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The problem

We study the 1D transport equation, with nonlocal velocity and
fractional viscosity

vt − H(v)vy = −Λ(v) y ∈ R, t > 0

H = Hilbert transform, Λ = (−∆)1/2, with initial value v0 ≥ 0,
v0 ∈ L1(R),

I Aim: existence and uniqueness of a classical solution

I Idea: relate to a fractional Porous Medium type equation
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Preliminaries
The Hilbert transform

H(v)(y) =
1

π
P.V.

∫
R

v(s)

y − s
ds

I Ĥ(v) (ξ) = −i sign(ξ)v̂ (ξ); H2 = −I

I H : Lp(R) → Lp(R), 1 < p <∞

I H : Lp(R) ∩ Cα(R) → Lp(R) ∩ Cα(R), 1 < p <∞

I (−∆)1/2(v)(y) =
1

π
P.V.

∫
R

v(y)− v(s)

|y − s|2
ds = H(vy )(y)

I H(vy ) = H(v)y , whenever v , vy ∈ Lp(R). Thus

Λ(v) = H(v)y
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Preliminaries
Motivation

I 3D incompressible Navier equation

ωt + V · ∇ω = ωD(ω), div(V ) = 0

D(ω) a singular integral operator (Riesz type).

- Constantin-Lax-Majda’85 proposed the scalar equation

ωt + Vωx = ωH(ω)

If V = 0 there exist finite time singularities. Several authors added
a viscosity ε∆ω to avoid the singularities.

- De Gregorio’90 considers a velocity given by an integral operator
of ω, like V = −H(ω). His equation is related to ours by a
differentiation.
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Preliminaries
Motivation

I 2D Quasi-geostrophic equation{
θt + V · ∇θ = 0
V = ∇⊥ψ, θ = −Λψ

V = R⊥(θ) = (−R2(θ),R1(θ)), Rj = Riesz transforms  

θt + div(R⊥(θ)θ) = 0

- Morlet’98 proposed the equation

θt + (H(θ)θ)x = 0

and the family of equations

θt + λ(H(θ)θ)x + (1− λ)H(θ)θx = 0

She showed the existence of singularities for 0 < λ < 1/3, λ = 1/2
and λ = 1. See Córdoba-Córdoba-Fontelos’05 for the case λ = 0.
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Preliminaries
Motivation

I Viscous 2D QGE {
θt + V · ∇θ = −Λαθ
V = ∇⊥ψ, θ = −Λψ

- It was studied by Constantin-Wu’99 if α > 1,
Constantin-Córdoba-Wu’01 if α = 1 and small data, and
Caffarelli-Vasseur’07 for α = 1 (general data and any dimensions)

- The 1D analogs (λ = 0 and λ = 1 in Morlet’s family but with
viscosity)

θt + λ(H(θ)θ)x + (1− λ)H(θ)θx = −Λαθ

were studied by Chae-Córdoba-Córdoba-Fontelos’05 and
Córdoba-Córdoba-Fontelos’05. They showed, in the critical case
α = 1, that smooth small data remain smooth.
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Preliminaries
Motivation

- Kiselev-Nazarov-Volberg’07 proved that, for the critical (α = 1)
viscous 2D QGE, periodic C∞ data remain C∞.

- Li-Rodrigo’08 studied blow-up for the viscous 1D transport
equation if 0 < α ≤ 1/2, and mentioned that in the critical case
the Kiselev-Nazarov-Volberg’s technique for 2D would also work
for the 1D model.
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Preliminaries
Motivation

I Hyperbolic point of view  viscosity may avoid appearance of
singularities

I Parabolic point of view  singularities may disappear,
smoothing effect
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Main results
Existence

We consider strong L1-energy solutions:

v ∈ C ([0,∞) : L1(R))

vy ∈ L∞((τ,∞) : L2(R))

vt ∈ L1
loc(R× (0,∞))

Theorem

For every v0 ∈ L1(R) there exists a unique solution which is
moreover a classical solution.
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Main results
Properties

Properties

I L1-L∞ smoothing effect (for t small):

‖v(·, t)‖∞ ≤ log[1 + C t−3‖v0‖2
1]

I Decay (for t large):

‖v(·, t)‖∞ ≤ log[1 + C t−3/2‖v0‖1]

I Regularity: v ∈ C 1,α(R× (0,∞)).
I Positivity: v(y , t) > 0 for every y ∈ R, t > 0.

I Conservation law:

∫
R
[1− e−v(y ,t)] dy = const.
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Parabolic problem
Change of variables

We first write the equation as a conservation law

(e−v )t − (e−vH(v))y = 0

Then put (y , t, v) 7→ (x , t, u) given by the Backlund type transform

x(y , t) =

∫ y

0
e−v(s,t) ds + c(t) , u(x , t) = ev(y ,t) − 1

with c ′(t) = e−v(0,t)H(v)(0, t).

Then we have

xy = e−v , xt = e−vH(v), ux = e2vvy

ut + H(log(1 + u))x = 0 , x ∈ R, t > 0

ut + ΛΦ(u) = 0, Φ(u) = log(1 + u)
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Parabolic problem
Change of variables

Relation of the variables u(x , t) = ev(y ,t) − 1:

u(x , t) ≥ 0 ⇔ v(y , t) ≥ 0∫
R

u(x , t) dx =

∫
R
(1− e−v(y ,t)) dy∫

R
v(y , t) dy =

∫
R
(1 + u(x , t)) log(1 + u(x , t)) dx

We define the Orlicz space

Θ = {ϕ ∈ L1(R) :

∫
R
(1 + |ϕ|) log(1 + |ϕ|) <∞}

with the associated Luxembourg norm with N-function Ψ(ϕ),
Ψ′ = Φ
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Existence

We put w = Φ(u) = log(1 + u), and following the harmonic
extension procedure, dP-Quirós-Rodŕıguez-Vazquez’10, we study
the problem

∆w = 0, (x , z) ∈ R2
+, t > 0,

wz − (ew )t = 0, x ∈ R, z = 0, t > 0,
w = Φ(u0), x ∈ R, z = 0, t = 0.

We obtain for every u0 ∈ L1(R) ∩ L∞(R), exactly as in the PME
case, existence of a weak solution u ∈ C ([0,∞) : L1(R)),
Φ(u) ∈ L∞((τ,∞) : H1/2(R)), and also uniqueness, contractivity,
conservation of mass and Cα regularity. Higher regularity requires
some extra work.

The general case u0 ∈ Θ will follow from the L∞ estimates in
terms only of the Θ norm.
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Existence

First observe that the equation gives, for w = Φ(u).∫
R
|(−∆)1/4w |2 ≤ 1

t
‖u0‖Θ

Also Nash-Gagliardo-Nirenberg inequality gives, for every p ≥ 1

‖w‖p+2
p+2 ≤ C‖(−∆)1/4w‖2

2 ‖w‖p
p

Therefore w ∈ Lp(R) for every p ≥ 1, but we do not get p = ∞.
Also, this does not mean integrability for u, this will require more
work.
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Regularity
From L∞ to C 1,α (and H1)

We have that L∞ implies Cα, Athanasopoulos-Caffarelli’10. To get
higher regularity we follow the technique of Caffarelli-Vasseur’10
and write the solution as

u(x , t) = Pt ∗ u0(x)− g(x , t),

where Pt(x) = P(x , t) is the Poisson kernel (gives the solution to
the linear part) and

g(x , t) =

∫ t

0

∫
R

P(x − s, t − τ)x H(log(1 + u)− u) dsdτ

Regularity depends on properties of the kernel. Recall that it is
crucial that the problem is of divergence form. Therefore this
technique cannot be applied to the original transport equation
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Regularity
From Lp (p > 1) to L∞

Theorem

Assume u0 ∈ L1(R) ∩ L∞(R). Then, for every p > 1 it holds

‖u(·, t)‖∞ ≤ max{C t−
1

p−1 ‖u0‖
p

p−1
p , C t−

1
p ‖u0‖p}

Formally put m = 0 for u large in the formula of the PME,

‖u(·, t)‖∞ ≤ C t−γ‖u0‖γp
p , γ = (m − 1 + p)−1

and m = 1 for u small.

–AδP– UC3M A nonlocal transport equation



Regularity
From Lp (p > 1) to L∞

Theorem

Assume u0 ∈ L1(R) ∩ L∞(R). Then, for every p > 1 it holds

‖u(·, t)‖∞ ≤ max{C t−
1

p−1 ‖u0‖
p

p−1
p , C t−

1
p ‖u0‖p}

Formally put m = 0 for u large in the formula of the PME,

‖u(·, t)‖∞ ≤ C t−γ‖u0‖γp
p , γ = (m − 1 + p)−1

and m = 1 for u small.

–AδP– UC3M A nonlocal transport equation



Regularity
From Lp (p > 1) to L∞

Multiply the equation by ϕ(u) =
upk−1

pk − 1
+

upk

pk
, pk > p > 1. Using

Stroock-Varopoulos, Nash-Gagliardo-Nirenberg, and the decay of
the Lp norms, we obtain a recurrence relation

Uk+1 ≤ ct
− 1

pk+1 Uk

where Uk = max{‖u(·, tk)‖pk
, ‖u(·, tk)‖

pk+1

pk
pk+1}, pk = 2kp.

This will imply

‖u(·, t)‖∞ = lim
k→∞

Uk ≤ Ct−
1
p U0 = Ct−

1
p max{‖u0‖p, ‖u0‖

p+1
p

p+1}

An interpolation argument gives the estimate.
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Regularity
From Θ to L2

We use the following Trudinger inequality

Theorem

Let w ∈ H1/2(R). Then there exist constants c1 and c2 such that∫
R

[
exp

( w

c1‖w‖H1/2

)2
− 1

]
≤ c2

- For compactly supported functions (in I0 ⊂ I ) see Strichartz’72.
- Prove an equivalence, in that case, of the norms

‖w‖2
L2(I )+‖(−∆)1/4w‖2

L2(I ) ∼ ‖w‖2
L2(I )+

∫∫
I×I

|w(x)− w(y)|2

|x − y |2
dxdy

- Extend to the general case by summation, as in Adams, but take
care of the cut-off.
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Regularity
From Θ to L2

Application to our case:

Trudinger inequality for u is∫
R

[
(1 + u)

log(1+u)
c1‖w‖H1/2 − 1

]
≤ c2

But (1 + x)k log(1+x) > 1 + ckx2, i.e.

‖u‖2 ≤ c‖w‖H1/2 ≤ C (t, ‖u0‖Θ)
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Thanks!!!
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