Currículum vitae y la lista de publicaciones de Dmitry Yakubovich
Currículum vitae 2013: pdf
Preprints:
[49] F. Bracci, E. Gallardo-Gutiérrez, D. Yakubovich, Complete frequencies for Koenigs domains,
https://arxiv.org/abs/2311.17470
Artículos aceptados:
Artículos publicados:
[48] D. Yakubovich, On the work by Serguei Naboko on the similarity to unitary and selfadjoint operators. Oper. Theory Adv. Appl., 291, Birkhäuser/Springer, Cham, 2023, 61–71.
[47] A. Siskakis, E. Gallardo-Gutiérrez, D. Yakubovich, Generators of C0-semigroups of weighted composition operators. Israel J. Math. 255 (2023), no. 1, 63–80.
Preprint version: https://arxiv.org/abs/2110.05247
[46] Glenier Bello, Dmitry Yakubovich, An operator model in the annulus. J. Operator Theory 90 (2023), no. 1, 25–40.
Preprint version: https://arxiv.org/abs/2106.08757
[45] Luciano Abadías, Glenier Bello-Burguet, Dmitry Yakubovich, Functional models up to similarity and a-contractions. Banach J. Math. Anal. 15 (2021), no. 2, Paper No. 34, 29 pp.
Preprint version: https://arxiv.org/abs/2005.00075
[44] Luciano Abadías, Glenier Bello-Burguet, Dmitry Yakubovich, Operator inequalities, functional models and ergodicity. J. Math. Anal. Appl. 498 (2021), no. 2, Paper No. 124984, 39 pp.
Preprint version: https://arxiv.org/abs/1908.05032
[43] M. Putinar, D. Yakubovich, Spectral dissection of finite rank perturbations of normal operators, J. Operator Theory 85 (2021), no. 1, 45–78. Preprint version: https://arxiv.org/abs/1908.05032
[42] Glenier Bello Burguet, Dmitry Yakubovich, Operator
inequalities implying similarity to a contraction,
Complex
Analysis and Operator Theory 13 (2019), no. 3, 1325–1360.
https://doi.org/10.1007/s11785-018-0864-8
Preprint version: arXiv:1711.05110
[41] Eva A. Gallardo-Gutiérrez, Dmitry Yakubovich, On
generators of C0-semigroups of
composition operators,
Israel J. Math. 229 (2019), no. 1,
487–500.
https://link.springer.com/article/10.1007/s11856-018-1815-9
Preprint version: arXiv:1708.02259
[40] Baranov, Anton D.; Yakubovich, Dmitry V., Completeness of
rank one perturbations of normal operators with lacunary spectrum,
Journal of Spectral Theory. 8 (2018), no 1, , p. 1-32.
Preprint version: http://arxiv.org/abs/1510.02717
[39] Michael A.Dritschel, Daniel Estévez, Dmitry Yakubovich, Resolvent criteria for similarity to a normal operator with spectrum on a curve. J. Math. Anal. Appls 463 (2018), no. 1, 345–364,
Preprint version: arXiv:1704.08135
[38] Dritschel, Michael A., Estévez, Daniel, Yakubovich, Dmitry,
Traces of analytic uniform algebras on subvarieties and test
collections,
J. London Math. Society (2) 95 (2017),
414-440.
Preprint version: http://arxiv.org/abs/1212.5965
[37] Dritschel, Michael A; Estévez, Daniel; Yakubovich, Dmitry;
Tests for complete K-spectral sets.
J. Funct. Anal.
273 (2017), no. 3, 984–1019.
Preprint version: arXiv:1510.08350
[36] Pal, Avijit; Yakubovich, Dmitry V.;
Infinite-dimensional features of matrices and pseudospectra.
J.
Math. Anal. Appl. 447 (2017), no. 1, 109–127.
Preprint version: http://arxiv.org/abs/1609.08325
[35] Baranov, Anton D.; Yakubovich, Dmitry V., Completeness
and spectral synthesis of nonselfadjoint one-dimensional
perturbations of selfadjoint operators, Advances of Mathematics.
302 (2016), 740-798.
Preprint version:
http://arxiv.org/abs/1212.5965
[34] Baranov, Anton D.; Yakubovich, Dmitry V. One-dimensional
perturbations of unbounded selfadjoint operators with empty spectrum.
J. Math. Anal. Appl. 424 (2015), no. 2, 1404–1424.
Preprint version: http://arxiv.org/abs/1304.5800
[33] S. Chavan, D. Yakubovich, Spherical Tuples
of Hilbert Space Operators,
Indiana University Math. J.,
64 (2015), No. 2, 577-612.
Preprint version:
http://arxiv.org/abs/1401.0487
[32] Ara, Pere; Lledó, Fernando; Yakubovich, Dmitry
V. Følner sequences in operator theory and operator algebras.
Operator theory, operator algebras and applications, 1–24,
Oper. Theory Adv. Appl., 242, Birkhäuser/Springer, Basel, 2014.
Preprint version: http://arxiv.org/abs/1303.3392
[31] Anton Baranov, Yurii Belov, Alexander Borichev, D.
Yakubovich. Recent developments in spectral synthesis for exponential
systems
and for non-self-adjoint operators. Recent trends in
analysis, 17–34, Theta Ser. Adv. Math., 16, Theta, Bucharest,
2013.
Preprint version: arXiv:1212.6014
[30] Estévez, Daniel; Yakubovich, Dmitry V. Decay rate
estimations for linear quadratic optimal regulators.
Linear
Algebra Appl. 439 (2013), no. 11, 3332–3358.
Preprint
version: http://arxiv.org/abs/1201.1786
[29] Fernando Lledó, Dmitry Yakubovich, "Følner sequences and finite operators", J. Math. Anal. Appl. 403 (2013), no. 2, 464–476.
Preprint version: http://arxiv.org/abs/1210.1380
[28] José E. Galé, Pedro J. Miana, Dmitry Yakubovich, "H∞ functional calculus and models of Nagy-Foiaş type for sectorial operators", Mathematische Annalen, 351, No. 3 (2011), 733-760, DOI: 10.1007/s00208-010-0614-3
Preprint version: http://arxiv.org/abs/0903.1576
[27] Dmitry Yakubovich, "Vector semi-Fredholm Toeplitz operators and mean winding numbers", Nagoya Mathematical J. 195 (2009), 57 -- 75.
[26] Guillermo López, Domingo Pestana, José Manuel Rodríguez,
Dmitry Yakubovich,
"Computation of conformal
representations of compact Riemann surfaces", Mathematics of
Computation 79, No 269, (2010), 365–381.
Preprint version: http://arxiv.org/abs/0903.0508
[25] Tuomas Hytönen, José Luis Torrea, Dmitry Yakubovich, The Littlewood – Paley-Rubio de Francia property of a Banach space for the case of equal intervals. Proc. of the Royal Society of Edinburgh Section A (Mathematics) Vol. 139, 819 - 832 (2009).
Preprint version: http://arxiv.org/abs/0807.2981
[24] Dmitry Yakubovich, "Nagy - Foiaş type functional models of nondissipative operators in parabolic domains", J. Operator Theory 60 no. 1 (2008), 3—28.
Preprint version: http://arxiv.org/abs/math.FA/0607062
[23] Dmitry Yakubovich, “Real separated algebraic curves, quadrature domains, Ahlfors type functions and Operator Theory”, J. Funct. Anal. 236 no 1 (2006), 25-58.
Preprint version: http://arxiv.org/abs/math.SP/0510466
[22] José Manuel Rodríguez, Dmitry Yakubovich, “A Kolmogorov-Szegö-Krein type condition for weighted Sobolev spaces”, Indiana University Mathematics Journal, Vol. 54 no. 2 (2005), p. 575 – 598.
[21] Dmitry Yakubovich, “A linearly similar model of Sz.-Nagy -- Foias type in a domain”, St. Petersburg Math. J. Vol 15 No. 2 (2004) , p. 289 — 321. pdf
(distinguido con mención "Featured review" en Math. Reviews)
[20] Dmitry Yakubovich, “A note on hyponormal operators, associated with quadrature domains”, Operator theory, advances and applications, vol. 123 (2001), p. 513 - 525.
[19] Venancio Álvarez, José M. Rodríguez, Dmitry Yakubovich, “Estimates for nonlinear harmonic ``measures'' on trees”, Michigan Math. J. vol. 49 (2001), p. 47-64.
[18] Yakubovich, V. A., Yakubovich, D. V., “A local analogue of the Popov frequency criterion for the absolute stability of a nonlinear system”, Dokl. Akad. Nauk, vol. 371 no. 4 (2000), p. 462—465. [17] Yakubovich, Dmitry V., “Subnormal operators of finite type. II. Structure theorems”, Rev. Mat. Iberoamericana, vol. 14 no. 3 (1998), p. 623—681.
(distinguido con mención "Featured review" en Math. Reviews)
[16] Yakubovich, Dmitry V., “Subnormal operators of finite type. I. Xia's model and real algebraic curves in ${\bf C}\sp 2$”, Rev. Mat. Iberoamericana, vol. 14 no. 1 (1998), p. 95—115. [15] Verduyn Lunel, Sjoerd M., Yakubovich, Dmitry V., “A functional model approach to linear neutral functional-differential equations”, Integral Equations Operator Theory, vol. 27 no. 3 (1997), p. 347—378. [14] Yakubovich, D. V., “Dual piecewise analytic bundle shift models of linear operators”, J. Funct. Anal., vol. 136 no. 2 (1996), p. 294—330.
(distinguido con mención "Featured review" en Math. Reviews)
[13] Yakubovich, D. V., “Local spectral multiplicity of a linear operator with respect to measure”, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) vol. 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii. 23, p. 293--306, 311, transl. in J.Math. Sci. 87, 3971-3979 (1997) pdf
[12] Yakubovich, D. V., “Dual analytic models of seminormal operators”, Integral Equations Operator Theory, vol. 23 no. 3 (1995), p. 353—371.
[11] Yakubovich, D. V., “Spectral multiplicity of Toeplitz operators with smooth symbols”, Amer. J. Math., vol. 115 no. 6 (1993), p. 1335—1346.
[10] Yakubovich, Dmitry V., “Spectral properties of smooth perturbations of normal operators with planar Lebesgue spectrum”, Indiana Univ. Math. J., vol. 42 no. 1 (1993), p. 55—83.
[9] Yakubovich, D. V., “On the spectral theory of Toeplitz operators with a smooth symbol”, Algebra i Analiz vol. 3, no. 4 (1991), p. 208—226.
Transl. in St. Petersburg Math. J.
[8] Vol’berg, A. L., Peller, V. V., Yakubovich, D. V., “A brief excursion into the theory of hyponormal operators”, Algebra i Analiz, vol. 2 no. 2 (1990), p. 1—38.
Transl. in Leningrad Math. J.
[7] Yakubovich, D. V., “Invariant subspaces of the operator of multiplication by z in the space E p in a multiply connected domain”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 178 (1989), p. 166-183, 186—187; transl. in J. of Soviet Mathematics 61 no. 2, 2046 – 2056 (1992)
[6] Yakubovich, D. V., “Riemann surface models of Toeplitz operators”, Oper. Theory Adv. Appl., vol. 42 (1989), p. 305—415.
[5] Yakubovich, D. V., “Multiplication operators on special Riemann surfaces as models of rational Toeplitz operators”, Dokl. Akad. Nauk SSSR, vol. 302 no. 5 (1988), p. 1068—1072.
[4] Yakubovich, D. V., “Linearly similar models of the Toeplitz operator”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 157 (1987), p. 113--123, 181, transl. in J. of Soviet Mathematics 44 no. 8, 826 - 833 (1989)
[3] Yakubovich, D. V., “Invariant subspaces of weighted shift operators”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) vol. 141 (1985), p. 100—143, 189-190. Transl. in J. of Soviet Mathematics 37 no. 5, 1323 – 1346 (1987)
[2] Yakubovich, D. V., “An algorithm for completing a rectangular polynomial matrix into a square matrix with a given determinant”, Kibernet. i Vychisl. Tekhn. Vol. 62 (1984), p. 85-89, 120.
[1] Yakubovich, D. V., “Conditions for unicellularity of weighted shift operators”, Dokl. Akad. Nauk SSSR, vol. 278 no. 4 (1984), p. 821—824.
Transl. in Soviet Math. Doklady 30 no. 2, 494 - 497 (1984)