

Asignatura	Análisis de datos	Grupo
Apellidos	No	mbre
Eiercicio del día	24 de junio de 20)15

1.— Una agencia estatal recoge todos los años datos sobre los contenidos en nicotina y alquitrán (en mg), el peso (en g) y la emisión total de CO_2 (en mg) de las marcas comerciales de cigarrillos. Analizados los datos de un determinado año, en el que se estudiaron 25 presentaciones comerciales se obtuvieron los datos siguientes.

Estadísticos descriptivos

	Media	Desviación típica	N
alquitran	12,216	5,6658	25
nicotina	,8764	,35406	25
peso	,970284	,0877215	25
CO2	12,528	4,7397	25

Correlaciones

		alquitran	nicotina	peso	CO2
alquitran	Correlación de Pearson	1	,977**	,491 [*]	,957**
	Sig. (bilateral)		,000	,013	,000
	N	25	25	25	25
nicotina	Correlación de Pearson	,977**	1	,500 [*]	,926**
	Sig. (bilateral)	,000		,011	,000
	N	25	25	25	25
peso	Correlación de Pearson	,491*	,500*	1	,464 [*]
	Sig. (bilateral)	,013	,011		,019
	N	25	25	25	25
CO2	Correlación de Pearson	,957**	,926**	,464 [*]	1
	Sig. (bilateral)	,000	,000	,019	
	N	25	25	25	25

^{**.} La correlación es significativa al nivel 0,01 (bilateral).

Si se tratan de explicar las emisiones de CO_2 por medio de las variables «alquitran», «nicotina» y «peso» se obtienen los resultados

Resumen del modelo^b

Modelo	R	R cuadrado	R cuadrado corregida	Error típ. de la estimación
1	,958 ^a	,919	,907	1,4457

a. Variables predictoras: (Constante), alquitran, peso, nicotina

b. Variable dependiente: CO2

ANOVA

Modelo)	Suma de cuadrados	gl	Media cuadrática	F	Sig.
1	Regresión	495,258	3	165,086	78,984	,000 ^b
	Residual	43,893	21	2,090		
	Total	539,150	24			

a. Variable dependiente: CO2

Coeficientes

		Coeficientes no estandarizados		Coeficientes tipificados		
Mode	elo	В	Error típ.	Beta	t	Sig.
1	(Constante)	3,202	3,462		,925	,365
	peso	-,130	3,885	-,002	-,034	,974
	nicotina	-2,632	3,901	-,197	-,675	,507
	alquitran	,963	,242	1,151	3,974	,001

a. Variable dependiente: CO2

a) Describe el modelo utilizado y sus requisitos previos ¿Qué se puede decir de la colinealidad?

L			

^{*.} La correlación es significante al nivel 0,05 (bilateral).

b. Variables predictoras: (Constante), alquitran, peso, nicotina

b) Escribe la hipótesis nula y alternativa sobre el contraste del coeficiente de la variable «nicotina». ¿Qué decisión se toma en este contraste si se establece una significación de 0,05?						
c) Calcula el intervalo de confianza del 90 % para e ciente es significativamente negativo?	el coeficiente de	la variable	«peso». ¿P	uedo afirm	ar que	este coefi-
Dados los problemas observados, se decide utiliz	ar como variab	les explicat	ivas el con	tenido de a	alguitrá	in, el peso
del cigarrillo y el producto de ambas variables (q siguientes resultados.						
organismos resurtados.						
Resumen del modelo ^b		Γ	Coeficientes ^a	Coeficientes		
Modelo R R cuadrado Error típ. de la estimación	Modelo	Coeficientes no e	estandarizados Error típ.	tipificados Beta	t	Sig.
INDUCTO		_				
1 ,974 ^a ,948 ,940 1,1577	1 (Constante) alquitran	-10,320 1,884	4,707 ,310	2,252	-2,192 6,085	,040 ,000
inductio a	1 (Constante)	-10,320	4,707			
a. Variables predictoras: (Constante), AxP, peso, alquitran	1 (Constante) alquitran peso	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2	(Constante) alquitran peso AxP a. Variable dependice	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2	(Constante) alquitran peso AxP a. Variable dependice	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2	(Constante) alquitran peso AxP a. Variable dependice	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2	(Constante) alquitran peso AxP a. Variable dependice	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2	(Constante) alquitran peso AxP a. Variable dependice	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2	(Constante) alquitran peso AxP a. Variable dependice	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949	2,252 ,245	6,085 2,671	,000 ,014
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t	1 (Constante) alquitran peso AxP a. Variable dependic	-10,320 1,884 13,220 -1,075	4,707 ,310 4,949 ,305	2,252 ,245 -1,442	6,085 2,671 -3,530	,000 ,014 ,002
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t e) Estima, utilizando por separado ambos modelos contenido de alquitrán de 10 mg, y —solamente par	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	,000 ,014 ,002 g, con un mg. Indica
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t e) Estima, utilizando por separado ambos modelos contenido de alquitrán de 10 mg, y —solamente par cual es, en cada uno de los dos modelos, el increme	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	g, con un
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t e) Estima, utilizando por separado ambos modelos contenido de alquitrán de 10 mg, y —solamente par cual es, en cada uno de los dos modelos, el increme contenido en alquitrán se incrementa en 1 mg.	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	,000 ,014 ,002 g, con un mg. Indica
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t e) Estima, utilizando por separado ambos modelos contenido de alquitrán de 10 mg, y —solamente par cual es, en cada uno de los dos modelos, el increme contenido en alquitrán se incrementa en 1 mg.	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	g, con un
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t e) Estima, utilizando por separado ambos modelos contenido de alquitrán de 10 mg, y —solamente par cual es, en cada uno de los dos modelos, el increme contenido en alquitrán se incrementa en 1 mg.	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	g, con un
a. Variables predictoras: (Constante), AxP, peso, alquitran b. Variable dependiente: CO2 d) ¿Qué conclusiones se obtienen ahora? Justifica t e) Estima, utilizando por separado ambos modelos contenido de alquitrán de 10 mg, y —solamente parcual es, en cada uno de los dos modelos, el increme contenido en alquitrán se incrementa en 1 mg. Primer modelo:	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	g, con un
a. Variables predictoras: (Constante), AxP, peso, alquitran	a. Variable dependictures puesta. a. Variable dependictures puesta. s, la cantidad de ra el primer mod	-10,320 1,884 13,220 -1,075 ente: CO2	4,707 ,310 4,949 ,305 da por un contenido d	2,252 ,245 -1,442 cigarrillo de e nicotina de	6,085 2,671 -3,530 e peso 1 de 0,75 1	g, con un

2.— Impacto de la vitamina B en el tamaño del riñón. Un lote de 28 ratas se clasificó en dos grupos de 14 ratas cada uno según su tamaño (Delgada, Obesa).

Cada uno de los dos grupos de 14 ratas se dividió aleatoriamente en dos grupos de 7 ratas que se alimentaron durante 20 días con dietas diferentes (Normal, Vitamina B).

Al final del tratamiento se pesó el hígado de cada una de las ratas. Los resultados obtenidos se trataron con SPSS y se obtuvieron los siguientes resultados.

Estadísticos descriptivos

Variable dependiente: PESO

Total

	5. .	Media	Desviación típica	N
Tamaño	Dieta	ivicula	tipica	IN
Delgada	Normal	1,6414	,16658	7
	Vitamina B	1,5271	,12148	7
	Total	1,5843	,15210	14
Obesa	Normal	2,6429	,34340	7
	Vitamina B	2,6729	,26107	7
	Total	2,6579	,29347	14
Total	Normal	2,1421	,58072	14
	Vitamina B	2,1000	.62584	14

2,1211

,59280

28

Pruebas de los efectos inter-sujetos

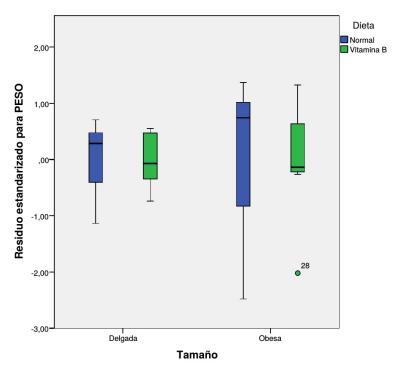
Variable dependiente: PESO

Origen	Suma de cuadrados tipo III	gl	Media cuadrática	F	Sig.
Modelo corregido	8,117 ^a	3	2,706	47,345	,000
Intersección	125,970	1	125,970	2204,345	,000
TAMANNO	8,068	1	8,068	141,179	,000
DIETA	,012	1	,012	,218	,645
TAMANNO * DIETA	,036	1	,036	,638	,432
Error	1,372	24	,057		
Total	135,459	28			
Total corregida	9,488	27			

a. R cuadrado = ,855 (R cuadrado corregida = ,837)

¿Qué modelo se ha aplicado para obtener la tabla ANOVA anterior? Describe todos sus elementos y relaciones.
En función de los parámetros del modelo descrito en a), escribe las hipótesis nula y alterniva del contraste sobre l Iteracción de los factores.
l nivel de significación $\alpha = 0,1$, decide este contraste. Indica que valor o valores usas para tomar esta decisión.
Da un intervalo de confianza del 95 % para la diferencia de las medias de peso del hígado entre ratas Obesas jatas Delgadas.

Un análisis de residuos ha dado los siguientes resultados:


Contraste de Levene sobre la igualdad de las varianzas error^a

Variable dependiente: PESO

F	gl1	gl2	Sig.
2,632	3	24	,073

Contrasta la hipótesis nula de que la varianza error de la variable dependiente es igual a lo largo de todos los grupos.

a. Diseño: Intersección + TAMANNO + DIETA + TAMANNO * DIETA

,	onclusión se alcanza?	ntraste de Levene y 10	o observado en los dia	igramas de cajas son o	onerentes. ¿Que

e) Construye la tabla ANOVA que se obtendría con los mismos datos si se ignora el factor DIETA (escribe la F crítica al nivel $\alpha=0,01$). ¿Qué conslusión se obtiene?

Fuente	Suma de cuadrados	g.l.	Media cuadrática	F	<i>F-</i> critica
TAMANNO					
Error					
Total					