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Some elliptic background

Part 1: Ellipticity
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The classical potential estimates

Consider the model case

−4u = µ in Rn

We have

u(x) =

∫
G (x , y)µ(y) dy

where

G (x , y) ≈


|x − y |2−n se n > 2

− log |x − y | se n = 2
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Estimates via Riesz potentials

Previous formula gives

|u(x)| .
∫
Rn

d |µ|(y)

|x − y |n−2
= I2(|µ|)(x)

while, after differentiation, we obtain

|Du(x)| .
∫
Rn

d |µ|(y)

|x − y |n−1
= I1(|µ|)(x)
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What happens in the nonlinear case?

For instance for nonlinear equations with linear growth

−div a(Du) = µ

that is equations well posed in W 1,2 (p-growth and p = 2)

And degenerate ones like

−div (|Du|p−2Du) = µ
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Local versions

In bounded domains one uses

Iµβ(x ,R) :=

∫ R

0

µ(B(x , %))

%n−β
d%

%
β ∈ (0, n]

since

Iµβ(x ,R).
∫
BR(x)

dµ(y)

|x − y |n−β

= Iβ(µxB(x ,R))(x)

≤ Iβ(µ)(x)

for non-negative measures
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The setting

We consider equations

−div a(Du) = µ

under the assumptions{
|a(z)|+ |∂a(z)||z | ≤ L|z |p−1

ν−1|z |p−2|λ|2 ≤ 〈∂a(x , z)λ, λ〉

with
p ≥ 2

this last bound is assumed in order to keep the exposition brief
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Non-linear potentials

The nonlinear Wolff potential is defined by

Wµ
β,p(x ,R) :=

∫ R

0

(
|µ|(B(x , %))

%n−βp

) 1
p−1 d%

%
β ∈ (0, n/p]

which for p = 2 reduces to the usual Riesz potential

Iµβ(x ,R) :=

∫ R

0

µ(B(x , %))

%n−β
d%

%
β ∈ (0, n]

The nonlinear Wolff potential plays in nonlinear potential
theory the same role the Riesz potential plays in the linear one
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A fundamental estimate

For solutions to div (|Du|p−2Du) = µ with p ≤ n we have

Theorem (Kilpeläinen-Malý, Acta Math. 94)

|u(x)| . Wµ
1,p(x ,R) +

(
−
∫
B(x ,R)

|u|p−1 dy

) 1
p−1

where

Wµ
1,p(x ,R) :=

∫ R

0

(
|µ|(B(x , %))

%n−p

) 1
p−1 d%

%

For p = 2 we have Wµ
1,p = Iµ2

Another approach to this result has been given by Trudinger &
Wang (Amer. J. Math. 02)
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Integral estimates follow via Wolff inequalities

We have

µ ∈ Lq =⇒Wµ
β,p ∈ L

nq(p−1)
n−qpβ q ∈ (1, n)

with related explicit estimates, also in Marcinkiewicz spaces

Such a property allows to reduce the study of
integrability of solutions to that of nonlinear potentials

The key is the following inequality:∫ ∞
0

(
|µ|(B(x , %))

%n−βp

) 1
p−1 d%

%
. Iβ

{
[Iβ(|µ|)]

1
p−1

}
(x)

the last quantity is called Havin-Maz’ja potential
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The potential gradient estimate for p = 2

Theorem (Min., JEMS 2011)

|Dξu(x)| . I
|µ|
1 (x ,R) +−

∫
B(x ,R)

|Dξu| dy

holds for almost every point x and ξ ∈ {1, . . . , n}
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A general potential gradient estimate

Theorem (Duzaar & Min., Amer. J. Math. 2011)

|Du(x)| . Wµ
1/p,p(x ,R) +−

∫
B(x ,R)

|Du| dy

holds for almost every point x

This means

|Du(x)| ≤ c

∫ R

0

(
|µ|(B(x , %))

%n−1

) 1
p−1 d%

%
+ c −

∫
B(x ,R)

|Du| dx
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First remarks

Since

µ ∈ Lq =⇒Wµ
1/p,p ∈ L

nq(p−1)
n−q q ∈ (1, n)

therefore, for instance

µ ∈ Lq =⇒ Du ∈ L
nq(p−1)
n−q

loc (Ω) q ∈ (1, n)

More in general, estimates in all rearrangement invariant
spaces follow, recovering all those already known for the model
case div (|Du|p−2Du) = µ, and fixing open borderline cases
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The two estimates

The two potential estimates are

|u(x)| . Wµ
1,p(x ,R) + c −

∫
B(x ,R)

|u| dy

and

|Du(x)| ≤ cWµ
1/p,p(x ,R) +−

∫
B(x ,R)

|Du| dy

They basically provide size estimates on u and Du

The aim is now to provide estimates on the oscillations
of solutions and/or alternatively, on intermediate
derivatives
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Calderón spaces of DeVore & Sharpley

The following definition is due to DeVore & Sharpley
(Mem. AMS, 1982)

Let α ∈ (0, 1], q ≥ 1, and let Ω ⊂ Rn be a bounded open
subset. A measurable function v , finite a.e. in Ω, belongs to
the Caldéron space Cαq (Ω) if and only if there exists a
nonnegative function m ∈ Lq(Ω) such that

|v(x)− v(y)| ≤ [m(x) + m(y)]|x − y |α

holds for almost every couple (x , y) ∈ Ω× Ω.
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Calderón spaces of DeVore & Sharpley

In other words
m(x) ≈ ∂αv(x)

Indeed DeVore & Sharpley take

Mα
#v(x) = sup

B(x ,%)
%−α −

∫
B(x ,%)

|v(y)− (v)B(x ,%)| dy

For α ∈ (0, 1) and q > 1 we have

W α,q ⊂ Cα,q ⊂W α−ε,q

therefore such spaces, although not being of interpolation
type, are just another way to say “fractional differentiabilty”
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A “universal potential estimate”

Theorem (Kuusi & Min.)

The estimate

|u(x)− u(y)|

≤ c

[
Wµ

1−α(p−1)
p

,p
(x ,R) + Wµ

1−α(p−1)
p

,p
(y ,R)

]
|x − y |α

+c −
∫
BR

|u| dξ ·
(
|x − y |

R

)α
holds uniformly in α ∈ [0, 1], whenever x , y ∈ BR/4

The cases α = 0 and α = 1 give back the two known
potential estimates as endpoint cases
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The homogeneous case

The estimate tells that

“∂αu(x) . Wµ

1−α(p−1)
p

,p
(x ,R)”

The case µ = 0 reduces to the classical estimate

|u(x)− u(y)| ≤ −
∫
BR

|u| dξ ·
(
|x − y |

R

)α
In the case p = 2 we have

|u(x)− u(y)| ≤ c
[
I
|µ|
2−α(x ,R) + I

|µ|
2−α(y ,R)

]
|x − y |α

+c −
∫
BR

|u| dξ ·
(
|x − y |

R

)α
which in the classical case −4u = µ can be derived directly
from the standard representation formula via potentials
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The second universal potential estimate

Theorem (Kuusi & Min.)

The estimate

|Du(x)− Du(y)|

≤ c

[
Wµ

1− (1+α)(p−1)
p

,p
(x ,R) + Wµ

1− (1+α)(p−1)
p

,p
(y ,R)

]
|x − y |α

+c −
∫
BR

|Du| dξ ·
(
|x − y |

R

)α
holds whenever α < αM , whenever x , y ∈ BR/4

The case α = 0 gives back the gradient potential estimate
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Part 2: Parabolicity
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Parabolics

The model case is here given by

ut − div (|Du|p−2Du) = µ ,

more in general we consider

ut − div a(Du) = µ .

A basic reference for existence and a priori estimates is the
work of Boccado, Dall’Aglio, Galloüet and Orsina, J. Funct.
Anal., 1997
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Problematic aspects

For basic scaling reasons the previous potential estimates do
not hold in the case p 6= 2

For the case p = 2 it holds

Theorem (Duzaar & Min., Amer. J. Math. 2011)

|Du(x , t)| . I
|µ|
1 (x , t; r) +−

∫
Qr (x ,t)

|Du| dz

holds for almost every point (x , t) and ξ ∈ {1, . . . , n}
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Problematic aspects

Here I
|µ|
1 (x , t; r) denotes the parabolic Riesz potential

I
|µ|
β (x , t; r) :=

∫ r

0

|µ|(Q%(x , t))

%N−β
d%

%
, β < N := n + 2

and
Q%(x , t) = B(x , %)× (t − %2, t)

is a standard parabolic cylinder

The case p 6= 2 is a very different story
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Recall the elliptic estimate

Theorem (Duzaar & Min., Amer. J. Math. 2011)

|Du(x)| . Wµ
1/p,p(x ,R) +−

∫
B(x ,R)

|Du| dy

holds for almost every point x

This means

|Du(x)| .
∫ R

0

(
|µ|(B(x , %))

%n−1

) 1
p−1 d%

%
+−
∫
B(x ,R)

|Du| dx
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Another way to say the same thing

if

c −
∫
B(x ,R)

|Du| dy + cWµ
1/p,p(x ,R) ≤ λ

then
|Du(x)| ≤ λ
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The intrinsic geometry of DiBenedetto

The basic analysis is the following: consider intrinsic
cylinders

Qλ
% (x , t) = B(x , %)× (t − λ2−p%2, t)

where it happens that

|Du| ≈ λ in Qλ
% (x , t)

then the equation behaves as

ut − λp−24u = 0

that is, scaling back in the same cylinder, as the heat equation

On intrinsic cylinders estimates “ellipticize”; in
particular, they become homogeneous
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DiBenedetto’s intrinsic estimate

The effect of intrinsic geometry

Theorem (DiBenedetto & Friedman, Crelle J. 85)

There exists a universal constant c ≥ 1 such that

c

(
−
∫
Qλr (x ,t)

|Du|p−1 dz

)1/(p−1)

≤ λ

then
|Du(x , t)| ≤ λ
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Intrinsic Wolff potentials

Define the intrinsic Wolff potential such that

Wµ
λ(x , t; r) :=

∫ r

0

[
|µ|(Qλ

% (x , t))

λ2−p%N−1

]1/(p−1)
d%

%

Note that

Wµ
λ(x , t; r) = I

|µ|
1 (x , t; r) when p = 2

and

Wµ
λ(x , t; r) = Wµ

1/p,p(x , r) when µ is time independent

this is the elliptic case
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The parabolic Wolff gradient bound

Theorem (Kuusi & Min.)

There exists a universal constant c ≥ 1 such that

cWµ
λ(x , t; r) + c

(
−
∫
Qλr (x ,t)

|Du|p−1 dz

)1/p−1

≤ λ

then
|Du(x , t)| ≤ λ

When µ ≡ 0 this reduces to the sup estimate of
DiBenedetto & Friedman (Crelles J. 84)
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Sharpness

Consider the equation

ut − div (|Du|p−2Du) = δ,

where δ denotes the Dircac unit mass charging the origin

The so called Barenblatt (fundamental solution) is

Bp(x , t) =

t−
n
θ

(
cb − θ

1
1−p

(
p − 2

p

) (
|x |
t1/θ

) p
p−1

) p−1
p−2

+

t > 0

0 t ≤ 0 .

for θ = n(p − 2) + p and a suitable constant cb such that∫
Rn

Bp(x , t) dx = 1 ∀ t > 0
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Sharpness

A direct computation shows the following upper optimal
upper bound

|DBp(x , t)| ≤ ct−(n+1)/θ

The intrinsic estimate above exactly reproduces this upper
bound

This decay estimate is indeed reproduced for all those
solutions that are initially compactly supported
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A priori estimates

The previous bound always implies a priori estimates on
standard parabolic cylinders

Theorem (Kuusi & Min.)

|Du(x , t)|.

[∫ r

0

(
|µ|(Q%(x , t))

%N−1

)1/(p−1) d%

%

]p−1

+−
∫
Qr (x ,t)

(|Du|+ s + 1)p−1 dz

holds for every standard parabolic cylinder Qr
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A priori estimates

Theorem (Kuusi & Min.)

|Du(x , t)|. [Wµ
1 (x , t; r)]

p−1
+−
∫
Qr (x ,t)

(|Du|+ s + 1)p−1 dx dt

holds for every standard parabolic cylinder Qr

The scaling deficit exponent p − 1 appears
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Occurrence of deficit scaling exponents

For solutions to

ut −4pu = div (|F |p−2F )

Theorem (Acerbi & Min., Duke Math. J. 2007)

(
−
∫
Qr

|Du|q dz
) 1

q

.

[(
−
∫
Q2r

|Du|p dz
) 1

p

+

(
−
∫
Q2r

|F |q dz
) 1

q

+ 1

] p
2

for every q ≥ p

The scaling deficit exponent p/2 appears
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A priori estimates

Theorem (Kuusi & Min.)

It µ is time independent than

|Du(x , t)| . Wµ
1/p,p(x , r) +−

∫
Qr

(|Du|+ s + 1)p−1 dx dt

holds for every standard parabolic cylinder Qr
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A basic tool

Theorem (Kuusi & Min., General regularity estimate)

A,B, q ≥ 1 and ε ∈ (0, 1) .

Then there exists a constant δε ∈ (0, 1/2)

λ

B
≤ sup

Qλδεr

‖Dw‖ ≤ sup
Qλr

‖Dw‖ ≤ Aλ

holds, then
Eq(Dw , δεQ

λ
r ) ≤ εEq(Dw ,Qλ

r )

holds, where

Eq(Dw ,Qλ
% ) :=

(
−
∫
Qλ%

|Dw − (Dw)Qλ% |
q dx dt

)1/q
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Gradient continuity via potentials

Theorem (Kuusi & Min.)

Assume that
lim
r→0

sup
(x ,t)∈ΩT

Wµ
1 (x , t; r) = 0

holds, then Du is continuous in QT

Previous assumption reads as

lim
r→0

sup
(x ,t)∈ΩT

∫ r

0

(
|µ|(Q%(x , t))

%N−1

)1/(p−1) d%

%
= 0

i.e. the convergence is uniform
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A subtle fact

Theorem (Kuusi & Min., General regularity estimate)

A,B, q ≥ 1 and ε ∈ (0, 1) .

Then there exists a constant δε ∈ (0, 1/2)

λ

B
≤ sup

Qλδεr

‖Dw‖ ≤ sup
Qλr

‖Dw‖ ≤ Aλ

holds, then
Eq(Dw , δεQ

λ
r ) ≤ εEq(Dw ,Qλ

r )

with

δγ =
1

c(A)

( ε
B

)1/α
,
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Gradient continuity via potentials

Theorem (Kuusi & Min.)

Assume that
|µ|(Q%) . %N−1+δ

holds, then thtere exists α, depending on δ, such that

Du ∈ C 0,α locally in QT
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Thanks for the attention (self-portrait of Serena Nono)
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