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Motivation 1 : population adaptive evolution
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Motivation 1 : Short history

• Maupertuis (1698-1759) ’La Venus Physique’ (1745)

Chapitre III

PRODUCTIONS DE NOUVELLES 
ESPECES

“La nature contient le fonds de toutes 
ces variétés : mais le hasard ou l’art les 
mettent en oeuvre...  Nous voyons 
paraître des races de chiens, de 
pigeons, de serins qui n’étaient point 
auparavant dans la nature. Ce n’ont été 
d’abord que des individus fortuits ; l’art 
et les générations répétées en ont fait 
des espèces.”



Motivation 1 : Short history

• Lamarck (1744-1829) ’Philosophie Zoologique’ (1809)



Motivation 1 : Short history

• Darwin (1809-1882) ’On the origin of species’ (1859)



Motivation : adaptive evolution

But adaptation can be seen on shorter times scales

• Bacterial resistance to antibiotics

• Resistance of tumor cells to chemotherapy

• Lab experiments on bacteria...



Motivation : adaptive evolution

Phenotypic diversity for Pseudomonas fluoresens.

Populations were founded from single morph cells.

From Rainey and Travisano, Letters to Nature, 1998



Motivation 2 : geometric motion

Combustion or invasion fronts lead to sharp moving interfaces
described by geometric equations

∂u

∂t
+ V |∇u| = 0,

These are hypersurfaces. Is it possible to describe 0 dimension
motion as well ?



Motivation 3 : Turing patterns

Dentritic patterns
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Motivation : adaptive evolution

Motivation. Analyze a self-contained mathematical formalism for

Darwin’s theory at the population scale using only the

Ingredients.

(i) Population multiplication

(ii) Natural selection :

individuals own a phenotypical trait : ability to use the

environment.

Because of competition, the individuals that are the most

preforment are selected,

(iii) Mutations can modify the trait from parents to off-springs.



Adaptive dynamic : selection principle

Consider a structured population model
d
dtn(t, x) = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx.

Examples type 1 :

R
(
x, %(t)

)
:= η(x)− d(x)%(t), R

(
x, %(t)

)
:= η(x)

1+%(t) − d(x)

Examples type 2 : R
(
x, %(t)

)
:= η(x)

1+%(t) − d(x)%(t)

Keep in mind : R changes sign : R% < 0



Adaptive dynamic : selection principle


d
dtn(t, x) = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx,

with

min
x
R(x, ρ) < 0, max

x
R(x, ρ) > 0,

∂

∂ρ
R(x, ρ) < 0.

Theorem Suppose that supp n0(x) = [x0, x1] then

n(t, x) −−−→
t→∞ %̄ δ(x = x̄), %(t)→ %̄ (Competitive exclusion)

with (assuming uniqueness)

max[x0,x1]R(x, ρ̄) = 0 = R(x̄, ρ̄) (pessimism principle)



Adaptive dynamic : selection principle


d
dtn(t, x) = n(t, x)

(
η(x)− %(t)d(x)

)
,

%(t) =
∫
R n(t, x)dx.

Indeed, we have the a priori estimate

d

dt
%(t) =

∫
η(x)n(t, x)dx− d(x) %(t)2 ≤ %(t)[max η −min d %(t)],

d

dt
%(t) =

∫
η(x)n(t, x)dx− d(x)%(t)2 ≥ %(t)[min η −max d %(t)],

This implies

min(%(0),min η/d) ≤ %(t) ≤ max(%(0),max η/d).

Next, BV estimates show that %(t) has a limit as t→∞.



Adaptive dynamic : selection principle


d
dtn(t, x) = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx.

• There are many steady states. For any x̄

n̄(x) = %̄ δ(x− x̄).

choosing %̄ such that R(x̄, %̄) = 0.

• They are stable by perturbation of the weight %̄ (strong topology)

d

dt
%(t) = %(t)R(x̄, %(t)).

• But they are unstable by approximation in measures (weak

topology)... 2 ways to see this
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Adaptive dynamic : selection principle


d
dtn(t, x) = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx.

Replace n̄(x) = %̄ δ(x− x̄) by a concentrated gaussian

n0
ε(x) = eϕ

0
ε(x)/ε maxϕ0

ε(x) gives the Dirac location

Then, set

nε(t, x) = eϕε(t,x)/ε

and with a rescaling in time

d

dt
ϕε(t, x) = R

(
x, %ε(t)

)
, max

x∈R
ϕε(t, x) = o(1).



Adaptive dynamic : mutations

Off-springs undergo small mutations that change slightly the trait
∂
∂tn(t, x)−∆n = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx.

We assume that mutations are SMALL and introduce a scale ε for

’small’ mutations
ε ∂∂tn(t, x)− ε2∆n = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx.



Adaptive dynamic : mutations

Off-springs undergo small mutations that change slightly the trait
∂
∂tn(t, x)−∆n = n(t, x)R

(
x, %(t)

)
,

%(t) =
∫
R n(t, x)dx.

We assume that mutations are SMALL and introduce a scale ε for

’small’ mutations
ε ∂∂tnε(t, x)− ε2∆nε = nε(t, x)R

(
x, %ε(t)

)
,

%ε(t) =
∫
R nε(t, x)dx.



Asymptotic method

Theorem Suppose Rx > 0, Rρ < 0. Then, as ε→ 0, we have

nε(t, x)→ %̄(t)δ(x = x̄(t)), %ε → %̄(t) =
∫
n(t, x)dx,

and the ’fittest’ trait x̄(t) is characterised by the H.-J. Eq. with

constraints 
∂
∂tϕ(t, x) = R

(
x, %̄(t)

)
+ |∇ϕ(t, x)

)
|2

maxxϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)
.

Definition This is called monomorphism

Difficulty Solutions are not smooth
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Asymptotic method

This problem should be understood as follows

max
x

ϕ(t, x) = 0, ∀t is a constraint,

%̄(t) is a Lagrange multiplier.

. This is not an obstacle problem !
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Asymptotic method

Theorem Suppose Rx > 0, Rρ < 0. Then, as ε→ 0, we have

nε(t, x)→ %̄(t)δ(x = x̄(t)), %ε → %̄(t) =
∫
n(t, x)dx,

and the ’fittest’ trait x̄(t) is characterised by the H.-J. Eq. with

constraints 
∂
∂tϕ(t, x) = R

(
x, %̄(t)

)
+ |∇ϕ(t, x)

)
|2

maxxϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)
.

Proof Set

nε(t, x) = eϕε(t,x)/ε



Asymptotic method

Theorem (G. Barles, BP) Uniqueness With reasonable

assumptions there exist a unique lipschitz continuous solution (%̄, ϕ)

to the constraint H.-J. equation
∂
∂tϕ(t, x) = η(x)− %̄(t)d(x) + |∇ϕ|2,

max
x

ϕ(t, x) = 0
(

= ϕ(t, x̄(t))
)

Open question Extend uniqueness to

∂

∂t
ϕ(t, x) =

η(x)

1 + %̄(t)
− %̄(t)d(x) + |∇ϕ|2.



Asymptotic method

Numerical tests : η(x) = .5 + x
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Asymptotic method

Numerical tests : η(x) = .5 + x(2− x)
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Asymptotic method

Numerical tests : min(.45 + x.2, .55 + .4 ∗ x)
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Canonical equation

A smoothness regime exists under different assumptions, x ∈ Rd

−C1I ≤ D2R
(
x, %

)
≤ −C2I idendity matrix,

−D1I ≤ D2ϕ0 ≤ −D2I.

Then the Hamilton-Jacobi equation admits smooth solutions ϕ.

This implies n0 is a single Dirac mass

This is generic : SHOW MOVIE



Canonical equation

Theorem (A. Lorz, S. Mirrahimi, BP)

(i) Then the solution to the Hamilton-Jacobi equation is smooth and

−D1(t)I ≤ D2ϕ(t, x)) ≤ −D2(t)I.

(ii) nε(t, x) ⇀ %̄(t)δ(x− x̄(t)),

(iii) x̄(t), %̄(t) are smooth

(iv) R
(
x̄(t), %̄(t)

)
= 0

(v) d
dtx̄(t) =

(
−D2ϕ(x̄(t), t)

)−1
.∇R

(
x̄(t), %̄(t)

)



Canonical equation

Effect of the mutation matrix
(
−D2ϕ(x̄(t), t)

)−1



Other models

Other models are typically direct competiton with closer traits

d

dt
n(t, x) = n(t, x)

[
R(x)−K ∗ n(t, x)

]
,

See Desvillettes, Jabin, Raoul, and Champagnat, Méléard,

Consider two examples



Other models

Other models are typically direct competiton with closer traits

d

dt
n(t, x)− ε∆n =

1

ε
n(t, x)

[
R(x)−K ∗ n(t, x)

]
,

R(x) =
1
√
σ1
e
− |x|

2

2σ1 , K(x) =
1
√
σ2
e
− |x|

2

2σ2

• σ1 > σ2, then n(x) = 1√
σ
e−
|x|2
2σ , σ = σ1 − σ2 is a solution

• σ1 ≤ σ2, then nε(t, x) should have concentration .



Other models

Other models are typically direct competiton with closer traits

d

dt
n(t, x)− ε∆n =

1

ε
n(t, x)

[
R(x)−K ∗ n(t, x)

]
,

R(x) ≡ 1, K a probabilty

• K̂ ≥ 0, then n(x) = 1 is a stable steady state

• K̂(ξ0) < 0, then n(x) = 1 is linearly unstable (Auger, Genieys,

Volpert) and one observs concetrations.



Other models
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Other models

Computed density n and phase ϕ
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Other models

These models can create TURING patterns

Asymmetric kernel Nonlocal Fisher equation



Other models

Lotka-Volterra type of equations differ from reaction diffusion.

Typically is the Gray-Scott/Mimura type of systems

∂

∂t
u(x, t)− du∆u(x, t) = u[uv − µ],

∂

∂t
v(x, t)− dv∆v(x, t) = −u2v,

∂

∂t
w(x, t) = µu.



Polymorphism

Next ingredient is the notion of survival threshold.

∂n(t, x)

∂t
− ε∆n(t, x) =

n(t, x)

ε

(
b(x)−Kb ? n(t)

)
−

√
n̄n(t, x)

ε

Motivated by

• Population really vanishes ; some traits are not represented

• The notion of ’individual’ is somehow included in the parameter n̄

• A similar notion represents ’demographic stochasticity’

• compatibility with Monte-Carlo simulations
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Polymorphism
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Conclusion

Population models with the two simple ingredients :

• local competiton between traits,

• mutations

are able to express

• highly concentrated solutions (speciation ?)

• branching

Many mathematical issues are still open in understanding these
phenomena.






