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Google’s secret and Linear Algebra
Pablo Fernández Gallardo (Madrid, Spain)

1. Introduction

Some months ago newspapers all around the world consid-
ered Google’s plan to go public. The significance of this piece
of news was not only related to the volume of the transaction,
the biggest since the dot-com “irrational exuberance” in the
90’s, but also to the particular characteristics of the firm. A
few decades ago there was a complete revolution in technol-
ogy and communications (and also a cultural and sociologi-
cal revolution), namely the generalization of use and access
to the Internet. Google’s appearance has represented a revolu-
tion comparable to the former as it became a tool that brought
some order into this universe of information, a universe that
was not manageable before.

The design of a web search engine is a problem of mathe-
matical engineering. Notice the adjective. First, a deep knowl-
edge of the context is needed in order to translate it into mod-
els, into mathematics. But after this process of abstraction and
after the relevant conclusions have been drawn, it is essential
to carry out a thorough, detailed and efficient design of the
computational aspects inherent in this problem.

2. The Google engine

The Google search engine was designed in 1998 by Sergei
Brin and Lawrence Page, two computer science doctorate stu-
dents at Stanford – two young men, now in their thirties, who
have become multimillionaires. The odd name of the firm is
a variation of the term googol, the name that somebody1 in-
vented to refer to the overwhelming number 10100. This is
one of those numbers that mathematicians are comfortable
with but are perhaps bigger than the number of particles in
the whole universe.

The scale of the question we are concerned with is also
immense. In 1997, when Brin and Page were to start working
on Google’s design, there were about 100 million web pages.
Altavista, the most popular search engine in those days, at-
tended to 20 million daily queries. Today, these figures have
been multiplied; Google receives some hundred million daily
queries and indexes several billion web pages.

Therefore, the design of a search engine must efficiently
solve some computational aspects, namely the way to store
that enormous amount of information, how it is updated, how
to manage the queries, the way to search the databases, etc.
But, although interesting, we are not going to treat these ques-
tions here. The point of interest can be formulated in a simple
manner. Let us suppose that, after a certain query, we have de-
termined that, say, one hundred web pages enclose informa-
tion that might, in some sense, be relevant to the user. Now,
in which order should they be displayed? The objective, as
explicitly posed2 by Brin and Page (see [6]), is that in the ma-
jority of attempts, at least one of, say, the first ten displayed
pages contains useful information for the user.

We now ask the reader (quite possibly a google-maniac
himself) to decide, from his own experience, whether Google
fulfils this objective or not. We are sure the common response
will be affirmative . . . and even amazingly affirmative! It
seems to be magic3 but it is just mathematics, mathematics re-
quiring no more than the tools of a first year graduate course,
as we will soon see.

To tackle our task, we need an ordering criterion. Notice
that if we label each web page with symbols P1, . . . ,Pn, all we
want is to assign each Pj a number x j, its significance. These
numbers might range, for example, between 0 and 1. Once the
complete list of web pages, along with their significances, is
at our disposal, we can use this ordering each time we answer
a query; the selected pages will be displayed in the order as
prescribed by the list.4

3. The model

Let us suppose that we have collected all the information
about the web: sites, contents, links between pages, etc. The
set of web pages, labelled P1 . . .Pn, and the links between
them can be modelled with a (directed) graph G. Each web
page Pj is a vertex of the graph and there will be an edge be-
tween vertices Pi and Pj whenever there is a link from page Pi

to page Pj . It is a gigantic, overwhelming graph, whose real
structure deserves some consideration (see Section 8).

When dealing with graphs, we like to use drawings in the
paper, in which vertices are points of the plane, while edges
are merely arrows joining these points. But, for our purposes,
it is helpful to consider an alternative description, with ma-
trices. Let us build an n× n matrix M with zero-one entries,
whose rows and columns are labelled with symbols P1, . . . ,Pn.
The matrix entry mi j will be 1 whenever there is a link from
page Pj to page Pi and 0 otherwise.

The matrix M is, except for a transposition, the adjacency
matrix of the graph. Notice that it is not necessarily symmetric
because we are dealing with a directed graph. Observe also
that the sum of the entries for Pj’s column is the number of
Pj’s outgoing links, while we get the number of ingoing links
by summing rows.

We will assume that the significance of a certain page Pj

“is related to” the pages linking to it. This sounds reasonable;
if there are a lot of pages pointing to Pj , its information must
have been considered as “advisable” by a lot of web-makers.

The above term “related to” is still rather vague. A first
attempt to define it, in perhaps a naïve manner, amounts to
supposing that the significance x j of each Pj is proportional
to the number of links to Pj . Let us note that, whenever we
have the matrix M at our disposal, the computation of each x j

is quite simple; it is just the sum of the entries of each row Pj .
This model does not adequately grasp a situation deserv-

ing attention, i.e., when a certain page is cited from a few
very relevant pages, e.g., from www.microsoft.com and www.
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amazon.com. The previous algorithm would assign it a low
significance and this is not what we want. So we need to en-
hance our model in such a way that a strong significance is
assigned both to highly cited pages and to those that, although
not cited so many times, have links from very “significant
pages”.

Following this line of argument, the second attempt as-
sumes that the significance x j of each page Pj is proportional
to the sum of the significances of the pages linking to Pj . This
slight variation completely alters the features of the problem.

Suppose, for instance, that page P1 is cited on pages P2,
P25 and P256, that P2 is only cited on pages P1 and P256, etc.,
and that there are links to page Pn from P1, P2, P3, P25 and
Pn−1. Following the previous assignment, x1 should be pro-
portional to 3, x2 to 2, etc., while xn should be proportional to
5. But now, our assignment x1, . . . ,xn must verify that

x1 = K (x2 + x25 + x256) ,

x2 = K (x1 + x256) ,
...

xn = K (x1 + x2 + x3 + x25 + xn−1) ,

where K is a certain proportionality constant. In this way, we
face an enormous system of linear equations, whose solutions
are all the admissible assignments x1. . . xn. Below these lines
we write the system of equations in a better way, using matri-
ces.

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠ = K

⎛
⎜⎜⎜⎝

P1

↓
0

P2

↓
1 0 · · · 0

P25

↓
1 0 · · · 0

P256

↓
1 0 · · ·

Pn−1

↓
0 0

1 0 0 · · · 0 0 0 · · · 0 1 0 · · · 0 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
1 1 1 · · · 0 1 0 · · · 0 0 0 · · · 1 0

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1

x2
...

xn

⎞
⎟⎟⎟⎠

Let us call the significance vector x. The n×n matrix of
the system is exactly the matrix M associated with the graph.
So we can state that the significance assignment is a solution
of

Mx = λx .

We have already used the symbol λ for the constant of propor-
tionality. This is so because, as anyone who has been exposed
to a linear algebra first course will recognize, the question has
become a problem of eigenvalues and eigenvectors; the sig-
nificance vector x is no more than an eigenvector of the matrix
M. You might recall that this matrix contains all the informa-
tion about the web structure, i.e., the vertices and adjacency
relations.

Perhaps this is not enough to arouse the reader’s enthu-
siasm yet. Alright, an eigenvector. But which one? There are
so many. And also, how could we compute it? The matrix is
inconceivably huge. Remember, it is built up of a thousand
million rows (or columns). Patience, please. For the time be-
ing, it sounds reasonable to demand the entries of our vector
(the significance of the web pages) to be non-negative (or, at
least, with the same sign). This will be written as x ≥ 0. We
ask the reader to excuse this abuse of notation. But also, since
we intend the method to be useful, we need this hypotheti-
cal non-negative vector to be unique. If there were more than
one, which of them should be chosen?

4. The random surfer

Google’s approach to the question follows a slightly different
point of view. At the present stage, a page Pj distributes a “1”
to every page where there is an outgoing link. This means that
pages with many outgoing links have a great influence, which
surely is not reasonable. It is more fair to assign each page
Pj a “total weight” 1, which is equally distributed among the
outgoing links. So we should consider a new matrix instead of
M (the matrix of the graph, with entries 0 and 1). Let Nj be the
number of Pj’s outgoing links (that is, the sum of the entries in
the column labelled Pj in M). The new matrix M′ is built from
the original M by replacing each entry mi j by m′

i j = mi j/Nj.
The entries of M′ will be non-negative numbers (between 0
and 1) and the sum of the entries for each column will be 1.
And now we are interested in the non-negative vector of the
corresponding5 problem M′x = λx. The matrix M′ is called a
stochastic (or Markovian) matrix.

This new point of view leads us to a nice interpretation.
Let us imagine a user surfing the web. At some moment he
will reach some page, say P1. But, probably bored with the
contents of P1, he will jump to another page, following P1’s
outgoing links (suppose there are N1 possibilities). But, to
which one? Our brave navigator is a random surfer – and
needless to say, also blond and suntanned. So, in order to
decide his destination, he is going to use chance, and in the
most simple possible way: with a regular (and virtual, we pre-
sume) die, which has the same number of faces as the number
of outgoing links from P1. In technical terms, the choice of
destination follows a (discrete) uniform probability distribu-
tion in [1,N1]. Say, for instance, that there are three edges
leaving P1 to vertices P2, P6 and P8. Our navigator draws
his destination, assigning a probability of 1/3 to each ver-
tex.

Our model is no longer deterministic but probabilistic. We
do not know where he will be a moment of time later but we
do know what his chances are of being in each admissible
destination. And it is a dynamic model as well because the
same argument may be applied to the second movement, to
the third one, etc. In our example, if the first movement is
from P1 to P2 and there are four edges leaving P2, then he is
to draw again, now with probability 1/4 for each possible des-
tination. Our surfer is following what is known as a random
walk in the graph.

And what about the matrix M′? Let us say that the surfer
is on page (vertex) Pk at the beginning, that is in probabilistic
terms, he is on page Pk with a probability of 100 %. We repre-
sent this initial condition with the vector (0, . . . ,1, . . . ,0), the
1 being in position k. Recall that the surfer draws among the
Nk destinations, assigning probability 1/Nk to each of them.
But when we multiply the matrix M′ by this initial vector,
we get (m′

1k,m
′
2k, . . . ,m

′
nk), a vector with entries summing to

1: the m′
jk are either 0 or 1/Nk and there are exactly Nk non-

zero entries. Notice that the vector we get exactly describes
the probability of being, one moment later, on each page of
the web, assuming he began at Pk. More than that, in order to
know the probabilities of being on each page of the web after
two moments of time, it is enough to repeat the process. That
is, to multiply (M′)2 by the initial vector. And the same for
the third movement, the fourth, etc.
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Following the usual terminology, we consider a certain
number of states, in our case just being the vertices of the
graph G. The matrix M′ is (appropriately) called the transi-
tion matrix of the system; each entry m′

i j describes the prob-
ability of going from state (vertex) Pj to state (vertex) Pi. And
the entries of the successive powers of the matrix give us tran-
sition probabilities between vertices as time goes by. The well
versed reader may have already deduced the relation with the
previous ideas: the stationary state of this Markov chain turns
out to be precisely the non-negative vector of the problem
M′x = λx.

It might happen that some pages have no outgoing links
at all (with only zeros in the corresponding columns). This
would not give a stochastic matrix. We will discuss Google’s
solution to this problem in Section 8.

5. Qualifying for the playoffs

We will illustrate the ordering algorithm6 with the following
question. Let us imagine a sports competition in which teams
are divided in groups or conferences7. Each team plays the
same number of games but not the same number of games
against each other; it is customary they play more games
against the teams from their own conference. So we may ask
the following question. Once the regular season is finished,
which teams should classify for the playoffs? The standard
system computes the number of wins to determine the final
positions but it is reasonable (see [10]) to wonder whether
this is a “fair” system or not. After all, it might happen that
a certain team could have achieved many wins just because
it was included in a very “weak” conference. What should be
worthier: the number of wins or their “quality”? And we again
face Google’s dichotomy!

Say, for example, that there are six teams, E1, . . . ,E6, di-
vided into two conferences. Each team plays 21 games in all:
6 against each team from its own conference, 3 against the
others. These are the results of the competition:

E1 E2 E3 E4 E5 E6

E1 − 3/21 0/21 0/21 1/21 2/21 → 6/21
E2 3/21 − 2/21 2/21 2/21 1/21 → 10/21
E3 6/21 4/21 − 2/21 1/21 1/21 → 14/21

E4 3/21 1/21 1/21 − 2/21 2/21 → 9/21
E5 2/21 1/21 2/21 4/21 − 2/21 → 11/21
E6 1/21 2/21 2/21 4/21 4/21 − → 13/21

To the right of the table, we have written the number of wins
of each team. This count suggests the following ordering:
E3 → E6 → E5 → E2 → E4 → E1. But notice, for instance,
that the leader team E3 has collected a lot of victories against
E1, the worst one.

Let us now assign significances x = (x1, . . . ,x6) to the
teams with the mentioned criterion: x j is proportional to the
number of wins of Ej, weighted with the significance of the
other teams. If A is the above table, this leads, once more, to
Ax = λx. And again, we want to find a non-negative eigen-
vector of A (a unique one, if possible).

Even in such a simple example as this one, we need to use
a computer. So we ask some mathematical software to per-
form the calculations. We find that the moduli of the six eigen-
values are 0.012, 0.475, 0.161, 0.126, 0.139 and 0.161. So

λ = 0.475 is the biggest (in modulus) eigenvalue, its associ-
ated eigenvector being

x = (0.509,0.746,0.928,0.690,0.840,1).

And this is the only eigenvector that has real non-negative
entries! The components of the vector suggest the following
ordering: E6 → E3 → E5 → E2 → E4 → E1. And now E6 is
the best team!

Let us summarize. In this particular matrix with non-nega-
tive entries (that might be regarded as a small-scale version of
the Internet matrix) we are in the best possible situation; there
is a unique non-negative eigenvector, the one we need to solve
the ordering question we posed. Did this happen by chance?
Or was it just a trick, an artfully chosen matrix to persuade the
unwary reader that things work as they should? The reader, far
from being unwary, is now urgently demanding a categorical
response. And he knows that it is time to welcome a new actor
to this performance.

6. Mathematics enters the stage

Let us distil the common essence of all the questions we have
been dealing with. Doing so, we discover that the only fea-
ture shared by all our matrices (being stochastic or not) is that
all their entries are non-negative. Not a lot of information, it
seems. They are neither symmetric matrices nor positive defi-
nite nor. . . Nevertheless, as shown by Perron8 at the beginning
of the 20th century, it is enough to obtain interesting results:

Theorem (Perron, 1907). Let A be a square matrix with pos-
itive entries, A > 0. Then
(a) there exists a (simple) eigenvalue λ > 0 such that Av =

λv, where the corresponding eigenvector is v > 0;
(b) λ is bigger (in modulus) than the other eigenvalues;
(c) any other positive eigenvector of A is a multiple of v.

Perron’s result points to the direction we are interested in but
it is not enough because the matrices we deal with might con-
tain zeros. So we need something else. The following act of
this performance was written several years later by Frobe-
nius9 where he deals with the general case of non-negative
matrices. Frobenius observed that if we only have that A ≥ 0
then, although there is still a dominant (of maximum mod-
ulus) eigenvalue λ > 0 associated to an eigenvector v ≥ 0,
there might be other eigenvalues of the same “size”. Here is
his theorem:

Theorem (Frobenius, 1908–1912). Let A be a square matrix
with non-negative entries, A ≥ 0. If A is irreducible,10 then
(a) there exists a (simple) eigenvalue λ > 0 such that Av =

λv, where the corresponding eigenvector is v > 0. In ad-
dition, λ ≥ |µ| for any other eigenvalue µ of A.

(b) Any eigenvector ≥ 0 is a multiple of v.
(c) If there are k eigenvalues of maximum modulus, then they

are the solutions of the equation xk −λk = 0.

Notice firstly that Frobenius’ theorem is indeed a general-
ization of Perron’s result, because if A > 0, then A is ≥ 0
and irreducible. Secondly, if A is irreducible then the ques-
tion is completely solved: there exists a unique non-negative
eigenvector associated to the positive eigenvalue of maximum
modulus (a very useful feature, as we will see in a moment).



Feature

EMS Newsletter March 2007 13

These results, to which we will refer from now on as the
Perron–Frobenius Theorem, are widely used in other con-
texts (see Section 9). Some people even talk about “Perron–
Frobenius Theory”, this theorem being one of its central re-
sults.

The proof is quite complicated and here we will just sketch
an argument (in the 3×3 case) with some of the fundamental
ideas. Let us start with a non-negative vector x ≥ 0. As A ≥
0, the vector Ax is also non-negative. In geometric terms, the
matrix A maps the positive octant into itself. Let us consider
now the mapping α given by α(x) = Ax/‖Ax‖. Notice that
α(x) is always a unit length vector. The function α maps the
set {x ∈ R

3 : x ≥ 0,‖x‖ = 1} into itself. Now, applying the
Brouwer Fixed Point Theorem11, there exists a certain x̃ such
that α(x̃) = x̃. Therefore,

α(x̃) =
Ax̃
‖Ax̃‖ = x̃ =⇒ Ax̃ = ‖Ax̃‖ x̃ .

Summing up, x̃ is an eigenvector of A with non-negative en-
tries associated to an eigenvalue > 0. For all other details,
such as proving that this eigenvector is (essentially) unique
and the other parts of the theorem, we refer the reader to [1],
[4], [13] and [14].

7. And what about the computational aspects?

The captious reader will be raising a serious objection: Perron–
Frobenius’ theorem guarantees the existence of the needed
eigenvector for our ordering problem but says nothing about
how to compute it. Notice that the proof we sketched is not
a constructive one. Thus, we still should not rule out the pos-
sibility that these results are not so satisfactory. Recall that
Google’s matrix is overwhelming. The calculation of our
eigenvector could be a cumbersome task!

Let us suppose we are in an ideal situation, i.e., in those
conditions12 that guarantee the existence of a positive eigen-
value λ1 strictly bigger (in modulus) than the other eigenval-
ues. Let v1 be its (positive) eigenvector. We could, of course,
compute all the eigenvalues and keep the one of interest but
even using efficient methods, the task would be excessive.
However, the structure of the problem helps us again and
make the computation easy. It all comes from the fact that
the eigenvector is associated to the dominant eigenvalue.

Suppose, to simplify the argument, that A is diagonaliz-
able. We have a basis of R

n with the eigenvectors {v1, . . . ,vn},
the corresponding eigenvalues being decreasing size ordered:
|λ1| > |λ2| ≥ |λ3| ≥ · · · ≥ |λn|. We start, say, with a certain
v0 ≥ 0 that may be written as v0 = c1v1 + c2v2 + · · ·+ cnvn,
where the numbers c1, . . . ,cn are the v0 coordinates in our ba-
sis. Now we multiply vector v0 by matrix A to obtain Av0 =
c1λ1v1 +c2λ2v2 + · · ·+cnλnvn because the vectors v1, . . . ,vn

are eigenvectors of A. Let us repeat the operation, say k times:
Akv0 = c1λk

1v1 + c2λk
2v2 + · · ·+ cnλk

nvn. Let us suppose that
c1 �= 0. Then,

1

λk
1

Akv0 = c1v1 + c2

(
λ2

λ1

)k

v2 + · · ·+ cn

(
λn

λ1

)k

vn

k→∞−−−→ c1v1

since |λ j/λ1| < 1 for each j = 2, . . . ,n (recall that λ1 was the
dominant eigenvalue).

Therefore, when repeatedly multiplying the initial vector
by the matrix A, we determine, more precisely each time, the
direction of interest, namely the one given by v1. This nu-
merical method is known as the power method and its rate
of convergence depends on the ratio between the first and the
second eigenvalue (see in [8] an estimate for Google’s ma-
trix).

Our problem is finally solved, at least if we are in the
best possible conditions (a non-negative irreducible matrix).
The answer does exist, it is unique and we have an efficient
method to compute it at our disposal (according to Google’s
web page, a few hours are needed). But . . .

8. Are we in an ideal situation?

To make things work properly, we need the matrix M asso-
ciated to the web-graph G to be irreducible. In other words,
we need G to be a strongly connected graph13. As the reader
might suspect, this is not the case. Research developed in
1999 (see [7]) came to the conclusion that, among the 203
million pages under study, 90 % of them laid in a gigantic
(weakly connected) component, this in turn having a quite
complex internal structure, as can be seen in the following
picture, taken from [7].

This is a quite peculiar structure, which resembles a bio-
logical organism, a kind of colossal amoeba. Along with the
central part (SCC, Strongly Connected Component), we find
two more pieces14: the IN part is made up of web pages hav-
ing links to those of SCC and the OUT part is formed by pages
pointed from the pages of SCC. Furthermore, there are sort of
tendrils (sometimes turning into tubes) comprising the pages
not pointing to SCC’s pages nor accessible from them. No-
tice that the configuration of the web is something dynamic
and that it is evolving with time. And it is not clear whether
this structure has been essentially preserved or not15. We refer
here to [3].

What Google does in this situation is a standard trick: try
to get the best possible situation in a reasonable way16. For
instance, adding a whole series of transition probabilities to
all the vertices. That is, considering the following matrix,

M′′ = cM′ +(1− c)

⎛
⎜⎝

p1
...

pn

⎞
⎟⎠(1, . . . ,1) ,
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where p1, . . . , pn is a certain probability distribution (p j ≥ 0,
∑ j p j = 1) and c is a parameter between 0 and 1 (for Google,
about 0.85).

As an example, we could choose a uniform distribution,
p j = 1/n, for each j = 1, . . . ,n (and the matrix would have
positive entries). But there are other reasonable choices and
this degree of freedom gives us the possibility of making “per-
sonalized” searches. In terms of the random surfer, we are
giving him the option (with probability 1− c) to get “bored”
of following the links and to jump to any web page (obeying
a certain probability distribution)17.

9. Non-negative matrices in other contexts

The results on non-negative matrices that we have seen above
have a wide range of applications. The following two obser-
vations (see [13]) may explain their ubiquity:
◦ In most “real” systems (from physics, economy, biology,

technology, etc.) the measured interactions are positive, or
at least non-negative. And matrices with non-negative en-
tries are the appropriate way to encode these measurements.

◦ Many models involve linear iterative processes: starting
from an initial state x0, the generic one is of the form xk =
Akx0. The convergence of the method depends upon the
size of A’s eigenvalues and upon the ratios between their
sizes, particularly between the biggest and all the others.
And here is where Perron–Frobenius’ theorem has some-
thing to say, as long as the matrix A is non-negative.

The probabilistic model of Markov chains is widely used in
quite diverse contexts. Google’s method is a nice example, but
it is also used as a model for population migrations, transmis-
sion of diseases, rating migrations in finance, etc. But, as men-
tioned before, Perron–Frobenius’ Theory also plays a central
role in many other contexts (we refer the reader again to [13]).
Let us mention just a pair:

Biological models: a well known population model, in
some sense a generalization of the one developed by Fibo-
nacci, is encoded with the so called Leslie matrices. Their en-
tries are non-negative numbers, related to the transition frac-
tions between age classes and survival rates. If λ1 is the dom-
inant eigenvalue then the system behaviour (extinction, end-
less growth or oscillating behaviour) depends upon the pre-
cise value of λ1 (λ1 > 1, λ1 = 1 or λ1 < 1 being the three
cases of interest).

Economic models: in 1973, Leontief was awarded the No-
bel Prize for the development of his input-output model. A
certain country’s economy is divided into sectors and the ba-
sic hypothesis is that the jth sector’s input of the ith sector’s
output is proportional to the jth sector’s output. In these con-
ditions, the existence of the solution for the system depends
upon the value of the dominant eigenvalue of the matrix that
encodes the features of the problem.

Finally, there are several extensions of Perron–Frobenius’
Theory that the reader might find interesting:

Cones in R
n: the key point of Perron–Frobenius’ theo-

rem is that any n×n matrix with non-negative entries preserve
the “positive octant”. There is a general version dealing with
(proper convex) cones18 (see [1, 4]).

Banach spaces: those readers versed in functional analy-
sis and spectral theory will be aware of the generalization to

Banach spaces known as the Krein–Rutman theorem (see [12]
and [5]). And those engaged in partial differential equations
will enjoy proving, using Krein–Rutman Theorem, that the
first eigenfunction of the Laplacian in the Dirichlet problem
(in an open, connected and bounded set Ω ⊂ R

n) is positive
(see the details in the appendix to Chapter 8 of [9]).

10. Coda

The design of a web search engine is a formidable technolog-
ical challenge. But in the end, we discover that the key point
is mathematics: a wise application of theorems and a detailed
analysis of the algorithm convergence. A new confirmation of
the unreasonable effectiveness of mathematics in the natural
sciences, as Eugene Wigner used to say – as in so many other
fields, we might add. We hope that these pages will encour-
age the readers to explore for themselves the many problems
we have briefly sketched here – and hopefully, they have been
a source of good entertainment. And a very fond farewell to
Perron–Frobenius’ theorem, which plays such a distinguished
role in so many questions. Let us bid farewell with a humor-
ous (but regretfully untranslatable19) coplilla manriqueña:

Un hermoso resultado
que además se nos revela
indiscreto;
y un tanto desvergonzado,
porque de Google desvela
su secreto.

11. To know more

The following book is an excellent and very recent reference:

Google’s page rank and beyond: the science of search engine
rankings. (Amy N. Langville and Carl D. Meyer. Princeton
University Press, 2006).
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Notes

1. The inventor of the name is said to be a nephew of the mathe-
matician Edward Kasner. Kasner also defined the googolplex, its
value being 10googol . Wow!

2. They also intended the search engine to be “resistant” to any kind
of manipulation, like commercially-oriented attempts to place
certain pages at the top positions on the list. Curiously enough,
nowadays a new “sport”, Google bombing, has become very pop-
ular: to try to place a web page in the top positions, usually as
only a recreational exercise. Some queries such as “miserable
failure” have become classics.

3. Not to mention the incredible capacity of the search engine to
“correct” the query terms and suggest the word one indeed had in
mind. This leads us to envisage supernatural phenomena. . . well,
let us give it up.

4. Although we will not go into the details, we should mention that
there are a pair of elements used by Google, in combination with
the general criterion we will explain here, when answering spe-
cific queries. On one hand, as is reasonable, Google does not
give the same “score” to a term that is in the title of the page, in
boldface, in a small font, etc. For combined searches, it will be
quite different if, within the document, the terms appear “close”
or “distant” to each other.

5. This is indeed a new model. Notice that, in general, matrices M
and M′ will not have the same spectral properties.

6. The ideas behind Google’s procedure can be traced back to the
algorithms developed by Kendall and Wei [11, 15] in the 1950’s.
At the same time that Brin and Page were developing their en-
gine, Jon Kleinberg presented his
HITS (Hypertext Induced Topic Search) algorithm, which fol-
lowed a similar scheme. Kleinberg was awarded the Nevanlinna
Prize at the recent ICM 2006.

7. The NBA competition is a good example although the dichotomy
of “number of wins” versus their “quality” could also be applied
to any competition.

8. The German mathematician Oskar Perron (1880–1975) was a
conspicuous example of mathematical longevity
and was interested in several fields such as analysis, differen-
tial equations, algebra, geometry and number theory, in which
he published several text-books that eventually became classics.

9. Ferdinand Georg Frobenius (1849–1917) was one of the out-
standing members of the Berlin School, along with distinguished
mathematicians such as Kronecker, Kummer and Weierstrass. He
is well known for his contributions to group theory. His works on
non-negative matrices were done in the last stages of his live.

10. An n× n matrix M is irreducible if all the entries of the matrix
(I+A)n−1, where I stands for the n×n identity matrix, are pos-
itive. If A is the adjacency matrix of a graph then the graph is
strongly connected (see Section 8).

11. Notice that the part of the 2-sphere that is situated in the positive
orthant is homeomorphic to a 2-disc.

12. A matrix A is said to be primitive if it has a dominant eigenvalue
(bigger, in modulus, than the other eigenvalues). This happens,
for instance, when, for a certain positive integer k, all the entries
of the matrix Ak are positive.

13. Let us consider a directed graph G (a set of vertices and a set
of directed edges). G is said to be strongly connected if, given
any two vertices u and v, we are able to find a sequence of edges
joining one to the other. The same conclusion, but “erasing” the
directions of the edges, lead us to the concept of a weakly con-
nected graph. Needless to say, a strongly connected graph is also
a weakly connected graph but not necessarily the reverse.

14. Researchers put forward some explanations: The IN set might be
made up of newly created pages with no time to get linked by the
central kernel pages. OUT pages might be corporate web pages,
including only internal links.

15. A lot of interesting questions come up about the structure of the
web graph. For instance, the average number of links per page,
the mean distance between two pages and the probability P(k) of
a randomly selected page to have exactly k (say ingoing) links.
Should the graph be random (in the precise sense of Erdös and
Rényi) then we would expect to have a binomial distribution (or
a Poisson distribution in the limit). And we would predict that
most pages would have a similar number of links. However, em-
pirical studies suggest that the decay of the probability distribu-
tion is not exponential but follows a power law, k−β, where β
is a little bigger than 2 (see, for instance, [2]). This would im-
ply, for example, that most pages have very few links, while a
minority (even though very significant) have a lot. More than
that, if we consider the web as an evolving system, to which new
pages are added in succession, the outcome is that the trend gets
reinforced: “the rich get richer”. This is a usual conclusion in
competitive systems (as in real life).

16. “Reasonable” means here that it works, as the corresponding
ranking vector turns out to be remarkably good at assigning sig-
nificances.

17. In fact, Google’s procedure involves two steps: firstly, in order
to make matrix M′ stochastic, the entries of the zero columns
are replaced by 1/n. This “new” matrix M′ is then transformed
into M′′ as explained in the text. Notice that the original M′ is
a very sparse matrix, a very convenient feature for multiplica-
tion. In contrast, M′′ is a dense matrix. But, as the reader may
check, all the vector-matrix multiplications in the power method
are executed on the sparse matrix M′.

18. A set C ⊂ R
n is said to be a cone if ax ∈C for any x ∈ C and for

any number a ≥ 0. It will be a convex cone if λx+µy ∈C for all
x,y ∈C and λ,µ≥ 0. A cone is proper if (a) C∩(−C) = {0}, (b)
int(C) �= Ø; y (c) span(C) = R

n.
19. More or less: “a beautiful result, which shows itself as indiscreet

and shameless, because it reveals. . . Google’s secret”.
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