Asymptotic behavior of the degenerate p-Laplacian equation on bounded domains

Diana Stan
Instituto de Ciencias Matematicas (CSIC), Madrid, Spain

UAM, September 19, 2011

p-Laplacian Equation

\longrightarrow Describing the behavior of nonnegative solutions of the p-Laplacian Equation (PLE) for large times.

$$
\begin{cases}u_{\tau}(\tau, x)=\Delta_{p} u(\tau, x) & \text { for } \tau>0 \text { and } x \in \Omega, \\ u(0, x)=u_{0}(x) & \text { for } x \in \Omega, \\ u(\tau, x)=0 & \text { for } \tau>0 \text { and } x \in \partial \Omega .\end{cases}
$$

where:

- $p>2$.
- $\Omega \in \mathbb{R}^{N}$ is a bounded connected domain with regular boundary.
- initial data: $u_{0} \geq 0, u_{0} \in L^{r}(\Omega), r \geq 1$.

Typical nonlinear diffusion models:

- the Porous Medium Equation(PME) :

$$
u_{t}=\Delta u^{m}, \quad m>1
$$

- the p-Laplacian Equation(PLE):

$$
u_{t}=\Delta_{p} u, \quad p>2
$$

Different behavior depending on p :

- $1<p<2$: extinction in finite time.
- $p>2$: positivity for all times when $u_{0} \geq 0$.

Definition. Weak solution of the Dirichlet problem (PLE):

$$
u \in C\left(0, T ; L^{2}(\Omega)\right) \cap L^{p}\left(0, T ; W^{1, p}(\Omega)\right)
$$

s.t. for all $t \in(0, T]$

$$
\iint_{\Omega_{t}}\left(-u \varphi_{t}+|\nabla u|^{p-2} \nabla u \nabla \varphi\right) d x d \tau=\int_{\Omega} u_{0}(x) \varphi(0, x) d x
$$

for every $T>0$ and for all bounded test function

$$
\varphi \in W^{1,2}\left(0, T ; L^{2}(\Omega)\right) \cap L^{p}\left(0, T ; W_{0}^{1, p}(\Omega)\right), \varphi \geq 0
$$

- Is is known by standard semigroup theory that there exists a unique non-negative weak solution u of the PLE with good regularity properties and satisfies Maximum Principle.

Asymptotic behavior for the PME (J.L.Vázquez, Mon.Math.,2004)
There exists a unique self-similar solution of the PME of the form

$$
U(\tau, x)=\tau^{-1 /(m-1)} f(x), \tau \in(0,+\infty), x \in \Omega,
$$

such that if $u \geq 0$ is a any weak solution of the PME we have

$$
\lim _{\tau \rightarrow+\infty} \tau^{1 /(m-1)}|u(\tau, x)-U(\tau, x)|=\lim _{\tau \rightarrow+\infty}\left|\tau^{1 /(m-1)} u(\tau, x)-f(x)\right|=0
$$

unless u is trivial, $u \equiv 0$. The convergence is uniform in space and monotone non-decreasing in time. Moreover, the asymptotic profile f is the unique non-negative solution of the stationary problem:

$$
\Delta f^{m}(x)+\frac{1}{m-1} f(x)=0, x \in \Omega, \quad f(x)=0, x \in \partial \Omega
$$

Asymptotic behavior for the PLE

Asymptotic behavior for the PLE

There exists a unique self-similar solution of problem (PLE) of the form

$$
U(\tau, x)=\tau^{-1 /(p-2)} f(x), \tau \in(0,+\infty), x \in \Omega
$$

Then

$$
\lim _{\tau \rightarrow+\infty} \tau^{1 /(p-2)}|u(\tau, x)-U(\tau, x)|=\lim _{\tau \rightarrow+\infty}\left|\tau^{1 /(p-2)} u(\tau, x)-f(x)\right|=0
$$

unless u is trivial, $u \equiv 0$. The convergence is uniform in space and monotone non-decreasing in time. Moreover, the asymptotic profile f is the unique non-negative solution of the stationary problem:

$$
\Delta_{p} f(x)+\frac{1}{p-2} f(x)=0, x \in \Omega, \quad f(x)=0, x \in \partial \Omega
$$

Estimates

- Bénilan-Crandall type estimates:

$$
\begin{gathered}
\left\|u_{\tau}(\tau, \cdot)\right\|_{L^{q}(\Omega)} \leq \frac{1}{(p-2) \tau}\left\|u_{0}(\cdot)\right\|_{L^{q}(\Omega)}, \quad q \geq 1 . \\
\left\|u_{\tau}(\tau+s, \cdot)\right\|_{L^{q}(\Omega)} \leq \frac{1}{(p-2)(\tau+s)}\|u(s, \cdot)\|_{L^{q}(\Omega)}, \quad q \geq 1 .
\end{gathered}
$$

- Smoothing effects: for $\forall r \geq 1$ there exists $C>0$ maybe depending on Ω s.t.

$$
\|u(t, \cdot)\|_{L^{\infty}(\Omega)} \leq C_{0} \frac{\|u(s, \cdot)\|_{L^{r}(\Omega)}^{r \vartheta_{r}}}{(t-s)^{N \vartheta_{r}}}, \quad \vartheta_{r}=\frac{1}{r p+(p-2) N} .
$$

- Absolute bound: there exists $C=C(\Omega) \geq 0$ s.t.

$$
\|u(t, \cdot)\|_{L^{\infty}(\Omega)} \leq C t^{-1 /(p-2)}, t \in(0,+\infty) .
$$

Sketch of the proof

Idea: the separate variables solution of the PLE :

$$
U(\tau, x)=\tau^{-1 /(p-2)} f(x), \quad t \geq 0, x \in \Omega,
$$

where

$$
\Delta_{p} f(x)+\frac{1}{p-2} f(x)=0, x \in \Omega, f(x)=0, x \in \partial \Omega .
$$

Method of rescaling and time transformation:

$$
v(\tau, x)=\tau^{-\frac{1}{p-2}} v(t, x), \tau=e^{t}
$$

Rescaled problem:

$$
\begin{cases}v_{t}(t, x)=\Delta_{p} v(t, x)+\frac{1}{p-2} v(t, x), & \text { for } t \in \mathbb{R} \text { and } x \in \Omega, \\ v(0, x)=v_{0}(x)=u(x, 1), & \text { for } x \in \Omega, \\ v(t, x)=0, & \text { for } t \in \mathbb{R} \text { and } x \in \partial \Omega\end{cases}
$$

- Bounded and regular initial data $v_{0}(x)=u(x, 1)$.

Convergence

The main tools are the a-priori estimates rewritten as:

$$
u(\tau, x) \leq C \tau^{-1 /(p-2)} \quad \text { and } \quad u_{\tau}(\tau, x) \geq-C \frac{u}{(p-2) \tau}
$$

In the new variable:

$$
0 \leq v \leq C \quad \text { and } \quad v_{t} \geq 0 .
$$

$\Longrightarrow \forall x \in \Omega$ there exists the limit

$$
\lim _{t \rightarrow \infty} v(t, x)=f(x)
$$

and this convergence is monotone non-decreasing
$\Longrightarrow f(x)$ is nontrivial and bounded.
$\Longrightarrow \quad v(t, \cdot) \rightarrow f$ strong in $L^{q}(\Omega), 1 \leq q<\infty$.

The limit is a stationary solution.

Test function: $\phi(x) \in C_{c}^{\infty}(\Omega)$. Fixe $T_{0}>0$ and let $t_{2}=t_{1}+T_{0}$.

$$
\begin{aligned}
\int_{\Omega} v\left(t_{2}\right) \phi d x & -\int_{\Omega} v\left(t_{1}\right) \phi d x= \\
& =-\int_{t_{1}}^{t_{2}} \int_{\Omega}|\nabla v|^{p-2} \nabla v \nabla \phi d x d t+\frac{1}{p-2} \int_{t_{1}}^{t_{2}} \int_{\Omega} v \phi d x d t .
\end{aligned}
$$

Let $t_{1} \rightarrow \infty$. Then

$$
0=-T_{0} \int_{\Omega}|\nabla f|^{p-2} \nabla f \nabla \phi d x+T_{0} \int_{\Omega} f \phi d x
$$

$\Longrightarrow \quad f$ is a weak solution of the stationary problem

$$
-\Delta_{p} f(x)=\frac{1}{p-2} f(x), x \in \Omega
$$

Also we prove the uniqueness of the stationary solution.

Difference from the PME Case

Difficult convergence:
$\int_{0}^{T_{0}} \int_{\Omega}|\nabla v(t+n, x)|^{p-2} \nabla v(t+n, x) \nabla \phi d x d t \longrightarrow T_{0} \int_{\Omega}|\nabla f|^{p-2} \nabla f \nabla \phi d x$.
Idea:
(1) Convergence in measure of gradients:

$$
\nabla v(t, \cdot) \rightarrow \nabla f(\cdot) \text { when } t \rightarrow \infty \text { in measure. }
$$

(2) Energy estimate: $\int_{\Omega}|\nabla v(t, x)|^{p} d x \leq M, \quad \forall t \in \mathbb{R}$.

Then (1) $+(2) \Longrightarrow \nabla v(t, \cdot) \rightarrow \nabla f(\cdot) \quad$ a.e. in Ω.

Brezis,Cont.Nonl.Funct.An.,1971

Let A be a maximal monotone operator on a Hilbert space H. Let Z_{n} and W_{n} be measurable functions from Ω (a finite measure space) into H. Assume $Z_{n} \rightarrow Z$ a.e. on Ω and $W_{n} \rightarrow W$ weakly in $L^{1}(\Omega ; H)$. If $W_{n}(x) \in A\left(Z_{n}(x)\right)$ a.e. on Ω, then $W(x) \in A(Z(x))$ a.e. on Ω.

Our case:

- $\Omega_{1}=\left[0, T_{0}\right) \times \Omega$ (finite measure space), $H=\mathbb{R}^{N}$ (Hilbert space).
- $A: H \rightarrow H, \quad A(Z)=|Z|^{p-2} Z$ maximal monotone operator.
- $Z_{n}(t, x)=\nabla v(t+n, x): \Omega_{1} \rightarrow H$,
- $W_{n}(t, x)=A\left(Z_{n}(t, x)\right)=|\nabla v(t+n, x)|^{p-2} \nabla v(t+n, x): \Omega_{1} \rightarrow H$.

$$
\text { Lemma } \Longrightarrow W_{n}(t, x) \rightharpoonup W(t, x) \text { weakly in } L^{1}\left(\Omega_{1} ; H\right) .
$$

Better convergence

Uniform Convergence:

$$
v(t, x)=\tau^{1 /(p-2)} u(\tau, x) \rightarrow f(x), \tau=e^{t}
$$

- Idea \longrightarrow Second type of rescaling - fixed rate rescaling:

$$
u_{\lambda}(\tau, x)=\lambda^{\frac{1}{p-2}} u(\lambda \tau), \quad \lambda>0 .
$$

- u_{λ} is still a solution of (PLE).
- On $\Omega \times\left(\tau_{1}, \tau_{2}\right)$ the family $\left\{u_{\lambda}\right\}_{\lambda>0}$ is equicontinuous (because of the Hölder continuity and the a-priori estimates).
- Ascoli Arzelà Theorem \Longrightarrow uniform convergence on subsequences $\left(u_{\lambda_{j}}\right)_{j}$.
- Remark: $u_{\lambda}(1, x)=v(\log \lambda, x)$
- $v\left(\log \lambda_{j}, x\right)$ converges uniformly
- The limit $v(t, x) \rightarrow f$ is unique $\Longrightarrow v(t, x) \rightarrow f$ uniformly.

Rate of convergence for the PME

Hypothesis (H):

(1) Ω is a bounded arcwise connected open set with compact closure and regular boundary.
(2) u_{0} is a nonnegative Lipschitz function defined on $\bar{\Omega}$ such that $u_{0}=0$ on $\partial \Omega$.

Rate of convergence for the PME (Aronson \& Peletier, J.Diff.Eq.1981)
Assume that Ω and u_{0} satisfy (H). Then $\exists \mathcal{C} \in[0,+\infty)$ which depends only on the data such that

$$
\left|(1+t)^{1 /(m-1)} u(t, x)-f(x)\right| \leq \mathcal{C} f(x)(1+t)^{-1} \quad \text { in } \bar{\Omega} \times[0,+\infty) .
$$

Rate of convergence for the PLE

Assume that Ω and u_{0} satisfy (H). Then $\exists \mathcal{C} \in[0,+\infty)$ which depends only on the data such that

$$
\begin{aligned}
&\left|(1+t)^{1 /(p-2)} u(t, x)-f(x)\right| \leq \mathcal{C} f(x)(1+t)^{-1} \quad \text { in } \bar{\Omega} \times[0,+\infty) . \\
& \Longrightarrow \quad u(t, x)=U(t, x)\left(1+\mathcal{O}\left(\frac{1}{t}\right)\right) .
\end{aligned}
$$

Consider

- the separate variables solution of the PLE: $U(\tau, x)=\tau^{-1 /(p-2)} f(x)$.
- the rescaled solution of the PLE: $v(t, x)=\tau^{1 /(p-2)} u(\tau, x), \quad \tau=e^{t}$.

Convergence in relative error

Assume that Ω and u_{0} satisfy (H). Then

$$
\lim _{\tau \rightarrow \infty}\left\|\frac{u(\tau, \cdot)}{U(\tau, \cdot)}-1\right\|_{L^{\infty}(\Omega)}=\lim _{t \rightarrow \infty}\left\|\frac{v(t, \cdot)}{f(\cdot)}-1\right\|_{L^{\infty}(\Omega)}=0
$$

Main steps:

(1) Upper bound. Prove there exists a constant $\tau_{1}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
0 \leq u(t, x) \leq\left(\tau_{1}+t\right)^{-1 /(p-2)} f(x), \quad x \in \Omega, t \geq 0 .
$$

(2) Positivity. Prove that even if u_{0} has compact support there exists $T_{0}>0$ depending only on p, d, u_{0} and Ω s.t.
(3) Lower bound. Prove there exist $T^{*} \geq 0$ and $\tau_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x) \geq\left(\tau_{0}+t\right)^{-1 /(p-2)} f(x), x \in \bar{\Omega}, t \geq T^{*} .
$$

Main steps:

(1) Upper bound. Prove there exists a constant $\tau_{1}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
0 \leq u(t, x) \leq\left(\tau_{1}+t\right)^{-1 /(p-2)} f(x), \quad x \in \Omega, t \geq 0 .
$$

(2) Positivity. Prove that even if u_{0} has compact support there exists $T_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x)>0, \quad x \in \Omega, t>T_{0} .
$$

(3) Lower bound. Prove there exist $T^{*} \geq 0$ and $\tau_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x) \geq\left(\tau_{0}+t\right)^{-1 /(p-2)} f(x), x \in \bar{\Omega}, t \geq T^{*} .
$$

Main steps:

(1) Upper bound. Prove there exists a constant $\tau_{1}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
0 \leq u(t, x) \leq\left(\tau_{1}+t\right)^{-1 /(p-2)} f(x), \quad x \in \Omega, t \geq 0 .
$$

(2) Positivity. Prove that even if u_{0} has compact support there exists $T_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x)>0, \quad x \in \Omega, t>T_{0} .
$$

(3) Lower bound. Prove there exist $T^{*} \geq 0$ and $\tau_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x) \geq\left(\tau_{0}+t\right)^{-1 /(p-2)} f(x), x \in \bar{\Omega}, t \geq T^{*} .
$$

Self-Similar solutions for the PLE

Barenblatt solutions:

$$
\mathcal{U}(x, t ; a, \tau)=c(t+\tau)^{-\alpha}\left\{\left[a^{\frac{p}{p-1}}-\left(|x|(t+\tau)^{-\beta}\right)^{\frac{p}{p-1}}\right]_{+}\right\}^{\frac{p-1}{p-2}}
$$

$\alpha=\beta N, \alpha=\frac{N}{(p-2) N+p}, \beta=\frac{1}{(p-2) N+p}, c=\left(\frac{1}{(p-2) N+p}\left(\frac{p-2}{p}\right)^{p-1}\right)^{\frac{1}{p-2}}$.

Figure: Barenblatt solutions at $t_{1}>t_{2}$ in $N=1$

Separate variable solutions:

$$
U(t, x)=(t+\tau)^{-1 /(p-2)} f(x), x \in \Omega
$$

where τ is a fixed positive parameter and f is the solution of the elliptic equation

$$
\Delta_{p} f+\frac{1}{p-2} f=0 \text { in } \Omega, \quad f=0 \text { on } \partial \Omega .
$$

Intermediate self-similar solutions:

$$
\mathcal{V}(x, t ; c, \tau)=(t+\tau)^{-\alpha}[g(\eta, c)]_{+}, \quad \eta=|x|(t+\tau)^{-\beta}
$$

$$
\left\{\begin{array}{l}
\alpha g(\eta)+\beta \eta g^{\prime}(\eta)+\frac{N-1}{\eta}\left|g^{\prime}(\eta)\right|^{p-2} g^{\prime}(\eta)+(p-1)\left|g^{\prime}(\eta)\right|^{p-2} g^{\prime \prime}(\eta)=0, \eta>0 \\
g(0)=c, \quad g^{\prime}(0)=0
\end{array}\right.
$$

Figure: Solving the Cauchy problem for $N=2, p=3$.

Barenblatt solutions $\mathcal{U}(x, t ; a, \tau) \longrightarrow$ to describe the behavior inside Ω :
(1) Good point: compactly supported and they propagate in time.
(2) Good point: solutions in the whole space.
(3) Landing contact is flat.

Intermediate family $\mathcal{V}(x, t ; c, \tau) \longrightarrow$ to describe the behavior up to $\partial \Omega$:
(1) Good point: compactly supported and they propagate in time.
(2) They are subsolutions of the PLE in Ω.
(3) Landing contact not so flat.

Separate variables solutions $U(t, x)$:
(1) Good point: correct boundary behavior.
(2) Bad Point: they do not propagate.

Upper bound

Prove there exists a constant $\tau_{1}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
0 \leq u(t, x) \leq\left(\tau_{1}+t\right)^{-1 /(p-2)} f(x), \quad x \in \Omega, t \geq 0 .
$$

\longrightarrow Use Comparison Principle between u and the separate variable solution

$$
U(t, x)=\left(\tau_{1}+t\right)^{-1 /(p-2)} f(x)
$$

for an appropriate constant $\tau_{1}>0$ chosen s.t.

$$
\tau_{1} f(x) \geq u_{0}(x) \text { in } \bar{\Omega} .
$$

Positivity

Prove that even if u_{0} has compact support there exists $T_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x)>0, \quad x \in \Omega, t>T_{0}
$$

- Sufficient to prove the existence of $T \geq 0$ s.t $u(T, x)>0, \quad x \in \Omega$.
- Prove positivity inside Ω at a time T^{\prime} using a Lemma about transmitting positivity between neighboring balls.
- Prove positivity up to the boundary using the uniform continuity of $u\left(\cdot, T^{\prime}\right)$ in a compact subset of Ω.

Positivity \longleftrightarrow Comparison from below with a Barenblatt solution

Lower bound

Prove there exist $T^{*} \geq 0$ and $\tau_{0}>0$ depending only on p, d, u_{0} and Ω s.t.

$$
u(t, x) \geq\left(\tau_{0}+t\right)^{-1 /(p-2)} f(x), x \in \bar{\Omega}, t \geq T^{*} .
$$

Idea:
Prove that

where

$$
\left\{\begin{array} { l }
{ \Delta _ { p } f + \frac { 1 } { p - 2 } f = 0 \text { in } \Omega } \\
{ f = 0 \text { on } \partial \Omega . }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\Delta_{p} \phi=1 \text { in } \Omega \\
\phi=0 \text { on } \partial \Omega .
\end{array}\right.\right.
$$

Future work:
(1) Extend the result for Fast Diffusion case of the p-Laplacian equation:

$$
u_{t}=\Delta_{p} u, \quad 1<p<2
$$

\longrightarrow extinction in finite time, no conservation of mass.
\longrightarrow PME case: BGV-2001.
(2) Extend the result for the doubly nonlinear equation

$$
u_{t}=\Delta_{p} u^{m}
$$

\longrightarrow The separate variable solutions:

$$
\begin{gathered}
U(t, x)=t^{\frac{1}{m(\rho-1)-1}} f(x), \\
\Delta_{p} f^{m}=c f \text { in } \Omega, \quad f=0 \text { on } \partial \Omega .
\end{gathered}
$$

Thank you for your attention!

