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GLOBAL SOLUTIONS

We consider the differential equation

w ′′′′(s) + kw ′′(s) + f (w(s)) = 0 (s ∈ R)

where k ∈ R and

f ∈ Liploc(R) , f (t) t > 0 for every t ∈ R \ {0}.
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GLOBAL SOLUTIONS

We consider the differential equation

w ′′′′(s) + kw ′′(s) + f (w(s)) = 0 (s ∈ R)

where k ∈ R and

f ∈ Liploc(R) , f (t) t > 0 for every t ∈ R \ {0}.

THEOREM
(i) If a local solution w blows up at some finite R ∈ R, then

lim inf
s→R

w(s) = −∞ and lim sup
s→R

w(s) = +∞ .

(ii) If f also satisfies

lim sup
t→+∞

f (t)

t
< +∞ or lim sup

t→−∞

f (t)

t
< +∞,

then any local solution exists for all s ∈ R.

• E. Berchio, A. Ferrero, F. Gazzola, P. Karageorgis, 2011
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COMMENTS
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COMMENTS

• If both the conditions

lim sup
t→+∞

f (t)

t
< +∞ and lim sup

t→−∞

f (t)

t
< +∞,

are satisfied then global existence is straightforward.
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COMMENTS

• If both the conditions

lim sup
t→+∞

f (t)

t
< +∞ and lim sup

t→−∞

f (t)

t
< +∞,

are satisfied then global existence is straightforward.

• Under the sole assumption

f ∈ Liploc(R) , f (t) t > 0 for every t ∈ R \ {0} (1)

finite time blow up can occur only with wide oscillations.
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COMMENTS

• If both the conditions

lim sup
t→+∞

f (t)

t
< +∞ and lim sup

t→−∞

f (t)

t
< +∞,

are satisfied then global existence is straightforward.

• Under the sole assumption

f ∈ Liploc(R) , f (t) t > 0 for every t ∈ R \ {0} (1)

finite time blow up can occur only with wide oscillations.

• The first order equation w ′ + ew − 1 = 0 has the solution
w(s) = − log(1 − e−s) which blows up as s ց 0.
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COMMENTS

• If both the conditions

lim sup
t→+∞

f (t)

t
< +∞ and lim sup

t→−∞

f (t)

t
< +∞,

are satisfied then global existence is straightforward.

• Under the sole assumption

f ∈ Liploc(R) , f (t) t > 0 for every t ∈ R \ {0} (1)

finite time blow up can occur only with wide oscillations.

• The first order equation w ′ + ew − 1 = 0 has the solution
w(s) = − log(1 − e−s) which blows up as s ց 0.

• The first order equation w ′ + w + w3 = 0 has the solutions
w(s) = γ√

e2s−γ2
(γ ∈ R) which, if γ 6= 0, blow up as s ց log |γ|.

The blow up occurs monotonically.
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• Consider the second order equation w ′′ + f (w) = 0 with f

merely satisfying (1). Solution are concave (convex) whenever
positive (negative). By studying the corresponding Hamiltonian
system, any local solution is global.
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• Consider the second order equation w ′′ + f (w) = 0 with f

merely satisfying (1). Solution are concave (convex) whenever
positive (negative). By studying the corresponding Hamiltonian
system, any local solution is global.

• Consider instead the second order equation −w ′′ + f (w) = 0
with f satisfying (1); w is convex whenever it is positive and
therefore it blows up monotonically in finite time if f is superlinear
(Mitidieri-Pohožaev, 2001). In fact, the same occurs for the fourth
order equation if we change sign to a superlinear f .
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• Consider the second order equation w ′′ + f (w) = 0 with f

merely satisfying (1). Solution are concave (convex) whenever
positive (negative). By studying the corresponding Hamiltonian
system, any local solution is global.

• Consider instead the second order equation −w ′′ + f (w) = 0
with f satisfying (1); w is convex whenever it is positive and
therefore it blows up monotonically in finite time if f is superlinear
(Mitidieri-Pohožaev, 2001). In fact, the same occurs for the fourth
order equation if we change sign to a superlinear f .

• The third order equation w ′′′ + w3 = 0 admits the solutions

w(s) = ±
√

105
8 s−3/2 which are defined on (0,+∞) and blow up

monotonically as s ց 0.
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• Consider the second order equation w ′′ + f (w) = 0 with f

merely satisfying (1). Solution are concave (convex) whenever
positive (negative). By studying the corresponding Hamiltonian
system, any local solution is global.

• Consider instead the second order equation −w ′′ + f (w) = 0
with f satisfying (1); w is convex whenever it is positive and
therefore it blows up monotonically in finite time if f is superlinear
(Mitidieri-Pohožaev, 2001). In fact, the same occurs for the fourth
order equation if we change sign to a superlinear f .

• The third order equation w ′′′ + w3 = 0 admits the solutions

w(s) = ±
√

105
8 s−3/2 which are defined on (0,+∞) and blow up

monotonically as s ց 0.

Finite time blow up forces wide oscillations

only in equations of order at least 4.
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TWO QUESTIONS:
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TWO QUESTIONS:

1) If f ∈ Liploc(R) and f (t) t > 0 ∀t ∈ R \ {0}, then finite time
blow up can occur only with wide oscillations. Does it occur?
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TWO QUESTIONS:

1) If f ∈ Liploc(R) and f (t) t > 0 ∀t ∈ R \ {0}, then finite time
blow up can occur only with wide oscillations. Does it occur?

2) This is a PDE conference...

Nonlinear PDEs and Functional Inequalities Workshop
UAM Madrid (Spain), September 19-20, 2011

Are there some applications to PDEs?
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TWO QUESTIONS:

1) If f ∈ Liploc(R) and f (t) t > 0 ∀t ∈ R \ {0}, then finite time
blow up can occur only with wide oscillations. Does it occur?

2) This is a PDE conference...

Nonlinear PDEs and Functional Inequalities Workshop
UAM Madrid (Spain), September 19-20, 2011

Are there some applications to PDEs?

TWO ANSWERS: YES & YES
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THEOREM Assume that

f ∈ Liploc(R) , ∃λ, δ, γ > 0 s.t. f (t)t ≥ δt2 + λ|t|2+γ ∀t ∈ R.

Let w be a local solution to

w ′′′′(s) + f (w(s)) = 0 (s ∈ R)

in a neighborhood of s = 0 such that

w ′(0)w ′′(0) − w(0)w ′′′(0) > 0 .
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THEOREM Assume that

f ∈ Liploc(R) , ∃λ, δ, γ > 0 s.t. f (t)t ≥ δt2 + λ|t|2+γ ∀t ∈ R.

Let w be a local solution to

w ′′′′(s) + f (w(s)) = 0 (s ∈ R)

in a neighborhood of s = 0 such that

w ′(0)w ′′(0) − w(0)w ′′′(0) > 0 .

Let R ∈ (0,+∞] be the supremum of the maximal interval of
continuation of w . Then ∃{sj}j∈N (increasing) such that:
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THEOREM Assume that

f ∈ Liploc(R) , ∃λ, δ, γ > 0 s.t. f (t)t ≥ δt2 + λ|t|2+γ ∀t ∈ R.

Let w be a local solution to

w ′′′′(s) + f (w(s)) = 0 (s ∈ R)

in a neighborhood of s = 0 such that

w ′(0)w ′′(0) − w(0)w ′′′(0) > 0 .

Let R ∈ (0,+∞] be the supremum of the maximal interval of
continuation of w . Then ∃{sj}j∈N (increasing) such that:
(i) sj ր R as j → ∞;
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THEOREM Assume that

f ∈ Liploc(R) , ∃λ, δ, γ > 0 s.t. f (t)t ≥ δt2 + λ|t|2+γ ∀t ∈ R.

Let w be a local solution to

w ′′′′(s) + f (w(s)) = 0 (s ∈ R)

in a neighborhood of s = 0 such that

w ′(0)w ′′(0) − w(0)w ′′′(0) > 0 .

Let R ∈ (0,+∞] be the supremum of the maximal interval of
continuation of w . Then ∃{sj}j∈N (increasing) such that:
(i) sj ր R as j → ∞;
(ii) lim

j→∞
(sj+1 − sj) = 0;
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THEOREM Assume that

f ∈ Liploc(R) , ∃λ, δ, γ > 0 s.t. f (t)t ≥ δt2 + λ|t|2+γ ∀t ∈ R.

Let w be a local solution to

w ′′′′(s) + f (w(s)) = 0 (s ∈ R)

in a neighborhood of s = 0 such that

w ′(0)w ′′(0) − w(0)w ′′′(0) > 0 .

Let R ∈ (0,+∞] be the supremum of the maximal interval of
continuation of w . Then ∃{sj}j∈N (increasing) such that:
(i) sj ր R as j → ∞;
(ii) lim

j→∞
(sj+1 − sj) = 0;

(iii) w(sj) = 0 and w has constant sign in (sj , sj+1) for all j ∈ N;
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THEOREM Assume that

f ∈ Liploc(R) , ∃λ, δ, γ > 0 s.t. f (t)t ≥ δt2 + λ|t|2+γ ∀t ∈ R.

Let w be a local solution to

w ′′′′(s) + f (w(s)) = 0 (s ∈ R)

in a neighborhood of s = 0 such that

w ′(0)w ′′(0) − w(0)w ′′′(0) > 0 .

Let R ∈ (0,+∞] be the supremum of the maximal interval of
continuation of w . Then ∃{sj}j∈N (increasing) such that:
(i) sj ր R as j → ∞;
(ii) lim

j→∞
(sj+1 − sj) = 0;

(iii) w(sj) = 0 and w has constant sign in (sj , sj+1) for all j ∈ N;
(iv) max

s∈[sj ,sj+1]
|w(s)| → +∞ as j → ∞.
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Assumptions:
f is superlinear + k = 0 + suitable initial condition.
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Assumptions:
f is superlinear + k = 0 + suitable initial condition.

Statement:
Any local solution has infinitely many oscillations which tend to
enlarge width and to concentrate on small intervals.

Filippo GAZZOLA - Politecnico di Milano (Italy) Blow up in fourth order equations



Assumptions:
f is superlinear + k = 0 + suitable initial condition.

Statement:
Any local solution has infinitely many oscillations which tend to
enlarge width and to concentrate on small intervals.

This is not yet what we expected, but it gives a strong hint.
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Why k = 0? Because the solution exhibits some nice qualitative
behavior for k ≥ 0 and some others for k ≤ 0.
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Why k = 0? Because the solution exhibits some nice qualitative
behavior for k ≥ 0 and some others for k ≤ 0.

Moreover:
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Figure: Qualitative behavior of the solution w in the interval [sj , tj ].
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CRITICAL GROWTH BIHARMONIC EQUATIONS

For n ≥ 5 consider the coercive elliptic equation

∆2u + |u|8/(n−4)u = 0 in R
n.
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CRITICAL GROWTH BIHARMONIC EQUATIONS

For n ≥ 5 consider the coercive elliptic equation

∆2u + |u|8/(n−4)u = 0 in R
n.

The corresponding noncoercive equation ∆2u − |u|8/(n−4)u = 0
has been extensively studied (Swanson 1992, Gazzola-Grunau
2006, Lazzo-Schmidt 2009, ...).
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CRITICAL GROWTH BIHARMONIC EQUATIONS

For n ≥ 5 consider the coercive elliptic equation

∆2u + |u|8/(n−4)u = 0 in R
n.

The corresponding noncoercive equation ∆2u − |u|8/(n−4)u = 0
has been extensively studied (Swanson 1992, Gazzola-Grunau
2006, Lazzo-Schmidt 2009, ...).

THEOREM Let n ≥ 5 and let u = u(r) be a nontrivial radially
symmetric solution to the above equation in a neighborhood of the
origin. Then there exists ρ ∈ (0,∞) such that

lim inf
rրρ

u(r) = −∞ and lim sup
rրρ

u(r) = +∞ .
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TOOLS IN THE PROOF
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TOOLS IN THE PROOF

• Transformation of the equation by Gazzola-Grunau (2006)
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TOOLS IN THE PROOF

• Transformation of the equation by Gazzola-Grunau (2006)

• Some computations by Lazzo-Schmidt (2009)
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TOOLS IN THE PROOF

• Transformation of the equation by Gazzola-Grunau (2006)

• Some computations by Lazzo-Schmidt (2009)

• The before mentioned result by
Berchio-Ferrero-Gazzola-Karageorgis (2011)
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TOOLS IN THE PROOF

• Transformation of the equation by Gazzola-Grunau (2006)

• Some computations by Lazzo-Schmidt (2009)

• The before mentioned result by
Berchio-Ferrero-Gazzola-Karageorgis (2011)

• A Liouville-type result by D’Ambrosio-Mitidieri (2012?)
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THEOREM Let n ≥ 5 be an integer. There exists a solution
w = w(s) to the equation

w ′′′′(s)− n2−4n+8
2 w ′′(s) +

(

n(n−4)
4

)2
w(s) + |w(s)|8/(n−4)w(s) = 0

which is defined in a neighborhood of s = −∞ and such that

lim inf
s→R

w(s) = −∞ and lim sup
s→R

w(s) = +∞

for some finite R ∈ R.
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THEOREM Let n ≥ 5 be an integer. There exists a solution
w = w(s) to the equation

w ′′′′(s)− n2−4n+8
2 w ′′(s) +

(

n(n−4)
4

)2
w(s) + |w(s)|8/(n−4)w(s) = 0

which is defined in a neighborhood of s = −∞ and such that

lim inf
s→R

w(s) = −∞ and lim sup
s→R

w(s) = +∞

for some finite R ∈ R.

The nonlinearity f (t) =
(

n(n−4)
4

)2
t + |t|8/(n−4)t satisfies the sign

condition (1).

Filippo GAZZOLA - Politecnico di Milano (Italy) Blow up in fourth order equations



When n = 8, the previous equation becomes
w ′′′′(s) − 20w ′′(s) + 64w(s) + w(s)3 = 0.
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When n = 8, the previous equation becomes
w ′′′′(s) − 20w ′′(s) + 64w(s) + w(s)3 = 0.

NUMERICAL RESULTS The first 18 zeros of the solution w

satisfying [w(0),w ′(0),w ′′(0),w ′′′(0)] = [1, 0, 0, 0] are given by:

z1 = 0.716, z2 = 1.7977, z3 = 2.13827, z4 = 2.17358, z5 = 2.18718,

z6 = 2.192412, z7 = 2.194429, z8 = 2.1952053, z9 = 2.1955044,

z10 = 2.1956196, z11 = 2.19566400, z12 = 2.19568109,

z13 = 2.195687680, z14 = 2.195690216, z15 = 2.1956911931,

z16 = 2.1956915694, z17 = 2.19569171433, z18 = 2.19569177015.
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When n = 8, the previous equation becomes
w ′′′′(s) − 20w ′′(s) + 64w(s) + w(s)3 = 0.

NUMERICAL RESULTS The first 18 zeros of the solution w

satisfying [w(0),w ′(0),w ′′(0),w ′′′(0)] = [1, 0, 0, 0] are given by:

z1 = 0.716, z2 = 1.7977, z3 = 2.13827, z4 = 2.17358, z5 = 2.18718,

z6 = 2.192412, z7 = 2.194429, z8 = 2.1952053, z9 = 2.1955044,

z10 = 2.1956196, z11 = 2.19566400, z12 = 2.19568109,

z13 = 2.195687680, z14 = 2.195690216, z15 = 2.1956911931,

z16 = 2.1956915694, z17 = 2.19569171433, z18 = 2.19569177015.

Moreover the first 16 critical levels are given by

1.00000e+000 -7.28173e+001 5.54303e+002 -3.79831e+003
2.56635e+004 -1.73041e+005 1.16639e+006 -7.86188e+006
5.29910e+007 -3.57173e+008 2.40743e+009 -1.62267e+010
1.09371e+011 -7.37197e+011 4.96887e+012 -3.34914e+013
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The blow up time seems to be s = 2.1957 (rounded to 5
significant digits).

We plot the computed solution until s = 2.05281, i.e. just a little
after the second relative maximum point.
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SUSPENSION BRIDGES
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SUSPENSION BRIDGES

The following nonlinear beam equation was proposed by
Lazer-McKenna (1990) as a model for a suspension bridge

utt + uxxxx + γu+ = W (x , t) x ∈ (0,L) , t > 0 ,

• L > 0 denotes the length of the bridge;
• γu+ represents the force due to the cables which are considered
as a spring with a one-sided restoring force (equal to γu if u is
downward positive and to 0 if u is upward negative);
• W represents the forcing term acting on the bridge (including its
own weight per unit length and the wind or other external sources);
• the solution u represents the vertical displacement when the
beam is bending.
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Normalizing the PDE by putting γ = 1 and W ≡ 1, and seeking
traveling waves u(x , t) = 1 + w(x − ct) leads to the ODE

w ′′′′(s) + kw ′′(s) + [w(s) + 1]+ − 1 = 0 (s ∈ R, k = c2) .
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Normalizing the PDE by putting γ = 1 and W ≡ 1, and seeking
traveling waves u(x , t) = 1 + w(x − ct) leads to the ODE

w ′′′′(s) + kw ′′(s) + [w(s) + 1]+ − 1 = 0 (s ∈ R, k = c2) .

In order to maintain the same behavior but with a smooth
nonlinearity, Chen-McKenna (1997) suggest to consider the
equation

w ′′′′(s) + kw ′′(s) + ew(s) − 1 = 0 (s ∈ R) ,

which is exactly of our kind with f (t) = et − 1:
sign condition OK
one sided sublinear OK.
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Normalizing the PDE by putting γ = 1 and W ≡ 1, and seeking
traveling waves u(x , t) = 1 + w(x − ct) leads to the ODE

w ′′′′(s) + kw ′′(s) + [w(s) + 1]+ − 1 = 0 (s ∈ R, k = c2) .

In order to maintain the same behavior but with a smooth
nonlinearity, Chen-McKenna (1997) suggest to consider the
equation

w ′′′′(s) + kw ′′(s) + ew(s) − 1 = 0 (s ∈ R) ,

which is exactly of our kind with f (t) = et − 1:
sign condition OK
one sided sublinear OK.

Hence, we know that any local solution is global.
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k = 1, [w(0), w ′(0), w ′′(0), w ′′′(0)] = [10, 0,−10, 0].
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k = 1, [w(0), w ′(0), w ′′(0), w ′′′(0)] = [10, 0,−10, 0].
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k = 10, [w(0), w ′(0), w ′′(0), w ′′′(0)] = [0.6, 0,−128, 0].
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k = 10, [w(0), w ′(0), w ′′(0), w ′′′(0)] = [0.1, 0, 10, 0].
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k = 10, [w(0), w ′(0), w ′′(0), w ′′′(0)] = [0.1, 0, 10, 0].
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k = 8, [w(0), w ′(0), w ′′(0), w ′′′(0)] = [0.1, 0, 10, 0].
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We wish to suggest a variant of the suspension bridge model.
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We wish to suggest a variant of the suspension bridge model.

GOLDEN GATE BRIDGE
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We wish to suggest a variant of the suspension bridge model.

GOLDEN GATE BRIDGE

The ratio between the length and the width of the Golden Gate
Bridge suggests that suspension bridges may be modeled as a one
dimensional beam. But...

Filippo GAZZOLA - Politecnico di Milano (Italy) Blow up in fourth order equations



We wish to suggest a variant of the suspension bridge model.

GOLDEN GATE BRIDGE

The ratio between the length and the width of the Golden Gate
Bridge suggests that suspension bridges may be modeled as a one
dimensional beam. But...

...the Tacoma Bridge collapse was due to a wide torsional motion:
the bridge cannot be considered as a one dimensional beam.

Filippo GAZZOLA - Politecnico di Milano (Italy) Blow up in fourth order equations



As pointed out by McKenna (2006), according to historical
sources, one of the most interesting behaviors for suspension
bridges (including the Golden Gate and the Tacoma Narrows
Bridge) is the following:

large vertical oscillations can rapidly change,
almost instantaneously, to a torsional oscillation.
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As pointed out by McKenna (2006), according to historical
sources, one of the most interesting behaviors for suspension
bridges (including the Golden Gate and the Tacoma Narrows
Bridge) is the following:

large vertical oscillations can rapidly change,
almost instantaneously, to a torsional oscillation.

Our explanation to this fact is:

since the motion cannot be continued downwards due to the cables,
when the cables reach their maximum extension the existing energy

generates a crossing wave, namely a torsional oscillation.
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As pointed out by McKenna (2006), according to historical
sources, one of the most interesting behaviors for suspension
bridges (including the Golden Gate and the Tacoma Narrows
Bridge) is the following:

large vertical oscillations can rapidly change,
almost instantaneously, to a torsional oscillation.

Our explanation to this fact is:

since the motion cannot be continued downwards due to the cables,
when the cables reach their maximum extension the existing energy

generates a crossing wave, namely a torsional oscillation.

For a different model, Drábek-Holubová-Matas-Necesal (2003)
introduce the deflection from horizontal as a second unknown
function.
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We maintain the one dimensional model provided one also
allows displacements below the equilibrium position. Then
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We maintain the one dimensional model provided one also
allows displacements below the equilibrium position. Then
w = vertical displacement + deflection from horizontal
and f is unbounded also from below.
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We maintain the one dimensional model provided one also
allows displacements below the equilibrium position. Then
w = vertical displacement + deflection from horizontal
and f is unbounded also from below.

A

B

Dotted line = theoretical position of the bridge in absence of the action of the cables.

Horizontal line = position of the bridge when stopped by the cables.
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We maintain the one dimensional model provided one also
allows displacements below the equilibrium position. Then
w = vertical displacement + deflection from horizontal
and f is unbounded also from below.

A

B

Dotted line = theoretical position of the bridge in absence of the action of the cables.

Horizontal line = position of the bridge when stopped by the cables.

More the position of the bridge is far from the horizontal
equilibrium position, more the action of the wind becomes relevant
because the wind hits transversally the surface of the bridge. In the
limit vertical position, the wind would hit it orthogonally. Hence,
f is superlinear, becoming more powerful for large displacements
from the horizontal position: in position A the impact of the wind
is much more relevant than in position B .
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The solution to w ′′′′(s) + 3.6w ′′(s) + w(s) + w(s)3 = 0 with
[w(0),w ′(0),w ′′(0),w ′′′(0)] = [0.9, 0, 0, 0]
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For the equation w ′′′′(s) + kw ′′(s) + w(s) + w(s)3 = 0 with
[w(0),w ′(0),w ′′(0),w ′′′(0)] = [α, 0, 0, 0] our results suggest that
the blow up time s is decreasing w.r.t. α > 0 (as expected) and
increasing w.r.t. k ∈ R. For k ≫ 1 and/or for α ∼ 0+ our
numerical procedure shows a somehow periodic behavior: we do
not know if the solution is indeed periodic or if the blow up time is
so large that the numerical procedure does not reach it with
sufficient precision.
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Asymmetric nonlinearity. The solution to

w ′′′′(s) + 2w ′′(s) +
w(s) + w(s)3 + ew(s) − 1

2
= 0 (s ∈ R)

with initial conditions [w(0),w ′(0),w ′′(0),w ′′′(0)] = [1, 0, 0, 0]
exhibits blow up at s = 6.3009+.
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Asymmetric nonlinearity. The solution to

w ′′′′(s) + 2w ′′(s) +
w(s) + w(s)3 + ew(s) − 1

2
= 0 (s ∈ R)

with initial conditions [w(0),w ′(0),w ′′(0),w ′′′(0)] = [1, 0, 0, 0]
exhibits blow up at s = 6.3009+. The relative extrema s < s
estimated numerically are reported in

s 0.0 3.85325 5.53421 6.15714 6.27537 6.29695 6.30086 6.30091
w(s) 1.0 -3.3786 11.055 -184.06 33.554 -1.5026e+005 73.377 -2.3179e+010
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As our Theorems and Numerical Results suggest, fourth order
equations with “two-sided superlinear” nonlinearities exhibit
traveling waves which blow up in finite time after a long waiting
time of apparent calm and sudden wide oscillations.
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As our Theorems and Numerical Results suggest, fourth order
equations with “two-sided superlinear” nonlinearities exhibit
traveling waves which blow up in finite time after a long waiting
time of apparent calm and sudden wide oscillations.

Is this the explanation of the Tacoma Bridge collapse?
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As our Theorems and Numerical Results suggest, fourth order
equations with “two-sided superlinear” nonlinearities exhibit
traveling waves which blow up in finite time after a long waiting
time of apparent calm and sudden wide oscillations.

Is this the explanation of the Tacoma Bridge collapse?

THANK YOU FOR YOUR ANSWERS AND COMMENTS!
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THANK YOU FOR YOUR ATTENTION!
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