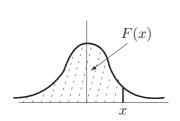
Probabilidad I Segundo de Matemáticas UAM, curso 2003-2004 Examen de septiembre, 2-9-2004

- 1. Contesta, razonando las respuestas, a las siguientes cuatro cuestiones:
 - (a) El suceso A es independiente del suceso B. Por su parte, B es independiente de C. ¿Es cierto entonces que A es independiente de C?
 - (b) Lanzaremos una moneda regular hasta que salga cara o hasta que hayamos efectuado tres lanzamientos. ¿Cuál es el número medio de caras que se obtienen en este experimento?
 - (c) La variable aleatoria X sigue una distribución uniforme (continua) en el intervalo [-1,1]. Calcúlese $\mathbf{E}(X^2)$.
 - (d) Los reyes de Pomeronia han tenido dos descendientes. ¿Cuál es la probabilidad de que el joven príncipe tenga una hermana?
- 2. Se lanza un dado regular y se anota la puntuación obtenida. A continuación, se escoge (uniformemente) un número entero entre 1 y la puntuación que hemos registrado anteriormente.
 - (a) Calcúlese el valor promedio que obtenemos en el experimento.
 - (b) Al final hemos obtenido un 6. ¿Cuál es la probabilidad de que el resultado del lanzamiento del dado fuera también un 6?
 - (c) Si al final tenemos un 1, ¿cuál es la probabilidad de que en el dado hubiéramos obtenido un 6?
- **3.** En el Departamento de Quísica de la Universidad de Nancago se desarrolla el siguiente experimento: se pone en marcha una reacción nuclear que libera energía durante T segundos, donde T es una variable aleatoria que sigue una exponencial de parámetro λ . Durante ese tiempo, otro dispositivo se carga de energía exponencialmente, esto es, la cantidad de energía que acumula es proporcional a e^{aT} , donde T es la duración del proceso anterior y a es un parámetro fijo, $0 < a < \lambda$. ¿Cuánta energía acumulará, en media, este segundo dispositivo?
- **4.** La altura (en centímetros) de un pomeronio de a pie es una variable aleatoria X con media $\mathbf{E}(X) = 176$ y varianza $\mathbf{V}(X) = 9$.
 - (a) Si sólo dispones de esta información, ¿qué sabrías decir sobre la probabilidad de que la altura de un pomeronio elegido al azar esté entre 172 y 180 centímetros?
 - (b) Ahora tomamos una muestra de 10000 pomeronios, registramos sus respectivas alturas y calculamos su media aritmética. ¿Qué sabrías decir sobre la probabilidad de que el número obtenido esté entre 175.95 y 176.15?
- **5.** Se escogen dos números x e y al azar, independientemente y ambos con distribución uniforme (continua) en [-1,1].
 - (a) ¿Cuál es la probabilidad de que tengan distinto signo?
 - (b) ¿Cuál es la probabilidad de que la suma x + y sea > 1?
 - (c) ¿Cuál es la probabilidad de que $|xy| \le 1/2$?


- **6.** Ponemos a $2^{12} = 4096$ chimpancés a apostar, cada mes, si la Bolsa sube o baja. Se supone, claro, que los chimpancés aciertan en su pronóstico con probabilidad 1/2.
 - (a) ¿Cuál es la probabilidad de que al menos un chimpancé acierte en el mes de enero?
 - (b) Ahora los dejamos apostar durante los 12 meses del año. Llamemos X_j al número de aciertos que obtiene el chimpancé j. ¿Qué tipo de variable es X_j ?
 - (c) ¿Cuál es la probabilidad de que haya al menos un chimpancé que haya acertado su pronóstico los 12 meses?

Notas y comentarios:

 \blacksquare La función de densidad de una variable aleatoria X con distribución exponencial de parámetro $\lambda>0$ es

$$f_X(x) = \lambda e^{-\lambda x}, \qquad x > 0.$$

- Algunos valores de la función de distribución de una variable aleatoria normal $\mathcal{N}(0,1)$:

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2}$$

	,00	,01	,02	,03	,04	,05	,06	,07	,08	,09
0,0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0,1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0,2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0,3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0,4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0,5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0,6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0,7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0,8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8079	0.8106	0.8133
0,9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1,1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8333	0.8830
1,1	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1,3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1,4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1,4	0.3132	0.3201	0.3222	0.9230	0.9231	0.9203	0.3213	0.7232	0.9300	0.3313
1,5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1,6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1,7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1,8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1,9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2,0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2,1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2,1	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2,3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2,4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2,4	0.5510	0.7720	0.7722	0.7723	0.2227	0.7727	0.2221	0.7752	0.2224	0.2220
2,5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2,6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2,7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2,8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2,9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3,0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990