Curso de Formación continua en Matemáticas UAM Curso 2004/2005

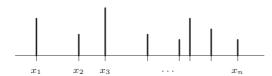
Ejercicio para la sesión del martes 26 de abril de 2005

A. Un poquito de teoría

A1. Variables aleatorias

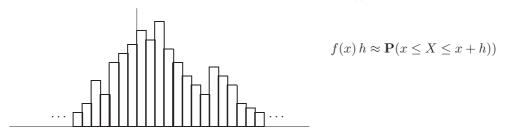
Una variable aleatoria...¿es una función?, ¿una variable? Informalmente, un conjunto de valores que se pueden tomar con determinada probabilidad. Esto es, un histograma potencial, virtual.

(a) X toma valores x_1, \ldots, x_n con probabilidades p_1, \ldots, p_n , unos números ≥ 0 tales que $\sum_{j=1}^n p_j = 1$.



(b) Un paso más allá: X toma valores x_1, x_2, \ldots con probabilidades p_1, p_2, \ldots , números no negativos tales que $\sum_{j=1}^{\infty} p_j = 1$.

(c) En un alarde de abstracción, aceptamos que X tome valores en \mathbb{R} . Esto requiere algo más de técnica: la **función de densidad** f(x), una función $f(x) \geq 0$ tal que $\int_{-\infty}^{\infty} f(x) dx = 1$.



Asociados a una variable aleatoria X existen una serie de **estadísticos**, como la **media**, que los matemáticos preferimos nombrar como la **esperanza** de X, $\mathbf{E}(X)$. En el caso discreto,

$$\mathbf{E}(X) = \sum \text{valores} \times \text{probabilidades} = \sum_j x_j \, p_j \qquad \left(\text{en el caso continuo}, \quad \mathbf{E}(X) = \int_{-\infty}^{\infty} x \, f(x) \, dx\right).$$

De entre los **momentos** de la variable, el más importante es la **varianza**¹, V(X), una medida (cuadrática) de cuánto se apartan los valores de la variable de la media:

$$\mathbf{V}(X) = \mathbf{E}((X - \mathbf{E}(X))^2) = \mathbf{E}(X^2) - \mathbf{E}(X)^2.$$

 $^{^1\}mathrm{La}$ desviación típica $\sigma(X)$ es, simplemente, $\sigma(X) = \sqrt{\mathbf{V}(X)}$

En el caso discreto (llamando $\mu = \mathbf{E}(X)$),

$$\mathbf{V}(X) = \sum_{j} (x_j - \mu)^2 p_j = \left(\sum_{j} x_j^2 p_j\right) - \mu^2.$$

En el caso continuo,

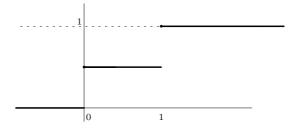
$$\mathbf{V}(X) = \int_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx = \left(\int_{-\infty}^{\infty} x^2 f(x) \, dx \right) - \mu^2 \, .$$

A2. Función de distribución

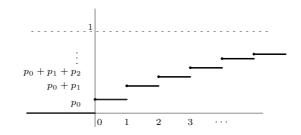
Una descripción mejor (para lo que nos interesa): la función de distribución.

$$F_X(x) = \mathbf{P}(X \le x)$$
 (en el caso continuo, $F_X(x) = \int_{-\infty}^x f_X(y) \, dy$).

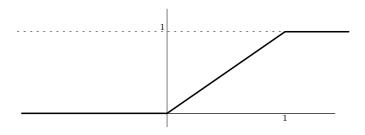
 $X = \begin{cases} 0 & \text{prob} = 1/2, \\ 1 & \text{prob} = 1/2 \end{cases}$



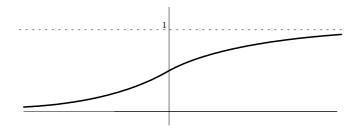
 $X = \begin{cases} 0 & \text{prob} = p_0, \\ 1 & \text{prob} = p_1, \\ 2 & \text{prob} = p_2 \\ & \vdots \end{cases}$



 \boldsymbol{X} uniforme en [0,1]



X normal $\mathcal{N}(0,1)$



A3. La clave para simular

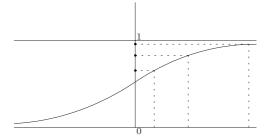
En la simulación de los ejemplos estamos utilizando la función de distribución (en realidad, la "inversa"), junto con el generador de la uniforme en [0,1], a través del comando aleatorio().

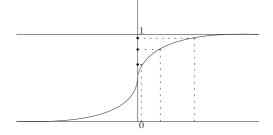
Éste es un procedimiento general:

- (a) Si X es una variable aleatoria con función de distribución F, entonces U=F(X) es una variable aleatoria uniforme.
- (b) O al revés: si U es una variable aleatoria uniforme, entonces $X = F^{-1}(U)$ es una variable aleatoria con distribución F.

Veamos cómo utilizar el segundo resultado para generar muestras de una variable aleatoria X cuya función de distribución es F(x).

- 1. generamos una lista de números u_1, \ldots, u_n con arreglo a la uniforme [0, 1].
- 2. con la función "inversa" de F, que llamaremos F^{-1} , calculamos la lista de números $x_1 = F^{-1}(u_1), x_2 = F^{-1}(u_2), \dots, x_n = F^{-1}(u_n)$. Estos números x_1, \dots, x_n ya son una muestra de la variable X.





Lo que no está claro es cómo calcular F^{-1} .

B. Colas en cajeros

Hay tres cajas en un supermercado. El número Y de clientes que llega (en cada unidad de tiempo, un minuto, por ejemplo) a las cajas sigue una cierta distribución (digamos, una discreta). Los clientes se distribuyen entre ellas "uniformemente".

Los encargados de las cajas atienden X_1, X_2, X_3 personas, respectivamente, por minuto, donde X_1, X_2 y X_3 siguen una cierta distribución.

- ¿Cuál es la longitud de la cola que se forma?
- ¿Cómo influye si cambiamos la velocidad de atención en una caja?

Variación: los clientes, al llegar, se sitúan en la caja cuya cola sea más corta.