Mes anteior Día anterior Día siguiente Mes siguiente
Anual Mensual Semanal Hoy Buscar Ir al mes específico
Machine learning in Madrid (zoom)

Machine learning in Madrid    (zoom)

Lunes, 31 de enero de 2022, 14:30-15:30h  (horario diferente al habitual!!!!)


Ponente:   Dejan Slepcev  (Carnegie Mellon University)

Título:  Variational problems on ransom structures: analysis and applications to machine learning

Abstract:  Modern data-acquisition technology produces a wealth of data about the world we live in. The goal of machine learning is to extract and interpret the information the data sets contain. This leads to variety of learning tasks,  many of which  seek to optimize a functional, defined on the available random sample.

The functionals take as the input the available data samples, yet we seek to make conclusions about the  true distribution of data. To compare the outcomes based on finite data and the ideal outcomes that one would have if full information is available, we study the asymptotic properties of the discrete optimization problems based on finite random samples. We will discuss how calculus of variations and partial differential equations provide tools to compare the discrete and continuum descriptions for many relevant problems.
Furthermore, we will discuss how the insights from calculus of variations   can be used to guide the design of  the functionals used in machine learning.

Localización Lunes, 31 de enero de 2022, 14:30-15:30h (horario diferente al habitual!!!!)