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Outline

1. Revisit models for “percolation” of information of common interests through a large

multi agent environment and reveal information to each other over time.
2. (according to Duffie, Giraux, Malamud and Manso, 2007, 2009, 2010 Market information percolation models)

 Model: Time evolution of the cross-sectional distribution of posterior beliefs of the
various agents := pu( 0) (i.e. acquired knowledge).
*  Phase space: Baysian rules: fype of informative signals := 0
» Interactions: pre to posterior fypes of m-multi agents signals:= aggregation of types
* Results: Explicit solutions, convergence and convergence rates by means of Wild
sums (formula) representations.

2. Connections to the Boltzmann equation: dynamics of Kac Master equation for m-

particle interactions and Maxwell type of interactions. (Bobylev, Cercignani, LM.G. 2006,
CMP 2010, F. Bolley, .LM.G and with R. Srinivasan, in progress)

. Phase space interactions beyond aggregation: examples-Wild sums representations
. existence, stability and self similarity as attracting states —stable laws —martingales
limit theorems.

3. Generalizations to FMIE (Finite Markov Information Exchange processes) type of
interactions



PartI: Revisit Information aggregation model
(Duffie and Manso 07, Duffie, Giroux, Manso, Giroux 09, Duffie = Malamud and Manso, 2010)

» A random variable X measuring potential concern to all agents has 2 possible outcomes,
H (“high”) with probability v, andL (“low”) 1-—wv.

» Each agent is initially endowed with a sequence of signals {s,, .. ., s,} that may be
informative about X.

» The signals {s,,...,s,} observed by a particular agent are, conditional on X,
independent with outcomes 0 and 1 (Bernoulli trials).

« w.l.g assume P(s;=1/H) > P(s; = 1|L).

Definition: A signal i’ is informative if

P(s; = 1|H) > P(s; = 1|L).




Basic probability by Bayes’ rule: the logarithm of the likelihood ratio between states H

and L conditional on signals {s,,....s,}
P(X =H|s...... Sp) v
log —— ' = log + 0.
S PX =1L s.....5) Cl1-v
with Zl 10 H) 6eR
(s \L €

“type” 6’ af the set of signals

1. The higher the type 8 of the set of signals, the higher 1s the likelithood ratio between states H
and L and the higher the posterior probability that X 1s high. (well defined phase space condition)

2. Any particular agent 1s matched to other agents at each of a sequence of Poisson arrival times
with a mean arrival rate A ,(intensity interaction frequency) which is assumed the same acros
agents. (this condition may be relaxed to time moments dependency )

3. At each meetine time. m—1 other acents are randomly selected from the population of agents




Interaction law :

Aggregation model

The meeting group size m is a parameter of the information model that varies

 Binary ( m=2 ): for almost every pair of agents, the matching times and counterparties
of one agent are independent of those of the other:

whenever an agent of type 6 meets an agent with type ¢ and they communicate to
each other thewr posterior distributions of X, they both attain the posterior type 6+¢

* m-ary : whenever m agents of respective types 6., ..., @ share their beliefs, they

attain the common posterior type 6, + - + 0,
Equivalently, from the phase space definition 0, = log ]?I P(s.,|H)
P(s;; | L)
nl qm ™
it follows that O+ +6, = log | ILP(s;; H) ~ II P(s,,| H)

P(s,|L) P(SEQ L) )




Statistical equation: (Duffie, Manso 07, Duffie, Giraux, Manso 2009, Duffie Malamud Manso 10)

1L, (0) denotes the cross-sectional distribution of posterior types in the population at t:

 The initial distribution p,, of types induced by an initial allocation of signals to agents.
» Assume that there is a positive mass of agents that has at least one informative signal.

* The first moment m,(py(0) ) >0if X=H, and m(,(0))<0 if X=L.

» Assume that the initial law p, has a moment generating function ¢(k) , finite on a
neighborhood of k =0, defined by

p(k) = [e*d(ny(8))

* We also define f{{(t, -) be the probability distribution of p(.)
that is

w(0) = J Ot f(t,0)dt  temporal cumulative of f



Then the model stipulates that the rate density f(t,0) of agents of type 0O:
* is reduced atthe rate A f(t,8) at which agents of type 0 meet other agents and change type,

and
* is increased at the aggregate rate ?J f(t,0—v)f(t,y) dy at which an agent of some

type v meets an agent of type 06—y, and therefore becomes an agent of type 6.

Or equivalently, one obtains an associated to Forward Kolmogorov equation
for birth-death rates of aggregation type

Aggregatiun model (Smolukowski type eq.)
0f(t,O)=2(|f(t,O-y) fty)dy - f(t8))

with | f(t,0)d6 =1




aggregation model

foro, =1 ; f(t,0)=A] J f(t, @—-y)f(t,y)dy - f£(t.0) |, with ff (t, 0) df =1

Equivalently, the evolution equation in integral form is (time cumulative)

p(t, 0= py(0) - élL,t p-p)s0) as | O | H(L 0= po(0) - lL, (1 *™ - p) (s.0) ds

Binary agent model “m-ary” Multi-agent

Existence by ‘Wild sums’ methods: explicit solution for the cross-sectional type distribution,
in the form of a Wild summation:

1- The unique solution of the binary model 1s given by the well known sum

put, o= ., eM(A—er)yl y where p *2 is the n-fold convolution of a
measure p

In this summation, the term e (1—e™*)*! associated with the n-th convolution of p, represents

the fraction of agents that has been mnvolved in (n — 1) direct or indirect meetings up to time t.




Moreover, writing the evolution of the binary equation in terms of the Fourier transform
o( - ,t)of u, yields the local ODE  ¢@(s,t)= A¢?°(s,t) - A@(s,t)

with ¢ s ,0) positive, which has the explicit solution o(s.1) = (s,0)
e eM(1— p(s,0)) + (s.0)

that can be expanded as | @(s,0) =X ., e M (1 — e ™M) @'(s,0)

which is identical to the Fourier transform of the right-hand side of Wild representation of the
binary aggregation eq.

In the case of the m-ary interaction (argument follows Duffie, Giraux,Manso '09)
2 - The unique solution of the m-aggregation model is given by

o= i ymotysage (1 — e A DT
n=1

where a, = 1 and, forn> 1 | m—1

A(m—1)(n—1)+1 = F 1 — Z H A[(m—1)(ix—1)+1]

1(m 1)<n
T‘zk n+m—



Cross-sectional distribution 7, of posterior probabilities that X = H is defined by the
s as follows:

cumulative function of p(s) with respect t

z .
m(0,0) = e (’)C log ’ — log - )

(1-b) “(1-v)

—>the beliefs distribution 1, has an outcome that differs depending on whether X =H or X = L.

which converges to a common posterior distribution 7 if, almost surely,
n, converges in distribution to n,,, with unique exponential convergence rate A >0,
such that for any b in (0, 1), there are constants x, and k, such that

ek, <|n(0,b) -1 (0,b) < e x,.

The proof (Duffie, Giraux and Manso’09) uses estimates of the Wild summation formula
to estimate the cumulating function by the one of the initial state: ~ p(— o, a) > e M p(— o, a)
to obtain uniform time estimates depending on the cumulative function of the initial state

,u.ﬂ(—x.,a)e_’” < ,u.t(—x,a.) < (;34_9_“‘-"

-

Y

1 —~

| )_—}\t
e ",

where 3 and 7y, depend on py(—oo,a)and v, 3
with v =P(X=H)

Analogous results are obtained for the solution of the m-ary interaction model.

» However the authors did not analyzed any possible existence of dynamically scaled states such
as self-similarity that can produce additional stable laws and corresponding
asymptotic limits = gives raise to stable laws with Pareto or more general power law tails



Part 11:

Connection between the kinetic Boltzmann
equations and Kac probabilistic
interpretation of statistical mechanics



Part II: Connection between the kinetic Boltzmann equations and Kac probabilistic
interpretation of statistical mechanics (Bobylev, Cercignani and IMG, arXiv.org’06, 09, CMP’09)

L.1 Generalized interacting model of “Maxwell type”:

Take a spatially homogeneous d-dimensional ( d > 2) “rarefied gas of particles” with unit mass.
Let f(v, t), where v ER? and ¢t €R*, be a one-point pdf with the usual normalization

/ fu,t)ydv =1
. Rd
Assumptions:

I — interaction (collision) frequency is independent of the phase-space variable (Maxwell-type)

IT - the total “scattering cross section” (interaction frequency w.r.t. directions) is finite.

ITI- Choose such units of time such that the corresponding classical Boltzmann eq. reads as
a birth-death rate equation for pdfs

fi=Q+(f)—Ff with f]R Q) dv =1

Q*(f) is the gain term of the collision integral which Q" transforms f into another
probability density



The same stochastic model admits other possible generalizations.
For example we can also include multiple interactions and interactions with a background (thermostat).
This type of model will formally correspond to a version of the kinetic equation for some Q. (f).

Q. (f) = 1@V (f) + QP (1) + -+ an QP ()

where Q0. |, j=1,...,M, are j-linear positive operators describing interactions of j> 1 particles,
and o; > 0 are relative probabilities of such interactions, where
M
each f [®; (J)(f)](t,) dv =1 ; and that Z o =1
R —
1=1

Assumption: Temporal evolution of the system is invariant under scaling transformations
in phase space: if S, is the evolution operator for the given N-particle system such that

S, 0),...,v (0=, (1),...,vy (1)}, t=0,
then S{vi(0)y ..., v (0)}=v(8), ..., vy (0)} for any constant % >0

which leads to the property

00(4,) =4, 09 (), A fv)=2fGv), 1>0, G=1,2,.,M)

Note that the transformation A, is consistent with the normalization of f with respect to v.

Note: this property on Q(j)+ is needed to make the consistent with the classical BTE for Maxwell-type interactions



Assumption II: Zemporal evolution of the system is invariant under scaling transformations of
phase space: Makes the use of the Fourier Transform a natural tool

flk,t)=F(f) = (v, t)e"*? dy | ke RY.
R4
M
so the evolution eq. is transformed into an ft — Q+(f) _ f _ Q+(}t) - Z (leEg)(f') _
evolution eq. for characteristic functions e

which is also invariant under scaling transformations k —» 1k, k € R¢

If solutions are isotropic  f(k.t) = u(|k|?,t)  then

. 00 00 J
QE) (u) = f daq . .. f {fﬂ.ij (a1..... a; ) H u(a;x) pointwise in x

where Qy(a,, . . . , @) can be a mass distribution function of j-non-negative variables a; (interaction laws
and kernels).

or equivalently, QEJ{'H} = EBlu(ax), ..., u(ax)]  w.rt. the density Q;(a;,..a;)

All these considerations remain valid for d = 1, the only two differences are:
The evolving Boltzmann Eq should be considered as the one-dimensional Kac master equation
and one uses the Laplace transform

w(x, t) = / f(v.t)e " dv . x>0
JO



Connection of the Kac Master approach to the Boltzmann equation

The structure of this eq. follows from the well-known probabilistic interpretation by M. Kac:

Consider stochastic dynamics of N particles with phase coordinates (velocities)
Viecvi@®} ,i=1.N, witheachv(t)€Q’ and Q=R or R,

A simplified Kac rules of binary dynamics is:  on each time-step t =2/N, choose
randomly a pair of integers 1 <i <1< N and perform a transformation (v, v) —»';, v')
which corresponds to an interaction of two particles with

‘pre-collisional’ velocities v; and v,.

Then introduce N-particle distribution function F(V), #) and consider a weak form of the
Kac Master equation (we have assumed that V’ y =V’y; (Vy; , Uy;*6) for pairs

J=i,l with 6 in a compact set) with Uy=V,, -Vy,
{
% F(VN,t)®(Vn)dVN = —f F(Vn.t)(®(VY) — ®(VN) B(Uy; 0)dVydo
at QAN QdNy gd-1
QNJ; UN/| Uy




Introducing a one-particle distribution function (by setting v, = v) and the hierarchy reduction

(v,t) / / F(Vy,t) dvo,...dvyn , / f(v,t)dv =

The assumed rules lead (formally, under additional assumptions) to molecular chaos; that is
“Stosszahlansatz’

OV , N  collision number hypothesis
(Vn.1) = H flok:t) AT e (Duffie&Yin’07, Durret & Reminik’10
: for multi-agent modeling)

The corresponding “weak formulation” for f(v,t) for any test function ¢(v) where the
the RHS has a bilinear structure ‘birth/death’ process from evaluating fwt) f(v, t) >

f QUf, f)pdv = 2f QdISd—l e (90,4‘90; — O — V) B(u -o) do dvs dv

M. Kac showed that yields the classical Boltzmann equation in weak form | u= (U-v.)/| V-V

where B(u - ) is the interaction kernel: density of transition of state v 2 v’.
The angular integration corresponds to a ‘mixing’ of compactly supported positive measures

In Strong Form: Boltzmann equation for conservative or dissipative interactions

fetv-Vof = Ca®2GGlp) [, [, I Ffs = f £.] Ko dy do,

_|_




A general form statistical transport_: The space-homogenous BTE with external heating sources
Important examples from mathematical physics and social sciences:

U 4 o Vaf = Qpya(f)wv,t) + G (w0, 8)

where the interacting integral is written in weak form as

g ) doduv.duv

T

| i © 54 d()(t)pdv =c,f f I+ g(:}(v’) ¢(v)) B a(|u

v voecR2d: = cgd—

The terc G(F)(w.1) v =4 %(|u|cr —u), vl = vy — %(|u|n‘ — ) interaction law
models external heating sources:
U = U — vUx (relative velocity)

shackground thermostat (linear collisions),
sthermal bath (diffusion)
eshear flow (friction), .o(8)) (collisional kernel)
sdynamically scaled long time limits (self-similar
solutions). cosf = Elffi cosine of scattering angle,

3= %1, ¢ = restitution coefficient

(3 = e = 1 elastic interaction , /7 < 1 dissipative interaction

J__-_; — t._}(?“'i-‘*)

m post-precollision Jacobian

Inelastic Collision

u’=(1-p) u + p |u|] 6, with 6 the direction of elastic post-collisional relative velocity



Energy dissipation implies the appearance of Non-Equilibrium Stationary Statistical States

=2a

o)) = 9(p,0) | [ ., [ Fle @) — o] [l b, (EF)dodv.de | (£)+(G(1), )(#)

L 1
NESS satisfies : fjid foo(v) M~ du
3 ¥ | G(f) | M = NESS tail asymptotics
=1 O<~<1(VHP) 0 C exp(—r|v|?)
l<p<1| 0<~y<1(VHP) ALf C exp(—r|v|=)
$<p<1 vy =1 (HS) Aof +7V - (vf) C exp(—r|v]?)
% < G <1 ~= 1 (HS) 1?2% at least C' exp(—r |v|1)
$<A<1|0<~y<1(VHP) | Q(fiMuar) —p v-Vf C((1 — a) exp(—r7|v|")+
a=0 or 1 +aC exp(—r |v|?)
~ = 0 (IMDM) 0, Q(f, Mor) — pv-VF| (1 —a)C(e1 + ea|v]®) "+
a=0 or 1 +aC exp(—r lv|?)

forC=C, . .,,and r=rwr__.,.. Also C,e1,cz and k in the last case depend on 5,8,0,,T,d

d) d) *

Rigourously worked in Bobylev, Carrillo &KIMG, JSP’00, Bobylev, Cercignani &Toscani JSP’02,03
IMG, Panferov&Villani, CMP 04, Bobylev, Cercignani &IMG 06 and CMP’10, Bassetti and Ladelli AP’l1]
And with Toscani,JSP’11, among many more references in the last decade.



The approach extends to more general Information Percolation models where the signal type
do not necessarily aggregate but “distributes ” itself between the posterior types as in the
framework of Finite Markov Information-Exchange (FMIE) processes popularized recently
by D. Aldous (Berkeley, lecture notes, 2011):

Let ®,= GO, ;0,=(0;...50,); O =(0...50°,); where G=g; isasquare m X m matrix
of randomly distributed numbers independent
of the numeration of identical agent types

« Binary ( m=2 ): for almost every pair of agents, the matching times and counterparties
of one agent are independent of those of the other:

whenever an agent of type 0 meets an agent with type ¢ and they communicate to
each other their posterior distributions of X,

0’ and ¢’ attain the posterior types 0’°=g,,0 +g,¢ and ¢ =g, 0+gy,d

* m-ary : whenever m agents of respective types 0 ,, ..., 0 , share their beliefs, they
attain the corresponding posterior type 0°=¢g,, 0 ,+---+g. 0
*Equivalently , from the phase space definition it follows that

ni nl qm
For 6, = log P(s;;| H) |, 0 =lo P(s,; [H) % P(s, i | H)) %im
= Jll_[ ] i g P ( 1.1]| ) 1 e 911 ( m.ik )
P(Sj.i L ) P(Sllj|L) P(Sm.ik ‘ L )

plus constrains from conserved properties (like the mean) that gives constitutive laws to the g;



Extention to m-ary interactions model the Kac Master Equation formulation

Let the type signals V, and its posterior V’, .

with V', =GV, ;V, =W, .;v,), V, =0",.. ;v,), where

G ={g,=1,forall i, k=1,...,

G is a square m X m matrix with entries

Then the m-particle distribution function F(V, t) and the weak form of the

{
forN=m = [ F(Vn.)®(Vy)dVy
(H' RN

== [ Py t)(@(V)

N

A1 RY

— B(Vy

Kac Master eq.

Introducing a one-particle distribution function (by setting v, = v) and the hierarchy reduction

l f / / t (]lg (ZZ’N .
0

The assumed rules lead (formally, under additional assumptions)

to molecular chaos, thatis

Then, an extension of the BTE for FMIE f(V,,,

multi-agent interacting forms

/% Fludida =1
0

k

N
F(Vy.t) = H flog.t)

1

N — oc

t) holds for either binary or




Interacting models of Maxwell type (as originally studied for binary
elastic or inelastic interactions)

= QT (f, F)(t,v) — f(v) /fdv =1= /Q"‘(ﬂf)dt'

50 Q+(_f. f)(t,v) isalso aprobability distribution function in v.

Then: work in the space of “characteristic functions” associated to Probabilities: “positive probability
measures in v-space are continuous bounded functions in Fourier transformed k-space”

The Fourier transformed problem: For p(t, k) = F,_i[f(t.v)], ¢(t,0) = [ fodv=1, vt >0

e —

QF(f.9) =T, (f,9)|~Efp

t))] _-» Fourier transformed operator

\
\
\

<

~ = ;I/ {p(t, k=) p(t, k+) — @(t,0)p(t, A)}b( Ikl Tydo =T (p.9)— @(t,k)

characterizedby k- = [ (A-—:|2L.-|a) [)’|k|2(% —0), ky =k —k_ 8= 12i

One may think of this model as the generalization original Kac (°59) probabilistic interpretation of rules of dynamics on
each time step At=2/N of N particles associated to system of vectors randomly interchanging velocities pairwise while
preserving momentum and local energy, independently of their relative velocities.

Bobylev, '75-80, for the elastic, energy conservative case.

Drawing from Kac's models and Mc Kean work in the 605 : Connections to Probability - Carlen, Carvalho, Gabetta,
Toscani, 80-90%s , Bassetti, Ladelli Regazzini "08 — ‘11 - For inelastic interactions: Bobylev,Carrillo, IM.G. JSP 00,
Bobylev, Cercignani, Toscani, 03, Bobylev, Cercignani, L M.G 06 and 09, for general non-conservative problem. For wealth
distribution models: A.Pulvirenti, Toscani, Bissi, Toscani, Spiga, Pareschi "06-11



From Fourier transform: n™moments of f(., v) are n™ derivatives of ¢(.,k)|,,
o(t,0) =1, Vip(t,0) =0 , Oi(t) = —LALp(t,0)

For isotropic (x = |k|/2 ) or
self similar solutions by x = |k|?/2 e", u is the energy dissipation rate, that is: ©, =- u 0, and

2 k|2 p p . 1 k-
k|2 = iﬁ,;% , ky|? = 7' [1—s3(2 - 3)] with s =35(1 — ITT

the Fourier transformed collisional gain operator is written

1 1

Bylp(@.(s0), pla.(sy] = c / p(FPs)p((1 = B(2 = B)s)2) G(s) ds = e, / p(a(s) 2)p(ba(s) 1) G(s) ds

0 0

Ky = %f; G(s)ds and 0 < ajz(s).bs(s) <1

accounts for the integrability of the function b(1-2s)(s-s*)N-37?

For isotropic solutions the equation becomes (after rescaling in time the dimensional constant)
¢+ 9 =Eglpa(xy) p@a.(x)l =L(p, ¢) ; ot,0)=1, 9O,k)=F(f)k), O@®)=-¢’0)

In this case, using the linearization of I (¢, ¢ ) about the stationary state p=1, we can inferred the
energy rate of change by looking at vy 51 defined by

< 1 kinetic energy is dissipated (inelastic)
Vpr o= _[ 10 (ag(s) + by(s)) G(s) ds = 1 *==> [kinetic energy is conserved (elastic)
> 1 kinetic energy is generated (aggregation)



Classical Existence approach : Wild's sum in the Fourier representation.

The existence theorems for the classical elastic case ( f=e = 1) of Maxwell type of interactions were
proved by Morgenstern, ,Wild 1950s, Bobylev 70s and for inelastic ( <1) by Bobylev,Carrillo, I M.G.JSP 00
using the Fourier transform

» rescale time t — 1 T=1—exp(—t) . o(t, k) = exp(—1)P(7, k),
and solve the initial value problem
OP

ot

— I (b, &) =Elp@ 1), p(a.ol , (k,0) = wo(k)

by a power series expansion in time where the phase-space dependence is in the coefficients

o0
O(r, k) = Z D, (k)" Wild's sum in the Fourier representation for
n—0 non conservative problem : analog to binary
Oy = o trees dynamics representation by McKean 60s)
1 n
D, = I (0, @, ), n>0
= n-+1 ,;) (®ks i) -

Note that if the initial coefficient |p <I, then |® |<I for any n=0.
——>  the series converges uniformly for t ¢ [0; I).



Classical Examples from rarefied molecular states . . _
Existence, asymptotic behavior - self-similar solutions and power like tails:
From a unified point of energy dissipative Maxwell type models: A, energy
dissipation rate (Bobylev, LM.G.JSP’06, Bobylev,Cercignani,.G. arXiv.org’06- CMP’09)
- 1 1
dp ' o o | ' | |
= = [ dsG(s) {ela(s)2) pl6()7] — (@) 9(0)} +0 [ ds H(s) {ple(s)a] = plx)} =
' 0 0

— fa,b,\ ("F'* ‘P) + GIC.].,--\]_ ,
polz) =1—2F p <1 initial state ,

(G(s), H (s) non-negative, integrable on [0, 1]; 0 < a(s),b(s),c(s) <1, s € [0.1].

B Classical elastic Maxwell gas with infinite initial energy:

a(s) =s, b(s)=1—s,and |¢t = Iqp0(p. ¢)

® Gas of inelastic Maxwell particles with finite or infinite initial energy, with constant
restitution coefficient 7 = (1 + «)/2:

G(S) = ."328, b(S) =1 — '5(2 — :3)3 and Pt = Ichbr\l('p‘ »‘.P)

P Classical elastic Maxwell gas with finite or infinite energy in the presence of an
equilibrium background gas of particles with mass M, density n1 and temperature 71,
a(s)=s; b(s)=1—35; c(s)=1—4M /(1 4+ M)?s < 1;

and | ¢t = I, p0l(e, @)+ Ol 1., (9, eTll’) Energy non-conservative




Study of j-ary interactions for Maxwell type interacting models

Existence, uniqueness, stability (Bobylev, Cercignani, LM.G.;.arXig.org ‘06 — CMP “10)
Self-similar asvmptotics and Power-like Tails

For o(k,t) = F,_.[f(v, )], let| T(¢) = Fo_r[QT] |be the Fourier Transform of the

contribution from the gain operator Q+ ( f, f) associated to a generalized BTE equation of
Maxwell type.

In the case of isotropic solutions f(|v|?,t) — &(|k|%, ) = ulx, t).

[ flo, t)|v]2de = Apd(k,t) |_o= O(t) = ux(0,t) is the kinetic energy | (or variance)

The initial value problem:
For initial states u(x,0) = uelx) =14+ O(P) e U, ||luo|| =1, with 0<p <1 infinity energy,

U7 the unit sphere in {C—‘B{Eli‘d}, | - ||~ ), take or p=>1 finite energy
M N M
us +u=Ilu) = Za}-I‘m{uJ Zn-j =1, a; =20,
J=1 i=1
_ o0 a0 J
) () = . [Ai(ar, ..., a4) H wlapr)day ... .da;, j=1,....M.
. 0 k=1
Ajla) = Ajlay,...,a;) =0, / dag .. / da; Alay,...,a;) =1,
Jo 0

- .

where I'(0) =0 andI'(1) = 1 are trivial solutions

Theorem: The '-operator satisfies three fundamental properties



Fundamental properties of the generalized model for m-ary interactions:

Theorem: The I'-operator satisfies

|- floe)

® |t has L-Lipschitz condition: there exists a linear bounded operator L from
(Cr(RD), || - |~ ) into itself, such that, for = = A=

[T(w1) — D{ug)|(x, t) < L(Juy —ua|(x, 1)), for||uil|c < 1;7=1,2.

® Preserves the unit sphere U7 in (C-‘Brjﬂi“f].

F=1

®» |nvariance under dilations:
ETDT{H] —T(e™Pu). D= Lﬁi— : ETD-EL{;L'] = u(ze’), 7eR'

B [.-Lipschitz condition on the operator I is a point-wise condition = classical Lipschitz

condition on 5.
® T1(u)is L-Lipschitz, where L is the linearization of I'(u)(x, t) = F,_ p[Q(|v], t)]
about the state u = 1

B relation to the contractive property of the Wasserstein distance between two
probabilities: for initial data with finite energy,ie. p=>1,:
& For Maxwell type of interactions that conserve momentum the 274 Wasserstein distance
from Wal f(uv, t), '55{1._. £ree) V= [ fiv.t)] t'|g is the kinetic energy.
& The eigenvalue of L for u = x is the energy dissipation rate 1(1) s0®@’' = —u(1)60 =
for bounded initial energy, long time asymptotics and decay rates in Fourier space yield the
same qualitatively properties in W2 metrics, since this metric is equivalent to the usual

wealk convergence of measures |}|lIS conmnvergence of second moments.

Relates to the work of Toscani, Gabetta, Wennberg, Villani, Carlen, Carvallo, .....




Existence-uniqueness and Stability (for frequency =1 2> rescale time by p =t)
Uses the first two properties of the operator I')

Take the integral form of the equation u() — uge— + ]: D ()] dr
0 '

and apply the standard Picard iteration scheme

(41} rn » i Vear (1) s 0) Generalized Wild Sum
u T t) = uge " + e v T u ()] dT u' = uy .
: : f Iti-linear operators)
0 (for mu p

Then, on any finite interval 0 <7<t , set ||[ull[= supyqllull, , and initial w, in the unit ball U

i
| ut DO < uglle® +(1-e*) TGOl < Zy e* (1= e Hr1C ug| |, with C=||L|
|

so, for T such that (1-e*")C <1, then the estimate hold with uniform control in [0,T],

In addition,

I-ju® (t)|| <1foralln=1,2,...,andt€ [0, T], since |[uy|| < 1 and I'(u) preserves the unit ball

2- u(t)=lim ___ u®™(),0<t<T, T>0



Pointwise stability in the limit: wusing the L-Lipschitz condition any two solutions u(t) and
w(t) of the problem with initial data in the unit ball U satisfy the pointwise in X inequalities

Tt

u(t) —w(t)| (x) < exp{t(L —1)}(juo —wo|) x) < e E mLﬂ( up — wo|) (x)
n=0

p-Kantorovich/Wasserstein distance stability: When the initial data differ in the same
transformed moments of order p, the estimate 1s

u(t) — “'L':ir}l (x) < e M Z Lﬂ (xl’) sup( |u0— 0 ) < Ce—lt( 1(p) -1) 0O (Xp)

n— [] (Xp )

!

sup Ju(t) —w(t)(x) <= sup ( [ug—wy| ) e AP -D
> (o) (o)

or equivalently, this is a stability estimate in Kantorovich/Wasserstein distance of order p >0
between two the two probability measures f=%F 'u and g=F'w

W, (f, g) :=inf y, v E(X' = Y'|P) Vmax(e.1))

where the infimun is taken over all pairs (X', Y') of real random variables whose marginal

probability distributions are fand g respectively. (also related to Zolotarev metrics) (Bassetti &Ladelli,
AP’10)

W (f,g) ) <ett®-D W (f,g)(0)



Wild series and probabilistic representation of the solutions using the N-ary trees

Extension of the McKean binary tree representation of the Wild sums for each I'™(yp) :
(Bassetti and Ladelli, 2010 )

Write the Wild series expansion of o( * . t) solution to

p(&.1)= (5 @, (E. 1), ... ¢ &.1)) - @(&,t) multi-linear structure

with ¢( € ,0) positive, which has the explicit solution

P, 0= Do LK) Q&) | and |tk =t (1-e )"

((t, + ) 1is the prob. density of a Negative-Binomial r.v. of parameters ( 1/(N — 1), e"®7bt)

and WE) = Zpd Q (€. 0, ... a(€.D)  defined recursively

N i —1
with p (;‘) . ( kE—1 ) ngl H,;:{] m Fori =1; .01y € j; an indexation
' Prl) == | . - k—1 ' ~ - N-ary tree
11, .. N | for the k-level of the N-arvy tree
This is enough to show that the posterior beliefs distributions =z, converges in distribution to
m_ , with unique exponential convergence rate A >0, (in the rescaled time by A1)
(K, depending on the initial state, mean &potential concernn)

et x, <|7(0,b)—7 (0,b)| < e K.



Finite Markov Information-Exchange (FMIE) processes (Aldous, lecture notes, 2011)

Examples: binary interactions: v.=g, v+g,,w

Conserved mean models

Wealth distribution f(t,v), 1 ‘saving propensity’

gn=1-g;;=(1-€)A -|
g7~ 1-g,,= (1-€)(1-2)

v.=A v+ e(1-A )(vtw),
w=Awt(1-€)(1-A)(v+w).

We =gy ¥ F oy W mean conservation: g, Vg, ~g,,+g,,=1
* 582 22

not conserved mean models

Aggregation models

u(p)=1/2p) (Z;(g®)—1) -1 )
(Lux &Marchesi, Toscani &Pareschi, 2ij

Chakraborti & Chakrabarti)

L L

u(p)=1/2p) Z(1?+1*-1=1/(2p)

Opinion dynamics interaction (Ben Naim et al, 2003 — 20006)
(or classical elastic/inelastic Boltzmann dvnamics)

%=V ith p(p)=1/2p) [ S[(1/2)7+(1/2)] -1]

also, with affine trans, by adding a random variable as added diffusion (Ernst&Van Noije08, Bobylev
&Cercignani JSP’02, IMG, Panferov and Villani CMP 04, Bassetti, Ladelli & Toscani,JSP’11)



4- Consensus seeking model (Aldous, Ben Naim et al):

a1 a2 \ _ (1 0
( a9 (99 ) — ( A1 — )\ ) with A € [U 1]

5- Randomized public goods ‘games’: (Bobylev, Cercignani and .M.G, Bobylev and Windfall)

a; = [au (1 - **"*";,“*") +{1—5U{]%] .
with 8;; the Kronecker delta, k € [0,00) I:au{l{}m_. and A\ € [0,1]

6- ordered consensus seeking (non-linear interaction law) (Aldous, Chatterjie & Durret)
#; = a1y min {#;. 0;} + aja max {#;, 85}

: . aii = RB.
rEI';. = a9 min {#;, 0;} + asomax {&;, 0} 7 v

7- Subjective assessment of an average (multidimensional states):

1 21\’ (1) (2 i (9}
(07.087) = (67,208 + (1 =) [’{9} '+ (1K) D ) . AER
(6" a'ﬁ-‘)j— (09002 + (1 ) [w0 + (1 ) 6]) =0, K,Ack
i Y _}"j—l_{_}[ﬁf—l_{_ﬁ}i] |

f?; = L&; + R6;, ij = L.f; + R.0;

or, equivalently {0 0 0
L=L.= ( 0 :«)' R=FR.= ( (1=M& (1=X)(1—&) )




Self-similar asymptotics - spectral properties

Spectral Properties of L :
o0 M
Lu = fD K(a)u(ax)da ; K(a) =), _, no,K,(a),

_ _ M
where Kn(a) = [~ dag... [~ dan An(a1,az,. ... an)andy . _, an = 1, and satisfies:

® .7 s the ei-function with ei-value yp) of the linear operator L associated to T’

LzP =qp) xP, NP) ) = / K(a)aFda

]

® y1) — 1 isthe energy dissipation rate.

P wecall u(p) = m’)p_l

the spectral function associatedto ['.

2 1({0+4) = +oc and 0 < pp, such that p(po) = ming~o p(p) 15 the unique minima .

Aggregation Spectrum|| Boltzmann Spectrum | |Wealth distribution
Spectrum




Existence of Self-Similar Solutions and long time dynamics

For » = ¥l and — pe—tut with initial conditions -
2 ! wo(z) = 14+ O(2), u.(0) =1 and [Ju.|| < 1

ifO<p<1<poand pu., = pu(p) (= one can take u, = e~* to fulfill the conditions),

then, there exists a non-trivial selr-similar solution u(t,z) = V(n) to

W' 4+ W =r(w), with initial state WV p—r = uo(x) such that

V() =u(n) +0@PHF ) =1 -9 4+ O(pP*T) forn >0, and

time decay rate to self-similarity

| u(ze i t) — W(z) | < CetPHU—1P+) O(2P+e) forO<p<p+ << po,

This estimate is equivalent to the p-Kantorovich/Wasserstein distance estimate:

PO W (f(ve @) , F (v)) < W, (f, F,(v)) e—t(p+e) (u.—p(p+s=))

Remarks:

1- EXxistence proof can be rewritten as existence of martingales whose weak limit is a scale
mixture of p—stable laws (Bassetti & Ladelli, AP’11),

2- The transformation x = 3x? , for p > 0 transforms the study of the initial value problem to
u,(x)=1+x and ||y, || <1 so it is enough to study the case p=1



Further, by making a different rescaling choice one obtains convergence to trivial states
(with decay rates in corresponding p-Kantorovich distances)

for s > u(p) then et pat f(|11|€_#*f?t) — 0y ast — oo

v|eTH 1) — 0 ast — oo

for 11(pp) < p(p+ 6) < ps < p(p) then edHr f(

However, for choices of large p there is asymptotic convergence to a point mass
but no selfsimilar rates

For pg < p then p € (pp,oc) so that p/(p) > 0 then

lim

et f([vle~ret 1) = &g

f— oo




Study of the spectral function u(p) associated to the linearized collision operator

Theorem: (Bobylev, Cercignani, 1M G,06) The self-similar asymptotic function FMP}UU\)
does NOT have finite moments of all orders if the energy dissipates, i.e. (1) < 0.

( For any initial state p(x) = I —x? +x0*9, p <.
HP)

Decay rates in Fourier space: (p+&)[ u(p) - u(p +9 |
both for or finite (p=I) or infinite (p<I ) initial energy.

For u(p) =u(s), s:>py>1 =)  Power tails
ﬂ limit to a p-stable law

Self similar asymptotics for: In the p-Kantorovich distance

Forp,>1 and 0<p<(p +¢) <p,

p
H(s:) =u(P) -
H(Po) —
|:> If p = 1 (finite initial energy) then, m, < oc only for 0 < ¢ < p.., where p, > 1is the
unique maximal root of the equation u(p+) = u(1).
Finite (p=1) or infinite (p<l) initial energy |:> If0 <p<1then, mg= [ps F i ((v])|v]Tdv <oc: 0<g<p

Forp,<7 and p=1 == No self-similar asymptotics with finite energy



In general we can see that

1. For more general systems multiplicatively interactive stochastic processes

the lack of entropy functional does not impairs the understanding and realization of global
existence by extension of the Wild summation method (in the sense of positive Borel
measures), long time behavior from spectral analysis and self-similar asymptotics.

2. “power tail formation for high energy tails” of self similar states is due to lack of total
energy conservation, independent of the process being micro-reversible (elastic) or micro-
irreversible (inelastic).

It is also possible to see Self-similar solutions may be singular at zero.

3. The long time asymptotic dynamics and decay rates are fully described by the continuum
spectrum associated to the linearization about singular measures.

4. Recent probabilistic interpretation of our workw as given by F. Bassetti and L. Ladelli:
connects to evolution of expecations, m-ary convolution trees (Mc Kean approach of Wild sums),
filtrations and stable laws with power law decay rates, (Annals in Probability’l1)

5. Study of the convergence properties of the corresponding cumulative function (Kolmogorov
distances) is not cover by the analysis in BCG, CMP’10 and it is work in progress with R.
Srinivasan .

6. Study of self-similarity for systems in work under progress with F. Bolley and Srinivasan (in

progress)



Further applications to agent interactions

* information percolation models

(Duffie, Giraux, Malamud and Manso, 08-09)
- Percolation information (Duffie, Giraux & Manso, 08) (already discussed)
- Information percolation in segmented markets (Duffie, Malamud &Manso, 2010)
systems of Maxwell type interaction
- Information percolation with equilibrium search dynamics (Duffie,Malamud
&Manso’09) beyond Maxwell type = moment summability methods techniques?

 M-game multi agent model (Bobylev Cercignani, Gamba, CMP’09)



Information aggregation model with equilibrium search dynamics (Duffie, Malamud &
Manso 08)

For any search-effort policy function C(n), the cross-sectional distribution f, of precisions and
posterior means of the i-agents is almost surely given by

Jn;x; wy=p(nt) p,(x|Y (w))
where u(n) is the fraction of agents with information precision n at time t, which

is the unique solution of the differential equation below (of generalized Maxwell type)
and p,( x| Y(w) ) is the Y-conditional Gaussian density of E(Y |X,; .... ;X), for any n signals

Xy, o X
This density has |conditional mean and conditional variance
np’Y 2 _ np*(1 — p?)
L+ p*(n—1) (T4 pEn—1))2

Q,(n) satisfies the dynamic equation

d \ c ., C c, Cy
— Ht = ”( T — [ J + }”-f_ * ;“'f: - i”‘t }”‘f_ [N) . with m(n) a given distribution independent of
dt any pair of agents

Where 1,¢ (n) = C(n) u(n,t) is the effort-weighted measure such that: C(n) is the search-effort policy function



Example from information search (percolation) model not of Maxwell type!!

For u(n) for the fraction of agents with precision n (related to the cross-sectional distribution g, of
information precision at time ¢ in a given set) its the evolution equation is given by

d
d

_f,ut =n(m — pte) + ,uf * gs.f — ;f.f,uf(N).

Where 1, (n) = C(n) u(n,t) is the effort-weighted measure such that: C(n) is the search-effort policy function

Linear term: represents the replacement of agents with newly entering agents.

Gain Operator: The convolution of the two measures x,¢ . 1,© represents the gross rate at which
new agents of a given precision are created through matching and information sharing.

(ptg 11§ Z e (k

C(n—FE)u(n—Fk)

Loss operator: The last term of captures the rate 11,¢ 1, “(IV) of replacement of agents with
prior precision n with those of some new posterior precision that is obtained through

matching and information sharing, where

n=1

— Z Ciﬂ-“t(”j

1s the cross-sectional average search effort

This is an aggregation model of “non-Maxwell” type where Pego-Menon does not apply, but
variable potential interactions (Bobylev, Panferov, Villani, IM.G or Laurencot, Mishler,Escobedo may be adjusted)



Conclusions- future directions

« Systems of different agent types, p-stable law dynamics (with Bolley
and Srinivasan)

« Local interaction frequency - moment methods?
Control of interaction frequency-- mean field games formulation.

* Networks -spatial dependence

* Friction —unisotropic states in multi dimensional agent/type space



Thank yow very much for your affentron/

Preprints: hitp.//rene.ma.utexas.edu/users/gamba/publications-web.htm
And references therein


http://rene.ma.utexas.edu/users/gamba/publications-web.htm
http://rene.ma.utexas.edu/users/gamba/publications-web.htm
http://rene.ma.utexas.edu/users/gamba/publications-web.htm
http://rene.ma.utexas.edu/users/gamba/publications-web.htm

Revision of the Boltzmann transport equation and
connections to continuum models



Self similar solutions — Moments equations of the limiting (p-stable law) state

where W, (r) satisfies:

1 2 \Up.(.r) Z e * y |im1-_,l \U#_(l‘) =0 )

and there exists a generalized non-negative function 7, (r), = > 0, S.t.

V. (x) = [ dr R.(r)e™ [Cdr Ru(r)= [ drR.(r)T=1.

In addition: for po > 1 and p= 1: the F(7) satisfies (using the Laplace transform)

—;x{lj%:’ R(T)+ R(T) = Z(R) = LM (w)] —= fractional moment equations

M M !

2 A 2 ™ A . * T
for E{R) — C!rnzﬁ{R:l 5 o = 1, .Zn{R] = \/\dﬂ-j_... .., dan ?-;{1&-::2 ﬂﬂn) I I Rj'(a._) .

=1 n—=1 1 o fe—1 ke

s ]

&
H Rp(r)=Ri+Rz+...+ Rn, Ry« Hy = /(drjﬂjirj}ﬁzﬂ-— —7').
k=1 ]




p-Stable laws (we show here p=1 case, it generalizes to p<1)

2 - Properties for momentis equations: —gx{lj%?ff{?}—l—f?(?) = L7 (w)]

Set

m > 0 for all s> 1.

s = fﬁmdr R(T)rs, s =0 with mo=m1 = 1.

Then multiply by 7% and integrate to obtain

s [p(1) — p(s)]ms

N o :
= zan &nfn(s] for s > 1|, with x(1)= energy dissipation rate

Now, one can show that

while

otherwise, if

p(l) —p(s) =

0| then

0 <mg < ST (5] M 1 Is finite|,

p(l) —p(s) <0

then TI'lg must be unbounded.

= the following T heorem holds:

[i] If the equation

1(s) = (1) [has the only solution s = 1, then |ms < oo for any s

(] If | u(s) = p(1)

has two solutions s = 1 and s = s, = 1, then |ms < oo for s < s,

and |m, = oo for s > s, |.

[i] s,

= 0.

< oo only if I,(s,) = 0 in the abowve equation, for all n = 2...N.




In addition, the corresponding Fourier Transform of the self-similar pdf admits an integral
representation by distributions M (|v|) with kernels R (7) , for p = uw .

They are given by:

(o)) = f dv \Uy(p)(kz)elk V= f dr R,(7) M H(v| T >

(2 )"

where This property generalizes infinite divisibility (as in aggregation models)

Mp(‘,v‘) — f dk e —|k|>+ik-v 7

(2 )"

i.e. with A(1)=2

(Bertoin,Menon, Pego,...)

Similarly, by means of Laplace transform inversion, forv>0and 0<p<1

o' ) . 1 a-+100 -
o N - ] N () — —xrP4xv 7.,
By(0) = [ Rr)r N ) ar i Ny(0) = 5 f o dz,

These representations explain the connection of self-similar solutions with stable distributions



Two very important properties of the self-similar solutions:

2. o
Fp(lo) = omya [ W, (A etk vy

1 - Long time asymptotics:
case 1.1: Convergence to non-trivial stationary states:

For 1 < pg with u(pp) = I"ﬂinp:}o,u(p) and p € (0,pg) then p/(p) <0

= Self-similar asymptotics = Dynamically stable law (CLT) to NESS:

For initial states f&,(%} =1—2P4O0(2PT), suchthat 0 < p < p+ = < po

Theorem: dynamically scaled stable laws (Kintchine type of CLT)

for e = p(p), then (p+e)(ps —p(p+e)) =((@+)(plp) —plp+)) >0

so that

edt (@)t f(|yle=r@ ¢) — E(Jv]) as t — oo




= The boundedness properties of the moments m, OT R, implies the

boundedness of moments tor the selr-similar solutions constructed by
Fourier or Laplace transtorm methods: with v >0, 0<p <1 :

Fu(v]) = f dr Ry(t)T wMy(Jo|r %), then
i

mas(Fp) = mas(Mp)mgm(FRp)  (for Fourier Transform),
and

-
by (v) zf dr Rp(m)T *Np(vr ), then
]

ms(Pp) = ms(Np)m,,(Rp) (for Laplace Transform) .

= the following Theorem:

1- If 0 < p < 1, then mas(Fp) and ms(d,) are finite if and only if 0 < s < p.

2-

For p =1 the result holds for ms = m2:(F1) and for m, = ms(P1).

= | F(|v|) can not have all (even) moments bounded

= power tails.




Interactions with equilibrium dynamics

Example: Description of the Weakly Coupled Binary Mixture Problem (Bobylev, I.M.G. JSP '06)
Construction of explicit solutions to:

Of (v, t - S
% — /wEEB ‘/.Q-ESE Bl{.'“"#][f(v-t]f(u—‘-t] - f{?}'. t}f{u"..t]l]d.ﬂ'du‘

+ & ] N ] y B(|u|, ) [f (v, t )M ("w) — f(v, t) M7 (w)]dodw

—|ul2

Pramtel B(|u|.p) = Cy = 4=, 3 =10, @, -depending on the

asymptotics and 7 being the background temperature.

o A system of two different particles with the same mass is considered. One set of

particles is assumed to be at equilibrium i.e., with a Maxwellian distribution with
temperature T'(t).

® Second set of particles is assumed to collide with themselves (first integral) and the
background particles({Linear Boltzmann Collision Integral).
The collisions are assumed to be locally elasticie., |v|? + |v.|? = |[v/|? + |v.|? but the

above form leads to global energy dissipation ie., |54 0|2 f (v, t)dv = 0.



Explicit solutions an elastic model in the presence of a cold thermostat for d > 2

Mixtures of colored particles (same mass f=I): (Bobylev & LM.G., JSP’06)
In the space of characteristic functions:

1
%—f = f ds G(s) {e(sx) p[(1 —s)x] + Op[(1 — Bs)x] —p(z)[1 + 6]} =

= / ds o[(1 — s)x][e(sx) + 0] — (1+ 0)p(x) . with 9(0)=1

0

andset  p(xe M)y =) 21 —clp)n’, forn—0, p>0
Transforms " , [
1. Laplace transform of y: | w(z) = L(Y)(z)|— plzw)” + (14 0)w' +w (’LU + ,\) =0
The eq. into <

2-  set group transformations

u(z) = zw(2) / dr e "1 (E) . and y(z) =z?u(z4) +B , B constant
0 Z

By the choice of parameters,

—n a=qbug+1+6—p) and B=2B—1+4uq’+2q(1 + 6 — p)

3- and o=p=0=B(B-1) _— )U}qg-y” + y2 = (0 | withO=u -1 -5uq and 6,uq2 =+

Painleve type eq.



Theorem: the equation for the slowdown process in Fourier space, has exact self-similar
solutions satisfying the condition

'L-’J(T)Nl—xp r— 0 >0  for i(x)= L “ilz) =12
7 b - F(p+1) b b b p L;[(—x’}_ Z L] ! I k] k]
for the following values of the parameters O(p) and u(p):
I 3p— 1)1 =2 2 ‘ Gp+ 12— p)
Case I: p(p)=——5. 0O(p)= SL .)(q L, Case2: 1(p) =55, O(p)=-" —
6p= 6 p- 2p- 3p*

A A

where the solutions are given by equalities

Case 2:

u(z) =1—(1+zP%72,

/\

Finite energy

Infinity energy SS solutions

SS solutions i
For p =1/3 and p=1/2 then 6=0 - the Fourier o= 3 0 — i F(vl. 1) = € F(vle'?),
transf. Boltzmann eq. for one-component gas = 3 3
These exact solutions were already obtained by - 12 9.2 N
Bobylev and Cercignani, JSP’03 F(lv]) = _f ds GK]J£—|L| /257) ,

7 Jo (2ws2)P32(1 4 52)2

after transforming Fourier back in phase space



Self - Similar Asvmptotics elastic BTE with thermostat

B For self similar asymptotics we studyt — o< so T — Tin f£5(v, t)
(i.e. the particle distribution temperature approaches the background

temperature as expected due to the linear coll. op.) both, for infinite and finite energy cases

Qualitative results for Case 2 with finite energy:

® Interesting NESS behavior can be observed if [ — (): Set
- 9 2t ‘ag . ..
I = s%e73 so f5°(|v]) is explicit.

® Then f(|v]e 3. t) — o € f33(|v]) where
. 2

ssil.y _ 4 [o© E—li‘«'lz.f';ﬂs.;'
fﬂ ( f“ — 7 Jo [2rsd)(1+s2)

|!1

2{'!9‘1‘

o _Ss(h‘):(,’(ﬁg} as |v| — ~, |and
f5*(lo]) = O(rz) as o] — 0

Also, rescaling back w.r.t. to M(k) and Fourier transform back f;(|v|) = M,(v) and
the similarity asymptotics holds as well.

Computations: spectral Lagrangian methods in collaboration with Harsha Tharkabhushaman
JCP’09 and JCM’09



Weak Formulation & fundamental properties of the collisional integral
and the equation: Conservation of moments & entropy inequality

G+ V[ o) @) de=[ QU H(t,z.v) p(v)dv =
iy f]RQd [, £ 1@+ o= o — p)ul"b(o) do dv. dv

x-space homogeneous (or periodic boundary condition) problem: Due to symmetries of the collisional
integral one can obtain (after interchanging the variables of integration):

Invariant quantities (or observables) - These are statistical moments of the ‘pdf’
conservation of mass p and momentum J: set ¢(v) =1 and p(v) = v

Using local conservation of momentum on the test function: |v + v. = v + v.

%/mdf{l,w}dv=n<t>fm@<f,f>(v>{1,w}dv=07 i=1,2,3

holds, both for the Elastic and Inelastic cases

Next, set p(v) = |v|°> = It conserves energy for e =1 — ELASTIC:

Using local conservation of energy on the test function: ||v]? 4 |v.]? = |[v|? 4 |v./?

> Lo ==sM) [ QU ) v d=0

Conservation of energy



Recall Boltzmann H-Theorem for ELASTIC interactions:

%/f'ogfdv = r(t) [ Q(f, f)log fdv =

%t)f// (Ff = J'F) Iogf}f: [ 'b(0)dor dv dv. < O

7

Time irreversibility is expressed in this inequality —> stability

In addition:

The Boltzmann Theorem: there are only N+2 collision invariants N

[ O(f. f)log fdv =0 < log f(.v) = A+ B-v4+Ch? —

RN

f(-,v) = My g o(v) Maxwellian (Gaussian in v-space) parameterized by A, B,C

related the first N 4+ 2 moments of the initial probability state of f(0,v) = fo(v)



Elastic (conservative) Interactions
Time Irreversibility and relation to Thermodynamics
e Stability limy_ || f(t.v) —MAIB.C;H% — 0 where {4, B,C} «——
{pu,w}, p= [ fodv, pu= [vfgdv and pw = [|v]?fodv

¢ Macroscopic balance equations: For the space inhomogensous problem:

Under the ansatz of a Maxwellian state in v-space

2
ft.z,v) =My py= ae—(blv—ul?)

where the dependance of (¢t.x) is only though the parameters (a,b.u):

J 1
I = — mean velocity and = = W = Epu + pe kinetic energy, 2 = internal energy
P
. 33,-“'2 _ 3
choosing a = F; , b=
(4w e)3/2 de

* & L] & & & 2
plus equilibrium constitutive relations : P = Epe pressure.

— yields the compressible Euler equations =



Elastic (conservative) Interactions: Connections to

Hydrodynamic limits: evolution models of a ‘few’ statistical moments
(mass, momentum and energy)
One obtains the Euler equations:

dp S 8
— — Yy =20.
o +_1_§1 aa:é_(‘ﬂ u) =0,

5 3.9 |
E(pui} + Zl a—:ﬁ{ﬂ wyu; +p) =0, (j=1,2,3)
i= -

a, 1 .- 3.9
— —(U e —

PGP+ =3 o
e Hydrodynamic limits: for e-perturbations of Maxwellians
plus constitutive relations = {A,B,C}(t,z) the corresponding

macroscopic system satisfy compressible Euler

(Gl +e+ ) =o.
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or e-Navier-Stokes equations with higher order partial deriva-
tives terms proportional to an O(¢) deviations from Gaussian
(Maxwellian) distributions.



Reviewing Inelastic (dissipative) properties: loss of classical hydrodynamics

Set »(v) = |[v|? and using local energy dissipation:

2
V12 [oul2 — 02 — [0y = 51 —v - o) o —wuf?

INELASTIC Boltzmann collision term:
It dissipates total energy for e=e(z) < 1 (by Jensen's inequality):

20(t) = —cg A5 2n(t) | g 0 = 0P dvdv < —cg 5 Dtyo) E

and there 1s no classical H-Theorem if ¢ = constant < 1

QCF, f)log fdv = =

Rd 2

! ¢/ ! g/
f I« (Iog S I L) + 1) lu|"b6(0) do dv dvs
T frfx
2
+1 >
—> Inelasticity brings loss of micro reversibility c R2d
—>but keeps time irreversibility !!: That is, there are stationary states and, in some particular
cases we can show stability to stationary and self-similar states = However: Existence of
NESS: Non Equilibrium Statistical States (stable stationary states are non-Gaussian pdf’s)
> fwt) — 9, as t— oo to asingular concentrated measure (unless there 1s ‘source’)
=2 (Multi-linear Maxwell molecule equations of collisional type and variable hard potentials for collisions
with a background thermostat)

JR2dw gd—1

I [« |u|” dv dus.



