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then P(A, i.0.) > a. The case « = 1 contains (6.6).

1.7. Strong Law Of Large Numbers
We are now ready to give Etemadi’s proof of

(7.1) Strong law of large numbers. Let X1, X3, ... be pairwise independent
identically distributed random variables with E|X;| < co. Let EX; = p and
Sp =X+ ...+ X,. Then S5,/n — p as. as n — co.

Proof As in the proof of weak law of large numbers, we begin by truncating.

(a) Lemma. Let Vi = Xylgx, )<k and T, = Y1 + -+ Y. It is sufficient to
prove that T, /n — p a.s.

Proof Y ., P(|Xk| > k) < [ P(1X1] > t)dt = E|X1| < 0o so P(Xi #
Yi i.0.) = 0. This shows that |S,(w) = Th(w)| £ R(w) < oo a.s. for all n, from
which the desired result follows. N

The second step is not so intuitive but it is an important part of this proof and
the one given in Section 1.8.

(b) Lemma. 3 po, var(Yi)/k* < 4E[X,]| < oo.

Proof To bound the sum, we observe

o0 k
var(Yy) < E(Y?) = [ wP(Yel > v)dy < f 2P(X1] > v) dy
0 0

so using Fubini’s theorem (since everything is > 0 and the sum is just an integral
with respect to counting measure on {1,2,...})

SEYR)/K <Yk / Lyer 20 P(1X1] > y) dy
k=1 k=1 0
1]

:] {Zk_zl(m)}2yP(|X1l>y)dy
k=1

Since E|X,| = fﬂm P(|X;| > y) dy, we can complete the proof by showing

(¢) Lemma. If y > 0 then 2y 3", , k7% < 4.
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Proof We being with the observation that if m > 2 then

E it /00 z %z = (m - 1)}

k>m m=—1

When y > 1 the sum starts with k = [y] + 1 > 2 so

2y ) k7 < 2y/[y) < 4
k>y

since y/[y] < 2 for y > 1 (the worst case being y close to 2). Tocover 0 <y < 1
we note that in this case

k>y

The first two steps, (a) and (b) above, are standard. Etemadi’s inspiration
was that since X;f, n > 1, and X7, n > 1, satisfy the assumptions of the
theorem and X,, = X} — X~ we can without loss of generality suppose X,, > 0.
As in the proof of (6.8) we will prove the result first for a subsequence and then
use monotonicity to control the values in between. This time however, we let
@ > 1, and k(n) = [@"]. Chebyshev’s inequality implies that if ¢ > 0

> P(ITen) = BTi(my| > ek(n)) < €2 Y var(Ti(n))/k(n)?

n=1 ns=l

k(n)

=2 i k(n)~? E var(Yy,)
n=1 m=1

=2 Z var(Yy,) Z k(n)=?

n:k(n)>m

where we have used Fubini’s theorem to interchange the two summations (ev-
erything is > 0). Now k(n) = [a"] and [a"] > a"/2 for n > 1, so summing the
geometric series and noting that the first term is < m=2

Z [an]—-z <4 E a—2n Loffi— 0_2)_1?‘11_2
nat">m na">m
Combining our computations shows

) oo
Z P(]Tk(n) - ET;,(n)l > Ek(ﬂ)) < 4(1 — {1_2)_16—2 Z E(Y,g)m_z < 0o

n=1 m=1

2y2k~252(1+§:k"2)54 m]
k=2
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by (b). Since ¢ is arbitrary (Tk(n) — ETk(n))/k(n) — 0. The dominated con-
vergence theorem implies EY, — EX; as k — o0, so ETy(ny/k(n) — EX, and
we have shown Ty(,)/k(n) — EX; as. To handle the intermediate values, we
observe that if k(n) < m < k(n + 1)

Ti(n+1)

Tk(") (E(
m —  k(n)

k(n+1) =

(here we use Y; > 0), so recalling k(n) = [a"] we have k(n + 1)/k(n) — « and

lJ‘E.‘Xl < liminf T}, /m < limsup T}, /m < a EX,
o n—00

m—oo
Since a > 1 is arbitrary the proof is complete. |
The next result shows that the strong law holds whenever EX; exists.

(7.2) Theorem. Let X;,Xs,... be iid. with EX;' = 0o and EX] < oo. If
Sp=X1+ -+ X, then S,/n — oo as.

Proof Let M > 0and XM = X; A M. The XM are i.i.d. with E|XM| < o
soif SM = XM +4...+ XM then (7.1) implies S¥ /n — EXM . Since X; > XM
it follows that

liminf S, /n > lim SM/n= EXM

The monotone convergence theorem implies E(XM)* { EX;" = 0o as M 1 oo,
so EXM = E(XM)* —E(XM)~ 1 co and we have liminf, .o Sn/n > 0o which
implies the desired result. O

The rest of this section is devoted to applications of the strong law of large
numbers.

Example 7.1. Renewal theory. Let X, X5,... be i.i.d. with 0 < X; < co.
Let T, = X1+ ...+ X, and think of 7}, as the time of nth occurrence of some
event. For a concrete situation consider a diligent janitor who replaces a light
bulb the instant it burns out. Suppose the first bulb is put in at time 0 and let
X; be the lifetime of the ith lightbulb. In this interpretation 7}, is the time the
nth light bulb burns out and N; = sup{n : T}, < t} is the number of light bulbs
that have burnt out by time ¢.

(7.3) Theorem. If EX; = pu < oo then as t — oo, N/t — 1/p as. (1/00 = 0)



