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The fast diffusion equation on bounded domains

The setting

The Dirichlet Problem for the Fast Diffusion Equation in Ω ⊂ Rd

We consider, in a bounded and smooth domain Ω, positive solutions to:


∂τu = ∆ (um) = ∇ ·

(
um−1∇u

)
, ∀(τ, y) ∈ (0,+∞)× Ω

u(0, y) = u0 , ∀y ∈ Ω

u(τ, y) = 0 , ∀(τ, y) ∈ (0,+∞)× ∂Ω

where 0 < m < 1 ( i.e. Fast Diffusion, FDE )

Existence and uniqueness of weak solutions for the parabolic problem is well
known for any m > 0. Recall that 0 < m < 1 is the Fast Diffusion case, m = 1
is the Linear Heat Equation and m > 1 is the Porous Medium case.

The initial datum is chosen to be

0 ≤ u0 ∈ Lr(Ω) with r ≥ 1 and r >
d(1− m)

2
,

so that the corresponding solution is bounded and nonnegative for all m > 0.
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The fast diffusion equation on bounded domains

Some properties of Solutions

Some Properties of Solutions

Since we deal with the Fast Diffusion case m < 1, the mass
∫

Ω
u(y, τ)dy is not

preserved, and solutions extinguish in finite time

∃ T = T(u0) : u(τ, ·) ≡ 0 ∀ t ≥ T

Consequence of Sobolev and Poincaré inequalities (sufficient condition).

Under our hypothesis, solutions are indeed positive in Ω× (0, T) and for all
0 < m < 1, as a consequence of parabolic (intrinsic) Harnack inequalities:

For d−2
d < m < 1, DiBenedetto et al. (1992)

For all 0 < m < 1, Bonforte and Vázquez (2010)

and they are at least Cα(Ω) (DiBenedetto et al. 1988, 1992).

The question is: what happens close to extinction time?
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The fast diffusion equation on bounded domains

Rescaling and the stationary problem

Review of previous results
uτ = ∆(um)

u(0, ·) = u0

u|∂Ω ≡ 0

−−−−−−−→
Rescaling


vt = ∆(vm) + v

(1−m)T ,

v(0, ·) = u0,

v|∂Ω ≡ 0 ,

where

u(τ, x) =

(
T − τ

T

) 1
1−m

v(t, x) and t = T log
(

T
T − τ

)
.

The properties of the rescaled problem are related to the stationary equation −∆(Sm) = c S, c = 1
(1−m)T

S|∂Ω ≡ 0 .

The crucial exponent is

ms =
d − 2
d + 2

; we shall consider the range ms < m < 1 .
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The fast diffusion equation on bounded domains

Previous results

(First Pioneering Result) J. G. Berryman, C. J. Holland ARMA (1980)

Let ms < m < 1. Then there exists a sequence of times tn →∞ as n→∞
and one or several solutions S to the stationary problem such that

v(tn)
W1,2

0 (Ω)
−−−−−→

n→∞
S .

(Uniqueness of asymptotic profile) E. Feiresl, F. Simondon J. Dynamic Diff. Eq. (2000)

Let v, S be as above and assume ms < m < 1. Then there exists a unique
stationary solution S such that

v(t)
C(Ω)−−−→
t→∞

S .
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The fast diffusion equation on bounded domains

Global Harnack principle

(Global Harnack Principle)
E. DiBenedetto, Y. C. Kwong, V. Vespri Indiana Univ. Math. J. (1991)

Let w be the solution to the rescaled Dirichlet problem with ms < m < 1.
Then, for any σ > 0 there exist positive constants λ, µ > 0 depending on
d, m, ‖u0‖m+1, ‖∇um

0 ‖2, ∂Ω and σ, such that for any t ≥ σ and for any x ∈ Ω

λ dist (x, ∂Ω)
1/m ≤ v(t, x) ≤ µ dist (x, ∂Ω)

1/m
.

In the original variables

λ dist (x, ∂Ω)
1/m

(T−τ)1/(1−m) ≤ u(τ, x) ≤ µ dist (x, ∂Ω)
1/m

(T−τ)1/(1−m).

The constants λ, µ may deteriorate when m→ 1 or m→ ms.
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The fast diffusion equation on bounded domains

Convergence in relative error

(Convergence in Relative Error) M.B., G. Grillo, J.L. Vázquez, JMPA (2011)

Let u be the solution to the Dirichlet problem and T = T(m, d, u0) be its
extinction time. Then we have that

lim
τ→T−

∥∥∥∥ u(τ, ·)
U(τ, ·)

− 1
∥∥∥∥

L∞(Ω)

= 0

where the special solution U is defined as

U(τ, x) = S(x) [(T − τ)/T]
1/(1−m)

[
one has S(x) ∼ dist

(
x, ∂Ω

) 1
m

]
and S is a suitable positive classical solution to the stationary problem.
Equivalently, the following improved Global Harnack Principle

c0(τ) S(x) (T − τ)1/(1−m) ≤ u(τ, x) ≤ c1(τ) S(x) (T − τ)1/(1−m).

with
0 < ci(τ) −−−−→

τ→T−
1 .
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The fast diffusion equation on bounded domains

Barriers

Steps of the proof.

Consider the function φ = vm

Sm − 1. Then it satisfies the equation

1
m

(1 + φ)
1
m−1 φt = Sm−1∆φ+ 2

∇(Sm)

S
· ∇φ+ F(φ)

where F is given by F(φ) = c
[
(1 + φ)1/m − (1 + φ)

]
.

Convergence far away from the boundary is easy.

One can choose positive constants A, B, C and t0, so that the function

Φ(t, x) = C − B d(x)− A(t − t0)

is a supersolution to the differential equation satisfied by φ, in a small
neighborhood of the spatial boundary Ωδ =: {x ∈ Ω : dist(x, ∂Ω) < δ}.
Technical.

Use parabolic comparison to compare φ and Φ in t ∈ (t0, T]× Ωδ .
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The relative error function

Recall that 
uτ = ∆(um)

u(0, ·) = u0

u|∂Ω ≡ 0

−−−−−−−→
Rescaling


vt = ∆(vm) + v

(1−m)T ,

v(0, ·) = u0,

v|∂Ω ≡ 0 ,

where u(τ, x) =
( T−τ

T

) 1
1−m v(t, x) and t = T log

(
T

T−τ

)
.

The properties of the rescaled problem are related to the stationary equation −∆(Sm) = c S, c = 1
(1−m)T

S|∂Ω ≡ 0 .

Define the relative error function
θ(t, x) =

v(t, x)

S(x)
− 1.

It satisfies the equation

θt =
1

S1+m∇ · (S2m∇(1 + θ)m) + c f (θ)

where
f (θ) := (1 + θ)− (1 + θ)m
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The fast diffusion equation on bounded domains

The relative error function

In the sequel, the constants m], γ0 are explicit. They depend on m and on the geometry
of the domain.

(Decay Rates, Rescaled Version) M.B., G.Grillo, J.L. Vázquez, JMPA (2011)

Let m] < m < 1. Let v be the rescaled solution corresponding to an initial datum u0,
and let S be the stationary profile to which the solution converges. Let 0 < γ < γ0.
Then for all t > t0:

E [θ(t)] :=
1
2

∫
Ω

∣∣θ(t)− θ(t)
∣∣2Sm+1 dx ≤ e−γ(t−t0)E [θ(t0)] ,

where θ(t) is the mean of θ(t) w.r.t. to the measure Sm+1 dx.
Therefore the following holds:∫

Ω

|v(t, x)− S(x)|2 S(x)m−1 dx =

∫
Ω

∣∣∣∣ v(t, x)

S(x)
− 1
∣∣∣∣2 S(x)1+m dx ≤ κ0 e−γ(t−t0) .

Finally, for all q ∈ (0,∞]:

‖v(t, ·)− S(·)‖q ≤ κ1 e−
γ
2 (t−t0).
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Some Remarks. We have proved that for all m] < m < 1, for all 0 < γ < γ0 and q ∈ (0,∞]:

‖v(t, ·)− S(·)‖q ≤ κ1 e−
γ
2 (t−t0).

The expression of m] is determined by the relation

1 > m > 1−
1

1 + 2λ1
λ2−λ1

k0(m)2

k1(m)2

:= fΩ(m) (1)

The constants ki(m) have an explicit expression and indeed ki(m)→ 1 as m→ 1−.
In the limit m→ 1− we have that fΩ(m)→ 2λ1/(λ1 + λ2) < 1, hence the range of
m < 1 for which (1) holds is nonempty. Note that m] changes with m and with the
geometry of the domain.

for any m > ms = (d + 2)/(d − 2), we have

1
λ1

[∫
Ω u0(x)Φ1(x) dx

]1−m[∫
Ω Φ1(x) dx

]1−m ≤ (1− m)T ≤
(
λ1S2

2

) d(1−m)
4(1+m)

λ1
‖u0‖1−m

1+m .

so that c = 1/(1− m)T → λ1 as m→ 1−.

The rate involves the expression

0 < γ0 =
1

(1− m)T

[
m
(
λ2

λ1
− 1
)

k0(m)2

k1(m)2
− 2(1− m)

]
−−−−→
m→1−

(λ2 − λ1) > 0

where λk are the first eigenvalues of the Dirichlet Laplacian.

The constant κ1 depends explicitly on m, d and u0.
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The fast diffusion equation on bounded domains

Rates of convergence in original variables

(Decay Rates, Original Variables)

Let max{m],mc} < m < 1. Let u be the solution to the original FDE Problem, let
T = T(m, d, u0) be its extinction time, and let UT be previous special solution, so that
u(τ)/UT(τ)→ 1 uniformly as τ → T . Then, for any γ < γ0 := γ0T there exists a
constant κ0 > 0 such that∥∥∥∥ u(τ, ·)

U(τ, ·) − 1
∥∥∥∥2

L2(Ω,S1+m)

≤ κ0

(
T − τ

T

)γ
or equivalently∫

Ω

|u(τ, x)− U(τ, x)|2 Sm−1 dx ≤ κ0

(
T − τ

T

) 2
1−m +γ

(2)

for all t0 ≤ τ ≤ T . Moreover we have that for all q ∈ (0,∞]

‖u(τ, x)− U(τ, x)‖q ≤ κ1

(
T − τ

T

) 2
1−m +γ

.

The weighted convergence of (2) is somehow stronger than the non-weighted Lp−norm
convergence, since the weight Sm−1 is singular at the boundary.
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The fast diffusion equation on bounded domains

The porous media case

Similar consideration also work for the porous media case (m > 1), which has been
studied long ago by completely different methods (Aronson-Peletier, JDE (1981)).

(Decay Rates, Porous Medium)
Let m > 1, let v be a the rescaled solution, that converges to its unique stationary
state S, and let θ = v/S. Then, for all 0 < β < 2 + Km

m−1 there exists a time t1

depending on m, d, β and on the constant K > 0 of the weighted Poincaré inequality,
such that the entropy decays as

E [θ(t)] ≤ E [θ(t1)] e−β(t−t1) for all t ≥ t1. (3)

Moreover for all q ∈ (0,∞]

‖v(t, ·)− S(·)‖Lq(Ω) ≤ κ1 e−(t−t1) for all t ≥ t1.

In original variables we obtain that for all q ∈ (0,∞]

‖u(τ, ·)− U(τ, ·)‖Lq(Ω) ≤
κ2

(1 + τ)1+ 1
m−1

,

where the special solution U is defined by U(τ, x) = S(x)(1 + τ)−1/(m−1).
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The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =
∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =

∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =
∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =
∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =
∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =
∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation uτ = ∆u.

Rescale v(x, t) = eλ1tu(x, t)to get the equation vt = ∆v + λ1v.

The role of the stationary solution S is now played by the first nonnegative
eigenfunction Φ1 > 0 of the Dirichlet Laplacian.

The equation for the relative error θ = v/Φ1 − 1 is θt = Φ−2
1 ∇ ·

(
Φ2

1∇θ
)

The so-called Dirichlet Laplacian has purely discrete spectrum. Let λj,Φj,
j = 1, 2, . . . be its eigenvalues, and the corresponding L2-normalized
eigenfunctions. The spectral representation for the heat semigroup gives

u(x, t) =
∞∑
j=1

cje−λjtΦj(x) with cj =

∫
Ω

u0Φj dx

so that
θ :=

u
c1e−λ1tΦ1

− 1 ∼
t→+∞

c2

c1

Φ2

Φ1
e−(λ2−λ1)t.

In other words, the solution u(t) behaves like U1(x, t) = c1e−λ1tΦ1 and the
relative error θ, decays exponentially in time with a rate λ2 − λ1. (recall that
Φ2/Φ1 is bounded.)



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case (continued).
In the nonlinear setting, no spectral representation is available. It is natural to
investigate the behaviour of θ by working in the weighted space L2(Φ2

1 dx),
where the weighted mean is preserved:

d
dt

∫
Ω

θΦ2
1 dx =

∫
Ω

∇ ·
(

Φ2
1∇θ

)
dx = 0.

Then we notice that:
d
dt

∫
Ω

θ2Φ2
1 dx = 2

∫
Ω

θ∇ ·
(

Φ2
1∇θ

)
dx = −2

∫
Ω

|∇θ|2 Φ2
1 dx .

We shall assume that θΦ1 = 0, where gΦ1 =
(∫

Ω
gΦ2

1 dx
)
/
(∫

Ω
Φ2

1 dx
)

.
In order to get a decay rate for E[θ] =

∫
Ω θ

2Φ2
1 dxwe need the following intrinsic

Poincaré inequality: for all f ∈ W1,2
0 (Ω) and g = f/Φ1, we have

(λ2 − λ1)

∫
Ω

|g− gΦ1 |
2 Φ2

1 dx ≤
∫

Ω

|∇g|2 Φ2
1 dx.

Poincaré inequality for g = θ, with θΦ1 = 0, gives ‖θ(t)‖2 ≤ e−(λ2−λ1)t‖θ0‖2 .
Sharp upper and lower bounds on λ2 − λ1 for convex domains (Singer, Yu, Ling, ...)

π2

diam(Ω)2
< λ2 − λ1 ≤

dπ2

inr(Ω)2
.

This bounds can be improved when further geometrical properties of Ω hold.



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case (continued).
In the nonlinear setting, no spectral representation is available. It is natural to
investigate the behaviour of θ by working in the weighted space L2(Φ2

1 dx),
where the weighted mean is preserved:

d
dt

∫
Ω

θΦ2
1 dx =

∫
Ω

∇ ·
(

Φ2
1∇θ

)
dx = 0.

Then we notice that:
d
dt

∫
Ω

θ2Φ2
1 dx = 2

∫
Ω

θ∇ ·
(

Φ2
1∇θ

)
dx = −2

∫
Ω

|∇θ|2 Φ2
1 dx .

We shall assume that θΦ1 = 0, where gΦ1 =
(∫

Ω
gΦ2

1 dx
)
/
(∫

Ω
Φ2

1 dx
)

.
In order to get a decay rate for E[θ] =

∫
Ω θ

2Φ2
1 dxwe need the following intrinsic

Poincaré inequality: for all f ∈ W1,2
0 (Ω) and g = f/Φ1, we have

(λ2 − λ1)

∫
Ω

|g− gΦ1 |
2 Φ2

1 dx ≤
∫

Ω

|∇g|2 Φ2
1 dx.

Poincaré inequality for g = θ, with θΦ1 = 0, gives ‖θ(t)‖2 ≤ e−(λ2−λ1)t‖θ0‖2 .
Sharp upper and lower bounds on λ2 − λ1 for convex domains (Singer, Yu, Ling, ...)

π2

diam(Ω)2
< λ2 − λ1 ≤

dπ2

inr(Ω)2
.

This bounds can be improved when further geometrical properties of Ω hold.



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case (continued).
In the nonlinear setting, no spectral representation is available. It is natural to
investigate the behaviour of θ by working in the weighted space L2(Φ2

1 dx),
where the weighted mean is preserved:

d
dt

∫
Ω

θΦ2
1 dx =

∫
Ω

∇ ·
(

Φ2
1∇θ

)
dx = 0.

Then we notice that:
d
dt

∫
Ω

θ2Φ2
1 dx = 2

∫
Ω

θ∇ ·
(

Φ2
1∇θ

)
dx = −2

∫
Ω

|∇θ|2 Φ2
1 dx .

We shall assume that θΦ1 = 0, where gΦ1 =
(∫

Ω
gΦ2

1 dx
)
/
(∫

Ω
Φ2

1 dx
)

.
In order to get a decay rate for E[θ] =

∫
Ω θ

2Φ2
1 dxwe need the following intrinsic

Poincaré inequality: for all f ∈ W1,2
0 (Ω) and g = f/Φ1, we have

(λ2 − λ1)

∫
Ω

|g− gΦ1 |
2 Φ2

1 dx ≤
∫

Ω

|∇g|2 Φ2
1 dx.

Poincaré inequality for g = θ, with θΦ1 = 0, gives ‖θ(t)‖2 ≤ e−(λ2−λ1)t‖θ0‖2 .
Sharp upper and lower bounds on λ2 − λ1 for convex domains (Singer, Yu, Ling, ...)

π2

diam(Ω)2
< λ2 − λ1 ≤

dπ2

inr(Ω)2
.

This bounds can be improved when further geometrical properties of Ω hold.



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case (continued).
In the nonlinear setting, no spectral representation is available. It is natural to
investigate the behaviour of θ by working in the weighted space L2(Φ2

1 dx),
where the weighted mean is preserved:

d
dt

∫
Ω

θΦ2
1 dx =

∫
Ω

∇ ·
(

Φ2
1∇θ

)
dx = 0.

Then we notice that:
d
dt

∫
Ω

θ2Φ2
1 dx = 2

∫
Ω

θ∇ ·
(

Φ2
1∇θ

)
dx = −2

∫
Ω

|∇θ|2 Φ2
1 dx .

We shall assume that θΦ1 = 0, where gΦ1 =
(∫

Ω
gΦ2

1 dx
)
/
(∫

Ω
Φ2

1 dx
)

.
In order to get a decay rate for E[θ] =

∫
Ω θ

2Φ2
1 dxwe need the following intrinsic

Poincaré inequality: for all f ∈ W1,2
0 (Ω) and g = f/Φ1, we have

(λ2 − λ1)

∫
Ω

|g− gΦ1 |
2 Φ2

1 dx ≤
∫

Ω

|∇g|2 Φ2
1 dx.

Poincaré inequality for g = θ, with θΦ1 = 0, gives ‖θ(t)‖2 ≤ e−(λ2−λ1)t‖θ0‖2 .
Sharp upper and lower bounds on λ2 − λ1 for convex domains (Singer, Yu, Ling, ...)

π2

diam(Ω)2
< λ2 − λ1 ≤

dπ2

inr(Ω)2
.

This bounds can be improved when further geometrical properties of Ω hold.



The fast diffusion equation on bounded domains

Short review on the linear case

Short review on the linear case (continued).
In the nonlinear setting, no spectral representation is available. It is natural to
investigate the behaviour of θ by working in the weighted space L2(Φ2

1 dx),
where the weighted mean is preserved:

d
dt

∫
Ω

θΦ2
1 dx =

∫
Ω

∇ ·
(

Φ2
1∇θ

)
dx = 0.

Then we notice that:
d
dt

∫
Ω

θ2Φ2
1 dx = 2

∫
Ω

θ∇ ·
(

Φ2
1∇θ

)
dx = −2

∫
Ω

|∇θ|2 Φ2
1 dx .

We shall assume that θΦ1 = 0, where gΦ1 =
(∫

Ω
gΦ2

1 dx
)
/
(∫

Ω
Φ2

1 dx
)

.
In order to get a decay rate for E[θ] =

∫
Ω θ

2Φ2
1 dxwe need the following intrinsic

Poincaré inequality: for all f ∈ W1,2
0 (Ω) and g = f/Φ1, we have

(λ2 − λ1)

∫
Ω

|g− gΦ1 |
2 Φ2

1 dx ≤
∫

Ω

|∇g|2 Φ2
1 dx.

Poincaré inequality for g = θ, with θΦ1 = 0, gives ‖θ(t)‖2 ≤ e−(λ2−λ1)t‖θ0‖2 .
Sharp upper and lower bounds on λ2 − λ1 for convex domains (Singer, Yu, Ling, ...)

π2

diam(Ω)2
< λ2 − λ1 ≤

dπ2

inr(Ω)2
.

This bounds can be improved when further geometrical properties of Ω hold.



The fast diffusion equation on bounded domains

Entropy-entropy production

Sketch of the proof.
Step 1: an “entropy functional" and its derivative. Recall that

E [θ(t)] =
1
2

∫
Ω

∣∣θ(t)− θ(t)
∣∣2S1+m dx ,

where S is a (positive) solution to the elliptic problem{
−∆Sm = c S in Ω
S = 0 on ∂Ω

whenever ms < m < 1. We then have:

(Entropy/Entropy-production)
Let ms < m < 1 and θ be the solution to the equation

θt =
1

Sm+1∇ · (S2m∇(1 + θ)m) + c f (θ), with f (θ) = (1 + θ)− (1 + θ)m .

Then the following inequality holds

− d
dt
E [θ(t)] ≥ m[1 + ε(t)]m−1

∫
Ω

|∇θ(t, x)|2 S2m dx− 2c [1− m + ε(t)] E [θ(t)]

for all sufficiently large times, where ε(t) := ‖θ(t, ·)‖∞ → 0
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The fast diffusion equation on bounded domains

Entropy-entropy production

Step 2: a weighted Poincaré inequality. We prove the following:

Poincaré inequalities

Let f ∈ W1,2
0 (Ω), φ1 the ground state eigenfunction of the Dirichlet Laplacian,

g = f/φ1 and S as above. Then the following inequality holds

c k0(m)2

k1(m)2

Λ

‖S‖1−m
∞

∫
Ω

|g− g|2 S1+m dx ≤
∫

Ω

|∇g|2 S2m dx

where Λ = λ2 − λ1 > 0 is the optimal constant in the intrinsic Poincaré inequality

(λ2 − λ1)

∫
Ω

|g− gφ1 |
2 φ2

1 dx ≤
∫

Ω

|∇g|2 φ2
1 dx gφ1 =

∫
Ω

gφ2
1 dx∫

Ω
φ2

1 dx
,

we have set

g =

∫
Ω

gS1+m dx∫
Ω

S1+m dx

and the constants k0, k1 are such that

k0(m) ≤ Sm
m

φ1
≤ k1(m).
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Therefore

d
dt
E [θ(t)] ≤ −m[1 + ε(t)]m−1

∫
Ω

|∇θ(t, x)|2 S2m dx + 2c [1− m + ε(t)] E [θ(t)]

≤ c
{
−m[1 + ε(t)]m−1 k0(m)2

k1(m)2

Λ

‖S‖1−m
∞

+ 2[1− m + ε(t)]
}
E [θ(t)]

Hence it is necessary to get information on the ratio k0(m)2

k1(m)2 in order to get exponential
decay for E from the above inequalities, at least when m is close to one. Recall that
k0, k1 are such that

k0(m) ≤ Sm

φ1
≤ k1(m).

where φ1 is the ground state eigenfunction of the Dirichlet Laplacian and S satisfies
the nonlinear elliptic problem{

−∆Sm = c S in Ω, c = 1
(1−m)T

S = 0 on ∂Ω

Recall that c = 1/(1− m)T → λ1 as m→ 1−.
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Step 3 (conclusion).
The difficult issue is to estimate the ratio k0(m)2

k1(m)2 .

On the one hand, one can prove results about quantitative elliptic Harnack inequalities
for the equation −∆u = up. This is the topic of M.B., G. Grillo, J.L. Vázquez (2011,
in preparation).

The resulting bounds give explicit constants in the Harnack inequality. It is then pos-
sible to use them to compare solutions with different values of p, which then yield the
required bounds on k0(m)2

k1(m)2 .

Such bounds then yield explicit m] and γ0, but it has to be remarked that unfortunately

lim
m↑1

k0(m)2

k1(m)2 < 1

which is not what is expected.

But we can also prove the following purely elliptic result (see also Grossi (Annali
Pisa, 2009) for related results):
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Nonlinear elliptic problems near p = 1

Let p = 1/m. Let Up be a family of solutions of the problem
−∆U = λp Up in Ω
U > 0 in Ω
U = 0 on ∂Ω

(4)

with p ∈ [1, ps), ps = d+2
d−2 , ‖Up‖p+1 = 1, so that ‖∇Up‖2

2 = λp. Then as p→ 1, one

has λp → λ1, Up → Φ1 in L∞(Ω) , ∇Up → ∇Φ1 in
(
L2(Ω)

)d. Besides, there exist
two explicit constants 0 < c0 < c1 such that

cp−1
0 λ1 ≤ λp ≤ cp−1

1 λ1 . (5)

Moreover, there exists constants 0 < k̃0(p) ≤ k̃1(p) such that k̃i(p)→ 1 as p→ 1+,
such that

k̃0(p) ≤ Up(x)

Φ1(x)
≤ k̃1(p), for all x ∈ Ω . (6)
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The End

Thank you!!!
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The kind of argument outlined here can be used to study other related problems. For
example consider positive solutions to the fast diffusion equation

u̇ = ∆um, on Hn

where

m ∈ (ms, 1]

Hn is the hyperbolic space and ∆ the corresponding Riemannian Laplacian.

Recall that, on the hyperbolic space, both the Sobolev inequality and the L2-Poincaré
inequality hold, so that the L2-spectrum of −∆ is

[
(n−1)2

4 ,+∞
)

.
Certain classes of positive solutions do vanish in a finite time (Bonforte, G. Vazquez,
JEE 2008). There are some rough estimates on the extinction time there.
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It can be expected that the asymptotics of solutions is related to solutions, if any, of
the elliptic problem −∆u = u1/m (up to rescalings). No results on this till recently,
but:

Mancini-Sandeep (Annali Pisa, 2008) have shown that there exist exactly one
solution U to the elliptic problem. It is radial, and it has finite energy, namely it
belongs to W1,2(Hn). It decays at infinity as ce−(n−1)r, r being the Riamannian
distance from the given point. There are infinitely many other radial positive
solutions, but they have infinite energy. Notice that U1/m ∈ L1.

M.B., F. Gazzola, G. Grillo and J. L. Vázquez have just proved that there is no
other positive radial solution apart the ones found above, and that all of them
apart U decay polynomially at infinity, hence they do not belong to Lq for any
q 6=∞ (recall that the Riemannian measure has a density whose radial part is
e(n−1)r).

Hence the asymptotics of solutions to the fast diffusions should be related to the sepa-
rate variable solution U(t, x) = U(x)[(T− t)/T]1/(1−m). Presently under investigation
using the above methods, as a part of a more general study of nonlinear diffusions on
manifolds.
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