EDPs en ciencia e ingenieria. M.M.A. de la UAM Curso 2016/17
Hoja de problemas 3: Weak Solutions and Linear Elliptic Equations.

1. Let a,b,c be smooth functions, with a and c strictly positive. Let v be a solution to the boundary
value problem
—au" +bu' +cu=f enl=(0,1), u(0) =u(1) =0.

Show that u solves an equation of the form —(a(z)u’) + é&(x)u = f: write the corresponding weak
formulation and show that there exists a unique solution.

2. Consider the boundary value problem
—u" +ku'+u=f enI=(0,1), W' (0) =4/(1) = 0.

Write the variational formulation and show that for k sufficiently small there is no unique solution.
Find (at least) a value of k and (at least) a function v € H', with v # 0 such that a(v,v) = 0.

3. Consider the problem
—u"(x) = f(x) enI=(0,1), u'(0) —u(0) =0, (1) +u(1) = 0.

(a) Define a classical solution of the problem, when f € C([0,1]).

(b) Prove that classical solutions are weak i.e. they satisfy

1 1
u(0)v(0) + u(1)v(1) +/0 u'v' = /0 fo, Yo € HY(I).

Define a weak solution to the problem as a function u € H'(I) satisfying the above equality.

(c) Prove existence and uniqueness of weak solutions to the above problem.
Hint: Prove and use the following Poincaré-type inequality

/01 u? < C ((u(O))2 + (u(1))* + /Ul(u’)2> vu € HY(I).

(d) Prove that f € C(I) implies u € C%(I).

(e) Show that any weak solution which is C?(I) is indeed a classical solution.

4. Consider the boundary value problem
" (x) = f(x) in I =(0,1), w(0) =4/ (0) = u(1) = /(1) = 0.

Here, u represents, for instance, deflection of a bar fixed at the extremals and under the influence of
a transversal force of intensity f. Given f € C(I):

(a) Define classical solutions.

(b) Define weak solutions (the correct functional space is H3(1)).

(c) Show that every classical solution is a weak solution.

(d) Prove that there exists a unique weak solution.

e) Prove that if f € C(I), then u € C*(I).
)

f) Prove that if a weak solution is in C*(I), then it is a classical solution.

(
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5. Let I = (0,1). Show that the functional F' : H'(I) ~ R defined by F(u) = u(0) is linear and
continuous. Show next that there exists a unique vg € H'(I) such that

1
u(0) = /0 (u'v) +uvy)  Yu e HY(I).

Show that vg is solution to a certain differential equation with suitable boundary conditions.
Find an explicit expression for vg.

6. Find a function u € C?([0,1/2]) con u(0) = u(1/2) = 0 such that for any v € C%([0,1/2]) we have

1/2
/0 (u'v" + (4u — 1)v) = 0.

7. Consider the boundary value problem u” = 2, u(1) = u(—1) = 0, whose solution is given by u(x) =
x? — 1; write the variational formulation to conclude that for all u € C? with u(1) = u(—1) = 0 we

have .
8
3 +/ ((u')? + 4u) > 0.
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8. (Hardy Inequality in dimension N = 1). Let I = (0, 1).

;/Oxu(t)dt

Hint. Begin with u € C¢(I) by defining p(z) = [ u(t) dt. Check that [p|? € C1(I) and calculate
the derivative. Finally, use the formula

1 1
dx 1 1
p& _ - rq( —
/0 @) p— /0 lp(2)] ( xp_1>
and integrate by parts.

(b) Let u € WYP(I), 1 < p < oo. Show that if u(0) = 0, then

(a) Given u € LP(I), show that
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9. (A problem with Hardy-type weights) Let I = (0,1) and V = {v € H*(I) : v(0) = 0}.

(a) Given f € L?(I) such that 1 f(z) € L*(I), show that there exists a unique u € V satisfying
1 1 1
/ o (2)v' () dz +/ %”g(x) dx = / &;}(x) dx Yo e V. (1)
0 0 x 0 x

(b) Write the minimization problem associated to (1)

¢) Here and in part (d) we will assume that =5 f(z) € L?(I). Letting v(z) = @) o 0, show that
(c) z

(z4e)??
/1 d (u(x)
o |dx \z+¢

(d) Prove that “2) ¢ 12(1), “2) ¢ gY(1) y “@ ¢ 12(1).
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(e) As a consequence of part (d) show that u € H*(I) and that
—u"(x) + uig;) = ff;) a.e. en I, u(0) =4/(0) =0, '(1)=0. (2)

(f) Viceversa, show that if v € H?(I) with ule) ¢ L?(I) satisfies equation (2), hence it satisfies (1).
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10. Let I = (0,1) and let us fix a constant k& > 0.

(a) Given f € LY(I), show that there is a unique u € Hg (1) such that

/]u/v/—kk/]uv:/lfv Yo € Hi(I). (3)

(b) Prove that u € W(I).
(c) Prove that
lullzin < 21z
Hint. Fix a function v € C'(R,R) so that +/(t) > 0 for all t € R, 4(0) = 0, y(t) = 1 and all ¢ > 1
and such that y(t) = —1 for all t < —1. Take v = y(nu) in (3) and let n — oo.

(d) Assume now f € LP(I), p € (1,00). Show that there exists 6 > 0 independent of k& and p such
that

1
lull Loy < WHfHLMI)-
Hint. If p € [2,00), take v = y(u) in (3), with y(t) = [¢t|P~!sign t. If p € (1,2), use duality.
(e) if f € L*(I), show that
lullpoory < Crll fllLoe(nys

and find the best constant Cj. Hint. Find the explicit solution to (3) corresponding to f = 1.




11. Let I =(0,1).
(a) Prove that for any € > 0 there exists a constant C. such that
(D < el |Bay + CellulZey  Vu € H(D).

(b) Show that if the constant k& > 0 is big enough, then for all f € L?(I) there exists a unique
u € H%(I) satisfying

—u"+ku=f enl, u'(0) =0, o/'(1)=u(l).

Write both the associated weak formulation and the minimization problem.

12. Let @ C RY be a bounded domain with smooth boundary, let h € C>°(9Q) be such that [,, h = 0.

(a) Define a reasonable concept of weak solution to the problem

Au=0 en(Q, Ou/On =h en 0.

(b) Prove that there exists a unique weak solution such that [,u = 0 and check that the difference
between two arbitrary weak solutions has to be constant in €.

13. Let Q € RY be a bounded connected domain with smooth boundary.

(a) Define weak solutions for the Poisson equation with Robin boundary conditions:

—Au=f en{, u+a—u:0 sobre 052,
on

Check that any classical solution to the problem is a weak solution, and that every weak solution
which is also smooth enough, is a classical solution.

(b) Show existence and uniqueness of weak solutions to the problem, for any f € L?(€).
Hint. Use Friedrichs’ Inequality.




