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Statement of the problem

p-Laplacian Equation

— Describing the behavior of nonnegative solutions of the p-Laplacian
Equation (PLE) for large times.

u-(7,x) = Apu(7,x) for 7>0and x€Q,
u(0,x) = up(x) for x € Q,
u(t,x)=0 for 7 >0 and x € 0Q.
where:
e p>2.
o QeRN is a bounded connected domain with regular boundary.
e initial data: up > 0,up € L"(Q2), r>1.
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Preliminaries

Typical nonlinear diffusion models:
@ the Porous Medium Equation(PME) :

ug=Aum, m>1
@ the p-Laplacian Equation(PLE):

ur=RDpu, p>2

Different behavior depending on p:
@ 1< p<2: extinction in finite time.

@ p>2: positivity for all times when ug > 0.
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Definition. Weak solution of the Dirichlet problem (PLE):
ue C(0,T;L3(Q)) nLP(0, T; WHP(Q)),

s.t. for all t€(0, T]

f[Q (—u«pt+|Vu|P_2Vqu0) dxdT = fQUO(X)gD(O,x)dx,
for every T >0 and for all bounded test function

@ e WH2(0, T; L2(Q)) n LP(0, T; Wy P(Q)), ¢ 0.

@ Is is known by standard semigroup theory that there exists a unique
non-negative weak solution u of the PLE with good regularity
properties and satisfies Maximum Principle.
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Uniform Convergence

Asymptotic behavior for the PME (J.L.Vazquez, Mon.Math.,2004)

There exists a unique self-similar solution of the PME of the form
U(r,x) =7 Y(MDf(x), 7€ (0,+00),x€Q,
such that if v >0 is a any weak solution of the PME we have

lim /(M D)u(r,x) - U(r,x)| = lim |7/ D7, x) - F(x)| =0,
T—>+00 T—>+00

unless u is trivial, u = 0. The convergence is uniform in space and
monotone non-decreasing in time. Moreover, the asymptotic profile f is
the unique non-negative solution of the stationary problem:

1

AfT(x) +
m-1

f(x)=0, xeQ, f(x)=0, xedQ
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Asymptotic behavior for the PLE

Asymptotic behavior for the PLE

There exists a unique self-similar solution of problem (PLE) of the form
U(r,x) =7 Y P2 F(x), 7€(0,+00),x €,
Then

im 7 u(r.x) - U(r )| = tim [P u(r,x) - £()] =0,

T—>+00

unless u is trivial, u = 0. The convergence is uniform in space and
monotone non-decreasing in time. Moreover, the asymptotic profile f is
the unique non-negative solution of the stationary problem:

Apf(x)+

12f(x)=0, xeQ, f(x)=0, xedQ
p_

v
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Estimates

@ Bénilan-Crandall type estimates:
H ( )” < —1 luo( )“ 21
ur(t,- < uo(- , g2>1.
T\T;)llLa(Q) ( 2) 0 L9(Q)

1
lur (7 +5,) | o) < m\\u(%')ﬂm(n), g>1.

@ Smoothing effects: for Vr > 1 there exists C > 0 maybe depending on

Qs.t.
lu(s, ) 1
t, ) o) € o—r—57—r Vr= —F—=r-
lu(t, )=o) 0 (t—s)Nor > mp+(p-2)N

@ Absolute bound: there exists C = C(Q2) >0 s.t.
Ju(t, )=y < CEYP™, e (0,+00).
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Sketch of the proof

Idea: the separate variables solution of the PLE :

U(r,x) =7 YP2f(x), t>0, xeQ,

where
1

Apf(x)+ P

f(x)=0, xeQ, f(x)=0, xe0Q.

Method of rescaling and time transformation:

1
v(T,x) =7 ,2v(t,x), T=e".

Rescaled problem:

vt(t,x):Apv(t,x)+rfzv(t,x), for t e R and x € Q,
v(0,x) = vo(x) = u(x,1), for x € Q,
v(t,x) =0, for t € R and x € 9Q.

@ Bounded and regular initial data vp(x) = u(x,1).
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Convergence

The main tools are the a-priori estimates rewritten as:

u(r,x) < Cr~ (P2 nd ur(7,x) > _c "
(p-2)T

In the new variable:
0<v<C and wv>0.

= Vx € there exists the limit

tlim v(t,x) =f(x)
and this convergence is monotone non-decreasing
== f(x) is nontrivial and bounded.
= v(t,-) - f strong in L9(Q),1< g < oco.
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The limit is a stationary solution.

Test function: ¢(x) € CZ°(Q2). Fixe To >0 and let to = t; + To.

/S;V(tg)gﬁdx—_/ﬂv(tl)gbdx:
- [" P2y odkdt + —— [ [ vedxdt
__[tl _[Q|Vv| VvV odx +p—2[t1 /Qvgbx .

Let t; - oo. Then

0=—Ton|Vf|P—2wv¢dx+ Tofﬂfgbdx,

== f is a weak solution of the stationary problem

1
-Apf(x)=——=fF Q.
pF(x) = —=5F (), x &

Also we prove the uniqueness of the stationary solution.
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Difference from the PME Case

Difficult convergence:

-
fo 0fQ|Vv(t+n,x)|p_2Vv(t+n,x)V¢dxdt—> TO/Q|Vf|p_2VfV¢>dX.
Idea:

@ Convergence in measure of gradients:
Vv(t,-) = VF(-) when t - oo in measure.

@ Energy estimate: /;2|Vv(t,x)|pdxsl\ﬂ7 VteR.

Then (1) + (2) = Vv(t,:) > Vf(-) a.e. in Q.
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Brezis,Cont.Nonl.Funct.An.,1971

Let A be a maximal monotone operator on a Hilbert space H. Let Z, and
W, be measurable functions from € (a finite measure space) into H.
Assume Z, - Z a.e. on Q and W, — W weakly in L}(Q; H). If

Wh(x) € A(Z,(x)) a.e. on Q, then W(x) € A(Z(x)) a.e. on Q.

Our case:
o O =[0, To) xQ (finite measure space), H=RN (Hilbert space).
o A:H— H, A(Z)=|Z|P~2Z maximal monotone operator.
o Zy(t,x)=Vv(t+n,x):Q1 - H,
o W,(t,x)=A(Z,(t,x)) =|vv(t+nx)P2Vv(t+nx):Q - H.

Lemma —> W, (t,x) —~ W(t,x) weakly in L}(Q1; H).
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Better convergence

Uniform Convergence:

v(t,x) = Tl/(piz)U(T,X) - f(x), T=e".

o ldea — Second type of rescaling - fixed rate rescaling:
1
ux(r,x) = Ar2u(A1), A>0.

@ uy is still a solution of (PLE).

@ On Qx (711, m2) the family {uy} >0 is equicontinuous ( because of the
Holder continuity and the a-priori estimates).

@ Ascoli Arzela Theorem == uniform convergence on subsequences
(U

@ Remark: uy(1,x) = v(log A, x)

o v(log \j,x) converges uniformly

@ The limit v(t,x) — f is unique = v(t,x) — f uniformly.
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Rate of Convergence

Rate of convergence for the PME

Hypothesis (H):

O Qs a bounded arcwise connected open set with compact closure and
regular boundary.

@ up is a nonnegative Lipschitz function defined on Q such that ug =0
on 0N.
Rate of convergence for the PME (Aronson & Peletier, J.Diff.Eq.1981)

Assume that Q and ug satisfy (H). Then 3 C € [0, +00) which depends
only on the data such that

11+ )Y Dyt x) - F(x)] <CF)A+ 1) in Qx[0,+00).
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Rate of Convergence

Rate of convergence for the PLE

Assume that Q and ug satisfy (H). Then 3 C € [0, +00) which depends
only on the data such that

I(1+ )Y P2yt x) - F(x)| <CF)(A+ )L in Qx[0,+00).

= u(t,x)=U(t,x) (1 +(’)(%))

Consider
o the separate variables solution of the PLE : U(r,x) = 7 Y/(P=2)f(x).
o the rescaled solution of the PLE: v(t,x) = 7'1/(”_2)u(7',x), T =et.

Convergence in relative error
Assume that Q and up satisfy (H). Then

u(r, ) vt
(7. )
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L°°(Q) t—o0

lim -

T—>00




Main steps:

© Upper bound. Prove there exists a constant 73 > 0 depending only
on p,d,up and Q s.t.

0<u(t,x)<(m+t) P 2F(x), xeQ, t>0.
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Main steps:

© Upper bound. Prove there exists a constant 73 > 0 depending only
on p,d,uy and Q s.t.

0<u(t,x)<(m+t) P 2F(x), xeQ, t>0.

@ Positivity. Prove that even if ug has compact support there exists
To > 0 depending only on p,d, ug and € s.t.

u(t,x)>0, xeQ,t>Tp.
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Main steps:

© Upper bound. Prove there exists a constant 73 > 0 depending only
on p,d,uy and Q s.t.

0<u(t,x)<(m+t) P 2F(x), xeQ, t>0.

@ Positivity. Prove that even if ug has compact support there exists
To > 0 depending only on p,d, ug and € s.t.

u(t,x)>0, xeQ,t>Tp.

© Lower bound. Prove there exist T* >0 and 79 > 0 depending only on
p,d,up and Q2 s.t.

u(t,x) 2 (r0+ ) P F(x), x e Qe > T
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Self-Similar solutions for the PLE

Barenblatt solutions:

-

p—

U(x, t;a,7)=c(t+7)™@ {[aﬁ - (|x|(t+7)—5)%]+}m 7

_ __ N o T 1 p-2\"\"
a_’BN’a_(p—z)N+p’B_(p—2)N+p’C_((P—2)’V+P( P) ) .

|-
5

Figure: Barenblatt solutions at t; > t, in N =1

Diana Stan (ICMAT & UAM) Nonlinear PDEs and Functional Inequalities September 19, 2011 17 / 25



Separate variable solutions:

U(t,x) = (t+7')‘1/(”‘2)f(x),x €Q,

where T is a fixed positive parameter and f is the solution of the elliptic

equation
1

p-2

Apf + f=0in€Q, f=0ondN.
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Intermediate self-similar solutions:

V(xtic,m) = (t+7)[g(n.0)]s, m=Ixl(t+7)7,

{ ag(n) +Bng'(n) + "' ()P2g' (n) + (p-1)lg'(n)P~2g" (1) = 0, >0,

g(0)=c, g'(0)=0.

K L L L L L L L
0 5 4 < 4 5 6 7 8

Figure: Solving the Cauchy problem for N =2,p = 3.
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Barenblatt solutions U(x, t; a,7) —> to describe the behavior inside Q:
@ Good point: compactly supported and they propagate in time.
@ Good point: solutions in the whole space.

© Landing contact is flat.

Intermediate family V(x, t; c,7) — to describe the behavior up to 9%

@ Good point: compactly supported and they propagate in time.
@ They are subsolutions of the PLE in Q .
© Landing contact not so flat.

Separate variables solutions U(t, x):
@ Good point: correct boundary behavior.

© Bad Point: they do not propagate.
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Upper bound
Prove there exists a constant 71 > 0 depending only on p,d, up and Q2 s.t.

0<u(t,x)<(m+t) VP 2f(x), xeQt>0.

— Use Comparison Principle between u and the separate variable solution
U(t,x) = (m1 +t) YPDf(x),
for an appropriate constant 73 > 0 chosen s.t.

m1f(x) > up(x) in Q.
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Positivity
Prove that even if ug has compact support there exists To > 0 depending
only on p,d, ug and € s.t.

u(t,x)>0, xeQ,t>T,p.

e Sufficient to prove the existence of T >0s.t u(T,x) >0, xeQ.

@ Prove positivity inside Q at a time T’ using a Lemma about
transmitting positivity between neighboring balls.

@ Prove positivity up to the boundary using the uniform continuity of
u(-, T") in a compact subset of Q.

‘Positivity «— Comparison from below with a Barenblatt solution
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Lower bound
Prove there exist T* >0 and 79 > 0 depending only on p,d, up and Q s.t.

u(t,x) > (1o + 1) VP 2Df(x),xeQ,t> T

Idea:
Prove that
u(T*, )2 kig() and  ¢(-) 2 kof(-) in Q,
N !
Comparison with V Comparison Principle
where

1 . .
Apf+ﬁf:0|nﬂ and App=1inQ
f =0 on 0Q. ¢ =0 on 0Q.
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Future work:

@ Extend the result for Fast Diffusion case of the p—Laplacian equation:

ugp=R0Dpu, 1<p<2.

— extinction in finite time, no conservation of mass.
— PME case: BGV-2001.

@ Extend the result for the doubly nonlinear equation

up = Apu™.

—> The separate variable solutions:
I
U(t, x) = tme-D1f(x),

Apf™=cf inQ, f=0on0dQ.
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Thank you for your attention!
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