A Discrete Bernoulli Problem

María del Mar González

Universitat Politècnica de Catalunya

September 20th, 2011

- Joint work with: M. Gualdani (UT Austin), H. Shahgholian (KTH)
- Aim: New free boundary problems.

Motivation - (exterior) Bernoulli problem

Given $K \subset \mathbb{R}^N$ convex bounded set and $\omega > 0$ constant, find a solution (u, Ω) of

$$(P_B) \qquad \begin{cases} \Delta_p \ u = 0 & \text{in } \Omega \setminus \overline{K}, \\ u = 1 & \text{in } \overline{K}, \\ u = 0 & \text{in } \partial \Omega, \\ |\nabla u| = \omega & \text{for all } x \in \partial \Omega. \end{cases}$$

Theorem (Henrot-Shahgholian)

 \exists ! smooth solution, $\partial \Omega \in C^{2,\alpha}$.

Applications: (Flucher-Rupmf, ...)

- Free surfaces in ideal fluid dynamics.
- Galvanization processes.
- Optimal insulation.

Interesting question: numerical approximation.

Problem: Fix $K \subset \mathbb{R}^N$ convex open bounded. Given constants $l \in (0, 1), \lambda > 0$, find a function u and a convex open bounded domain $\Omega \in \mathbb{R}^N$, $\Omega \supset \overline{K}$, solution of

$$(P_E) \qquad \begin{cases} \Delta_p \ u = 0 & \text{ in } \Omega \setminus \overline{K}, \\ u = 1 & \text{ in } \overline{K}, \\ u = 0 & \text{ on } \partial\Omega, \\ \text{dist}(x, \{u = l\}) = \lambda & \text{ for all } x \in \partial\Omega. \end{cases}$$

Theorem A (existence and uniqueness)

 \exists ! solution, $u \in C^{1,\alpha}$, $\partial \Omega \in C^{1,1}$ convex,

Serrin's problem

Problem: Let D be a smooth bounded domain, u solution of

$$\begin{cases} -\Delta u = 1 \text{ in } D, \\ u = 0 \text{ on } \partial D, \\ |\nabla u| = \omega \text{ on } \partial D. \quad (*) \end{cases}$$

Theorem (Serrin, Weinberger)

Then *D* is a ball.

New problem: Substitute condition (*) by

dist
$$(x, \{u = l\}) = \lambda$$
 for all $x \in \partial D$

Theorem (Shahgholian)

Then D is a ball.

Inspiration: price formation model (G.-Gualdani)

Some preliminaries

p-Laplacian:

$$\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u), \quad 1$$

• $u \in \mathcal{C}_{loc}^{1,\alpha}(U).$

- U exterior cone condition \Rightarrow $u \in C^{\alpha}(\overline{U})$.
- U domain $\mathcal{C}^{1,\alpha} \Rightarrow u \in \mathcal{C}^{\beta}(\overline{U}).$

Let $K \subset \Omega \subset \mathbb{R}^N$, K, Ω convex open.

• u_{Ω} is the *p*-capacitary potential in $\Omega \setminus K$ if

$$\begin{cases} \Delta_p \ u_{\Omega} = 0 \quad \text{in } \Omega \setminus \overline{K}, \\ u_{\Omega} = 1 \quad \text{on } \overline{K}, \\ u_{\Omega} = 0 \quad \text{on } \partial \Omega. \end{cases}$$

• (Lewis) Let $l \in [0, 1)$. The level sets $\{u_{\Omega} > l\}$ are convex.

• Subsolutions

$$\mathcal{A} = \{\Omega \text{ convex}, \Omega \supset \overline{K} \mid \sup_{x \in \partial \Omega} \operatorname{dist}(x, \{u_{\Omega} = l\}) \leq \lambda\}$$

- Strict subsolutions $\mathcal{A}_0 = \{\Omega \text{ convex}, \Omega \supset \overline{K} \mid \inf_{x \in \partial \Omega} \operatorname{dist}(x, \{u_\Omega = l\}) < \lambda\}$
- Supersolutions

$$\mathcal{B} = \{\Omega \text{ convex}, \Omega \supset \overline{K} \mid \inf_{x \in \partial \Omega} \operatorname{dist}(x, \{u_{\Omega} = l\}) \geq \lambda\}$$

- \mathcal{A}_0 , \mathcal{B} are nonempty.
- $\Omega_1, \Omega_2 \in \mathcal{B} \Rightarrow \Omega_1 \cap \Omega_2 \in \mathcal{B}.$
- Stability: Let $\Omega_1 \supset \Omega_2 \supset \ldots$ sequence in \mathcal{B} and $\Omega = \overline{\cap \Omega_k}$ $\Rightarrow \quad \Omega \in \mathcal{B}.$
- Note that $u_k \to u \in \mathcal{C}_{loc}^{1,\alpha}$ but only \mathcal{C}^{α} up to the boundary.
- Let Ω minimal set in B. Then (Ω, u) satisfies the distance property.
- Regularity.

Main idea: Lavrent'ev rescaling method.

- Suppose \exists two solutions, (u_1, Ω_1) and (u_2, Ω_2) .
- Let $\epsilon < 1$ and rescale $u_2^{\epsilon}(x) = u_2(\frac{x}{\epsilon})$ so that $\Omega_2^{\epsilon} \subset \Omega_1$, until they touch.
- Comparison principle \Rightarrow $u_2^{\epsilon} \leq u_1$
- If $x^0 \in \partial \Omega_2^{\epsilon} \cap \partial \Omega_1$, $\epsilon \lambda = \operatorname{dist}(x^0, \{u_2^{\epsilon} = l\}) \ge \operatorname{dist}(x^0, \{u_1 = l\}) = \lambda$.
- Contradiction.

Theorem B

Let λ_n , l_n such that $l_n = \omega \lambda_n$. Then the solution to the discrete Bernoulli problem (u_n, Ω_n) converges to (u, Ω) solution of Bernoulli.

Proof:

- Easy to see that $u_n \rightarrow u$ in $\mathcal{C}_{loc}^{1,\alpha}$, \mathcal{C}^{α} up to the boundary.
- Let S_n := {0 ≤ u_n ≤ l_n}. Since level sets are convex, the distance function is superharmonic in the set S_n.
- Comparison principle yields that $u_n \leq d_n$ everywhere in S_n .

•
$$|\nabla u_n| \leq |\nabla d| = \omega$$
 on $\partial \Omega_n$.

Now get equality.

The interior problem

Problem: given a convex open bounded set $\Omega \subset \mathbb{R}^N$, $l \in (0, 1)$, $\lambda > 0$, find a function u_K and a convex open bounded domain $K \subset \Omega$ such that

$$(P_{I}) \qquad \begin{cases} \Delta_{p} \ u = 0 \quad \text{in } \Omega \setminus \overline{K}, \\ u = 0 \quad \text{in } \overline{K}, \\ u = 1 \quad \text{in } \partial \Omega, \\ \text{dist}(x, \{u = I\}) = \lambda, \quad \text{for all } x \in \partial K, \end{cases}$$

Theorem C

 \exists a constant $\lambda_{\Omega, max}$ such that for any $\lambda \leq \lambda_{\Omega, max}$ problem (P_I) has a solution (u_K, K) .

- $\lambda_{\Omega, max}$ is called the Bernoulli constant.
- No uniqueness.
- $\partial \Omega \in \mathcal{C}^{\alpha}$.

Consider the radial case $\Omega = B(0, R)$:

Lemma

If Ω is a ball in \mathbb{R}^2 or \mathbb{R}^3 , there exists a constant λ_{max} such that problem (P_I) has a unique solution only for $\lambda = \lambda_{max}$, two solutions if $0 < \lambda < \lambda_{max}$ and no solutions if $\lambda > \lambda max$.

- Non-constant boundary condition.
- Star-shaped case.
- Variational formulation.
- Numerical analysis.