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1.  Revisit models for “percolation” of information  of common interests through a  large 

multi agent environment and reveal information  to each other over time.  
2. (according to Duffie, Giraux, Malamud  and Manso, 2007, 2009, 2010 Market information percolation models)  

•  Model:   Time evolution of the cross-sectional distribution of posterior beliefs of the        

          various agents := mt( q)  (i.e. acquired knowledge). 

•  Phase space: Baysian  rules:  type of informative signals := q  

• Interactions: pre to posterior types of m-multi agents signals:= aggregation of types  

• Results: Explicit solutions, convergence and convergence rates by means of Wild 

 sums (formula) representations. 

 

2.    Connections to the Boltzmann equation: dynamics of Kac Master equation for m-

particle interactions and   Maxwell type of interactions. (Bobylev, Cercignani, I.M.G. 2006, 

CMP 2010,  F. Bolley, I.M.G and with R. Srinivasan, in progress) 

•    Phase space interactions beyond aggregation: examples-Wild sums representations 

•     existence, stability and self similarity as attracting states –stable laws –martingales 

limit theorems. 

 

3.  Generalizations to  FMIE (Finite Markov Information Exchange processes) type of 

interactions 

Outline 



Part I :    Revisit  Information  aggregation model   

(Duffie and Manso 07, Duffie, Giroux, Manso, Giroux 09, Duffie     Malamud and Manso, 2010) 







μt (q) denotes the cross-sectional distribution of posterior types in the population at t:  

•    The initial distribution μ0 of types induced by an  initial allocation of signals to agents. 

  

•    Assume that there is a positive mass of agents that has  at least one informative signal.  

 

•    The first moment m1(m0(q) ) > 0 if X = H,      and      m1(μ0(q) ) < 0  if  X = L.  

 

•    Assume that   the initial law μ0 has a moment generating function j(k) , finite on a 

neighborhood of  k = 0 ,  defined by  

          j(k) =  ∫ eikqd(μ0(q))    
 

•  We also define  f(t, ∙) be the probability distribution of μt(.) 

  that is                                    

                                                 μt(q)  = ∫0

t
 ft(t,q) dt    temporal cumulative of  f  

 

Statistical equation:  (Duffie, Manso 07,   Duffie, Giraux, Manso 2009, Duffie Malamud Manso 10) 







Moreover, writing the evolution of the binary equation in terms of the Fourier transform   

 j( · , t) of μt,   yields  the  local ODE       jt( s , t) =  l j2 ( s , t)  -  l j( s , t)    

 

with j( s ,0) positive,  which has the explicit solution  

that can be expanded as                                               jt(s,t) = S n ≥ 1   e
−lt (1 − e−lt )n−1  jn(s,0)    

 
which is identical to the Fourier transform of the right-hand side of Wild representation of  the 

binary aggregation eq.    

In the case of the m-ary  interaction (argument follows Duffie, Giraux,Manso ’09) 

  2 - The unique solution of the m-aggregation model is given by 

where a1 = 1 and, for n > 1 



Cross-sectional distribution pt of   posterior  probabilities that X = H is defined by the 

cumulative function of mt(s)  with respect to s as follows:  

the beliefs distribution pt has an outcome that differs depending on  whether X = H or X = L. 

which converges to a common posterior distribution p∞ if, almost surely,  

pt converges in distribution to p∞ ,   with unique exponential convergence rate  l > 0,  

such that for any b in (0, 1),    there are constants k0 and k1 such that 

 

  e−l t  k0   ≤ |pt(0, b) − p∞(0, b)| ≤  e− l t   k1. 

The proof (Duffie, Giraux and Manso’09)  uses estimates of the Wild summation formula 

to  estimate the cumulating  function by the one of the initial state:     μt(− ∞, a) ≥ e− lt μ0(− ∞, a) 

to obtain uniform time estimates depending on the cumulative function of the initial state    

     

•  However the authors did not analyzed  any possible existence of dynamically scaled  states such  

 as self-similarity that can produce additional stable laws and corresponding  

asymptotic limits    gives raise to stable laws with Pareto  or more general power law tails   

Analogous results are obtained for the solution of the m-ary interaction model.  

where b and  g0 depend on μ0(− ∞, a) and  n , b 

                               with n =P(X=H) 



Part II:   

 

Connection between the kinetic Boltzmann 

equations and  Kac probabilistic  

 interpretation of statistical  mechanics 



Take a spatially homogeneous d-dimensional ( d ≥ 2)  “rarefied gas of particles” with unit mass.       

Let f(v, t), where v ∈ Rd and  t ∈ R+,  be a one-point pdf with the usual normalization 

Assumptions:   

I – interaction (collision) frequency is independent of  the phase-space  variable (Maxwell-type)           

 

II -  the total “scattering cross section” (interaction frequency w.r.t. directions) is finite. 

 

III- Choose such units of time such that the corresponding classical Boltzmann  eq. reads as 

a birth-death rate equation for  pdfs  

with 

Q+(f)  is the gain term of the collision integral  which   Q+ transforms   f   into another 

probability density                       

Part II:  Connection between the kinetic Boltzmann equations and  Kac probabilistic  

 interpretation of statistical  mechanics (Bobylev, Cercignani and IMG, arXiv.org’06, 09, CMP’09) 

I.1 Generalized interacting model of “Maxwell type”: 



                     The same stochastic model admits other possible generalizations.  

For example we can also include multiple interactions and interactions with a background (thermostat). 

This type of model will formally correspond to a version of  the kinetic equation for some Q+(f). 

where Q(j)
+  ,  j = 1, . . . ,M,  are j-linear positive operators describing interactions of   j ≥ 1 particles,  

and αj ≥ 0 are relative probabilities of such interactions, where 

Assumption: Temporal evolution of the system is invariant under scaling transformations  

in phase space:            if St is the evolution operator for the given  N-particle system such that 

 

                                        St{v1(0), . . . , vM(0)} = {v1(t), . . . , vM(t)} ,     t ≥ 0 , 

then                              St{λv1(0), . . . , λ vM(0)} = {λv1(t), . . . , λvM(t)}        for any constant λ  > 0     

 

which leads to the property  

                                    Q+
(j) (Aλ f)   = Aλ Q+

(j) (f),    Aλ f(v) = λd f(λ v) ,    λ > 0,  (j = 1, 2, .,M) 

 

Note that the transformation Aλ is consistent with the normalization of f  with respect to v.  

 
Note: this property on Q(j)+ is needed to make the consistent with the classical BTE for Maxwell-type interactions 



Assumption II: Temporal evolution of the system is invariant under scaling transformations of   

 phase space:   Makes the use of the Fourier Transform  a natural tool    

so the evolution eq. is transformed  into an  

evolution eq. for characteristic functions 

which is also  invariant under scaling transformations k → λ k,   k ∈ Rd 

All these  considerations remain valid for d = 1, the only  two differences are: 

The evolving Boltzmann Eq should be considered as the one-dimensional Kac master equation 

and one uses the Laplace transform  

 

 

If solutions are isotropic then 

where Qj(a1, . . . , aj) can be a mass distribution function of j-non-negative variables aj (interaction laws 

              and kernels). 

-∞ 

E[u(a1x), …, u(ajx)]     w.r.t. the density Qj(a1,..aj)  or equivalently,  

pointwise in  x 

-∞ 



Connection of the Kac Master approach to the Boltzmann equation 

 
The structure of  this eq. follows from the well-known probabilistic interpretation by  M. Kac:   
 

Consider stochastic dynamics of N particles with phase coordinates (velocities)   

                                 VN={vi(t)} , i = 1..N ,      with each vi(t)∈ Ωd    and  Ω= R  or   R+      

 

A simplified Kac rules of  binary dynamics is:      on each time-step t = 2/N ,  choose 

randomly a pair of integers 1 ≤ i < l ≤ N  and perform a transformation (vi, vl) →(v′i , v′l) 

which corresponds to an interaction of two particles  with   

                                                                                  ‘pre-collisional’  velocities vi and vl.  

Then introduce N-particle   distribution function F(VN, t) and consider a  weak form of the  

Kac Master equation  (we have assumed that V’ N j= V’N j  ( VN j  ,   UN j · σ)   for pairs     

j=i,l   with σ  in a compact set)  with UNj= Vni   - VNl 

2 ΩdN 

B(UNj· s) dVN ds 

UNj= UNj/|UNj| 



The assumed  rules lead (formally, under additional assumptions) to molecular chaos, that is 

Introducing  a  one-particle distribution function (by setting v1 = v)  and the hierarchy reduction 

The corresponding “weak formulation” for f(v,t) for any test function φ(v) where the 

the RHS has a bilinear  structure ‘birth/death’ process from evaluating    f(v,t) f(v*, t)      

K(u · h) 

In Strong Form:  Boltzmann equation for conservative or dissipative interactions 

M. Kac showed  that yields  the  classical Boltzmann equation in weak form 

B(u · s) 

where B(u · s)   is the interaction kernel: density of transition of state v  v’. 

The angular integration corresponds to a ‘mixing’ of compactly supported positive measures 

Ω Ω Ω 

u= (v-v*)/|v-v*| 

“Stosszahlansatz”  
collision number hypothesis 
(Duffie&Yin’07, Durret & Reminik’10 

        for multi-agent modeling)  





Non-Equilibrium Stationary Statistical States Energy dissipation implies the appearance of   

Rigourously worked  in Bobylev, Carrillo &IMG, JSP’00, Bobylev, Cercignani &Toscani JSP’02,03 

 IMG, Panferov&Villani, CMP’04, Bobylev, Cercignani &IMG 06  and CMP’10, Bassetti and Ladelli  AP’11  

And with Toscani,JSP’11,  among many more references in the last decade. 



The approach extends to more general Information Percolation models where the signal type 

do not necessarily aggregate  but “distributes ” itself between the posterior types as in the  

framework of  Finite Markov Information-Exchange (FMIE) processes popularized recently 

by D. Aldous (Berkeley, lecture notes, 2011):   

• Binary ( m=2 ): for almost every pair of agents, the matching times and counterparties 

of one agent are  independent of those of the other:      

whenever an agent of type q meets an agent with type f and they communicate to 

each other their posterior distributions of X,  

q’ and f’ attain the posterior types     q’ = g11q + g12 f    and   f’ = g21 q + g22 f  

 

• m-ary :  whenever m agents of respective types q 1, . . . , q m share their beliefs, they 

attain the corresponding  posterior type qi’ = gi1 q 1 + · · · + gim q m 

•Equivalently , from the phase space definition   it follows that                 

Let   Q’m =  G Qm ; Qm =(q1; …; qm) ;     Q’m= (q’1, …  ; q’m) ;   where   G=gij  is a square m x m matrix 

               of randomly distributed numbers independent  

                    of the numeration of identical agent types 

plus constrains from conserved properties (like the mean) that gives constitutive laws to the gij   



                                                                                    

with    V’m =  G Vm ; Vm = (v1; …; vm) ;     V’m = (v’1, …  ; v’m) ;        where 

 

G  is a square m x m matrix with entries G  = {gik  = 1 , for all  i, k = 1, . . . ,  m} ,     

Extention to m-ary interactions model   the Kac Master Equation formulation 

  

Let the type signals Vm and its posterior V’m: 

Then the m-particle   distribution function F(VN, t) and the  weak form of the    Kac Master eq. 

The assumed  rules lead (formally, under additional assumptions)  

to molecular chaos,  that is  

Introducing  a  one-particle distribution function (by setting v1 = v)  and the hierarchy reduction 

l-1 
for N=m 

Then, an extension of the BTE  for FMIE   f(Vm , t)  holds  for either binary or  

multi-agent interacting forms   



Interacting models of Maxwell type       (as originally studied for binary  
                     elastic or inelastic interactions) 

Bobylev, ’75-80, for the elastic, energy conservative case. 

Drawing from Kac’s models and Mc Kean work in the 60’s : Connections to Probability  - Carlen, Carvalho, Gabetta,  

Toscani, 80-90’s , Bassetti, Ladelli Regazzini ’08 – ‘11  -   For inelastic interactions: Bobylev,Carrillo, I.M.G. JSP’00, 

Bobylev, Cercignani,Toscani, 03, Bobylev, Cercignani, I.M.G’06 and 09, for general non-conservative problem. For wealth 

distribution models: A.Pulvirenti, Toscani, Bissi, Toscani, Spiga, Pareschi ’06-11 

    

characterized by 

so  is also a probability distribution function in v. 

The Fourier transformed problem: 

One may think of this model as the generalization original Kac (’59) probabilistic interpretation of rules of dynamics on  

each time step Δt=2/N  of N particles associated to system of vectors randomly interchanging velocities pairwise while  

preserving momentum and local energy, independently of their relative velocities. 

Then: work in the space of “characteristic functions” associated to Probabilities:  “positive probability   

measures in v-space  are continuous bounded functions in Fourier transformed k-space”  

Fourier transformed operator =Γb = Eb[φ(a-(|k|, t)), φ(a+(|k|,t))]  



accounts for the integrability of the function b(1-2s)(s-s2)(N-3)/2 

 gb,1 := ∫
1

0 
(aβ(s) + bβ(s)) G(s) ds            =  1             kinetic energy is conserved (elastic) 

                <   1                                       kinetic energy is dissipated (inelastic) 

                >   1                  kinetic energy is generated  (aggregation) 

For isotropic solutions the equation becomes (after rescaling in time the dimensional constant) 
                                

 φt + φ =Eb [φ(a-(x,t)), φ(a+(x,t)] = G(φ, φ)  ;                     φ(t,0)=1,      φ(0,k)=F(f0)(k),   Θ(t)= - φ’(0)   

 
In this case, using the linearization of Γ(φ , φ ) about the stationary state φ=1, we can inferred the  

energy rate of change   by looking at   gb,1 defined by 

For isotropic (x = |k|2/2 )  or     

self similar solutions  by x = |k|2/2  eμt , μ is the energy dissipation rate, that is:  Θt  = - μ Θ, and  

From Fourier transform:  nthmoments of f(., v)  are nth derivatives of φ(.,k)|k=0 

Θ 

the Fourier transformed collisional gain operator is written 

, with 

Kd 

Eb [φ(a-(x,t)), φ(a+(x,t)]  



The existence theorems for the classical elastic case ( β=e = 1)  of Maxwell type of interactions were 

proved by Morgenstern, ,Wild 1950s, Bobylev 70s  and for inelastic ( β<1)  by Bobylev,Carrillo, I.M.G.JSP’00 

using the Fourier transform 

Note that if the initial coefficient |φ0|≤1,  then   |Фn|≤1    for any n≥ 0.  

                                                                        the series converges  uniformly for τ ϵ [0; 1).  

Classical Existence approach :   Wild's sum in the Fourier  representation. 

Γ 

Γ 

•   rescale time  t → τ 

and solve the initial value problem 

by a power series expansion in time where the phase-space dependence is in the coefficients   

Wild's sum in the Fourier  representation for 

non conservative problem : analog to binary  

trees dynamics representation by McKean 60s) 

= Eb [φ(a-(x,t)), φ(a+(x,t)]  ,        



Existence, asymptotic behavior - self-similar solutions and power like tails: 

From a unified point of energy dissipative Maxwell type models: λ1  energy 

dissipation rate (Bobylev, I.M.G.JSP’06, Bobylev,Cercignani,I.G. arXiv.org’06- CMP’09) 

Classical Examples from rarefied molecular states 



Existence, uniqueness, stability   (Bobylev, Cercignani, I.M.G.;.arXig.org ‘06 – CMP ‘10) 

 with   0 < p < 1 infinity energy, 

     or     p ≥ 1         finite energy 

Θ(t) 

Study of j-ary interactions  for Maxwell type interacting models 

(or variance) 



Relates to the work of Toscani, Gabetta,Wennberg, Villani,Carlen, Carvallo,….. 

for initial data with finite energy , i.e.  p ≥ 1, : 

Fundamental properties of the generalized model for m-ary interactions:  

R+ 



Existence-uniqueness and Stability   (for frequency =l  rescale time by r = lt )  

Uses the first two properties of the operator G) 

Take the integral form of the equation 

and apply the standard Picard iteration scheme 

Then, on any finite interval 0 ≤ t ≤ t ,    set |||u|||t= sup[0,t]||u||t , and initial  u0  in the unit ball U 

1- ||u(n) (t)||  ≤ 1 for all n = 1, 2, . . . , and t ∈ [0, T], since ||u0|| ≤ 1 and G(u) preserves the unit ball 

 

2-  u(t) = lim n→∞ u
(n)(t) , 0 ≤ t ≤ T ,       T >0 

Generalized Wild Sum 
(for multi-linear operators) 

In addition, 

|| u(n+1)(t)|| ≤  ||u0||e
-lt  +(1-e-lt )||| G(u(n)(t)|||t  ≤  Sn  e

−lt (1− e−lt)n−1Cn-1|| u0||
n  , with C=||L||        

 so,   for T such that (1-e-lT)C <1,  then the estimate hold  with uniform control in [0,T],   



 Pointwise stability in the limit:   using the L-Lipschitz condition any two solutions u(t) and 

w(t) of  the problem with initial data in the unit ball U   satisfy the pointwise in x inequalities 

e−lt (x) (x) (x) 

p-Kantorovich/Wasserstein distance stability: When  the initial data differ in the same 

transformed moments  of order p, the estimate  is  

(x) e−lt (xp) sup( |u0 – w0| ) 

(xp) 
C e−l t( g(p)  -1)   O (xp ) 

(x) 

(xp) 

                           e−l t( g(p)  -1)  sup 
x 

 sup ( |u0 – w0| )    x 
(xp) 

 or equivalently,  this is a stability estimate in Kantorovich/Wasserstein distance of order p > 0 
between two the two probability measures    f = F   -1 u   and   g =F -1 w  ,   

 

                                                Wp(f, g ) := inf (X′,Y’)  E(|X′ − Y′|p) (1/max(p,1) ) 

 

where the infimun is taken over all pairs (X′, Y′) of real random variables  whose marginal 

probability distributions are  f and g  respectively. (also related to Zolotarev metrics)  (Bassetti &Ladelli, 

AP’10) 

                  Wp(f, g ) (t)    ≤ e−l t( g(p)  -1)   Wp(f, g ) (0)  





Finite Markov Information-Exchange (FMIE) processes (Aldous, lecture notes, 2011)  

also, with affine trans, by adding a random variable as added diffusion (Ernst&Van Noije08, Bobylev 

&Cercignani JSP’02, IMG, Panferov and Villani CMP’04, Bassetti, Ladelli & Toscani,JSP’11)  

  

with 



4-  Consensus seeking model (Aldous, Ben Naim et al):      

5-   Randomized public goods ‘games’:   (Bobylev, Cercignani and I.M.G,  Bobylev and Windfall)    

6- ordered consensus seeking (non-linear interaction law) (Aldous, Chatterjie & Durret)  

7- Subjective assessment of an average (multidimensional states):  

or, equivalently 



 

Boltzmann Spectrum Aggregation Spectrum Wealth distribution 

Spectrum 

M 

M 

g(p) 

g(p) =g(p) 

g(p) 

g(1) 



Existence of Self-Similar Solutions and long time dynamics  

with initial conditions    

Remarks:  

 1-  Existence proof can be rewritten as existence of  martingales whose weak limit  is  a scale  

mixture of p–stable laws  (Bassetti &Ladelli, AP’11), 

2-  The transformation ͞x = bxp   ,   for p > 0 transforms the study of the   initial value problem to         

uo(x) = 1+xp     and    ||uo|| ≤ 1       so it is enough to study the case p=1 

time decay rate to self-similarity 

This estimate is equivalent  to the p-Kantorovich/Wasserstein distance estimate:   

 

                                                   

       edm(p)t) Wp(f(ve−m(p)t)  ,  Fp(v) )  ≤   Wp( f,  Fp(v) )  



Further, by making a different  rescaling choice one obtains convergence to trivial states 

(with decay rates in corresponding p-Kantorovich distances) 

However, for choices of large p there is asymptotic convergence to a point mass 

  but no selfsimilar rates  



For p0 >1   and   0<p< (p +e) < p0   

p0 
p 

μ(p) 

μ(s*) = μ(p) 

μ(po) 

Self similar asymptotics for: 

For any initial state φ(x) = 1 – xp + x(p+e) , p ≤ 1. 
  

 Decay rates in Fourier space: (p+e)[ μ(p) - μ(p +e) ] 
 

both for or finite (p=1) or infinite (p<1) initial energy. 

For p0 < 1   and   p=1      No self-similar asymptotics with finite energy 

s* 

For μ(p) = μ(s*) , s* >p0 >1 Power tails 
     limit to a p-stable law 

In the p-Kantorovich distance  

Finite (p=1) or   infinite (p<1) initial energy 

Study of the spectral function  μ(p)    associated  to the linearized collision operator 

p 



In general we can see that 

 

1. For more general systems multiplicatively interactive stochastic processes 

 the lack of entropy functional does not impairs the understanding and  realization of global 

existence by extension of the Wild summation method  (in the sense of positive Borel 

measures), long time behavior from  spectral analysis and self-similar asymptotics. 

 

2. “power tail formation for high energy tails” of self similar states is due to lack of total 

energy conservation, independent of the process being micro-reversible (elastic) or micro-

irreversible (inelastic).   

    It is also possible to see Self-similar solutions may be singular at zero. 

 

3. The long time asymptotic dynamics and decay rates are fully described by the continuum 

spectrum associated to the linearization about  singular measures. 

 

4. Recent probabilistic interpretation of our workw as given by F. Bassetti and L. Ladelli:  
connects to evolution of expecations, m-ary convolution trees (Mc Kean approach of Wild sums), 

filtrations and stable laws with power law decay rates,  (Annals in Probability’11) 

 

5. Study of the convergence properties of the corresponding cumulative function  (Kolmogorov 

distances) is not cover by the analysis in BCG, CMP’10 and it is work in progress with R. 

Srinivasan . 

6. Study of self-similarity for systems in work under progress with F. Bolley and Srinivasan (in 

progress) 



Further applications to agent interactions 
 

• information percolation models   
    (Duffie, Giraux, Malamud and Manso, 08-09)  

     - Percolation information (Duffie, Giraux & Manso, 08) (already discussed)  

     - Information percolation in segmented markets (Duffie, Malamud &Manso, 2010)             

 systems of  Maxwell type interaction 

      - Information percolation with equilibrium search dynamics (Duffie,Malamud     

 &Manso’09) beyond Maxwell type  moment summability methods techniques? 

  

 

 

•  M-game multi agent  model  (Bobylev Cercignani, Gamba, CMP’09) 

 



For any search-effort policy function C(n), the cross-sectional distribution ft of precisions and 

posterior means of the i-agents is almost surely given by 

                                           

                                                ft(n; x; w) =   μC(n,t)   pn(x |Y (w))  

 Information  aggregation model  with equilibrium search dynamics  (Duffie, Malamud & 

        Manso 08) 

where μt(n)  is the fraction of agents with  information precision n at time t, which  

is the unique solution of the differential equation below (of generalized  Maxwell type) 

 and pn( x| Y(w) ) is the Y-conditional Gaussian density of E(Y |X1; …. ;Xn), for any n signals 

X1; … ;Xn.  

This  density has conditional mean                and                            conditional variance 

mt(n) satisfies the dynamic equation  

with π(n) a given distribution independent of  

any pair of agents  

Where μt
C (n) = C(n)  μ(n,t) is the effort-weighted measure such that:  C(n) is the search-effort policy function 



For μt(n) for the fraction of agents with precision n (related to the cross-sectional distribution μt of 

information precision at time t  in a given set)  its the evolution equation is given by 

Where μt
C (n) = C(n)  μ(n,t) is the effort-weighted measure such that:  C(n) is the search-effort policy function 

 

Linear term: represents the replacement of agents with newly entering agents. 

 

Gain Operator:  The convolution of the  two measures μt
C * μt

C  represents the gross rate at which 

new agents of a given precision are  created through matching and information  sharing. 

Example from information search (percolation) model   not of Maxwell type!! 

Loss operator: The last term of captures the rate μt
C  μt

C(N)  of replacement of agents with 

prior precision n with those of some new posterior precision that is obtained through 

matching and information sharing, where 

is the cross-sectional average search effort  

This is an aggregation model of “non-Maxwell” type where Pego-Menon does not apply, but 

variable potential interactions (Bobylev, Panferov, Villani, I.M.G or Laurencot, Mishler,Escobedo may be adjusted)  



Conclusions- future directions 

• Systems of different agent types, p-stable law dynamics (with Bolley 

and Srinivasan) 

 

• Local interaction frequency  moment methods?   

Control of interaction frequency-- mean field games formulation. 

 

• Networks -spatial dependence 

 

• Friction –unisotropic states in multi dimensional agent/type space 



Preprints: http://rene.ma.utexas.edu/users/gamba/publications-web.htm 

And references therein 

 

Thank you very much for your attention!  

http://rene.ma.utexas.edu/users/gamba/publications-web.htm
http://rene.ma.utexas.edu/users/gamba/publications-web.htm
http://rene.ma.utexas.edu/users/gamba/publications-web.htm
http://rene.ma.utexas.edu/users/gamba/publications-web.htm


Revision of the Boltzmann transport equation and 

 connections to continuum  models  



Self similar solutions – Moments equations of the limiting (p-stable law) state 

M M 



m
s
> 0 for all s>1. 

p-Stable laws   (we show here p=1 case, it generalizes to p<1) 



These representations explain the connection of self-similar solutions with stable distributions 

Similarly, by means of Laplace transform inversion, for v ≥0 and   0 < p ≤ 1 

with 

In addition, the corresponding Fourier Transform of the self-similar pdf admits an integral 

representation by distributions Mp(|v|) with kernels Rp(τ) , for  p = μ−1(μ∗).  

 

They are given by: 

This property generalizes infinite divisibility  (as in aggregation models) 

(Bertoin,Menon,Pego,…) 

i.e.   with l(1)=2 



Theorem: dynamically scaled stable laws  (Kintchine type of CLT) 





Interactions with equilibrium dynamics 



Explicit solutions an elastic model in the presence of a cold thermostat for d ≥ 2  
Mixtures of colored particles (same mass  β=1 ):   (Bobylev & I.M.G., JSP’06)  

In the space of characteristic functions: 

= 

Set β=1 = 

and set 

1. Laplace transform of ψ:  

Transforms 

   

The eq. into 

2-    set group transformations 

and    y(z) =z-2 u(zq)  + B     ,  B constant 

    and  

3-     and  α=β=0 = B(B-1) 

Painleve type eq. 

 = 0 with θ=μ -1 -5μq  and  6μq2 = ± 1 

,      with 

By the choice of parameters,  



Theorem:  the equation for the slowdown process in Fourier space, has exact self-similar 

solutions  satisfying the  condition 

for the following values of the parameters θ(p) and μ(p):  

Case 1: Case 2:   

where the solutions are given by equalities 

Case 1: Case 2:   

Infinity energy 

SS solutions 

Finite energy 

SS solutions 

For p = 1/3 and p=1/2 then θ=0  the Fourier 

transf. Boltzmann eq. for one-component gas  

These exact solutions were already obtained by 

 Bobylev and Cercignani, JSP’03 

after transforming Fourier back in phase space 

for 



Computations: spectral Lagrangian methods in collaboration with Harsha Tharkabhushaman 

                                                                                                                      JCP’09 and JCM’09 

Also, rescaling back w.r.t.  to ̑M(k) and Fourier transform back   f0
ss(|v|) = MT(v)   and   

the similarity asymptotics holds as well.  

Qualitative results for Case 2 with finite energy:   

, both, for infinite and finite energy cases 



Weak Formulation  &   fundamental properties of the collisional integral  

and the equation:       Conservation of moments & entropy inequality 

x-space homogeneous (or periodic boundary condition) problem:  Due to symmetries of the collisional 

integral one can obtain (after interchanging the variables of integration): 

Invariant quantities (or observables)  - These are statistical moments of the ‘pdf’ 

 Conservation of energy 

= 



The Boltzmann Theorem:        there are  only N+2 collision invariants  

Time irreversibility is expressed in this inequality  stability 

In addition: 



→ yields the compressible Euler equations  

Elastic (conservative)    Interactions 



Hydrodynamic  limits: evolution models  of a ‘few’ statistical moments 

(mass, momentum and energy)  

Elastic (conservative)    Interactions:  Connections to  



Reviewing Inelastic (dissipative)  properties: loss of classical hydrodynamics 

INELASTIC Boltzmann collision term: 

 Inelasticity brings loss of micro reversibility 

but keeps time irreversibility !!: That is, there are stationary states and, in some particular 

cases we can show stability to stationary and self-similar states    However: Existence of 

NESS: Non Equilibrium Statistical States (stable stationary states are non-Gaussian pdf’s) 

  f(v,t) → δ0   as   t → ∞ to  a singular concentrated  measure (unless there is ‘source’) 
(Multi-linear Maxwell molecule equations of collisional type and variable hard potentials for collisions 

with a background thermostat) 

It dissipates total energy for e=e(z) < 1 (by Jensen's inequality): 

and there is no classical H-Theorem if e = constant < 1 


