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LOCAL SPECTRAL MULTIPLICITY

OF A LINEAR OPERATOR

WITH RESPECT TO A MEASURE

D. V. Yakubovich

Abstract. Let T be a bounded linear operator in a separable Banach space X and
let µ be a nonnegative measure in C with compact support. A function mT,µ is
considered that is defined µ-a.e. and has nonnegative integers or +∞ as values. This
function is called the local multiplicity of T with respect to the measure µ. This
function has some natural properties, it is invariant under similarity and quasisimi-
larity; the local spectral multiplicity of a direct sum of operators equals the sum of
local multiplicities, and so on. The definition is given in terms of the maximal diag-
onalization of the operator T . It is shown that this diagonalization is unique in the
natural sense. A notion of a system of generalized eigenvectors, dual to the notion
of diagonalization, is discussed. Some examples of evaluation of the local spectral
multiplicity function are given. Bibliography: 10 titles.

The spectral multiplicity of a linear operator, which is studied in many papers
(let us point out [4, 6, 9]), is one of its invariants. The notion of the local spectral
multiplicity has been known only for normal operators. Here we discuss a definition
of the local spectral multiplicity of a linear operator in the general case. It is based
on the notion of a “maximal diagonalization” and seems to be natural enough. The
local multiplicity of a linear operator with respect to a measure µ on the plane is
introduced as a measurable nonnegative function defined µ-a.e. It possesses a series
of natural properties. In particular, the spectral multiplicity is greater or equal than
the essential supremum of the local multiplicity, and the local spectral multiplicity
of a direct sum of linear operators equals to the sum of local multiplicities. A
connection between the notions of generalized eigenvectors, of the local spectral
multiplicity, and of diagonalizations is also explained. Generalized eigenvectors in
various forms are actively exploited in the operator theory, see, for example, [1].

The author expresses his gratitude to A. A. Borichev and E. M. Dyn’kin for
valuable consultations.

1. Reducing subspaces. Let N be a normal operator on a separable Hilbert
space H. A (closed) subspace K in H is called reducing if it is invariant with
respect to N and N∗. Assume now that N in its spectral representation has the
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form of multiplication by the independent variable on the direct integral of Hilbert
spaces,

(1) H = ⊕
∫

H(z)dµ(z).

It is easy to see that a subspace K is reducing for N if and only if the equality

(2) K = ⊕
∫

K(z)dµ(z)

holds, where K(z) ⊂ H(z) for µ-a.e. z.
The function

nK(z) = dim K(z),

defined µ – almost everywhere in C, will be called the local multiplicity of the
subspace K. If L ⊂ H, then the minimal reducing subspace for N that contains L
will be denoted by Red(L). The symbol span means a closed linear span.

The following statement is easily proved.

Proposition 1. Let L be a Banach space with respect to its own norm, imbedded
continuously into H. Choose a countable subset {fj} dense in L, and put K(λ) =
span

j
{fj(λ)} (the spaces K(λ) are defined µ – a.e.). Then Red(L) = K, where K

is given by (2).

2. The space of integer-valued functions and upper bounds. Let µ be
a fixed finite measure on the plane with compact support. Consider the set of
measurable functions on C whose values are nonnegative integers or +∞. Two
such functions will be called equivalent if they coincide µ – a.e. Let N be the set of
equivalence classes. Introduce the natural order on N, putting f ≤ g if f(z) ≤ g(z)
for µ-a.e. z.

A function g ∈ N is called an upper bound of a family A of functions in N if
f ≤ g for all f in A. It is easy to show that every family A possesses the least upper
bound, that is, an upper bound g0 such that g0 ≤ g for any other upper bound g of
A. The scheme of the proof: let n ∈ Z, n ≥ 0, or n = ∞. Among the sets B such
that f ≥ n a.e. on B for all f ∈ A, one can find a set of the largest measure, which
will be denoted by B(n). It suffices to put g0 = n on B(n) \ B(n + 1) for n ∈ Z,
n ≥ 0, and g0 = ∞ on B(∞).

In what follows, we fix a linear operator T on a separable Banach space X and
a finite Borel measure µ on C with compact support.

3. Definition of the local multiplicity. Let H be a separable Hilbert space.
The vector Lebesgue L2-space of H-valued functions that corresponds to the mea-
sure µ, is denoted by L2(µ; H). Let us call a bounded operator

J : X −→ L2(µ;H)

a diagonalization of T if
JT = MzJ,
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where (Mzf)(z) = zf(z) is the operator of multiplication by the independent vari-
able. One can associate with each such operator a collection of spaces {HJ(z)}
defined by

Red(JX) = ⊕
∫

HJ(z)dµ(z),

and a function nJ in N,
nJ (z) def= dim HJ (z),

which is called the multiplicity function of the diagonalization J .

Definition. The least upper bound of functions nJ over all diagonalizations J of
T is called the local spectral multiplicity function for the operator T and is denoted
by mT,µ(z).

So mT,µ is an element of the space N.

4. Existence of a universal diagonalization.

Definition. Let J, J ′ be two diagonalizations of T . We write J ′≺J (J ′ is subordi-
nate to J) if there exists a family of possibly unbounded operators α(z) : D(α(z)) →
H, D(α(z)) ⊂ H, such that

(3) (J ′x)(z) = α(z)(Jx)(z), µ− a.e. z,

for all x ∈ X.

Lemma 1. Assume that J, J ′ are diagonalizations, J ′ ≺ J , and

(4) Red(JX) =
∫
⊕N(z)dµ(z).

Then α(z) from (3) can be considered as a closed densely defined operator.

Proof. Choose an extending family of finite-dimensional subspaces Rn, dim Rn = n,
such that ∪Rn is dense in X. Let

(5) Red(JRn) = ⊕
∫

Ln(z)dµ(z).

By Proposition 1, dim Ln(z) ≤ n µ-a.e. Put L0(z) = 0,

(6) Tn(z) = Ln(z)ª Ln−1(z), Tn(z) = ª
∫

Tn(z)dµ(z).

It is clear that
∞⊕

n=1
Tn = Red(JX),

∞⊕
n=1

Tn(x) = N(z). Define an operator-valued

function B(z): N(z) → N(z) by

(7) B(z) | Tn(z) =
(
1 + ‖α(z) | Tn(z)‖)−1I

(it is easy to see that α(z) is defined on Tn(z) for a.e. Z). Then

(8) ‖B(z)α(z) | Tn(z)‖ ≤ 1
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for all n, hence the operator B(z)α(z) on ∪Ln(z) extends to a continuous operator
C(z) : N(z) → H0 (all this holds for µ-a.e. z). Now define an unbounded operator
α̃(z), putting α̃(z)u = v if C(z)u = B(z)v. Since KerB(z) = 0, this definition is
correct and, obviously, α̃(z) is a closed operator for a.e. z. This operator is densely
defined since it is defined on ∪

n
Ln(z).

Multiply (3) by B(z) to get

B(z)(J ′x)(z) = C(z)(Jx)(z)

for µ-a.e. z and for all x ∈ ∪
n
Rn. By continuity, this equality is valid for all x ∈ X,

hence (J ′x)(z) = α̃(z)(Jx)(z) for all x ∈ X. ¥

Definition. A diagonalization J of an operator T is called universal if any other
diagonalization of T is subordinate to it.

Theorem 1. For any operator T on a separable Banach space X and for any finite
Borel measure µ in C with compact support, a universal diagonalization exists.

To prove this theorem, a few preparations are necessary. For a finite-dimensional
subspace R in X and for a diagonalization J of T , denote by fR,J (z) the local
multiplicity of JR (see Sec. 1). By Proposition 1, fR,J ≤ dim R µ-a.e.

Lemma 2. For a fixed finite-dimensional subspace R, there exists a diagonalization
J such that fR,J is the largest possible.

Proof. If J1 and J2 are two diagonalizations, then, obviously, fR,J1⊕J2 ≥ max
(
fR,J1 ,

fR,J2

)
. Put

A = max
J

∫
fR,Jdµ.

Take diagonalizations Jn such that
∫

fR,Jndµ ≥ A − 1
n , then J = ⊕

n
Jn is the

desired diagonalization. Indeed, it is clear that
∫

fR,Jdµ = A. If there exists a
diagonalization J ′ such that fR,J ′ > fR,J on a set of positive measure, then the
consideration of J̃ = J ⊕ J ′ leads to a contradiction with the definition of A. ¥

Proof of Theorem 1. Choose Rn as in the proof of Lemma 1. For each n, let J (n)

be a diagonalization with the largest possible fRn,J(n) . We will show that

J = ⊕
n
J (n)

is a universal diagonalization.
Let J ′ be another diagonalization of T ; we have to show that J ′ ≺ J . One can

fix bases in the spaces JRn ª JRn−1 to consider elements of the linear set ∪
n
Rn as

functions and not as equivalence classes of functions. Let us use notation (4), (5)
from the proof of Lemma 1. Define operators α(z) by

(9) α(z)(Jr)(z) = (J ′r)(z), r ∈ ∪
n
Rn.
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For a.e. z, the vector (Jr)(z), r ∈ ∪
n
Rn, runs over the linear set ∪

n
Ln(z), and α(z)

is correctly defined on this set. Indeed, if Jr0(z) = 0, J ′r0(z) 6= 0 for some n, z,
r0 ∈ Rn, then

dim
{(

J (n) ⊕ J ′
)
r(z) : r ∈ Rn

}
> dim

{
J (n)r(z) : r ∈ Rn

}
.

By the choice of J (n), this can happen only on a set of points z of zero measure.
Now let us apply the same argument as in the proof of Lemma 1. Define B(z)

by (6), (7); then (8) holds. Now define operators C(z) and α̃(z) (see the proof of
Lemma 1). It follows from (9) that

B(z)(J ′x)(z) = C(z)(Jx)(z)

µ-a.e. for all x ∈ ∪Rn. By continuity, the same equality holds for all x ∈ X, hence
(J ′x)(z) = α̃(z)(Jx)(z) for all x ∈ X. ¥

If J1, J2 are two universal diagonalizations of T , then (J1x)(z) = α(z)(J2x)(z),
(J2x)(z) = β(z)(J1x)(z) for certain operator-valued functions α, β, that is, J1, J2

are expressed one through another. In this sense, the universal diagonalization is
unique.

5. Properties of the local multiplicity. The proofs of most of the properties
listed below are omitted because they are simple.

(1) If measures µ1, µ2 are mutually absolutely continuous, then mT,µ ≡ mT,µ2 .
(2) Assume that µ1, µ2 are mutually singular, i.e., there are Borel sets A1 and

A2 such that A1 ∩A2 = ∅ and µj(Aj) = µj(C). Then mT,µ1+µ2 can be calculated
by the formula

mT,µ1+µ2(z) = mT,µj (z), z ∈ Aj . ¥
(3) Let µ be the Dirac δ-measure, concentrated at a point z0. Then

mT,µ(z0) = dimKer
(
T ∗ − z0I). ¥

An operator Y : X1 → X2 is called a splitting operator for operators T1, T2 that

act in Banach spaces X1, X2, respectively, if Y T1 = T2Y . We write T1

d≺ T2 if there
exists a splitting operator Y whose image is dense in X2. If, in addition, KerY = 0,
then we write T1 ≺ T2. Operators T1, T2 are called d-quasisimilar (T1

d∼ T2) if

T1

d≺ T2 and T2

d≺ T1; and quasisimilar if T1 ≺ T2 and T2 ≺ T1.

(4) If (T1

d≺ T2), then nT1,µ ≥ nT2,µ . Indeed, to each diagonalization J of T2

there corresponds a diagonalization JY of T1 with nJ = nJY . ¥
Thus, the local spectral multiplicity is invariant with respect to d-quasisimilarity,

quasisimilarity, and in particular, similarity.
We shall use the following fact.

Theorem (on intersection of ranges, [7]). Assume that N is a normal operator
on a Hilbert space H, x ∈ H, G is an open subset of C, and E( · ) is the spectral
measure of N . If x ∈ (N − λ)H for all λ ∈ G, then E(G)x = 0.

(5) mT,µ = 0 µ-a.e. outside the spectrum of T .
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We have to show that (Jx)(z) ≡ 0 outside σ(T ) for any diagonalization J of T
and any x ∈ X. To do this, notice that

Jx(z) = (z − λ)
(
J(T − λ)−1x

)
(z)

for λ /∈ σ(T ). Hence, one can apply the theorem on intersection of ranges to the
operator Mz on L2(µ,H) and to the set G = C \ σ(T ). ¥

(6) mT1⊕T2,µ = mT1,µ + mT2,µ.
This follows from the formula

Red
(
J(X1 ⊕ X2)

)
= Red

(
J1X1)⊕ Red

(
J2X2),

valid for any diagonalization J = J1 ⊕ J2 of the operator T1 ⊕ T2. ¥
Recall that a subspace K in X is called cyclic for T if the space

C(K) def= span{TnK : n ≥ 0}
coincides with X. The least possible dimension of a cyclic subspace is called the
(global) spectral multiplicity and will be denoted by ρT .

By the Bram theorem [2], the spectral multiplicity of a normal operator coincides
with the essential supremum of its function of local multiplicity.

(7) For any T and any µ, ρT ≥ sup ess mT,µ.
Indeed, it is easy to see that for any subspace K in X, the local multiplicity of

the space JC(K) does not exceed dim K. ¥
6. Examples of calculation of the spectral multiplicity function. As a rule,
this problem reduces to the description of all diagonalizations for a given operator;
then the universal diagonalization can be singled out from all them in a natural
way.

(a) Normal operators. Let N be a normal operator given in its spectral repre-
sentation, N = Mz on the space

F =
∫
⊕F (z)dϑ(z),

and let µ be a measure on C with compact support. It is required to calculate
the spectral multiplicity function of N with respect to µ. Let ϑ = ϑa + ϑs be the
decomposition of ϑ into its absolutely continuous and singular parts with respect
to µ and let µ = µa + µs be the corresponding decomposition of µ with respect
to ϑ. There exists a partition of C into disjoint Borel sets A, Sµ, Sϑ such that
ϑa, µa are concentrated on A, µs is concentrated on Sµ and ϑs is concentrated
on Sϑ. The Fuglede–Putnam theorem (see [8]) implies that every diagonalization
J : F → L2(µ; H) of N has the form

(Jf)(z) =
{

B(z)f(z), z ∈ A,

0, z ∈ Sµ,

where {B(z)} is an operator family defined a.e., B(z) : F (z) → H. It follows that

mN,µ(z) =
{

dim F (z), z ∈ A,

0, z ∈ Sµ.
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J is universal if and only if B(z) is invertible ϑa – a.e. In particular, the local
multiplicity function of N with respect to its own scalar spectral measure ϑ coincides
with the multiplicity function of N defined in a usual way, mN,ϑ(z) = dim F (z).

(b) Local multiplicity outside the essential spectrum. Let T be an operator on
a separable Banach space X and let Ω be a domain that does not intersect the
essential spectrum σess(T ) of T . Assume for simplicity that the dimension of the
eigenspaces

L(z) = Ker
(
T ∗ − zI

)
, z ∈ Ω,

is constant and denote it by n, then n ∈ N ∪ {0}. For example, one can put
T = Sn ⊕ S∗m for any finite m ≥ 0, where Sf = zf is the shift operator on the
Hardy space H2, and Ω = {|z| < 1}.

The spaces L(z) form an antianalytic family. By the Grauert theorem [3], one can
find an antianalytic family l1(z), . . . , ln(z) of bases in L(z). Denote by Hol(Ω.Cn)
the space of all vector-valued analytic functions from Ω to Cn. Define an operator
J0 : X → Hol(Ω,Cn),

(J0x)(z) =
{〈x, lj(z)〉}n

j=1
.

Theorem 2. Assume that T and Ω have the above properties and that a measure
µ is such that µ(C \ Ω) = 0. Then each diagonalization

J : X → L2(µ; H)

of T has the form

(10) (Jx)(z) = ρ(z)(J0x)(z),

where ρ(z) : Ch → H is a measurable family of operators.

Corollary. In the assumptious of the theorem, the local spectral multiplicity of T
with respect to µ is identically equal to n.

Indeed, it suffices to construct a family of left invertible operators ρ(λ) such that
(10) defines a bounded operator J .

Proof of Theorem 2. Take an arbitrary point λ0 in Ω. There exist vectors x1, . . . , xn

in X and a neighborhood G of λ0 such that G ⊂ Ω, and the matrix composed
of columns (J0x1) (z) . . . , (J0xn)(z) is invertible for z ∈ G. The “splittability”
property (2) of the local multiplicity shows that it suffices to consider the case
when µ is concentrated at G.

Let K be the linear span of x1, . . . , xn. Define a measurable operator-valued
function ρ so that (10) takes place for all x ∈ K. It is clear that ρ(·)(J0x)(·) is in
L2(µ : H) for all x ∈ X. Let us prove that (10) holds for all x ∈ X.

Consider the operator

(J1x)(z) = (Jx)(z)− ρ(z)(J0x)(z), x ∈ X,

that diagonalizes T . Take any x ∈ X and let y = J1x. Fix any λ ∈ G. There
exists k ∈ K such that J0(x − k)(λ) = 0. Since λ /∈ σess(T ), this implies that
x− k = (T − λ)u for a certain u ∈ X, so that

y = J1(x− k) = J1(T − λ)u = (z − λ)J1u.
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Since y ∈ L2(µ; H), the theorem on intersection of ranges yields y ≡ 0, which proves
(10). ¥

(c) Local multiplicity of the operator of multiplication by the independent var-
iable on spaces of smooth functions. According to our definition, we consider only
the separable case.

Let Ω be a bounded domain in C whose boundary splits into a finite union
of disjoint simple C1-smooth curves. Define spaces cα(Ω) , 0 < α < ∞, in the
following way: c0(Ω) = C(Ω); for 0 < α < 1 set

cα(Ω) =
{

f ∈ C(Ω) : lim
‖x−y‖→0

f(x)− f(y)
‖x− y‖α

= 0
}

,

and for [α] = n, n ∈ N, set

cα(Ω) =
{
f : Djf ∈ cα−n(Ω) ∀ j, |j| = n

}

(here [α] is the entire part of α, and j = (j1, j2) is a multiindex). These are
Banach spaces with respect to the natural norms. Put ∂ = ∂

∂z = 1
2 ( ∂

∂x − ∂
cdy ) and

∂ = ∂
∂z = 1

2 ( ∂
∂x + i ∂

cdy ).
Let T = Tα be the operator of multiplication by the independent variable on

cα(Ω). We prove the following statement.

Theorem 3. Assume that Ω is a domain of the above described type, µ is a
measure whose compact support is contained in Ω, and H is a Hilbert space. Let
0 < α < ∞ and n = [α]. An operator

J : cα(Ω) → L2(µ; H)

diagonalizes Tα if and only if J has the form

(11) Jx =
n∑

k=0

γk∂̄kx

for certain γk ∈ L2(µ; H).

Corollary. The local multiplicity of Tα with respect to any measure concenrated
in Ω equals identically n = [α].

Indeed, if γk(z) are linearly independent µ-a.e., then it is easy to see that the
local multiplicity of the linear set Jcα(Ω) is identically equal to n. ¥

Let us introduce the topological vector space cα(Ω) that consists of continuous
functions on Ω such that f | Ω′ ∈ cα(Ω

′
) for any domain Ω′ with smooth boundary

compactly embedded in Ω.

Proposition 2. For any α ≥ 0, the polynomials in coordinate variables are com-
plete in cα(Ω).

Sketch of the proof. It is sufficient to prove the completeness of restrictions of func-
tions from C∞(C) in cα(Ω). First assume that α < 1 and take f ∈ cα(Ω). Then f
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can be continued up to a function f̃ in cα(C) with compact support. If {φn} is an
approximate identity, φn ∈ C∞(C), then f̃ ∗φn ∈ C∞(C) and f̃ ∗φn → f̃ in cα(C).
The case α ≥ 1 reduces to the case α < 1, since the operators of differentiation and
of convolution commute. ¥

The proof of the following statement was kindly communicated to the author by
E. M. Dyn’kin.

Lemma A. For a noninteger α, one has the implication f ∈ Cα(Ω) ⇒ f ∗−π−1

z ∈
Cα+1(Ω).

Proof. Put g = f ∗ −π−1

z , then ∂
∂z̄ g = f . On the other hand, ∂

∂z̄ = f ∗ π−1

z2 . The
convolution with the kernel z−2 acts continuously on Cα [5]. Thus, ∂g

∂z ∈ Cα(Ω),
∂g
∂z̄ ∈ Cα(Ω), and therefore g ∈ Cα+1(Ω). ¥

By Proposition 2, the closure of C∞(C) in Cα(C) coincides with cα(C). Hence,
the implication f ∈ cα(Ω) ⇒ f ∗ −π−1

z ∈ cα+1(Ω) holds.
Denote by Aα

0 (Ω) the class of functions in cα(Ω) that are analytic in Ω; it is a
closed subspace in cα(Ω).

Proposition 3. Rational functions of the variable z are dense in Aα
0 (Ω).

Proof. Let Ω′ be a domain with smooth boundary that contains Ω and is close to
Ω. It is easy to construct a family of univalent mappings φt : Ω′ → C, smooth with
respect to t, such that φ0 = id and φt(Ω) ⊃ Ω for t > 0. Then, for any f ∈ Aα

0 (Ω),
the functions f ◦φ−1

t are analytic in a neighbourhood of Ω and approximate f in the
metric of cα(Ω) as t → 0. These functions can easily be approximated by rational
ones. ¥
Proof of Theorem 3. First consider the case 0≤α<1. Here one can repeat the ar-
gument of the Rosenblum proof of the Fuglede–Putnam theorem (see [8]). Namely,
assume that J diagonalizes the operator Tα, then JMzk = MzkJ for any integer
k ≥ 0. Hence,

(12) J = Mexp(−λ̄z)JMexp(λ̄z), λ ∈ C.

Put

φ(λ) = Mexp(−λ̄z)JMexp(λ̄z) = Mexp(−2 Re(λ̄z))JMexp(2 Re(−λ̄z))

(the last equality follows from (12)). Since

‖Mexp(−2 Re(λ̄z))‖L2(µ;H)→L2(µ;H) = 1,

one gets
‖φ(λ)‖ ≤ C‖J‖(1 + |λ|)α.

By the Liouville theorem, φ(λ) ≡ J . The equality φ′(0) = 0 implies that Mz̄J =
JMz̄. Hence, Jp = pJ1 for any polynomial p in z and z̄. Now Proposition 2 yields
that J has form (11), with n = 0 and γ0 = J1.
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(2) The case of noninteger α > 1. Let us use induction in n = [α]. Let J :
cα(Ω) → L2(µ; H) be a diagonalization of Tα. Set η = J1. Define a diagonalization
J̃ : cα−1(Ω) → L2(µ;H) of Tα−1 by

J̃ ∂̄f
def= Jf − ηf, f ∈ Cα(Ω).

The operator f 7→ Jf −ηf , f ∈ cα(Ω), vanishes on all rational functions with poles
off Ω and therefore, by Proposition 3, on the whole Aα

0 (Ω). Hence, J̃ is correctly
defined. Since J̃g = J

(
g1 ∗ −π−1

z

)− ρ · (g1 ∗ −π−1

z

)
, where g ∈ Cα−1(Ω) and g1 is

any continuation of g to a greater domain, J̃ is continuous. It diagonalizes Tα−1

and thus, by the induction hypothesis, has form (11), where n must be replaced
with n− 1. Therefore, J also has form (11).

(3) The case of integer α. Choose any β ∈ (α, α + 1). Apply what has been
proved in (2) to J | cβ(Ω) and make use of the contituity. ¥

(d) The last example concerns perturbations of normal operators with two-
dimensional Lebesgue spectrum. Here we use the results of [10]. Namely, assume
that N is a normal operator of this type, that K is its “smooth” perturbation in the
sense of [10], and that ψ is the perturbation determinant. Then the local spectral
multiplicities of N and N + K with respect to the two-dimensional Lebesgue mea-
sure (restricted to a large disk) coincide everywhere outside the spectral singularity
set ψ−1(0). This follows from the functional model of N +K, or, to be more exact,
from Lemmas 6, 7 from [10].

Similar statements on the invariance of the local multiplicity under perturbations
can be formulated for other classes of operators, for instance, for self-adjoint and
unitary ones. This deserves a separate study.

7. A dual notion: generalized eigenvectors. Let X be a separable Banach space
with separable adjoint, let T be a bounded operator on X, let µ be a finite measure
on C with compact support, and let H be a separable Hilbert space.

Definition. An operator
E : L2(µ; H) → X

is called a system of generalized eigenvectors (s.g.e.) of T with respect to the
measure µ if it is bounded and

(13) TE = EMz.

Define a measure µ∗ on C, µ∗(A) = µ
({z̄ : z ∈ A}), and consider a duality

between L2(µ; H) and L2(µ∗;H) by the equality 〈f, g〉 =
∫ 〈f(z), g(z̄)〉dµ. Then the

adjoint to the operator Mz on L2(µ;H) is Mz on L2(µ∗;H), and (13) is equivalent
to the equality E∗T ∗ = MzE

∗ . Therefore, E is a system of generalized eigenvectors
of T if and only if E∗ : X∗ → L2(µ∗; H) is a diagonalization of T ∗.

If f ∈ L2(µ; H), then the vector Ef ∈ X has the sense of a continuous linear
combination of generalized eigenvectors of the system E with weight f and can be
denoted symbolically by

∫
f(z)dE(z). In this connection, we call the closure of the

image of E, the closed linear span of the system E and denote it by span (E).
Let K =

∫ ⊕K(z)dµ(z) be the largest reducing subspace contained in KerE

and let L =
∫ ⊕L(z)dµ(z) = K⊥, where L(z) = K(z)⊥. Then we can treat E as
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defined on L and continued to K as the zero operator. Let us call the function
φE(z) = dim L(z), the multiplicity of eigenvectors of the system E. Since KerE =
(RangeE∗)⊥,

φE(z) = nE∗(z̄),

where nE∗ is the multiplicity function of the diagonalization E∗ defined in Sec. 3.
All the notions related to diagonalizations transfer also to systems of generalized

eigenvectors. For instance, if E and E′ are s.g.e. with respect to the same measure
µ, then we say that E embraces E′ if there exists a family of closed operators {α(z)}
such that

(14) E′f = E(αf)

for a set of vectors f , dense in L2(µ; H). It is clear that in this case span(E) ⊃
span(E′). Equality (14) is equivalent to the equality E

′∗x = α̂E∗x for all x ∈ X,
where α̂(z) = α∗(z̄). Therefore, E embraces E′ if and only if the diagonalization
E
′∗1 of T ∗ is subject to E∗. From here and from Theorem 1 we obtain the following

result.

Theorem 1′. For any operator T and any measure µ with the above properties,
there exists a maximal s.g.e. E which embraces E′ for any other s.g.e. E′.

Similarly to the situation with universal diagonalizations, maximal system of
generalized eigenvectors with respect to a given measure is unique in a natural
sense. It is easy to see that, in particular, the closed linear span of a maximal
system of generalized eigenvectors does not depend on its choice. One can say that
the generalized eigenvectors corresponding to a measure µ are complete if a (any)
maximal s.g.e. is complete.

Properties (1)–(7) (from Sec. 5) of the local spectral multiplicity also are trans-
lated easily to the language of systems of generalized eigenvectors. Let us mention
specially the following analog of property (7).

Proposition 4. If E is a complete s.g.e. of T (that is, span(E) = X ), then the
global spectral multiplicity ρT does not exceed sup ess φE .

Indeed, let L, L(z) be defined as above and let φE(z) = dim L(z). Then ρMz|L =
sup ess φE . If R is a cyclic subspace of Mz|L of dimension sup ess φE , then ER is
a cyclic subspace of T . ¥

This research was supported in part by the International Science Foundation,
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Translated by D. V. Yakubovich.
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