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The hyperbolic space Hn-a short reminder

Several coordinates models are possible. E.g. we can identify
Hn with Rn−1 × R+ endowed with the metric

ds2 =
1
y2 (dx2 + dy2), x ∈ Rn−1, y > 0.

The Ricci curvature is shown to be constant and negative. Other
important facts:

Volume element: dVol = y−ndx dy ;
Laplacian (on functions):
∆ = y2 (∆x + ∂2/∂y2)− (n − 2)y(∂/∂y);
Riemannian distance d between two points:

cosh
(d

2

)
=
[
|x1−x2|2+(y1−y2)

2

4y1y2

]1/2
.
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Let, given a fixed a ∈ Hn, %(x) = d(a, x) . The above formulas
imply that ∆% = (n−1) cosh % . Hence, for a function depending
on % only:

∆f (%) = f ′′(%) + (n − 1) coth % f ′(%)

=
1

(sinh %)n−1
d
d%

[
(sinh %)n−1f ′(%)

]
.

Further crucial functional analytic properties:

σL2(−∆) =
[
(n−1)2

4 ,+∞
)

(Poincaré-type inequality).

‖u‖2n/(n−2) ≤ C‖∇u‖2 (Sobolev inequality: related to the
curvature bound and the behaviour of the Green’s
function).
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The radial setting

The quantity % can be used to give the hyperbolic space the
structure of a model manifold: given a pole o, the metric has
the form

ds2 = d%2 + f (%)2dω2,

for an appropriate function f , where % is the Riemannian distance
from the pole o and dω2 is the canonical metric on Sn−1.

The hyperbolic space Hn is obtained by choosing f (%) = sinh % .

The volume element is dµ = (sinh %)n−1 d%dσ , where dσ is the
volume element on Sn−1.
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The Emden-Fowler equation
on the hyperbolic space

Consider the following nonlinear elliptic equation

∆u + |u|p−1u = 0 in Hn,

on the hyperbolic space Hn.

∆ := div∇ is the Laplace-Beltrami operator on Hn and we take
p > 0.

A function is radial if it depends on the Riemannian distance r
from a pole o.
Our purpose is classifying smooth radial solutions which
satisfy the ODE

u′′(%) + (n − 1)(coth %)u′(%) + |u(%)|p−1u(%) = 0 for % > 0 ,

together with the initial conditions u(0) = α, u′(0) = 0 .
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The study of this problem was initiated by

• G. Mancini, K. Sandeep, Annali Pisa 2008
• M. Bhakta, K. Sandeep, preprint 2011,

for the slightly more general equation ∆u + λu + |u|p−1u = 0
in the range p ∈ (1, n+2

n−2) . They consider energy solutions
in H1(Hn). Here variational methods can be successfully em-
ployed.

Later, Punzo (JDE 2011) studied the Dirichlet problems on balls
and related evolution equations, also considered by Bandle, Pozio,
Tesei (JDE 2011, to appear).
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EUCLIDEAN CASE

We discuss our results in comparison with those regarding radial
solutions to the intensively studied Euclidean problem ∆u+up =
0 , namely with solutions to

u′′(%) +
n − 1
%

u′(%) + |u(%)|p−1u(%) = 0 for % > 0 ,

together with the initial conditions u(0) = α, u′(0) = 0 .
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THE SUPERCRITICAL CASE

THEOREM For any p ≥ n+2
n−2 the equation

∆u + |u|p−1u = 0 in Hn,

admits infinitely many positive radial solutions u = u(%) and
infinitely many negative solutions. All radial solutions u with
u(0) > 0, u′(0) = 0, are everywhere positive and decay poly-
nomially at infinity with the following rates

lim
%→+∞

%1/(p−1)u(%) = c(n,p) :=

(
n − 1
p − 1

)1/(p−1)

lim
%→+∞

u′(%)

u(%)
= lim

r→+∞

u′′(%)

u′(%)
= 0.

For u(0) < 0, u′(0) = 0, the solutions are everywhere nega-
tive and decay polynomially with the opposite limit −c(n,p). In
particular, any radial solution u belongs to Lq(µ) only for q =∞.

EUCLIDEAN CASE: result qualitatively similar but solutions de-
cay differently, like %−2/(p−1) .
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REMARK As a byproduct of our proof we obtain the following
non-existence result for solutions to the Dirichlet problem in a
ball:

COROLLARY If p ≥ n+2
n−2 , then for any radius R > 0, the equa-

tion
∆u + |u|p−1u = 0 in BR,

admits no positive radial solution u = u(%) satisfying u(R) = 0 .

In the case p = n+2
n−2 this result is already known (Stapelkamp,

Proceedings (Rolduc/Gaeta) 2002)
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Plot of some solutions when d = 3, p = 6 (supercritical case).
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Phase plot of some solutions when d = 3, p = 6 (supercritical
case).
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METHOD OF PROOF: A POHOŽAEV-TYPE FUNCTIONAL

Let
φn(%) =

∫ %

0
(sinh s)n−1 ds

and for all solution to u′′(%)+(n−1)(coth %)u′(%)+|u(%)|p−1u(%) =
0 define

Ψ(%) := φn(%)

(
u′(%)2

2
+
|u(%)|p+1

p + 1

)
+ (sinh %)n−1 u(%)u′(%)

p + 1
.

• If p ≥ n+2
n−2 , then Ψ′(%) < 0 and Ψ(%) < 0 for all % > 0.

• If 1 < p < n+2
n−2 , then ∃Rn,p > 0 s.t. Ψ′(%) > 0 for all % <

Rn,p, Ψ′(%) < 0 for all % > Rn,p so that % 7→ Ψ(%) is eventually
decreasing and admits a limit as %→ +∞.
• If 0 < p ≤ 1, then Ψ′(%) > 0 and Ψ(%) > 0 for all % > 0.
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METHOD OF PROOF: A POHOŽAEV-TYPE FUNCTIONAL
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∫ %
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2
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p + 1
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p + 1
.
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THE SUBCRITICAL CASE

A first main difference with the supercritical case is the existence
of a positive global solution having fast decay at infinity.

THEOREM (Mancini-Sandeep) Let 1 < p < n+2
n−2 . There exists

a unique function U ∈ H1
r (Hn) which is a radial positive and

bounded solution to the equation

∆U + |U|p−1U = 0 in Hn,

The function U is (radially) decreasing and ∃ c > 0 such that

lim
%→+∞

e(n−1)%U(%) = c.

Of course, ∃ ! negative ground state which is given by −U.

EUCLIDEAN CASE: 6 ∃ positive solutions.
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We use the ground state U in the classification of all radial solu-
tions. We restrict ourselves to the case u(0) = α > 0.

THEOREM Let 1 < p < n+2
n−2 and let U be the unique positive

ground state. Each local solution u satisfying

0 < u(0) < U(0)

can be extended as a positive solution for 0 < % < ∞, hence
generating a positive radial solution to

∆u + |u|p−1u = 0 in Hn.

Moreover, there exists a unique %0 > 0 such that u(%0) = U(%0)
and the asymptotic behavior is given by

lim
%→+∞

%1/(p−1)u(%) = c(n,p) ,

the same constant of the supercritical case. None of these
slow-decaying solutions belongs to the energy space H1

r (Hn) .
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A second main difference is the presence of sign-changing so-
lutions.

THEOREM Let 1 < p < n+2
n−2 and let U be the unique positive

ground state. If u(0) > U(0) , then u is sign-changing. More-
over:
(i) if u(0) = α > U(0) and if %α denotes the first zero of u, then
α 7→ %α is strictly decreasing from (U(0),∞) into (0,∞) ;
(ii) any radial sign-changing solution has finitely many zeros;
(iii) ∃ infinitely many radial sign-changing solutions u 6∈ H1(Hn) ,
having exactly one zero, and satisfying (same constant!)

lim
%→+∞

%1/(p−1)u(%) = −c(n,p);

(iv) ∀k ≥ 1 ∃ infinitely many solutions having exactly k zeros;
(v) ∀ radial sign-changing solution u ∈ H1(Hn) ∃c ∈ R s.t.

lim
%→+∞

e(n−1)%U(%) = c.

EUCLIDEAN CASE: all sign-changing radial solutions have in-
finitely many zeros (see Pucci-Serrin, Asympt. Anal. 1991).
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SOME COMMENTS

– We can identify the solution U with the separatrix between the
sign-changing class from the globally positive radial solutions in
hyperbolic space. In particular all radial solutions u satisfying
u(0) > U(0) change sign.
– The L∞-norm U(0) of the variational solution U is the opti-
mal a priori bound for all positive radial and global solutions in
the subcritical case. Sign-changing solutions have no a priori
bound.
– Item (iv) can be complemented with the statement that for any
integer k ≥ 1 there exists αk > 0 such that if u(0) > αk , then
the solution has at least k zeros.
– Mancini-Sandeep proved that the corresponding Dirichlet prob-
lem admits a unique radial positive solution in any ball of finite
radius.
– Bhakta-Sandeep proved that there exist infinitely many sign-
changing solutions which can be chosen to be radial and be-
longing to H1(Hn).
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CONJECTURES

u(0) −→0

u > 0

U(0)

u has 1 zero

U1(0)

u has 2 zeros

U2(0)

......

Uk−1(0)

u has k zeros

The solutions {Uk} have finite (increasing and divergent) energy.

This conjecture is motivated by our proof: we show that zeros of
u may enter from infinity once at a time as u(0) increases.

Numerics shows that in the supercritical case and for large di-
mensions and p large the solutions are ordered and do not inter-
sect. The corresponding result is true in the Euclidean setting.
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The solutions {Uk} have finite (increasing and divergent) energy.

This conjecture is motivated by our proof: we show that zeros of
u may enter from infinity once at a time as u(0) increases.
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SOME EXPLICIT GROUND STATES

U(%) =
[n2(n − 1)]n−1

(1 + cosh %)n−1 for p =
n

n − 1

U(%) =
[n(n − 1)](n−1)/2

(cosh %)n−1 for p =
n + 1
n − 1

U(%) =

(
n(n−1)

n+1

)(n−1)/4

(
sinh2 %+ 1

n+1

)(n−1)/2 for p =
n + 3
n − 1

.

These are the extremals for the best constant in the inequalities

‖u‖q ≤ C‖∇u‖2 , q =
2n − 1
n − 1

, q =
2n

n − 1
, q =

2n + 2
n − 1

.

Such inequalities are true by interpolation between the Sobolev
and Poincaré inequalities on Hn.
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Plot of some positive solutions when d = 3, p = 2 (subcritical case).
The special exponentially decaying solution U corresponds to the
blue line (U(0) = 6)
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Phase plot of some positive solutions when d = 3, p = 2 (subcritical
case). The special exponentially decaying solution U corresponds to
the blue line (U(0) = 6)
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Phase plot of some sign-changing solutions when d = 3, p = 2
(subcritical case).
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Plot of some sign-changing solutions when d = 3, p = 2 (subcritical
case).
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THE SUBLINEAR CASE

THEOREM Let 0 < p < 1. Then there exists no positive radial
solution to

∆u + |u|p−1u = 0 in Hn.

All radial solutions change sign infinitely many times and

lim sup
%→+∞

e
n−1
p+1 %u(%) > 0 , lim inf

%→+∞
e

n−1
p+1 %u(%) < 0 .

In this case we have no globally positive solutions. Moreover
all sign-changing solutions have infinitely many zeros and slow
decay at infinity since the bound |u(%)| ≤ Ce−(n−1)% does not
hold.

EUCLIDEAN CASE: nonexistence of positive solutions, all sign-
changing solutions have infinitely many zeros,

lim sup
%→+∞

%
n

p+1 u(%) > 0 , lim inf
%→+∞

%
n

p+1 u(%) < 0 .
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Phase plot of one sign-changing solution when d = 3, p = 1
2

(sublinear case).
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SOME OPEN PROBLEMS (among many others)

Which are the conditions on curvature which determine the
properties of solutions of the Emden-Fowler equation
proved here?
Consider the parabolic equation

u̇ = ∆um

with m < 1 in Hn. The special solution U found before
gives rise to an integrable, separable variable solution,
vanishing in finite time T :

U(%, t) = c U(%)1/m(T − t)1/(1−m).

This is known to be an attractor for more general solutions
in the Euclidean case: u

U − 1→ 0 in L∞as t → T (see M.
Bonforte’s talk). We believe that similar results can be
proved here in the range m ∈

(
n−2
n+2 ,1

)
.
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THANK YOU FOR YOUR ATTENTION!
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