Undecidability in number theory

Bjorn Poonen, Massachusetts Insitute of Technology, EE.UU. (pdf)

Jueves 25 de marzo de 2010 a las 11:30 en la sala 520 del módulo 17 de Ciencias, UAM

Resumen: Hilbert's Tenth Problem asked for an algorithm that, given a multivariable polynomial equation with integer coefficients, would decide whether there exists a solution in integers. Around 1970, Matiyasevich, building on earlier work of Davis, Putnam, and Robinson, showed that no such algorithm exists. But the answer to the analogous question with integers replaced by rational numbers is still unknown, and there is not even agreement among experts as to what the answer should be.

Volver