing it around the Python array API
standard (Consortium for Python Data API Standards, 2022), we could also use these
functions in more contexts in the future, such as with deep learning frameworks like
PyTorch (Paszke et al., 2019).
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Conclusiones y trabajo futuro

Los datos funcionales tienen gran presencia en muchas áreas de aplicación. Podemos
encontrar evidencia de su importancia en la intensa actividad en las comunidades de
estadística e investigación en aprendizaje automático. Estos tipos de datos presentan
características especiales que son marcadamente distintas de las observaciones mul-
tivariantes. Por una parte, son inherentemente infinito-dimensionales, lo cual lleva a
dificultades para su análisis estadístico: cantidades clave, como la función de densi-
dad de probabilidad o el cociente de verosimilitudes se encuentran, en la mayoría de
casos, mal definidas en el caso de funciones aleatorias. Por otro lado, son altamen-
te redundantes, en el sentido de que puntos cercanos de la función proporcionan
información similar.

Una primera aproximación para aprender a partir de funciones es aplicar méto-
dos multivariantes a las observaciones, que se encuentran bien de forma discretizada
o bien en una expansion en bases truncada. No obstante, debería ser posible diseñar
métodos de aprendizaje automático que aprovechen la naturaleza continua y la sua-
vidad subyacente de las observaciones funcionales. Una idea que impregna esta tesis
es la importancia de incorporar las herramientas de FDA, la rama de la estadística
que trata con funciones aleatorias, en el diseño de métodos de aprendizaje automá-
tico con este tipo de datos. Basándonos en este principio general, hemos diseñado,
implementado y analizado modelos estadísticos y de aprendizaje automático para
datos funcionales. En particular, la tesis presenta métodos novedosos y un análisis
extenso para problemas de clasificación, reducción de dimensionalidad y agrupa-
miento. Adicionalmente, se han desarrollado bibliotecas de código abierto para el
análisis estadístico y aprendizaje automático con datos funcionales.

Una primera contribución metodológica es el diseño de reglas de clasificación
óptima para la clasificación de procesos gaussianos (GPs). La aproximación segui-
da consiste en considerar el clasificador de discriminante cuadrático, que obtiene el
error de Bayes cuando las observaciones funcionales son dadas en forma discretiza-
da, esto es, como tablas de valores. En el límite en el que la discretización se vuelve
más densa, el discriminante define una regla de clasificación para procesos gaussia-
nos que es óptima. El análisis llevado a cabo proporciona una perspectiva novedosa
de como el fenómeno de clasificación casi perfecta (Delaigle y Hall, 2012) ocurre en
este contexto: el discriminante cuadrático contiene términos que divergen cuando
la rejilla de discretización se vuelve más fina. Cuando los procesos gaussianos son
equivalentes estas divergencias se cancelan, y la regla óptima se da en términos de
la derivada de Radon-Nikodym entre las distribuciones respectivas (Baíllo, Cuevas
y Cuesta-Albertos, 2011). Cuando son ortogonales, una regla óptima puede obte-
nerse preservando solo los términos singulares del discriminante cuadrático, que se
vuelven dominantes en este límite. Asintóticamente, esta regla logra un error nulo
en el límite poblacional. Finalmente, como parte de este trabajo, las reglas de clasifi-
cación óptima se han derivado para algunos casos de interés.
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Una segunda contribución es el análisis de recursive maxima hunting (RMH), un
método de filtro para selección de variables, en el contexto de problemas de clasifi-
cación binaria con datos funcionales. Este método selecciona variables que son rele-
vantes para la clasificación no solo por sí mismas, sino también cuando son tomadas
junto a otras. Por añadido, RMH selecciona exactamente los puntos involucrados en
la regla de clasificación óptima en algunos problemas de clasificación homoscedás-
ticos. Estos incluyen aquellos cuyo proceso de ruido común es movimiento brow-
niano o un proceso Ornstein-Uhlenbeck, y en los que la diferencia entre las medias
de ambas clases pertenece al espacio de Hilbert con núcleo reproductor asociado.
Una evaluación empírica extensa del método, en problemas tanto sintéticos como
con datos reales, sirve para ilustrar la efectividad del método, que se muestra com-
parable con otros métodos de selección de variables usados como referencia.

Una tercera contribución es un análisis del algoritmo fuzzy C-means al ser apli-
cado a datos funcionales discretizados. En particular, consideramos procesos gaus-
sianos cuya correlación tiene una escala de longitud característica, es decir, los valo-
res de las trayectorias son aproximadamente independientes para distancias mucho
mayores que su escala de longitud. Variando este parámetro podemos explorar dis-
tintos regímenes de comportamiento. Cuando la escala de longitud característica
es mucho menor que el espaciado de la rejilla, el algoritmo muestra problemas de
convergencia. Este comportamiento observado es similar al del caso multivariante
analizado en Winkler, Klawonn y Kruse, 2010. La razón es que, como los puntos de
la rejilla están más alejados que el alcance de las correlaciones, los valores de la fun-
ción en esos puntos no guardan correlación. Por tanto, las trayectorias discretizadas
son similares a vectores de atributos multivariantes cuyas componentes son inde-
pendientes. En contraste, la convergencia mejora conforme la escala de longitud se
incrementa y se vuelve comparable con el tamaño de la rejilla de discretización, un
límite en el que la naturaleza funcional de los datos se pone de manifiesto.

Estas contribuciones son complementadas con el diseño y desarrollo de herra-
mientas computacionales para el análisis estadístico y el aprendizaje automático con
datos funcionales. En particular, hemos desarrollado dos bibliotecas de Python que
facilitan la carga de conjuntos de datos, tanto multivariantes como funcionales. El
paquete scikit-datasets permite al usuario descargar conjuntos de datos desde va-
rios repositorios online ampliamente utilizados, como UCR, para datos funcionales,
o UCI, para datos multivariantes. También proporciona funciones de utilidad para
realizar estudios comparativos a gran escala usando estos datos y herramientas pa-
ra resumir y analizar los resultados. La biblioteca rdata puede usarse para convertir
conjuntos de datos desde el formato interno usado en el lenguaje de programación
R a objetos de Python. Además de ser útil por sí misma, es también usada por el
paquete scikit-datasets, con el objetivo de permitir la carga directa de conjuntos de
datos disponibles en CRAN, el repositorio de paquetes de R.

El paquete de Python scikit-fda es la contribución práctica más prominente de es-
ta tesis. Esta biblioteca proporciona un gran conjunto de herramientas computacio-
nales para el análisis de datos funcionales. Éstas incluyen clases para representar las
trayectorias en forma discretizada o como una expansión en una base, herramientas
de preprocesamiento y análisis exploratorio, y modelos de aprendizaje automático
para datos funcionales. La biblioteca se ha desarrollado de acuerdo a las especifi-
caciones del ecosistema científico de Python. Además, ésta es compatible con la po-
pular herramienta de aprendizaje automático scikit-learn. Como consecuencia, las
herramientar proporcionadas por scikit-fda pueden emplearse en los flujos de tra-
bajo y métodos de selección de hiperparámetros de scikit-learn.
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La funcionalidad del paquete scikit-fda se ha ilustrado a través de varios ejem-
plos en aplicaciones reales. Además, hemos realizado un estudio comparativo de
los métodos de clasificación de referencia. Este estudio no solo ilustra la aplicación
de las herramientas desarrolladas (scikit-datasets and scikit-fda), sino que también
proporciona intuición sobre las debilidades y fortalezas de los distintos métodos.

Finalmente, a raíz de la implementación de RMH, se ha desarrollado la biblioteca
de Python dcor. Esta biblioteca implementa la covarianza de la distancia y la correla-
ción de la distancia, dos medidas de dependencia entre vectores aleatorios (Székely,
Rizzo y Bakirov, 2007). También se incluyen medidas relacionadas de homogenei-
dad y dependencia, y sus correspondientes tests de hipótesis. El paquete dcor está
siendo usado en varios estudios científicos (Kharyuk y col., 2018; Laumann y col.,
2022; Böhm, Berens y Kobak, 2022) y paquetes de software (John Richardson, 2022;
Runge, 2022).

10.1 Trabajo futuro

Durante la elaboración de esta tesis hemos abordado muchos problemas de interés
en el área de aprendizaje automático con datos funcionales. Parte del trabajo realiza-
do se presta a realizar estudios en profundidad y nuevas extensiones. Además, esta
tesis abre nuevas vías de investigación.

En particular, la exploración del algoritmo recursive maxima hunting (RMH) se
ha ceñido problemas de clasificación binaria. No obstante, dicho algoritmo es en
principio aplicable a problemas multiclase o incluso de regresión. Además, queda
pendiente explorar una versión de dicho algoritmo aplicable a datos funcionales
multivariantes o a datos funcionales cuyo parámetro continuo sea de mayores di-
mensiones, como superficies o volúmenes.

Otra dirección interesante es el análisis en profundidad de la relación entre pro-
blemas multivariantes y funcionales. Esto se ha realizado usando dos técnicas. Pri-
mero, en el Capítulo 4 consideramos el caso funcional en una representación discre-
tizada. Cuando la rejilla de discretización era gruesa, podíamos analizar los datos
como un vector multivariante, obteniendo una expresión para la regla de clasifi-
cación óptima. Estudiamos como cambiaba esta regla con rejillas más y más finas,
obteniendo en el límite las expresiones para el caso funcional. Segundo, en el Capí-
tulo 6 estudiamos la variación del parámetro de escala de longitud que caracteriza
el descenso de las correlaciones en procesos gaussianos. Cuando la escala de longi-
tud era pequeña, el comportamiento observado era similar al mostrado por datos
multivariantes, mientras que para valores más altos se hacía aparente la naturaleza
funcional de los datos. Creemos que las técnicas empleadas en esta tesis para estu-
diar la transición entre los mundos multivariante y funcional debería ser analizada
en contextos adicionales en los que haya una discrepancia entre el comportamien-
to en el caso multivariante y el observado para datos funcionales. Por ejemplo, se
podría analizar el comportamiento de la regresión logística en la transición al caso
funcional, en el que el estimador de máxima verosimilitud no existe en general (Be-
rrendero, Bueno-Larraz y Cuevas, 2022), así como otros métodos que dependan de
cantidades mal definidas en el contexto funcional, como la moda.
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Desde el punto de vista práctico, existen multitud de posibles caminos para am-
pliar las aportaciones de esta tesis. En particular, son varias las mejoras que preten-
demos realizar sobre el paquete scikit-fda. En concreto, queremos incluir herramien-
tas para trabajar con datos funcionales irregulares en los que los puntos de observa-
ción sean diferentes para cada observación funcional. Estos tipos de datos requie-
ren técnicas especiales para su eficiente representación y tratamiento, especialmente
cuando las mediciones son dispersas. También queremos extender las funcionalida-
des del paquete para soportar casos en los que cada observación conste de varias
funciones y/o datos multivariantes. Además, nos gustaría mejorar la capacidad del
paquete para manejar observaciones funcionales que dependan de varias variables,
como imágenes o superficies.

Se debe considerar también la inclusión en el paquete de nuevas distancias fun-
cionales y medidas de profundidad. Ejemplos de esto son la profundidad extrema, o
ínfima (Mosler, 2013; Narisetty y Nair, 2016) y sus flexibles modificaciones (Nagy
y col., 2021). También deberíamos definir distancias y profundidades para datos
funcionales multivariantes. Se deben desarrollar e incluir en el paquete nuevos mé-
todos de agrupamiento, clasificación y regresión, como máquinas de vectores de
soporte (SVMs) (Rossi y Villa, 2006), modelos de regresión generalizados (Scheipl,
Gertheiss y Greven, 2016), regresión con procesos gaussianos, o redes neuronales
(Rossi y Conan-Guez, 2005; Kovachki y col., 2023). También sería de interés estu-
diar la posibilidad de desarollar modelos generativos para datos funcionales, como
variational autoencoders, que puedan incorporarse al paquete.

La compatibilidad de scikit-fda con otros paquetes de software es también una
de nuestras prioridades. La mayor parte de los avances en FDA realizados por la
comunidad estadística acaban teniendo implementaciones en el lenguaje de progra-
mación R. Aunque intentemos ofrecer la mayor parte de dichas funcionalidades en
scikit-fda, seguramente no se incluyan todas las herramientas disponibles, en espe-
cial aquellas que sean demasiado específicas. Por lo tanto, sería interesante explorar
formas en las que poder combinar las herramientas para datos funcionales de R y
Python de forma efectiva. En particular, sería útil integrar la biblioteca con las he-
rramientas que permiten comunicación directa entre intérpretes de Python y R en
el mismo proceso, como rpy2, ofreciendo funciones de conversión eficientes entre
representaciones de datos funcionales en ambos lenguajes. Esto permitiría mover-
se entre estos lenguajes en distintos puntos del análisis y, por tanto, combinar las
fortalezas de ambos.

Finalmente, durante el desarrollo de scikit-fda nos dimos cuenta de que las fun-
ciones tanto discretizadas como en bases aparecen con frecuencia en otras áreas.
Estas incluyen ramas de las matemáticas y la física, como simulaciones de ecuacio-
nes diferenciales o gráficos por ordenador. Aunque en algunos casos solo se requiere
usar una función o un vector de funciones, en otros contextos, como el cálculo de las
matrices jacobiana y hessiana, o derivadas de orden superior, se requiere el uso de
matrices y tensores de funciones. Por tanto consideraremos crear un nuevo paque-
te de Python que pueda representar vectores, matrices o tensores cuyos elementos
sean a su vez funciones generales, en forma discretizada o como expansión en una
base. Este paquete debería incluir también funciones para operar con estos objetos,
realizar álgebra y computar cantidades como las distancias funcionales. El paquete
jugaría entonces un rol similar al que NumPy (Harris y col., 2020) tiene para datos
multivariantes. Si se realiza un diseño cuidadoso, aprovechando la API estándar de
arrays en Python (Consortium for Python Data API Standards, 2022), podremos usar
también estas funciones en más contextos en el futuro, por ejemplo en frameworks
de aprendizaje profundo como PyTorch (Paszke y col., 2019).
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Appendix A

Discrete monitoring

In the derivations carried out, a process X is monitored at a set of appropriately
chosen discrete times {tm}M

m=1 ∈ T M. Here we consider that these points are equis-
paced, and we denote as ∆T the distance between subsequent points. The integrals
that appear (e.g., in the definitions of the inner products) are then approximated by
Riemann sums ∫

t∈T
h(t)dt ≈ 1

M

M

∑
m=1

h(tm). (A.1)

For functions that are continuous in T , these Riemman sums converge to the corre-
sponding definite integrals in the limit of dense monitoring

lim
M→∞

1
M

M

∑
m=1

h(tm) =
∫

t∈T
h(t)dt ∀h ∈ C [T ] , (A.2)

where C [T ] is the space of continuous functions in T .
Let k0 and k1 be symmetric, strictly positive kernels that are continuous in T .

Let the corresponding reproducing kernel Hilbert space (RKHS) be infinite dimen-
sional. In the discretized representation, the kernel functions {ki(s, t); s, t ∈ T }1

i=0
are approximated by Ki, the corresponding M×M Gram matrices, whose elements
are

(Ki)mn = ki(tn, tm), n, m = 1, 2, . . . M, (A.3)

for i = 0, 1. Let {νim =}M
m=1 be the (positive) eigenvalues of matrix Ki. Theorem 3.4

of Baker, 1977 can be used to show that, in the limit of dense monitoring,

lim
M→∞

νim

∆T
= λim, m = 1, 2, . . . , M (A.4)

where {λi1 ≥ λi2 ≥ . . . ≥ λiM > 0} are the largest M eigenvalues of Ki, the covari-
ance operator associated to the kernel ki.

Therefore, the spectrum of the Gram matrix Ki converges to the spectrum of
the covariance operator Ki. In particular, the ratio of the determinants of the Gram
matrix

lim
M→∞

|K1|
|K0|

= lim
M→∞

M

∏
m=1

ν1m

ν0m

= lim
M→∞

M

∏
m=1

λ1m

λ0m
≡ |K1|
|K0|

,

(A.5)

can be used to define the ratio |K1|
|K0| when the corresponding Gaussian processes are

equivalent (P0 ∼ P1), in which case the limit exists (is finite) and is different from
zero.
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Appendix B

RMH proofs and results

B.1 Proofs of the theorems and propositions

In this section we group the proofs of the theorems and propositions that were pro-
posed in Chapter 5.

B.1.1 Convexity of V2

Theorem 6 (Berrendero, Cuevas, and Torrecilla, 2016b). In the setting of the binary
functional classification problems described in Equation (5.3) the squared distance covariance
between a point of X and the class labels Y, V2(X(t), Y), can be alternatively calculated as

V2(X(t), Y) = 4p2(1− p)2
[

I01(t)−
I00(t) + I11(t)

2

]
, (B.1)

where p = P(Y = 1), Iij(t) = E(|X(t) − X′(t)| | Y = i, Y′ = j) and (X′, Y′) is an
independent copy of (X, Y).

Corollary 1. Under the model given by Equation (5.3), V2(X(t), Y) has the following ex-
pression:

V2(X(t), Y) = 4p2(1− p)2

[
2σ(t)√

π

(
e
− µ(t)2

4σ(t)2 − 1

)
+

µ(t)

(
2 cdf

(
µ(t)√
2σ(t)

)
− 1

)]
,

(B.2)

where p = P(Y = 1), cdf is the cumulative distribution function of a standard normal
random variable, µ(t) = µ1(t) − µ0(t) and σ(t) is the standard deviation of the noise
process Z(t) at point t.

Proof.
Consider the random variables given by the marginal distributions

X0(t) = X(t) | Y = 0 ∼ N(0, σ(t)2),

X1(t) = X(t) | Y = 1 ∼ N(µ(t), σ(t)2),
(B.3)

for any t ∈ [0, 1].
Let X′0(t) and X′1(t) be independent copies of X0(t) and X1(t) respectively. Then,

X0(t)− X′0(t) ∼ N(0, 2σ(t)2),

X1(t)− X′1(t) ∼ N(0, 2σ(t)2),

X1(t)− X0(t) ∼ N(µ(t), 2σ(t)2).

(B.4)
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Let X be a Gaussian random variable X ∼ N(µ, σ2). Then,

E|X| = σ

√
2
π

e−
µ2

2σ2 + µ
(

2 cdf
(µ

σ

)
− 1
)

. (B.5)

Therefore,

I00(t) = E|X0(t)− X′0(t)| =
2σ(t)√

π
,

I11(t) = E|X1(t)− X′1(t)| =
2σ(t)√

π
,

I01(t) = I10(t) = E|X1(t)− X0(t)|

=
2σ(t)√

π
e
− µ(t)2

4σ(t)2 + µ(t)

(
2 cdf

(
µ(t)√
2σ(t)

)
− 1

)
.

(B.6)

Substituting these expressions in Equation (B.1) we obtain

V2(X(t), Y) = 4p2(1− p)2

[
2σ(t)√

π

(
e
− µ(t)2

4σ(t)2 − 1

)
+

µ(t)

(
2 cdf

(
µ(t)√
2σ(t)

)
− 1

)]
.

(B.7)

Remark 1. From Corollary 1, using the relation d
dt cdf(t) = pdf(t) = 1√

2π
e−

1
2 t2

, the
formulas for the first and second derivatives of V2(X(t), Y) are

d
dt
V2(X(t), Y) = 4p2(1− p)2

[
2σ′(t)√

π

(
e
− µ(t)2

4σ2(t) − 1

)
+

µ′(t)

(
2 cdf

(
µ(t)√
2σ(t)

)
− 1

)]
,

(B.8)

and
d2

dt2V
2(X(t), Y) = 4p2(1− p)2

[
2σ′′(t)√

π

(
e
− µ(t)2

4σ2(t) − 1

)
+

1√
π

e
− µ(t)2

4σ2(t)

(
(µ(t)σ′(t)− σ(t)µ′(t))2

σ3(t)

)
+

µ′′(t)

(
2 cdf

(
µ(t)√
2σ(t)

)
− 1

)]
,

(B.9)

provided that all the derivatives involved exist.

Lemma 1. Under the model given by Equation (5.3), with functions defined in an open
interval (a, b), let σ and |µ| be twice differentiable a.e. Let σ(t) be concave (σ′′(t) ≤ 0) and
|µ(t)| convex ((|µ(t)|)′′ ≥ 0) at every point t ∈ (a, b) in which they are twice differentiable.
Then V2(X(t), Y) is convex in t. Thus, a local maximum of V2(X(t), Y) cannot be at a point
t ∈ (a, b).



B.1. Proofs of the theorems and propositions 203

Proof.
The proof is based on the study of the sign of d2

dt2V2(X(t), Y) in Equation (B.9). This
sign is determined by a sum of three terms. The first term,

2σ′′(t)√
π

(
e
− µ(t)2

4σ2(t) − 1

)
, (B.10)

is non-negative, given that σ′′(t) ≤ 0. The second term,

1√
π

e
− µ(t)2

4σ2(t)

(
(µ(t)σ′(t)− σ(t)µ′(t))2

σ3(t)

)
, (B.11)

is always positive since σ(t) is positive. Finally, the third term

µ′′(t)

(
2 cdf

(
µ(t)√
2σ(t)

)
− 1

)
, (B.12)

is positive whenever µ′′(t) and µ(t) have the same sign, as cdf(x) > 0.5 if and only
if x > 0. Since (|µ(t)|)′′ ≥ 0, this is always the case:

µ′′(t) = (µ′(t))′ =
(
sign(µ(t))(|µ(t)|)′

)′
= sign(µ(t))(|µ(t)|)′′.

(B.13)

Given that the three terms are positive, the second derivative of V2(X(t), Y) is
also positive. Thus, V2(X(t), Y) is convex in all differentiable points t.

B.1.2 RMH properties

Theorem 1. Consider the process

X(t) =

{
Z(t) if Y = 0,
µ(t) + Z(t) if Y = 1, i ≥ 1,

(5.10)

with µ a deterministic function, and Z a zero-mean Gaussian process whose covariance func-
tion is k(s, t). The modified process

X[i](t) = X[i−1](t)−E
[

Z[i−1](t) | Z[i−1](ti) = X[i−1](ti)
]

, i ≥ 1 (5.11)

with X[0] = X and Z[0] = Z is of the same form as the original one:

X[i](t) =

{
Z[i](t) if Y = 0,
µ[i](t) + Z[i](t) if Y = 1, i ≥ 1,

(5.12)

with µ[i] a deterministic function, and Z[i] a zero-mean Gaussian process.

Proof.
Equation (5.12) holds, by the definition of the problem, when i = 0.

Lets first check that the proposition works for the first iteration. Since Z is a
Gaussian process, which are completely determined by their marginal distributions,
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we know that
X[1](t) =X(t)−E [Z(t) | Z(t1) = X(t1)]

=X(t)− k(t, t1)

k(t1, t1)
X(t1).

(B.14)

Let Y = 1, then we have:

X[1](t) =µ(t) + Z(t)− k(t, t1)

k(t1, t1)
(µ(t1) + Z(t1))

=

(
µ(t)− k(t, t1)

k(t1, t1)
µ(t1)

)
+

(
Z(t)− k(t, t1)

k(t1, t1)
Z(t1)

)
=µ[1](t) + Z[1](t).

(B.15)

The result for Y = 0 follows by substituting 0 for µ(·).
As Z[1](t) is a linear combination of Gaussian processes that are jointly Gaussian,

it is itself a Gaussian process. Its mean is then

E
[

Z[1](t)
]
=E [Z(t)−E [Z(t) | Z(t1)]]

=E [Z(t)]−E [E [Z(t) | Z(t1)]]

=E [Z(t)]−E [Z(t)] = 0.

(B.16)

The second equality is a consequence of the linearity of the expectation. The third
one is the law of total expectation.

Its covariance is

k[1](s, t) = E
[

Z[1](s)Z[1](t)
]

= E

[(
X(s)− k(s, t1)

k(t1, t1)
X(t1)

)(
X(t)− k(t, t1)

k(t1, t1)
X(t1)

)]
= E [X(s)X(t)]− k(t, t1)

k(t1, t1)
E [X(s)X(t1)]

− k(s, t1)

k(t1, t1)
E [X(t1)X(t)] +

k(s, t1)

k(t1, t1)

k(t, t1)

k(t1, t1)
E [X(t1)X(t1)]

= k(s, t)− k(t, t1)k(s, t1)

k(t1, t1)
.

(B.17)

The argument for i > 1 follows by induction. Note that the equality Z[i](t) =[
Z[i−1](t) | Z[i−1](ti) = 0

]
holds for all i as both processes are Gaussian and their

mean and covariance are the same.

Theorem 2. Under the conditions specified in Theorem 1, if

µ(t) = ∑
d≥1

mdk(td, t), (5.22)

with md > 0 and td 6= td′ for d 6= d′, and one applies the RMH corrections for {t1, . . . , ti},
then

µ[i](t) = ∑
d≥i+1

mdk[i](td, t). (5.23)

Proof.
We can prove that for i = 1 and the rest follows by induction, due to the recursive
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form of the problem. We can separate the first term of the sum as

µ(t) = m1k(t1, t) + ∑
d≥2

mdk(td, t). (B.18)

We have now

µ[1](t) = µ(t)− k(t, t1)

k(t1, t1)
µ(t1)

= m1k(t1, t) + ∑
d≥2

mdk(td, t)− k(t, t1)

k(t1, t1)

(
m1k(t1, t1) + ∑

d≥2
mdk(td, t1)

)

= ∑
d≥2

mdk(td, t)− k(t, t1)

k(t1, t1)
∑
d≥2

mdk(td, t1)

= ∑
d≥2

md

(
k(td, t)− k(t, t1)k(td, t1)

k(t1, t1)

)
= ∑

d≥2
mdk[1](td, t).

(B.19)

Lemma 2 (Lamperti, 1977). Let Z be a Gaussian Markov process with covariance function
k. Then for all s, τ, t with s < τ < t it must verify:

k(s, t) =
k(s, τ)k(τ, t)

k(τ, τ)
. (B.20)

The converse is also true: if the covariance of a Gaussian process verifies the above then it is
a Markov process.

Proposition 1. Let Z be a zero-mean Gaussian process with the Markov property. The
process Z̃(t) = Z(t) − E [Z(t) | Z(τ)], with s < τ < t verifies that Z̃(s) and Z̃(t) are
independent.

Proof.
We denote as k̃ the covariance function of the process Z̃. We have

k̃(s, t) = k(s, t)− k(s, τ)k(τ, t)
k(τ, τ)

. (B.21)

From Lemma 2 we have:

k̃(s, t) = k(s, t)− k(s, τ)k(τ, t)
k(τ, τ)

= k(s, t)− k(s, t) = 0. (B.22)

As Z̃(s) and Z̃(t) are jointly Gaussian, their covariance equal to 0 implies their inde-
pendence.

Theorem 3. Consider the classification problem defined by Equation (5.3) in the interval
T = [0, ∞). Let Z be a zero-mean Brownian motion, whose covariance function is

kBM(s, t) = σ2 min(s, t). (5.25)
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Assume that µ is the piecewise linear function

µ(t) =


µ1

t
τ1

if t ∈ [0, τ1)

µd

(
1− t−τd

τd+1−τd

)
+ µd+1

t−τd
τd+1−τd

if t ∈ [τd, τd+1), d = 1, . . . D− 1

µD if t ≥ τD

(5.26)

with 0 < τ1 < . . . < τD. Then,

(i) The class 1 mean belongs to the RKHS associated to the Brownian motion kernel and
is of the form

µ(t) =
D

∑
d=1

mdkBM(τd, t), with md 6= 0 d = 1, . . . , D. (5.27)

(ii) RMH, using distance covariance as a relevance function, selects {τ1, . . . , τD}, not
necessarily in that order, and then halts.

(iii) The points selected by RMH are the ones that appear in Bayes rule for the classification
problem defined in (5.3) and only those.

Proof. (i) We can take

m1
...

mD

 =


kBM(τ1, τ1) kBM(τ1, τ2) . . . kBM(τ1, τD)
kBM(τ2, τ1) kBM(τ2, τ2) . . . kBM(τ2, τD)

...
...

...
kBM(τD, τ1) kBM(τD, τ2) . . . kBM(τD, τD)


−1µ1

...
µD



=


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1µ1

...
µD

 .

(B.23)

Thus,

µ(t) =
D

∑
d=1

mdkBM(τd, t) =
(
m1 . . . mD

) kBM(τ1, t)
...

kBM(τD, t)



=
(
µ1 . . . µD

)


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1min(τ1, t)

...
min(τD, t)

 .

(B.24)
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If t ∈ [0, τ1) we have

µ(t) =
(
µ1 . . . µD

)


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1t

...
t



=
(
µ1 . . . µD

)


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1τ1

...
τ1

 t
τ1

= µ1
t

τ1
.

(B.25)

If t ∈ [τd, τd+1) we have

µ(t) =
(
µ1 . . . µD

)


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1



τ1
...

τd
t
...
t



=
(
µ1 . . . µD

)


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1





τ1
...

τd
τd
...

τd


+

t− τd

τd+1 − τd





τ1
...

τd
τd+1

...
τd+1


−



τ1
...

τd
τd
...

τd






= µd +

t− τd

τd+1 − τd
(µd+1 − µd)

= µd

(
1− t− τd

τd+1 − τd

)
+ µd+1

t− τd

τd+1 − τd
.

(B.26)
If t ≥ τD we have

µ(t) =
(
µ1 . . . µD

)


τ1 τ1 . . . τ1
τ1 τ2 . . . τ2
...

...
...

τ1 τ2 . . . τD


−1τ1

...
τD


= µD.

(B.27)

(ii) The mean is piecewise linear, so the only non-differentiable points are τ1, . . . , τD.
As the mean is piecewise linear, in each point t in which the mean is differentiable
we have (|µ(t)|)′′ = 0. In the first correction the process is Brownian motion. Thus,
its standard deviation is σ(t) =

√
t, which has σ′′(t) = − 1

4t3/2 ≤ 0. At t = 0 the
process has a fixed value 0. The distance covariance at this point will then be 0, and
thus this point cannot be a maximum. We can now apply Lemma 1 in the interval
(0, ∞) to deduce that the maximum of the distance covariance cannot be in a point
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in which the mean is differentiable. Thus, the first selected point should be one of
τ1, . . . , τD. By Theorem 2, we know that in the next step the mean has a similar shape,
with all non-selected points still present, but a different corrected process.

We know that, for the Brownian motion, after the sucessive corrections the pro-
cess still keeps a Brownian motion in the rightmost part and several Brownian bridges
between the selected points. The standard deviation of a Brownian bridge between

τd and τd+1 is σ(t) =
√

(τd+1−t)(t−τd)
τd+1−τd

, and in the same way as with the Brownian mo-
tion we have σ′′(t) ≤ 0. Thus, we can apply sequentially Lemma 1 and Theorem 2
to show that RMH necessarily selects the points τ1, . . . , τD. After these points are
selected, Theorem 2 indicates that RMH should halt.

(iii) Following Berrendero, Cuevas, and Torrecilla, 2018 we know that the Bayes
rule in a binary homoscedastic problem following Equation (5.3) is

g∗(x) = I{η∗(x)>0}, (B.28)

with

η∗(x) = 〈x, µ〉k −
1
2
〈µ, µ〉k − log

(
1− p

p

)
. (B.29)

Here 〈·, ·〉k is the inner product in the RKHS associated to the kernel of Z. Note also
that the only term involving the trajectories is 〈x, µ〉k.

When the mean has the form µ(t) = ∑D
d=1 mdkBM(τd, t), we can use the reproduc-

ing property to prove that the only relevant points are τ1, . . . , τD, as follows

〈x, µ〉k =
〈

x(t),
D

∑
d=1

mdkBM(τd, t)

〉
k

=
D

∑
d=1

md 〈x(t), kBM(τd, t)〉k

=
D

∑
d=1

mdx(τd).

(B.30)

Lemma 3. Let

µ(t) =
D

∑
d=1

mdkOU(τd, t), d = 1, . . . , D (B.31)

with md 6= 0 and τ1 < . . . < τD and where kOU is the covariance function of an Ornstein-
Uhlenbeck process. Then µ(t) is only non-differentiable at points τ1, . . . , τD. Everywhere
else, µ(t) is infinitely differentiable and |µ(t)| is convex, that is, d2|µ(t)|

dt2 > 0.

Proof. As kOU is the covariance function of an Ornstein-Uhlenbeck stochastic pro-
cess, we have:

kOU(s, t) = σ2e−
|s−t|

l (B.32)

where σ2 and l are positive constants. For x 6= 0, we know that |x| is infinitely
differentiable and d|x|

x = sign(x) Thus, for a fixed t if s 6= t, kOU(s, t) is infinitely
differentiable at point s, and its first derivative is

∂kOU(s, t)
∂s

= −σ2

l
e−
|s−t|

l sign(s− t). (B.33)
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If s = t, then kOU(s, t) is non differentiable at point s.
Now, we have that

µ(t) =
D

∑
d=1

mdkOU(τd, t). (B.34)

If t 6= τd ∀d, then µ(t) is a sum of functions infinitely differentiable at point t and
it is also infinitely differentiable at t. Otherwise, ∃! d t = τd (because all τd are
different). Thus µ(t) is a sum of functions differentiable at point t and one function
non-differentiable at point t. That makes µ(t) non-differentiable at point t.

Let us now prove the convexity of |µ(t)| on the differentiable points.
We can rewrite µ(t) as

µ(t) =
(
kOU(τ1, t) . . . kOU(τD, t)

)m1
...

mD



=
(
kOU(τ1, t) . . . kOU(τD, t)

)


kOU(τ1, τ1) . . . kOU(τ1, τD)
kOU(τ2, τ1) . . . kOU(τ2, τD)

...
...

kOU(τD, τ1) . . . kOU(τD, τD)


−1µ(τ1)

...
µ(τD)


(B.35)

where we used the fact that for every d

(
kOU(τd, τ1) . . . kOU(τd, τD)

)m1
...

mD

 = µ(τd). (B.36)

This formula corresponds to the expectation of an Ornstein-Uhlenbeck process
Z(t) with covariance kOU(s, t) conditioned at the values τ1, . . . , τD:

µ(t) = E[Z | Z(τ1) = µ(τ1), . . . , Z(τD) = µ(τD)]. (B.37)

Now, because an Ornstein-Uhlenbeck process is a Markov process, we know that
for a point t ∈ (τd, τd+1), the value of µ(t) only depends on µ(τd) and µ(τd+1):

µ(t) = E[Z | Z(τd) = µ(τd), Z(τd+1) = µ(τd+1)] t ∈ (τd, τd+1). (B.38)

In a similar way, if t < τ1 or t > τD, the value of µ(t) only depends on µ(τ1) and
µ(τD), respectively. Thus, we only need to check the cases where the conditioning is
done in one or two points.

We first consider the case where the conditioning is done in just one point td,
with d ∈ {1, D}. We have

µ(t) =
σ2e−

|t−τd |
l µ(τd)

σ2 = e−
|t−τd |

l µ(τd). (B.39)

Then, for any differentiable point,

d|µ(t)|
dt

= e−
|t−τd |

l

(
−sign(t− τd)

l

)
|µ(τd)|

d2|µ(t)|
dt2 = e−

|t−τd |
l · |µ(τd)|

l2 > 0.

(B.40)
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In the second case we condition only to two points τd and τd+1. We have now

µ(t) = σ2
(

e−
|t−τd |

l e−
|t−τd+1 |

l

) 1
σ2

(
1 e−

|τd−τd+1 |
l

e−
|τd−τd+1 |

l 1

)−1 (
µ(τd)

µ(τd+1)

)

=
1

1− e−2
|τd−τd+1 |

l

(
e−
|t−τd |

l e−
|t−τd+1 |

l

)(µ(τd)− µ(τd+1)e−
|τd−τd+1 |

l

µ(τd+1)− µ(τd)e−
|τd−τd+1 |

l

)
.

(B.41)

Then for any differentiable point

d|µ(t)|
dt

=
1

1− e−2
|τd−τd+1 |

l

· sign

((
e−
|t−τd |

l e−
|t−τd+1 |

l

)(µ(τd)− µ(τd+1)e−
|τd−τd+1 |

l

µ(τd+1)− µ(τd)e−
|τd−τd+1 |

l

))
·
(

e−
|t−τd |

l · − sign(t−τd)
l e−

|t−τd+1 |
l · − sign(t−τd+1)

l

)
·
(

µ(τd)− µ(τd+1)e−
|τd−τd+1 |

l

µ(τd+1)− µ(τd)e−
|τd−τd+1 |

l

)
.

(B.42)

Finally

d2|µ(t)|
dt2 =

1
l2

1

1− e−2
|τd−τd+1 |

l

·
∣∣∣∣∣(e−

|t−τd |
l e−

|t−τd+1 |
l

)(µ(τd)− µ(τd+1)e−
|τd−τd+1 |

l

µ(τd+1)− µ(τd)e−
|τd−τd+1 |

l

)∣∣∣∣∣ > 0.

(B.43)

Thus d2|µ(t)|
dt2 > 0 in for any differentiable point t, as we wanted to prove.

Lemma 4. Let Z be an Ornstein-Uhlenbeck process, with covariance function

kOU(s, t) = σ2e−
|s−t|

l . (B.44)

If Zcond is this process conditioned to be 0 in an arbitrary number of points, with covariance
function kcond(s, t), then σcond(t) =

√
kcond(t, t) is concave at every differentiable point t,

that is, d2σcond(t)
dt2 ≤ 0.

Proof. Using the chain rule

d2

dt2 σcond(t) =
d2

dt2

√
kcond(t, t) =

d
dt

(
1
2

1√
kcond(t, t)

d
dt

kcond(t, t)

)

=
1
2

(
− 1

2
1√

(kcond(t, t))3

(
d
dt

kcond(t, t)
)2

+
1
2

1√
kcond(t, t)

d2

ds2 kcond(t, t)

)
.

(B.45)

It thus suffices to prove that kcond(t, t) itself is concave.
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As the conditioned process is Markov, we can compute separately d2

dt2 kcond(t, t)
on each interval between conditioning points. Thus, we only have to prove this
property for the cases with zero, one or two conditioning points.

If there are zero conditioning points, then

kcond(t, t) = k(t, t) = σ2. (B.46)

Thus, kcond(t, t) is constant and d2

dt2 kcond(t, t) = 0.
If we have only one conditioning point τd then

kcond(t, t) = k(t, t)− k(t, τd)k(τd, τd)
−1k(t, τd)

= σ2
(

1− e−2 |t−τd |
l

)
.

(B.47)

Thus
d
dt

kcond(t, t) = σ2 · 2
l
· sign(t− τd) · e−2 |t−τd |

l

d2

dt2 kcond(t, t) = −σ2 · 4
l2 · e

−2 |t−τd |
l < 0.

(B.48)

If we have two conditioning points τd and τd+1, with τd < t < τd+1, then

kcond(t, t) = k(t, t)−
(
k(t, τd) k(t, τd+1)

)
·
(

k(τd, τd) k(τd, τd+1)
k(τd, τd+1) k(τd+1, τd+1)

)−1 ( k(t, τd)
k(t, τd+1)

)
= σ2

[
1− 1

1− e−2
|τd−τd+1 |

l

(
e−
|t−τd |

l e−
|t−τd+1 |

l

)

·
(

1 −e−
|τd−τd+1 |

l

−e−
|τd−τd+1 |

l 1

)(
e−
|t−τd |

l

e−
|t−τd+1 |

l

)]

= σ2

[
1− 1

1− e−2
|τd−τd+1 |

l

[
e−2 |t−τd |

l − 2e−
2|τd−τd+1 |

l + e−2
|t−τd+1 |

l

] ]
.

(B.49)

Then

d
dt

kcond(t, t) = −σ2

[
1

1− e−2
|τd−τd+1 |

l

·
[
− e−2 |t−τd |

l · 2
l
· sign(t− τd)− e−2

|t−τd+1 |
l · 2

l
· sign(t− τd+1)

]]
d2

dt2 kcond(t, t) = −σ2

[
1

1− e−2
|τd−τd+1 |

l

[
e−2 |t−τd |

l · 4
l2 + e−2

|t−τd+1 |
l · 4

l2

] ]
< 0.

(B.50)

Theorem 4. Consider the classification problem defined in Equation (5.3) defined in the
whole real line T = R. Let Z be an Ornstein-Uhlenbeck process, whose covariance function
is

kOU(s, t) = σ2 exp
(
−|t− s|

l

)
. (5.28)
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Assume that µ is in the RKHS whose reproducing kernel is k(s, t), and has the form

µ(t) =
D

∑
d=1

mdkOU(τd, t), md 6= 0 d = 1, . . . , D, (5.29)

with τ1 < . . . < τD. Under these conditions, RMH using distance covariance as a relevance
measure selects {τd}D

d=1, which are the points that appear in Bayes rule, and only those.

Proof. The proof follows the same schema as the one for Theorem 3.
From Lemma 3 we know that the only non-differentiable points of the mean

are τ1, . . . , τD, and that it is convex everywhere else. We also know from Lemma 4
that in each iteration the standard deviation is concave at every differentiable point.
Applying Lemma 1 to the corresponding open intervals between selected points we
deduce that the maximum of the distance covariance at each step of the algorithm
cannot be in a point in which the mean is differentiable. Thus, at each step the point
selected should be one of τ1, . . . , τD.

By Theorem 2, we know that in the next step the mean has a similar shape, with
all non-selected points still present, and where the process is a corrected version of
Ornstein-Uhlenbeck. We can then continue applying the same reasoning to find that
all τ1, . . . , τD should be selected. After these points are selected, Theorem 2 indicates
that RMH should halt.

Theorem 5. Let Z be a zero-mean Ornstein-Uhlenbeck process whose kernel is

kOU(s, t) = σ2 exp
(
−|t− s|

l

)
. (5.33)

In the limit l → ∞, σ2 → ∞ with 2σ2

l = 1, The process Z′(t) = [Z(t) | Z(τ) = 0] is
two-sided standard Brownian motion whose origin is τ.

Proof.
We will first consider this process before taking limits. As Z is stationary and with
zero mean, we can assume without loss of generalization that τ = 0. Then, Z′ is a
zero-mean Gaussian process whose covariance function is

k′(s, t) =k(s, t)− k(s, τ)k(τ, t)
k(τ, τ)

=σ2
[

exp
(
−|s− t|

l

)
− exp

(
−|s|+ |t|

l

)]
.

(B.51)

Let us take the limit of this process as l → ∞ and σ2 → ∞ with σ2 = 1
2 l, so that

the variance tends to infinity as the lengthscale tends to infinity:

k′(s, t) = lim
l→∞

1
2

l
[

exp
(
−|s− t|

l

)
− exp

(
−|s|+ |t|

l

)]
. (B.52)

Replacing the exponential functions by their Taylor series expansions, we get

k′(s, t) = lim
l→∞

1
2

l
[

1− |s− t|
l

+ O
(

1
l2

)
−
(

1− |s|+ |t|
l

+ O
(

1
l2

)) ]
=
|s|+ |t| − |s− t|

2
.

(B.53)
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In this limit, if s < τ = 0 < t or t < τ = 0 < s then k′(s, t) = 0. Also, if τ < s, t or
s, t < τ then:

k′(s, t) =
|s|+ |t| − |s− t|

2
=

{
min(|s|, |t|) if st > 0,
0 otherwise.

(B.54)

This is precisely the kernel of two-sided Brownian motion that emanates from
τ = 0. Therefore, upon conditioning to a particular observed value, in the limit of
large l, the process is a standard Brownian motion that emanates from the point at
which the process has been conditioned. The same reasoning can be applied assum-
ing a different linear relation between lengthscale and variance, σ2 = Cl, with C
constant, to obtain a Brownian motion with rescaled covariance.

B.2 Simulations

The synthetic datasets used follow the simplified Brownian model in Equation (5.35),{
P0 : B(t) , t ∈ [0, 1]
P1 : µ(t) + B(t) , t ∈ [0, 1]

, (B.55)

with B(t) being a standard Brownian motion, µ(t) a deterministic trend and P(Y =
0) = P(Y = 1) = 1/2.

Following Baíllo, Cuevas, and Cuesta-Albertos, 2011; Berrendero, Cuevas, and
Torrecilla, 2018, when the probability measures are equivalent, the Bayes classifica-
tion rule for this model can be computed as

g∗(X) = I{η∗(X)>0} (B.56)

where
η∗(X) =

∫
µ′dX− 1

2
‖µ′‖2 (B.57)

and the Bayes error rate is

L∗ = 1−Φ
(‖µ′‖

2

)
(B.58)

where Φ(·) is the cumulative distribution function of a standard normal random
variable.

B.2.1 Peak functions

We first defined what we called a “peak” function, obtained as the integral of an
element ϕm,k(t) of a Haar basis:

Φm,k(t) =
∫ t

0
ϕm,k(s)ds

=
∫ t

0

√
2m−1

[
I( 2k−2

2m , 2k−1
2m )(s)− I( 2k−1

2m , 2k
2m )(s)

]
ds,

(B.59)

for m, k ∈N, 1 ≤ k ≤ 2m−1.
These functions are relevant, because they are a orthonormal basis of the Dirich-

let space (Mörters and Peres, 2010), that is, the reproducing kernel Hilbert space
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(RKHS) associated with the Brownian covariance kernel. Let us remind that P0 ∼
P1 ⇐⇒ µ(t) ∈ Hk, as explained in Section 2.3.4. Thus, in any nonsingular problem
(with positive error) µ(t) can be expressed has a linear combination of elements of
the form Φm,k(t). Under the model in Equation (5.35) with µ(t) = Φm,k(t), then

η∗(X) = 2X
(

2k− 1
2m

)
− X

(
2k− 2

2m

)
− X

(
2k
2m

)
− 1√

2m+1
. (B.60)

Thus, there are only three relevant variables that appear in the optimal rule, and the
associated Bayes error rate in this case is:

L∗ = 1−Φ

(
‖ Φ′m,k(t) ‖

2

)
= 1−Φ

(
1
2

)
' 0.3085. (B.61)

However, if we compute V2(X(t), Y) using Corollary 1, we obtain

V2(X(t), Y) = 2

√
t
π

(
e−

Φ2
m,k(t)

4t − 1

)

+ Φm,k(t)
(

2 cdf
(

Φm,k(t)√
2t

)
− 1
) (B.62)

which has only one maximum at t = 2k−1
2m . Thus maxima hunting would ignore two

variables that are necessary for a correct classification, while RMH would be able to
select these.

B.2.2 Bayes rule and error for the synthetic datasets

We now compute Bayes rule and error for the selected synthetic experiments. The
mean in the first synthetic example is just a (scaled) peak function, µ(t) = 2Φ3,3(t),
as defined above. Thus we have

µ′(t) = 2ϕ3,3(t)

‖µ′‖2 =
∫ 1

0
(2ϕ3,3(t))2dt = 4

L∗ = 1−Φ (1) ' 0.1587

η∗(X) = 2X
(

5
8

)
− X

(
1
2

)
− X

(
3
4

)
− 1

2
,

(B.63)

which again depends only on three variables.
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The mean in the second example is a linear combination of the peak functions
defined above, µ(t) = 2Φ3,2(t) + 3Φ3,3(t)− 2Φ2,2(t). We have now

µ′(t) = 2ϕ3,2(t) + 3ϕ3,3(t)− 2ϕ2,2(t)

‖µ′‖2 =
∫ 1

0
(2ϕ3,2(t) + 3ϕ3,3(t)− 2ϕ2,2(t))2dt = 17

L∗ = 1−Φ

(√
17
2

)
' 0.0196

η∗(X) = 4X
(

3
8

)
− 2X

(
1
4

)
−
(

5−
√

2
)

X
(

1
2

)
+ 6X

(
5
8

)
−
(

3 + 2
√

2
)

X
(

3
4

)
+
√

2X(1)− 17
4

,

(B.64)

which now depends on six variables.
The following examples are more complex functions. As they are not piecewise

linear, Bayes rule will no longer depend on a finite number of variables. The first
example is a (scaled) square function, µ(t) = 2t2. In this case

µ′(t) = 4t

‖µ′‖2 =
∫ 1

0
(4t)2dt =

16
3

L∗ = 1−Φ
(

4
2
√

3

)
' 0.1241

η∗(X) = X(1)−
∫ 1

0
X(t)dt− 2

3
.

(B.65)

The last synthetic example as the sinusoidal function µ(t) = 1
2 sin 2πt as its mean.

Thus we have

µ′(t) = π cos 2πt

‖µ′‖2 = π2
∫ 1

0

1 + cos 4πt
2

dt =
π2

2
+

π

8
sin 4π =

π2

2

L∗ = 1−Φ
(

π

2
√

2

)
' 0.1333

η∗(X) = X(1) + 2
∫ 1

0
sin(2πt)X(t)dt− π

4
.

(B.66)
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Appendix C

Analysis of fuzzy C-means

In this section we present an analysis of the results obtained for fuzzy C-means
(FCM) in the functional case of dataset D2, as explained in Chapter 6. We explain
mathematically the observed behavior in the limits l → ∞ and l → 0. In this last
limit, which exhibits the same behavior as the multivariate case, we also find the
lowest value of C for which the convergence to the center of mass is theoretically
possible in the D2 dataset, corresponding with normalized Gaussian data with one
observation per cluster.

Consider the simplest case, in which there is a single observation per cluster. We
also fix the fuzzifier parameter ω = 2. The expected value of the center of gravity
of the data is 0, due to the symmetrical generation of the clusters. In fact, as we are
interested in the behavior for a large number of clusters, we can assume that it will
be close to 0. Thus, for a fixed value of α, the i-th initial cluster center will then be
placed at qi = αci. The inertia function J(D) depends on the data only through the
squared distances between the initial centers qi and the data points (the real cluster
centers ci), as

J(D) =
N

∑
i=1

C

∑
j=1

Uω
ij d2

ij =
N

∑
i=1

1

∑C
j=1

1
d2

ij

. (C.1)

We can compute these distances as

d2
ij = 〈ci − qj, ci − qj〉 = 〈ci, ci〉 − 2α〈ci, cj〉+ α2〈cj, cj〉. (C.2)

We consider the normalized case, where 〈ci, ci〉 = 1. Thus

d2
ij = 1− 2α〈ci, cj〉+ α2. (C.3)

If we substitute Equation (C.3) in Equation (C.1), we obtain

J(D, α) =
N

∑
i=1

1

∑C
j=1

1
1−2α〈ci ,cj〉+α2

=
N

∑
i=1

1
1

1−2α+α2 + ∑C
j=1
j 6=i

1
1−2α〈ci ,cj〉+α2

. (C.4)

Thus, the inertia depends only on the distribution of the distances of each qi to
the cluster centers. The mean of this distribution is independent of the covariance
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FIGURE C.1: Violin plots showing how the values of l and α affect
the distribution of distances in the normalized dataset. The position
of the vertical lines in the x axis correspond to each value of α. The y
axis represent the possible values for the distance between two points
in the sample. A vertical histogram of these distances is shown for

each l and α. In these plots, N = C = 50 and M = 100.

function that generates the centers, as

Ej 6=i[d2
ij] = E[1− 2α〈ci, cj〉+ α2]

= 1− 2αE

[∫
T

ci(t)cj(t)dt
]
+ α2

= 1− 2α
∫
T

E[ci(t)]E[cj(t)]dt + α2 (independence)

= 1 + α2.

(C.5)

It is also easy to see that, for the normalized case, the squared distances are in the
interval [1− 2α + α2, 1 + 2α + α2], symmetric around the mean. When α = 1 this is
the interval [0, 4] as expected.

Is interesting to see how the distribution of distances in the dataset changes with
respect to the parameters l and α. This can be seen in Figure C.1 through the use
of violin plots. Each plot corresponds with different values of l. The distribution
of distances is shown for four different values of α: 0, 0.25, 0.5 and 0.75. We can
observe that by increasing the lengthscale the distribution of distances becomes bi-
modal with the probability masses strongly concentrated around the modes. This
means that initially, the points are either very close to each other or very far apart.
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There is a natural explanation of why increasing the lengthscale causes this bi-
modal distribution to appear. In fact, increasing the lengthscale increases the correla-
tion of the different points inside a curve. As point evaluations are increasingly cor-
related, the data cloud (seen as points in M dimensions) becomes more ellipsoidal,
with observations tending to lay near the line corresponding to constant trajectories
(xi(t1) = xi(t2) = . . . = xi(tM)). Thus, most of the observations in the cloud will
be situated at the nonnegative orthant (the part of the space corresponding to func-
tions that are always nonnegative) or at the nonpositive orthant (corresponding to
nonpositive functions). When normalization is applied, all data points in the non-
negative orthant will be close together, and all the points in the nonpositive orthant
will also be close together, but the two sets of points will be far away.

Indeed, as we mentioned in Section 2.1.1, when l → ∞ the covariance function
tends to a constant, and the trajectories are thus also constant. In this particular
case, after normalization approximately half cluster centers will have the minimum
distance 1 − 2α + α2 with a given qi, and the other half will have the maximum
distance 1 + 2α + α2. Thus the inertia will approximate

J(D, α) ≈
N

∑
i=1

1
C/2

1−2α+α2 +
C/2

1+2α+α2

=
2(1− α)2(1 + α)2

((1− α)2 + (1 + α)2)
. (C.6)

We can see that, as the features are all the same, the effective dimension is one,
and there is no dependence on C.

In order to explore the presence of the local maximum that causes the conver-
gence problems, we can try to analyze the derivative of the inertia. We first compute
the derivative of the squared distance and its inverse, as they will be needed:

d
dα

d2
ij = −2〈ci, cj〉+ 2α, (C.7)

d
dα

1
d2

ij
=

2〈ci, cj〉 − 2α

d4
ij

. (C.8)

Using those, we can compute the derivative of the objective function as

d
dα

J(D, α) =
N

∑
i=1

 2(
∑C

j=1
1

d2
ij

)2

C

∑
j=1

−〈ci, cj〉+ α

d4
ij



=
N

∑
i=1

 2(
∑C

j=1
1

d2
ij

)2

α− 1
d4

ii
+

C

∑
j=1
j 6=i

α− 〈ci, cj〉
d4

ij


 .

(C.9)

In order for the maximum to appear, the derivative must be positive in an inter-
val. This is guaranteed if

0 ≤ α− 1
d4

ii
+

C

∑
j=1
j 6=i

α− 〈ci, cj〉
d4

ij
. (C.10)

The term α−1
d4

ii
is always negative, as α < 1. For small values of C, this term
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dominates in the expression and thus the derivative is negative and FCM converges.
When C is bigger, however, the term is very small, and the behavior of FCM will
depend on the other term. We can compute which values of C are too small for the
problems to arise. In order to do that, we can check the value of C for which the
inequality holds:

1− α

d4
ii
≤

C

∑
j=1
j 6=i

α− 〈ci, cj〉
d4

ij

1
(1− α)3 ≤

C

∑
j=1
j 6=i

α− 〈ci, cj〉
(1− 2α〈ci, cj〉+ α2)2 .

(C.11)

As the functions are discretized to M points, the inner product can be expressed as
the Riemann sum

〈ci, cj〉 =
1
M

M

∑
m=1

cimcjm, (C.12)

where cim is the m-th feature of ci. We consider the worst case, namely that l → 0
and M→ ∞. Then the features of ci are independent (because l → 0) and thus

〈ci, cj〉 =
1
M

M

∑
m=1

cimcjm −−−→
M→∞

E(cimcjm) = EcimEcjm = 0. (C.13)

Replacing that in the expression from Equation (C.11) and performing algebraic ma-
nipulations we arrive at

C ≥ 1 +
(1 + α2)2

α(1− α)3 . (C.14)

The term in the right is greater than 11 for α ∈ (0, 1), as its minimum value in that
region is 1

27 (163+ 56
√

7) ≈ 11.52. Thus, we need C ≥ 12 for the maximum to appear.
This has been observed in practice for high values of M and small enough l.

When l � 0 or M � ∞, the term 〈ci, cj〉 does not longer cancel out. However,
we know that −1 ≤ 〈ci, cj〉 ≤ 1. Due to the symmetry of the data we would expect
that 〈ci, cj〉 presents roughly the same distribution of negative and positive values.
However, the effect of its sign in Equation (C.11) is not the same. For example,
when 〈ci, cj〉 > α the numerator α− 〈ci, cj〉 becomes negative, and the denominator
(1− 2α〈ci, cj〉+ α2)2 becomes smaller. When 〈ci, cj〉 < 0 the numerator is positive,
but the denominator is larger. Thus, the negative terms in the sum carry more weight
than the positive ones, making the ocurrence of a local maximum more difficult.

In the extreme case, with l → ∞, approximately half of the terms in the sum will
have a value of 〈ci, cj〉 = 1 and the other half will have 〈ci, cj〉 = −1. In that case

C
2

1
(1− α)3 ≤

C
2

α + 1
(1 + 2α + α2)2

0 ≥ C.
(C.15)

Thus, the inequality never holds, as we already expected from Equation (C.6). In
this case the derivative of the inertia function is always negative and FCM always
converges, independently of C and M. Between these extreme cases, we obtain dif-
ferent behaviors for the different values of l, requiring increasingly more clusters for
the two minima to appear as l increases.
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