Behaviour near extinction for the fast diffusion equation in bounded domains

Matteo Bonforte

Departamento de Matemáticas,
Universidad Autónoma de Madrid,
Campus de Cantoblanco
28049 Madrid, Spain

email: matteo.bonforte@uam.es
http://www.uam.es/matteo.bonforte

(Joint work with G. Grillo and J. L. Vázquez)

NONLINEAR PDEs AND FUNCTIONAL INEQUALITIES
Workshop, Madrid (Spain), September 19-20, 2011
The fast diffusion equation on bounded domains

The setting

The Dirichlet Problem for the Fast Diffusion Equation in $\Omega \subset \mathbb{R}^d$

We consider, in a bounded and smooth domain $\Omega$, positive solutions to:

$$\begin{cases}
\partial_\tau u = \Delta (u^m) = \nabla \cdot (u^{m-1} \nabla u), & \forall (\tau, y) \in (0, +\infty) \times \Omega \\
u(0, y) = u_0, & \forall y \in \Omega \\
u(\tau, y) = 0, & \forall (\tau, y) \in (0, +\infty) \times \partial \Omega
\end{cases}$$

where $0 < m < 1$ (i.e. Fast Diffusion, FDE)

- Existence and uniqueness of weak solutions for the parabolic problem is well known for any $m > 0$. Recall that $0 < m < 1$ is the Fast Diffusion case, $m = 1$ is the Linear Heat Equation and $m > 1$ is the Porous Medium case.

- The initial datum is chosen to be

$$0 \leq u_0 \in L^r(\Omega) \quad \text{with} \quad r \geq 1 \quad \text{and} \quad r > \frac{d(1 - m)}{2},$$

so that the corresponding solution is bounded and nonnegative for all $m > 0$. 

The fast diffusion equation on bounded domains

The setting

The Dirichlet Problem for the Fast Diffusion Equation in $\Omega \subset \mathbb{R}^d$

We consider, in a bounded and smooth domain $\Omega$, positive solutions to:

\[
\begin{cases}
\partial_\tau u = \Delta (u^m) = \nabla \cdot (u^{m-1} \nabla u), & \forall (\tau, y) \in (0, +\infty) \times \Omega \\
u(0, y) = u_0, & \forall y \in \Omega \\
u(\tau, y) = 0, & \forall (\tau, y) \in (0, +\infty) \times \partial \Omega
\end{cases}
\]

where $0 < m < 1$ (i.e. Fast Diffusion, FDE)

- Existence and uniqueness of weak solutions for the parabolic problem is well known for any $m > 0$. Recall that $0 < m < 1$ is the Fast Diffusion case, $m = 1$ is the Linear Heat Equation and $m > 1$ is the Porous Medium case.

- The initial datum is chosen to be

$$0 \leq u_0 \in L^r(\Omega) \quad \text{with} \quad r \geq 1 \quad \text{and} \quad r > \frac{d(1-m)}{2},$$

so that the corresponding solution is bounded and nonnegative for all $m > 0$. 
The fast diffusion equation on bounded domains

The setting

The Dirichlet Problem for the Fast Diffusion Equation in $\Omega \subset \mathbb{R}^d$

We consider, in a bounded and smooth domain $\Omega$, positive solutions to:

\[
\begin{aligned}
\partial_{\tau} u &= \Delta (u^m) = \nabla \cdot (u^{m-1} \nabla u) , \quad \forall (\tau, y) \in (0, +\infty) \times \Omega \\
u(0, y) &= u_0 , \quad \forall y \in \Omega \\
u(\tau, y) &= 0 , \quad \forall (\tau, y) \in (0, +\infty) \times \partial \Omega
\end{aligned}
\]

where $0 < m < 1$ (i.e. Fast Diffusion, FDE)

- Existence and uniqueness of weak solutions for the parabolic problem is well known for any $m > 0$. Recall that $0 < m < 1$ is the Fast Diffusion case, $m = 1$ is the Linear Heat Equation and $m > 1$ is the Porous Medium case.

- The initial datum is chosen to be

\[
0 \leq u_0 \in L^r(\Omega) \quad \text{with} \quad r \geq 1 \quad \text{and} \quad r > \frac{d(1-m)}{2},
\]

so that the corresponding solution is bounded and nonnegative for all $m > 0$. 

Since we deal with the Fast Diffusion case $m < 1$, \textit{the mass $\int_{\Omega} u(y, \tau) \, dy$ is not preserved}, and solutions extinguish in finite time

$$\exists T = T(u_0) : u(\tau, \cdot) \equiv 0 \quad \forall \ t \geq T$$

Consequence of Sobolev and Poincaré inequalities (sufficient condition).

Under our hypothesis, solutions are indeed positive in $\Omega \times (0, T)$ and for all $0 < m < 1$, as a consequence of parabolic (intrinsic) Harnack inequalities:

- For $\frac{d-2}{d} < m < 1$, DiBenedetto et al. (1992)

- For all $0 < m < 1$, Bonforte and Vázquez (2010) and they are at least $C^{\alpha}(\overline{\Omega})$ (DiBenedetto et al. 1988, 1992).

The question is: \textit{what happens close to extinction time?}
Some Properties of Solutions

Since we deal with the Fast Diffusion case $m < 1$, the mass $\int_{\Omega} u(y, \tau) dy$ is not preserved, and solutions extinguish in finite time

$$\exists T = T(u_0) : u(\tau, \cdot) \equiv 0 \quad \forall t \geq T$$

Consequence of Sobolev and Poincaré inequalities (sufficient condition).

Under our hypothesis, solutions are indeed positive in $\Omega \times (0, T)$ and for all $0 < m < 1$, as a consequence of parabolic (intrinsic) Harnack inequalities:

- For $\frac{d-2}{d} < m < 1$, DiBenedetto et al. (1992)
- For all $0 < m < 1$, Bonforte and Vázquez (2010)

and they are at least $C^\alpha(\Omega)$ (DiBenedetto et al. 1988, 1992).

The question is: what happens close to extinction time?
Some Properties of Solutions

- Since we deal with the Fast Diffusion case $m < 1$, the mass $\int_{\Omega} u(y, \tau) dy$ is not preserved, and solutions extinguish in finite time

$$\exists \ T = T(u_0) : u(\tau, \cdot) \equiv 0 \ \forall \ t \geq T$$

Consequence of Sobolev and Poincaré inequalities (sufficient condition).

- Under our hypothesis, solutions are indeed positive in $\Omega \times (0, T)$ and for all $0 < m < 1$, as a consequence of parabolic (intrinsic) Harnack inequalities:
  - For $\frac{d-2}{d} < m < 1$, DiBenedetto et al. (1992)
  - For all $0 < m < 1$, Bonforte and Vázquez (2010)

and they are at least $C^\alpha(\overline{\Omega})$ (DiBenedetto et al. 1988, 1992).

- The question is: what happens close to extinction time?
The fast diffusion equation on bounded domains

Rescaling and the stationary problem

**Review of previous results**

\[
\begin{align*}
\begin{cases}
  u_\tau = \Delta (u^m) \\
  u(0, \cdot) = u_0 \\
  u|_{\partial \Omega} \equiv 0
\end{cases}
\quad \rightarrow \quad
\begin{cases}
  v_t = \Delta (v^m) + \frac{v}{(1-m)T}, \\
  v(0, \cdot) = u_0, \\
  v|_{\partial \Omega} \equiv 0,
\end{cases}
\end{align*}
\]

where

\[
u(t, x) = \left( \frac{T - \tau}{T} \right)^{1-m} v(t, x) \quad \text{and} \quad t = T \log \left( \frac{T}{T - \tau} \right).
\]

The properties of the rescaled problem are related to the stationary equation

\[
\begin{cases}
  -\Delta (S^m) = c S, \quad c = \frac{1}{(1-m)T} \\
  S|_{\partial \Omega} \equiv 0.
\end{cases}
\]

The crucial exponent is

\[
m_s = \frac{d - 2}{d + 2}; \quad \text{we shall consider the range} \quad m_s < m < 1.
\]
The fast diffusion equation on bounded domains

Rescaling and the stationary problem

**Review of previous results**

\[
\begin{array}{l}
\left\{\begin{array}{l}
    u_\tau = \Delta (u^m) \\
    u(0, \cdot) = u_0 \\
    u|_{\partial \Omega} \equiv 0
\end{array}\right. \\
\text{Rescaling} \\
\left\{\begin{array}{l}
    v_t = \Delta (v^m) + \frac{v}{(1-m)T}, \\
    v(0, \cdot) = u_0, \\
    v|_{\partial \Omega} \equiv 0,
\end{array}\right.
\end{array}
\]

where

\[
u(t, x) = \left(\frac{T - \tau}{T}\right)^{\frac{1}{1-m}} v(t, x) \quad \text{and} \quad t = T \log \left(\frac{T}{T - \tau}\right).
\]

The properties of the rescaled problem are related to the stationary equation

\[
\left\{\begin{array}{l}
    -\Delta (S^m) = c S, \quad c = \frac{1}{(1-m)T} \\
    S|_{\partial \Omega} \equiv 0.
\end{array}\right.
\]

The crucial exponent is

\[
m_s = \frac{d - 2}{d + 2}; \quad \text{we shall consider the range} \quad m_s < m < 1.
\]
Review of previous results

\[
\begin{cases}
\frac{\partial u}{\partial \tau} = \Delta (u^m) \\
u(0, \cdot) = u_0 \\
u|_{\partial \Omega} \equiv 0
\end{cases}
\]

\[
\begin{cases}
\frac{\partial v}{\partial t} = \Delta (v^m) + \frac{v}{(1-m)T} \\
v(0, \cdot) = u_0, \\
v|_{\partial \Omega} \equiv 0,
\end{cases}
\]

where

\[
u(t, x) = \left( \frac{T - \tau}{T} \right)^{\frac{1}{1-m}} v(t, x) \quad \text{and} \quad t = T \log \left( \frac{T}{T - \tau} \right).
\]

The properties of the rescaled problem are related to the stationary equation

\[
\begin{cases}
-\Delta (S^m) = c S, \quad c = \frac{1}{(1-m)T} \\
S|_{\partial \Omega} \equiv 0.
\end{cases}
\]

The crucial exponent is

\[m_s = \frac{d - 2}{d + 2}; \quad \text{we shall consider the range} \quad m_s < m < 1.\]
(First Pioneering Result) J. G. Berryman, C. J. Holland ARMA (1980)

Let $m_s < m < 1$. Then there exists a sequence of times $t_n \to \infty$ as $n \to \infty$ and one or several solutions $S$ to the stationary problem such that

$$v(t_n) \xrightarrow{W^{1,2}_0(\Omega)} S.$$


Let $v, S$ be as above and assume $m_s < m < 1$. Then there exists a unique stationary solution $S$ such that

$$v(t) \xrightarrow{C(\overline{\Omega})} S.$$
Previous results

(First Pioneering Result) J. G. Berryman, C. J. Holland ARMA (1980)

Let $m_s < m < 1$. Then there exists a sequence of times $t_n \to \infty$ as $n \to \infty$ and one or several solutions $S$ to the stationary problem such that

$$v(t_n) \xrightarrow{n \to \infty} S.$$ 


Let $v, S$ be as above and assume $m_s < m < 1$. Then there exists a unique stationary solution $S$ such that

$$v(t) \xrightarrow{t \to \infty} S.$$
Let $w$ be the solution to the rescaled Dirichlet problem with $m_s < m < 1$. Then, for any $\sigma > 0$ there exist positive constants $\lambda, \mu > 0$ depending on $d, m, \|u_0\|_{m+1}, \|\nabla u_0^m\|_2, \partial\Omega$ and $\sigma$, such that for any $t \geq \sigma$ and for any $x \in \Omega$

$$\lambda \operatorname{dist} (x, \partial \Omega)^{1/m} \leq v(t, x) \leq \mu \operatorname{dist} (x, \partial \Omega)^{1/m}.$$ 

In the original variables

$$\lambda \operatorname{dist} (x, \partial \Omega)^{1/m} (T - \tau)^{1/(1-m)} \leq u(\tau, x) \leq \mu \operatorname{dist} (x, \partial \Omega)^{1/m} (T - \tau)^{1/(1-m)}.$$ 

The constants $\lambda, \mu$ may deteriorate when $m \to 1$ or $m \to m_s$. 

(Global Harnack Principle)

Let $w$ be the solution to the rescaled Dirichlet problem with $m_s < m < 1$. Then, for any $\sigma > 0$ there exist positive constants $\lambda, \mu > 0$ depending on $d, m, \|u_0\|_{m+1}, \|\nabla u_0^m\|_2, \partial \Omega$ and $\sigma$, such that for any $t \geq \sigma$ and for any $x \in \Omega$

$$\lambda \operatorname{dist} (x, \partial \Omega)^{1/m} \leq v(t, x) \leq \mu \operatorname{dist} (x, \partial \Omega)^{1/m}.$$

In the original variables

$$\lambda \operatorname{dist} (x, \partial \Omega)^{1/m} (T - \tau)^{1/(1-m)} \leq u(\tau, x) \leq \mu \operatorname{dist} (x, \partial \Omega)^{1/m} (T - \tau)^{1/(1-m)}.$$

The constants $\lambda, \mu$ may deteriorate when $m \to 1$ or $m \to m_s$. 
Let $w$ be the solution to the rescaled Dirichlet problem with $m_s < m < 1$. Then, for any $\sigma > 0$ there exist positive constants $\lambda, \mu > 0$ depending on $d, m, \|u_0\|_{m+1}, \|\nabla u_0^m\|_2, \partial \Omega$ and $\sigma$, such that for any $t \geq \sigma$ and for any $x \in \Omega$

$$\lambda \text{dist} (x, \partial \Omega)^{1/m} \leq v(t,x) \leq \mu \text{dist} (x, \partial \Omega)^{1/m}.$$ 

In the original variables

$$\lambda \text{dist} (x, \partial \Omega)^{1/m} (T-\tau)^{1/(1-m)} \leq u(\tau,x) \leq \mu \text{dist} (x, \partial \Omega)^{1/m} (T-\tau)^{1/(1-m)}.$$ 

The constants $\lambda, \mu$ may deteriorate when $m \to 1$ or $m \to m_s$. 

(Global Harnack Principle)

Let $u$ be the solution to the Dirichlet problem and $T = T(m, d, u_0)$ be its extinction time. Then we have that

$$\lim_{\tau \to T^-} \left\| \frac{u(\tau, \cdot)}{U(\tau, \cdot)} - 1 \right\|_{L^\infty(\Omega)} = 0$$

where the special solution $U$ is defined as

$$U(\tau, x) = S(x) \left[\frac{T - \tau}{T}\right]^{1/(1-m)} \quad \left[ \text{one has } S(x) \sim \text{dist}(x, \partial \Omega)^{\frac{1}{m}} \right]$$

and $S$ is a suitable positive classical solution to the stationary problem. Equivalently, the following improved Global Harnack Principle

$$c_0(\tau) S(x) (T - \tau)^{1/(1-m)} \leq u(\tau, x) \leq c_1(\tau) S(x) (T - \tau)^{1/(1-m)}.$$ 

with

$$0 < c_i(\tau) \xrightarrow{\tau \to T^-} 1.$$
Let $u$ be the solution to the Dirichlet problem and $T = T(m, d, u_0)$ be its extinction time. Then we have that

$$\lim_{\tau \to T^-} \left\| \frac{u(\tau, \cdot)}{U(\tau, \cdot)} - 1 \right\|_{L^\infty(\Omega)} = 0$$

where the special solution $U$ is defined as

$$U(\tau, x) = S(x) \left( (T - \tau) / T \right)^{1/(1-m)}$$

and $S$ is a suitable positive classical solution to the stationary problem.

Equivalently, the following improved Global Harnack Principle

$$c_0(\tau) S(x) (T - \tau)^{1/(1-m)} \leq u(\tau, x) \leq c_1(\tau) S(x) (T - \tau)^{1/(1-m)}.$$
Let $u$ be the solution to the Dirichlet problem and $T = T(m, d, u_0)$ be its extinction time. Then we have that

$$\lim_{\tau \to T^-} \left\| \frac{u(\tau, \cdot)}{U(\tau, \cdot)} - 1 \right\|_{L^\infty(\Omega)} = 0$$

where the special solution $U$ is defined as

$$U(\tau, x) = S(x) \left[ (T - \tau) / T \right]^{1/(1-m)}$$

and $S$ is a suitable positive classical solution to the stationary problem. Equivalently, the following improved Global Harnack Principle

$$c_0(\tau) S(x) (T - \tau)^{1/(1-m)} \leq u(\tau, x) \leq c_1(\tau) S(x) (T - \tau)^{1/(1-m)}.$$

with

$$0 < c_i(\tau) \quad \tau \to T^- \rightarrow 1.$$
Steps of the proof.

- Consider the function \( \phi = \frac{v^m}{S^m} - 1 \). Then it satisfies the equation

\[
\frac{1}{m} (1 + \phi)^{\frac{1}{m} - 1} \phi_t = S^{m-1} \Delta \phi + 2 \frac{\nabla(S^m)}{S} \cdot \nabla \phi + F(\phi)
\]

where \( F \) is given by

\[
F(\phi) = c \left[ (1 + \phi)^{1/m} - (1 + \phi) \right].
\]

- Convergence far away from the boundary is easy.
- One can choose positive constants \( A, B, C \) and \( t_0 \), so that the function

\[
\Phi(t, x) = C - B d(x) - A(t - t_0)
\]

is a supersolution to the differential equation satisfied by \( \phi \), in a small neighborhood of the spatial boundary \( \Omega_\delta =: \{ x \in \Omega : \text{dist}(x, \partial \Omega) < \delta \} \).

Technical.

- Use parabolic comparison to compare \( \phi \) and \( \Phi \) in \( t \in (t_0, T] \times \Omega_\delta \). □
Steps of the proof.

- Consider the function $\phi = \frac{v^m}{Sm} - 1$. Then it satisfies the equation

$$\frac{1}{m} (1 + \phi)^{\frac{1}{m} - 1} \phi_t = Sm^{-1} \Delta \phi + 2 \frac{\nabla(S^m)}{S} \cdot \nabla \phi + F(\phi)$$

where $F$ is given by $F(\phi) = c \left[(1 + \phi)^{1/m} - (1 + \phi)\right]$.

- Convergence far away from the boundary is easy.
- One can choose positive constants $A$, $B$, $C$ and $t_0$, so that the function

$$\Phi(t, x) = C - B d(x) - A(t - t_0)$$

is a supersolution to the differential equation satisfied by $\phi$, in a small neighborhood of the spatial boundary $\Omega_\delta =: \{x \in \Omega : \text{dist}(x, \partial \Omega) < \delta\}$.

Technical.

- Use parabolic comparison to compare $\phi$ and $\Phi$ in $t \in (t_0, T] \times \Omega_\delta$. □
Steps of the proof.

- Consider the function \( \phi = \frac{v^m}{S^m} - 1 \). Then it satisfies the equation

\[
\frac{1}{m} (1 + \phi)^{\frac{1}{m} - 1} \phi_t = S^{m-1} \Delta \phi + 2 \frac{\nabla (S^m)}{S} \cdot \nabla \phi + F(\phi)
\]

where \( F \) is given by \( F(\phi) = c \left[ (1 + \phi)^{1/m} - (1 + \phi) \right] \).

- Convergence far away from the boundary is easy.

- One can choose positive constants \( A, B, C \) and \( t_0 \), so that the function

\[
\Phi(t, x) = C - B \, d(x) - A(t - t_0)
\]

is a supersolution to the differential equation satisfied by \( \phi \), in a small neighborhood of the spatial boundary \( \Omega_\delta =: \{x \in \Omega : \text{dist}(x, \partial \Omega) < \delta\} \).

Technical.

- Use parabolic comparison to compare \( \phi \) and \( \Phi \) in \( t \in (t_0, T] \times \Omega_\delta \). \( \square \)
Steps of the proof.

- Consider the function $\phi = \frac{s^m}{s^m - 1} - 1$. Then it satisfies the equation

$$\frac{1}{m} \left(1 + \phi\right)^{\frac{1}{m} - 1} \phi_t = S^{m-1} \Delta \phi + \frac{\nabla(S^m)}{S} \cdot \nabla \phi + F(\phi)$$

where $F$ is given by $F(\phi) = c \left[(1 + \phi)^{1/m} - (1 + \phi)\right]$.

- Convergence far away from the boundary is easy.

- One can choose positive constants $A, B, C$ and $t_0$, so that the function

$$\Phi(t, x) = C - B d(x) - A (t - t_0)$$

is a supersolution to the differential equation satisfied by $\phi$, in a small neighborhood of the spatial boundary $\Omega_\delta =: \{x \in \Omega : \text{dist}(x, \partial \Omega) < \delta\}$.

Technical.

- Use parabolic comparison to compare $\phi$ and $\Phi$ in $t \in (t_0, T] \times \Omega_\delta$. \qed
Steps of the proof.

- Consider the function \( \phi = \frac{v^m}{S^m} - 1 \). Then it satisfies the equation

\[
\frac{1}{m} (1 + \phi)^{\frac{1}{m} - 1} \phi_t = S^{m-1} \Delta \phi + 2 \frac{\nabla(S^m)}{S} \cdot \nabla \phi + F(\phi)
\]

where \( F \) is given by \( F(\phi) = c \left[ (1 + \phi)^{1/m} - (1 + \phi) \right] \).

- Convergence far away from the boundary is easy.

- One can choose positive constants \( A, B, C \) and \( t_0 \), so that the function

\[
\Phi(t, x) = C - B d(x) - A(t - t_0)
\]

is a supersolution to the differential equation satisfied by \( \phi \), in a small neighborhood of the spatial boundary \( \Omega_\delta =: \{ x \in \Omega : \text{dist}(x, \partial \Omega) < \delta \} \).

Technical.

- Use parabolic comparison to compare \( \phi \) and \( \Phi \) in \( t \in (t_0, T] \times \Omega_\delta \). \( \square \)
Recall that
\[
\begin{align*}
  u_{\tau} &= \Delta (u^m) \\
  u(0, \cdot) &= u_0 \\
  u|_{\partial \Omega} &\equiv 0
\end{align*}
\]

\[
\text{Rescaling} \quad \begin{align*}
  v_t &= \Delta (v^m) + \frac{v}{(1-m)T}, \\
  v(0, \cdot) &= u_0, \\
  v|_{\partial \Omega} &\equiv 0,
\end{align*}
\]

where \( u(\tau, x) = \left( \frac{T-\tau}{T} \right)^{\frac{1}{1-m}} v(t, x) \) and \( t = T \log \left( \frac{T}{T-\tau} \right) \).

The properties of the rescaled problem are related to the stationary equation
\[
\begin{align*}
  -\Delta (S^m) &= c S, \quad c = \frac{1}{(1-m)T} \\
  S|_{\partial \Omega} &\equiv 0.
\end{align*}
\]

Define the relative error function
\[
\theta(t, x) = \frac{v(t, x)}{S(x)} - 1.
\]

It satisfies the equation
\[
\theta_t = \frac{1}{S^{1+m}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + cf(\theta)
\]

where
\[
f(\theta) := (1 + \theta) - (1 + \theta)^m
\]
Recall that

\[
\begin{align*}
    u_\tau &= \Delta(u^m) \\
    u(0, \cdot) &= u_0 \\
    u|_{\partial\Omega} &\equiv 0
\end{align*}
\]

Rescaling to

\[
\begin{align*}
    v_t &= \Delta(v^m) + \frac{\nu}{(1-m)T}, \\
    v(0, \cdot) &= u_0, \\
    v|_{\partial\Omega} &\equiv 0,
\end{align*}
\]

where \(u(\tau, x) = \left(\frac{T-\tau}{T}\right)^{\frac{1}{1-m}} v(t, x)\) and \(t = T \log\left(\frac{T}{T-\tau}\right)\).

The properties of the rescaled problem are related to the stationary equation

\[
\begin{align*}
    -\Delta(S^m) &= c S, \\
    S|_{\partial\Omega} &\equiv 0.
\end{align*}
\]

Define the relative error function

\[
\theta(t, x) = \frac{v(t, x)}{S(x)} - 1.
\]

It satisfies the equation

\[
\theta_t = \frac{1}{S^{1+m}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + cf(\theta)
\]

where

\[
f(\theta) := (1 + \theta) - (1 + \theta)^m
\]
Recall that
\[
\begin{aligned}
  u_\tau &= \Delta(u^m) \\
  u(0, \cdot) &= u_0 \\
  u|_{\partial \Omega} &\equiv 0
\end{aligned}
\rightarrow
\begin{aligned}
  v_t &= \Delta(v^m) + \frac{v}{(1-m)T}, \\
  v(0, \cdot) &= u_0, \\
  v|_{\partial \Omega} &\equiv 0,
\end{aligned}
\]
where \(u(\tau, x) = \left(\frac{T-\tau}{T}\right)^{\frac{1}{1-m}} v(t, x)\) and \(t = T \log \left(\frac{T}{T-\tau}\right)\).

The properties of the rescaled problem are related to the stationary equation
\[
\begin{aligned}
  -\Delta(S^m) &= c S, \quad c = \frac{1}{(1-m)T} \\
  S|_{\partial \Omega} &\equiv 0.
\end{aligned}
\]

Define the \textbf{relative error function} \(\theta(t, x) = \frac{v(t, x)}{S(x)} - 1\).

It satisfies the equation
\[
\theta_t = \frac{1}{S^{1+m}} \nabla \cdot (S^{2m} \nabla (1+\theta)^m) + cf(\theta)
\]
where
\[
f(\theta) := (1 + \theta) - (1 + \theta)^m
\]
Recall that

\[
\begin{cases}
    u_\tau = \Delta(u^m) \\
    u(0, \cdot) = u_0 \\
    u|_{\partial \Omega} \equiv 0
\end{cases}
\rightarrow
\begin{cases}
    v_t = \Delta(v^m) + \frac{v}{(1-m)T}, \\
    v(0, \cdot) = u_0, \\
    v|_{\partial \Omega} \equiv 0,
\end{cases}
\]

where \( u(\tau, x) = \left( \frac{T-\tau}{T} \right)^{\frac{1}{1-m}} v(t, x) \) and \( t = T \log \left( \frac{T}{T-\tau} \right) \).

The properties of the rescaled problem are related to the stationary equation

\[
\begin{cases}
    -\Delta(S^m) = cS, \quad c = \frac{1}{(1-m)T} \\
    S|_{\partial \Omega} \equiv 0.
\end{cases}
\]

Define the relative error function

\[
\theta(t, x) = \frac{v(t, x)}{S(x)} - 1.
\]

It satisfies the equation

\[
\theta_t = \frac{1}{S^{1+m}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + cf(\theta)
\]

where

\[
f(\theta) := (1 + \theta) - (1 + \theta)^m
\]
The fast diffusion equation on bounded domains

Recall that
\[
\begin{align*}
  u_\tau &= \Delta(u^m) \\
  u(0, \cdot) &= u_0 \\
  u|_{\partial\Omega} &\equiv 0
\end{align*}
\]

Rescaling
\[
\begin{align*}
  v_t &= \Delta(v^m) + \frac{v}{(1-m)T}, \\
  v(0, \cdot) &= u_0, \\
  v|_{\partial\Omega} &\equiv 0,
\end{align*}
\]

where \( u(\tau, x) = \left( \frac{T-\tau}{T} \right)^{1-m} v(t, x) \) and \( t = T \log \left( \frac{T}{T-\tau} \right) \).

The properties of the rescaled problem are related to the stationary equation
\[
\begin{align*}
  -\Delta(S^m) &= c S, \quad c = \frac{1}{(1-m)T} \\
  S|_{\partial\Omega} &\equiv 0.
\end{align*}
\]

Define the relative error function
\[
\theta(t, x) = \frac{v(t, x)}{S(x)} - 1.
\]

It satisfies the equation
\[
\theta_t = \frac{1}{S^{1+m}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + cf(\theta)
\]

where
\[
f(\theta) := (1 + \theta) - (1 + \theta)^m
\]
In the sequel, the constants $m_{\#}, \gamma_0$ are \textit{explicit}. They depend on $m$ and on the geometry of the domain.

\textbf{(Decay Rates, Rescaled Version) M.B., G.Grillo, J.L. Vázquez, JMPA (2011)}

Let $m_{\#} < m < 1$. Let $v$ be the rescaled solution corresponding to an initial datum $u_0$, and let $S$ be the stationary profile to which the solution converges. Let $0 < \gamma < \gamma_0$. Then for all $t > t_0$:

$$E[\theta(t)] := \frac{1}{2} \int_{\Omega} |\theta(t) - \bar{\theta}(t)|^2 S^{m+1} \, dx \leq e^{-\gamma(t-t_0)} E[\theta(t_0)],$$

where $\bar{\theta}(t)$ is the mean of $\theta(t)$ w.r.t. to the measure $S^{m+1} \, dx$. Therefore the following holds:

$$\int_{\Omega} |v(t,x) - S(x)|^2 S(x)^{m-1} \, dx = \int_{\Omega} \left| \frac{v(t,x)}{S(x)} - 1 \right|^2 S(x)^{1+m} \, dx \leq \kappa_0 e^{-\gamma(t-t_0)}.$$

Finally, for all $q \in (0, \infty)$:

$$\| v(t, \cdot) - S(\cdot) \|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}.$$
In the sequel, the constants $m^\#$, $\gamma_0$ are explicit. They depend on $m$ and on the geometry of the domain.

(Decay Rates, Rescaled Version) M.B., G.Grillo, J.L. Vázquez, JMPA (2011)

Let $m^\# < m < 1$. Let $v$ be the rescaled solution corresponding to an initial datum $u_0$, and let $S$ be the stationary profile to which the solution converges. Let $0 < \gamma < \gamma_0$. Then for all $t > t_0$:

$$
\mathcal{E}[\theta(t)] := \frac{1}{2} \int_\Omega |\theta(t) - \overline{\theta}(t)|^2 S^{m+1} \, dx \leq e^{-\gamma(t-t_0)} \mathcal{E}[\theta(t_0)],
$$

where $\overline{\theta}(t)$ is the mean of $\theta(t)$ w.r.t. to the measure $S^{m+1} \, dx$.

Therefore the following holds:

$$
\int_\Omega |v(t,x) - S(x)|^2 S(x)^{m-1} \, dx = \int_\Omega \left| \frac{v(t,x)}{S(x)} - 1 \right|^2 S(x)^{1+m} \, dx \leq \kappa_0 e^{-\gamma(t-t_0)}.
$$

Finally, for all $q \in (0, \infty]$:

$$
\|v(t,\cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}.
$$
In the sequel, the constants $m^\#_\gamma, \gamma_0$ are *explicit*. They depend on $m$ and on the geometry of the domain.

*(Decay Rates, Rescaled Version)* *M.B., G.Grillo, J.L. Vázquez, JMPA (2011)*

Let $m^\#_\gamma < m < 1$. Let $v$ be the rescaled solution corresponding to an initial datum $u_0$, and let $S$ be the stationary profile to which the solution converges. Let $0 < \gamma < \gamma_0$. Then for all $t > t_0$:

$$\mathcal{E}[\theta(t)] := \frac{1}{2} \int_\Omega |\theta(t) - \overline{\theta}(t)|^2 S^{m+1} \, dx \leq e^{-\gamma(t-t_0)} \mathcal{E}[\theta(t_0)],$$

where $\overline{\theta}(t)$ is the mean of $\theta(t)$ w.r.t. to the measure $S^{m+1} \, dx$.

Therefore the following holds:

$$\int_\Omega |v(t,x) - S(x)|^2 S(x)^{m-1} \, dx = \int_\Omega \left( \frac{v(t,x)}{S(x)} - 1 \right)^2 S(x)^{1+m} \, dx \leq \kappa_0 e^{-\gamma(t-t_0)}.$$

Finally, for all $q \in (0, \infty)$:

$$\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}.$$
In the sequel, the constants $m^\#, \gamma_0$ are explicit. They depend on $m$ and on the geometry of the domain.

(Decay Rates, Rescaled Version) M.B., G.Grillo, J.L. Vázquez, JMPA (2011)

Let $m^\# < m < 1$. Let $v$ be the rescaled solution corresponding to an initial datum $u_0$, and let $S$ be the stationary profile to which the solution converges. Let $0 < \gamma < \gamma_0$. Then for all $t > t_0$:

$$E[\theta(t)] := \frac{1}{2} \int_{\Omega} |\theta(t) - \overline{\theta}(t)|^2 S^{m+1} \, dx \leq e^{-\gamma(t-t_0)} E[\theta(t_0)],$$

where $\overline{\theta}(t)$ is the mean of $\theta(t)$ w.r.t. to the measure $S^{m+1} \, dx$.

Therefore the following holds:

$$\int_{\Omega} |v(t, x) - S(x)|^2 S(x)^{m-1} \, dx = \int_{\Omega} \left| \frac{v(t, x)}{S(x)} - 1 \right|^2 S(x)^{1+m} \, dx \leq \kappa_0 e^{-\gamma(t-t_0)}.$$

Finally, for all $q \in (0, \infty]$:

$$\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}.$$
Some Remarks. We have proved that for all \( m^\# < m < 1 \), for all \( 0 < \gamma < \gamma_0 \) and \( q \in (0, \infty) \):

\[
\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2} (t-t_0)}.
\]

- The expression of \( m^\# \) is determined by the relation

\[
1 > m > 1 - \frac{1}{1 + \frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_\Omega(m) \tag{1}
\]

- The constants \( k_i(m) \) have an explicit expression and indeed \( k_i(m) \to 1 \) as \( m \to 1^- \). In the limit \( m \to 1^- \) we have that \( f_\Omega(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1 \), hence the range of \( m < 1 \) for which (1) holds is nonempty. Note that \( m^\# \) changes with \( m \) and with the geometry of the domain.

- For any \( m > m_s = (d + 2)/(d - 2) \), we have

\[
\frac{1}{\lambda_1} \left[ \int_\Omega u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1 - m)T \leq \frac{(\lambda_1 S_2^2)^{\frac{d(1-m)}{4(1+m)}}}{\lambda_1} ||u_0||^{1-m}.
\]

so that \( c = 1/(1 - m)T \to \lambda_1 \) as \( m \to 1^- \).

- The rate involves the expression

\[
0 < \gamma_0 = \frac{1}{(1 - m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1 - m) \right] \xrightarrow{m \to 1^-} (\lambda_2 - \lambda_1) > 0
\]

where \( \lambda_k \) are the first eigenvalues of the Dirichlet Laplacian.

- The constant \( \kappa_1 \) depends explicitly on \( m \), \( d \) and \( u_0 \).
Some Remarks. We have proved that for all \( m^\# < m < 1 \), for all \( 0 < \gamma < \gamma_0 \) and \( q \in (0, \infty) \):

\[
\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}.
\]

The expression of \( m^\# \) is determined by the relation

\[
1 > m > 1 - \frac{1}{1 + \frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_\Omega(m)
\]

(1)

The constants \( k_i(m) \) have an explicit expression and indeed \( k_i(m) \to 1 \) as \( m \to 1^- \). In the limit \( m \to 1^- \) we have that \( f_\Omega(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1 \), hence the range of \( m < 1 \) for which (1) holds is nonempty. Note that \( m^\# \) changes with \( m \) and with the geometry of the domain.

For any \( m > m_s = (d + 2)/(d - 2) \), we have

\[
\frac{1}{\lambda_1} \left[ \int_{\Omega} u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1 - m)T \leq \frac{(\lambda_1 S_2^2)^{d(1-m)}}{\lambda_1} \|u_0\|^{1-m}_{1+m}.
\]

so that \( c = 1/(1 - m)T \to \lambda_1 \) as \( m \to 1^- \).

The rate involves the expression

\[
0 < \gamma_0 = \frac{1}{(1 - m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1 - m) \right] \xrightarrow{m \to 1^-} (\lambda_2 - \lambda_1) > 0
\]

where \( \lambda_k \) are the first eigenvalues of the Dirichlet Laplacian.

The constant \( \kappa_1 \) depends explicitly on \( m, d \) and \( u_0 \).
Some Remarks. We have proved that for all $m^\# < m < 1$, for all $0 < \gamma < \gamma_0$ and $q \in (0, \infty)$:

$$\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t - t_0)}.$$  

The expression of $m^\#$ is determined by the relation

$$1 > m > 1 - \frac{1}{1 + \frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_\Omega(m)$$  (1)

The constants $k_i(m)$ have an explicit expression and indeed $k_i(m) \to 1$ as $m \to 1^-$. In the limit $m \to 1^-$ we have that $f_\Omega(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1$, hence the range of $m < 1$ for which (1) holds is nonempty. Note that $m^\#$ changes with $m$ and with the geometry of the domain.

For any $m > m_s = (d + 2)/(d - 2)$, we have

$$\frac{1}{\lambda_1} \left[ \int_\Omega u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1 - m)T \leq \frac{\lambda_1 S_2^2}{4(1+m)} \frac{d(1-m)}{\lambda_1} \|u_0\|^{1+m},$$

so that $c = 1/(1 - m)T \to \lambda_1$ as $m \to 1^-$. The rate involves the expression

$$0 < \gamma_0 = \frac{1}{(1 - m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1 - m) \right] \xrightarrow{m \to 1^-} (\lambda_2 - \lambda_1) > 0$$

where $\lambda_k$ are the first eigenvalues of the Dirichlet Laplacian. The constant $\kappa_1$ depends explicitly on $m, d$ and $u_0$.  

The fast diffusion equation on bounded domains

The relative error function
Some Remarks. We have proved that for all \( m_\# < m < 1 \), for all \( 0 < \gamma < \gamma_0 \) and \( q \in (0, \infty] \):

\[
\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2} (t-t_0)}.
\]

- The expression of \( m_\# \) is determined by the relation

\[
1 > m > 1 - \frac{1}{\frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_{\Omega}(m)
\]

(1)

- The constants \( k_i(m) \) have an explicit expression and indeed \( k_i(m) \to 1 \) as \( m \to 1^- \). In the limit \( m \to 1^- \) we have that \( f_{\Omega}(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1 \), hence the range of \( m < 1 \) for which (1) holds is nonempty. Note that \( m_\# \) changes with \( m \) and with the geometry of the domain.

- for any \( m > m_s = (d + 2)/(d - 2) \), we have

\[
\frac{1}{\lambda_1} \left[ \int_{\Omega} u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1-m)T \leq \frac{(\lambda_1 S_2^2)^d (1-m)}{4(1+m) \lambda_1} \|u_0\|^{1-m}.
\]

so that \( c = 1/(1-m)T \to \lambda_1 \) as \( m \to 1^- \).

- The rate involves the expression

\[
0 < \gamma_0 = \frac{1}{(1-m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1-m) \right] \to (\lambda_2 - \lambda_1) > 0
\]

where \( \lambda_k \) are the first eigenvalues of the Dirichlet Laplacian.

- The constant \( \kappa_1 \) depends explicitly on \( m, d \) and \( u_0 \).
Some Remarks. We have proved that for all $m^\# < m < 1$, for all $0 < \gamma < \gamma_0$ and $q \in (0, \infty]$:

$$\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2} (t-t_0)}.$$ 

- The expression of $m^\#$ is determined by the relation

$$1 > m > 1 - \frac{1}{1 + \frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_\Omega(m) \quad (1)$$

- The constants $k_i(m)$ have an explicit expression and indeed $k_i(m) \to 1$ as $m \to 1^-$. In the limit $m \to 1^-$ we have that $f_\Omega(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1$, hence the range of $m < 1$ for which (1) holds is nonempty. Note that $m^\#$ changes with $m$ and with the geometry of the domain.

- for any $m > m_s = (d + 2)/(d - 2)$, we have

$$\frac{1}{\lambda_1} \left[ \int_{\Omega} u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1 - m)T \leq \frac{(\lambda_1 S_2^2)^{\frac{d(1-m)}{4(1+m)}}}{\lambda_1} \|u_0\|^{1-m}.$$ 

so that $c = 1/(1 - m)T \to \lambda_1$ as $m \to 1^-$. 

- The rate involves the expression

$$0 < \gamma_0 = \frac{1}{(1 - m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1 - m) \right] \xrightarrow{m \to 1^-} (\lambda_2 - \lambda_1) > 0$$

where $\lambda_k$ are the first eigenvalues of the Dirichlet Laplacian.

- The constant $\kappa_1$ depends explicitly on $m, d$ and $u_0$. 

- The fast diffusion equation on bounded domains
Some Remarks. We have proved that for all $m^\# < m < 1$, for all $0 < \gamma < \gamma_0$ and $q \in (0, \infty]$:  
\[ \|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}. \]

- The expression of $m^\#$ is determined by the relation
  \[ 1 > m > 1 - \frac{1}{1 + \frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_\Omega(m) \tag{1} \]

- The constants $k_i(m)$ have an explicit expression and indeed $k_i(m) \to 1$ as $m \to 1^-$. In the limit $m \to 1^-$ we have that $f_\Omega(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1$, hence the range of $m < 1$ for which (1) holds is nonempty. Note that $m^\#$ changes with $m$ and with the geometry of the domain.

- for any $m > m_s = (d + 2)/(d - 2)$, we have
  \[ \frac{1}{\lambda_1} \left[ \int_\Omega u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1 - m)T \leq \frac{\lambda_1 S_2^2}{\lambda_1} \frac{d(1-m)}{4(1+m)} \|u_0\|^{1-m} \]

so that $c = 1/(1 - m)T \to \lambda_1$ as $m \to 1^-$.  

- The rate involves the expression
  \[ 0 < \gamma_0 = \frac{1}{(1 - m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1 - m) \right] \xrightarrow{m \to 1^-} (\lambda_2 - \lambda_1) > 0 \]

where $\lambda_k$ are the first eigenvalues of the Dirichlet Laplacian.

- The constant $\kappa_1$ depends explicitly on $m, d$ and $u_0$. 

The fast diffusion equation on bounded domains

The relative error function
**Some Remarks.** We have proved that for all $m_\# < m < 1$, for all $0 < \gamma < \gamma_0$ and $q \in (0, \infty]$:

$$\|v(t, \cdot) - S(\cdot)\|_q \leq \kappa_1 e^{-\frac{\gamma}{2}(t-t_0)}.$$ 

- The expression of $m_\#$ is determined by the relation

$$1 > m > 1 - \frac{1}{1 + \frac{2\lambda_1}{\lambda_2 - \lambda_1} \frac{k_0(m)^2}{k_1(m)^2}} := f_\Omega(m) \quad (1)$$

- The constants $k_i(m)$ have an explicit expression and indeed $k_i(m) \to 1$ as $m \to 1^-$. In the limit $m \to 1^-$ we have that $f_\Omega(m) \to 2\lambda_1/(\lambda_1 + \lambda_2) < 1$, hence the range of $m < 1$ for which (1) holds is nonempty. Note that $m_\#$ changes with $m$ and with the geometry of the domain.

- for any $m > m_s = (d + 2)/(d - 2)$, we have

$$\frac{1}{\lambda_1} \left[ \int_{\Omega_2} u_0(x) \Phi_1(x) \, dx \right]^{1-m} \leq (1 - m)T \leq \frac{(\lambda_1 S_2^2)^{d/(1-m)}}{\lambda_1} \|u_0\|^{1+m}_{1+m}.$$ 

so that $c = 1/(1 - m)T \to \lambda_1$ as $m \to 1^-$. 

- The rate involves the expression

$$0 < \gamma_0 = \frac{1}{(1 - m)T} \left[ m \left( \frac{\lambda_2}{\lambda_1} - 1 \right) \frac{k_0(m)^2}{k_1(m)^2} - 2(1 - m) \right] \xrightarrow{m \to 1^-} (\lambda_2 - \lambda_1) > 0$$

where $\lambda_k$ are the first eigenvalues of the Dirichlet Laplacian.

- The constant $\kappa_1$ depends explicitly on $m, d$ and $u_0$. 

Let max\{m_#, m_c\} < m < 1. Let \( u \) be the solution to the original FDE Problem, let 
\( T = T(m, d, u_0) \) be its extinction time, and let \( \mathcal{U}_T \) be previous special solution, so that 
\( u(\tau)/\mathcal{U}_T(\tau) \to 1 \) uniformly as \( \tau \to T \). Then, for any \( \bar{\gamma} < \bar{\gamma}_0 := \gamma_0 T \) there exists a

constant \( \kappa_0 > 0 \) such that

\[
\left\| \frac{u(\tau, \cdot)}{\mathcal{U}(\tau, \cdot)} - 1 \right\|_{L^2(\Omega, S^{1+m})}^2 \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\bar{\gamma}}
\]

or equivalently

\[
\int_\Omega |u(\tau, x) - \mathcal{U}(\tau, x)|^2 S^{m-1} \, dx \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \bar{\gamma}} \tag{2}
\]

for all \( t_0 \leq \tau \leq T \). Moreover we have that for all \( q \in (0, \infty] \)

\[
\|u(\tau, x) - \mathcal{U}(\tau, x)\|_q \leq \kappa_1 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \bar{\gamma}}.
\]

The weighted convergence of (2) is somehow stronger than the non-weighted \( L^p \) — norm convergence, since the weight \( S^{m-1} \) is singular at the boundary.
Let $\max\{m^\#, m_c\} < m < 1$. Let $u$ be the solution to the original FDE Problem, let $T = T(m, d, u_0)$ be its extinction time, and let $U_T$ be previous special solution, so that $u(\tau)/U_T(\tau) \to 1$ uniformly as $\tau \to T$. Then, for any $\bar{\gamma} < \bar{\gamma}_0 := \gamma_0 T$ there exists a constant $\kappa_0 > 0$ such that

$$\|u(\tau, \cdot)/U(\tau, \cdot) - 1\|_{L^2(\Omega, S^{m-1})}^2 \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\bar{\gamma}}$$

or equivalently

$$\int_\Omega |u(\tau, x) - U(\tau, x)|^2 S^{m-1} \, dx \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \bar{\gamma}}$$

for all $t_0 \leq \tau \leq T$. Moreover we have that for all $q \in (0, \infty]$

$$\|u(\tau, x) - U(\tau, x)\|_q \leq \kappa_1 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \bar{\gamma}}.$$

The weighted convergence of (2) is somehow stronger than the non-weighted $L^p$—norm convergence, since the weight $S^{m-1}$ is singular at the boundary.
Let \( \max\{m^\#, m_c\} < m < 1 \). Let \( u \) be the solution to the original FDE Problem, let 
\( T = T(m, d, u_0) \) be its extinction time, and let \( \mathcal{U}_T \) be previous special solution, so that
\( u(\tau)/\mathcal{U}_T(\tau) \to 1 \) uniformly as \( \tau \to T \). Then, for any \( \bar{\gamma} < \bar{\gamma}_0 := \gamma_0 T \) there exists a constant \( \kappa_0 > 0 \) such that

\[
\left\| \frac{u(\tau, \cdot)}{\mathcal{U}(\tau, \cdot)} - 1 \right\|_{L^2(\Omega, S^{1+m})}^2 \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\bar{\gamma}}
\]

or equivalently

\[
\int_{\Omega} |u(\tau, x) - \mathcal{U}(\tau, x)|^2 S^{m-1} \, dx \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \bar{\gamma}}
\]

for all \( t_0 \leq \tau \leq T \). Moreover we have that for all \( q \in (0, \infty] \)

\[
\|u(\tau, x) - \mathcal{U}(\tau, x)\|_q \leq \kappa_1 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \bar{\gamma}}.
\]

The weighted convergence of (2) is somehow stronger than the non-weighted \( L^p \)−norm convergence, since the weight \( S^{m-1} \) is singular at the boundary.
(Decay Rates, Original Variables)

Let $\max\{m\#, m_c\} < m < 1$. Let $u$ be the solution to the original FDE Problem, let $T = T(m, d, u_0)$ be its extinction time, and let $U_T$ be previous special solution, so that $u(\tau)/U_T(\tau) \to 1$ uniformly as $\tau \to T$. Then, for any $\gamma < \gamma_0 := \gamma_0 T$ there exists a constant $\kappa_0 > 0$ such that

$$\left\| \frac{u(\tau, \cdot)}{U(\tau, \cdot)} - 1 \right\|_{L^2(\Omega, S^{1+m})}^2 \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \gamma}$$

or equivalently

$$\int_{\Omega} |u(\tau, x) - U(\tau, x)|^2 S^{m-1} \, dx \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \gamma} \quad (2)$$

for all $t_0 \leq \tau \leq T$. Moreover we have that for all $q \in (0, \infty]$,

$$\|u(\tau, x) - U(\tau, x)\|_q \leq \kappa_1 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \gamma}.$$

The weighted convergence of (2) is somehow stronger than the non-weighted $L^p$—norm convergence, since the weight $S^{m-1}$ is singular at the boundary.
Let \( m_\# < m < 1 \). Let \( u \) be the solution to the original FDE Problem, let \( T = T(m, d, u_0) \) be its extinction time, and let \( \mathcal{U}_T \) be previous special solution, so that \( u(\tau)/\mathcal{U}_T(\tau) \to 1 \) uniformly as \( \tau \to T \). Then, for any \( \tilde{\gamma} < \tilde{\gamma}_0 := \gamma_0 T \) there exists a constant \( \kappa_0 > 0 \) such that

\[
\left\| \frac{u(\tau, \cdot)}{\mathcal{U}(\tau, \cdot)} - 1 \right\|_{L^2(\Omega, S^{1+m})}^2 \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\tilde{\gamma}}
\]

or equivalently

\[
\int_\Omega |u(\tau, x) - \mathcal{U}(\tau, x)|^2 S^{m-1} \, dx \leq \kappa_0 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \tilde{\gamma}} \tag{2}
\]

for all \( t_0 \leq \tau \leq T \). Moreover we have that for all \( q \in (0, \infty] \)

\[
\|u(\tau, x) - \mathcal{U}(\tau, x)\|_q \leq \kappa_1 \left( \frac{T - \tau}{T} \right)^{\frac{2}{1-m} + \tilde{\gamma}}.
\]

The weighted convergence of (2) is somehow stronger than the non-weighted \( L^p \) -norm convergence, since the weight \( S^{m-1} \) is singular at the boundary.
Similar consideration also work for the porous media case \((m > 1)\), which has been studied long ago by completely different methods (Aronson-Peletier, JDE (1981)).

**(Decay Rates, Porous Medium)**

Let \(m > 1\), let \(v\) be a the rescaled solution, that converges to its unique stationary state \(S\), and let \(\theta = v/S\). Then, for all \(0 < \beta < 2 + \frac{Kn}{m-1}\) there exists a time \(t_1\) depending on \(m, d, \beta\) and on the constant \(K > 0\) of the weighted Poincaré inequality, such that the entropy decays as

\[
E[\theta(t)] \leq E[\theta(t_1)] e^{-\beta(t-t_1)} \quad \text{for all } t \geq t_1.
\]

Moreover for all \(q \in (0, \infty]\)

\[
\|v(t, \cdot) - S(\cdot)\|_{L^q(\Omega)} \leq \kappa_1 e^{-(t-t_1)} \quad \text{for all } t \geq t_1.
\]

In original variables we obtain that for all \(q \in (0, \infty]\)

\[
\|u(\tau, \cdot) - U(\tau, \cdot)\|_{L^q(\Omega)} \leq \frac{\kappa_2}{(1 + \tau)^{1+1/(m-1)},}
\]

where the special solution \(U\) is defined by \(U(\tau, x) = S(x)(1 + \tau)^{-1/(m-1)}\).
Similar consideration also work for the porous media case \((m > 1)\), which has been studied long ago by completely different methods (Aronson-Peletier, JDE (1981)).

**Decay Rates, Porous Medium**

Let \(m > 1\), let \(v\) be a the rescaled solution, that converges to its unique stationary state \(S\), and let \(\theta = v/S\). Then, for all \(0 < \beta < 2 + \frac{Km}{m-1}\) there exists a time \(t_1\) depending on \(m, d, \beta\) and on the constant \(K > 0\) of the weighted Poincaré inequality, such that the entropy decays as

\[
\mathcal{E}[\theta(t)] \leq \mathcal{E}[\theta(t_1)] e^{-\beta(t-t_1)} \quad \text{for all } t \geq t_1.
\]

Moreover for all \(q \in (0, \infty]\)

\[
\|v(t, \cdot) - S(\cdot)\|_{L^q(\Omega)} \leq \kappa_1 e^{-(t-t_1)} \quad \text{for all } t \geq t_1.
\]

In original variables we obtain that for all \(q \in (0, \infty]\)

\[
\|u(\tau, \cdot) - U(\tau, \cdot)\|_{L^q(\Omega)} \leq \frac{\kappa_2}{(1 + \tau)^{1+\frac{1}{m-1}}},
\]

where the special solution \(U\) is defined by \(U(\tau, x) = S(x)(1 + \tau)^{-1/(m-1)}\).
Similar consideration also work for the porous media case \((m > 1)\), which has been studied long ago by completely different methods (Aronson-Peletier, JDE (1981)).

(Decay Rates, Porous Medium)

Let \(m > 1\), let \(v\) be a the rescaled solution, that converges to its unique stationary state \(S\), and let \(\theta = v/S\). Then, for all \(0 < \beta < 2 + \frac{Km}{m-1}\) there exists a time \(t_1\) depending on \(m, d, \beta\) and on the constant \(K > 0\) of the weighted Poincaré inequality, such that the entropy decays as

\[
\mathcal{E}[^{(t)}] \leq \mathcal{E}[^{(t_1)}] e^{-\beta(t-t_1)} \quad \text{for all } t \geq t_1.
\]

Moreover for all \(q \in (0, \infty]\)

\[
\|v(t, \cdot) - S(\cdot)\|_{L^q(\Omega)} \leq \kappa_1 e^{-(t-t_1)} \quad \text{for all } t \geq t_1.
\]

In original variables we obtain that for all \(q \in (0, \infty]\)

\[
\|u(t, \cdot) - U(t, \cdot)\|_{L^q(\Omega)} \leq \frac{\kappa_2}{(1 + t)^{1+\frac{1}{m-1}}},
\]

where the special solution \(U\) is defined by \(U(t, x) = S(x)(1 + t)^{-1/(m-1)}\).
Similar consideration also work for the porous media case \((m > 1)\), which has been studied long ago by completely different methods (Aronson-Peletier, JDE (1981)).

(Decay Rates, Porous Medium)

Let \(m > 1\), let \(v\) be a the rescaled solution, that converges to its unique stationary state \(S\), and let \(\theta = v/S\). Then, for all \(0 < \beta < 2 + \frac{Km}{m-1}\) there exists a time \(t_1\) depending on \(m, d, \beta\) and on the constant \(K > 0\) of the weighted Poincaré inequality, such that the entropy decays as

\[
E[\theta(t)] \leq E[\theta(t_1)] e^{-\beta(t-t_1)} \quad \text{for all } t \geq t_1.
\] (3)

Moreover for all \(q \in (0, \infty]\)

\[
\|v(t, \cdot) - S(\cdot)\|_{L^q(\Omega)} \leq \kappa_1 e^{-(t-t_1)} \quad \text{for all } t \geq t_1.
\]

In original variables we obtain that for all \(q \in (0, \infty]\)

\[
\|u(\tau, \cdot) - U(\tau, \cdot)\|_{L^q(\Omega)} \leq \frac{\kappa_2}{(1 + \tau)^{1+\frac{1}{m-1}}},
\]

where the special solution \(U\) is defined by \(U(\tau, x) = S(x)(1 + \tau)^{-1/(m-1)}\).
Similar consideration also work for the porous media case \((m > 1)\), which has been studied long ago by completely different methods (Aronson-Peletier, JDE (1981)).

\[ (\text{Decay Rates, Porous Medium}) \]

Let \(m > 1\), let \(v\) be a the rescaled solution, that converges to its unique stationary state \(S\), and let \(\theta = v/S\). Then, for all \(0 < \beta < 2 + \frac{K m}{m-1}\) there exists a time \(t_1\) depending on \(m, d, \beta\) and on the constant \(K > 0\) of the weighted Poincaré inequality, such that the entropy decays as

\[
\mathcal{E}[\theta(t)] \leq \mathcal{E}[\theta(t_1)] e^{-\beta(t-t_1)} \quad \text{for all } t \geq t_1. \tag{3}
\]

Moreover for all \(q \in (0, \infty)\)

\[
\|v(t, \cdot) - S(\cdot)\|_{L^q(\Omega)} \leq \kappa_1 e^{-(t-t_1)} \quad \text{for all } t \geq t_1.
\]

In original variables we obtain that for all \(q \in (0, \infty)\)

\[
\|u(\tau, \cdot) - U(\tau, \cdot)\|_{L^q(\Omega)} \leq \frac{\kappa_2}{(1 + \tau)^{1+\frac{1}{m-1}}},
\]

where the special solution \(U\) is defined by \(U(\tau, x) = S(x)(1 + \tau)^{-1/(m-1)}\).
Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation $u_\tau = \Delta u$.

- Rescale $v(x, t) = e^{\lambda_1 t}u(x, t)$ to get the equation $v_t = \Delta v + \lambda_1 v$.
- The role of the stationary solution $S$ is now played by the first nonnegative eigenfunction $\Phi_1 > 0$ of the Dirichlet Laplacian.
- The equation for the relative error $\theta = v/\Phi_1 - 1$ is $\theta_t = \Phi_1^{-2}\nabla \cdot (\Phi_1^2 \nabla \theta)$.
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let $\lambda_j, \Phi_j, j = 1, 2, \ldots$ be its eigenvalues, and the corresponding $L^2$-normalized eigenfunctions. The spectral representation for the heat semigroup gives

$$u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_{\Omega} u_0 \Phi_j \, dx$$

so that

$$\theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \xrightarrow{t \to +\infty} \frac{c_2}{c_1} \frac{\Phi_2}{\Phi_1} e^{-(\lambda_2 - \lambda_1)t}.$$ 

In other words, the solution $u(t)$ behaves like $U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1$ and the relative error $\theta$, decays exponentially in time with a rate $\lambda_2 - \lambda_1$. (recall that $\Phi_2/\Phi_1$ is bounded.)
Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation \( u_\tau = \Delta u \).

- Rescale \( v(x, t) = e^{\lambda_1 t} u(x, t) \) to get the equation \( v_\tau = \Delta v + \lambda_1 v \).
- The role of the stationary solution \( S \) is now played by the first nonnegative eigenfunction \( \Phi_1 > 0 \) of the Dirichlet Laplacian.
- The equation for the relative error \( \theta = v/\Phi_1 - 1 \) is \( \theta_\tau = \Phi_1^{-2} \nabla \cdot (\Phi_1^2 \nabla \theta) \).
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let \( \lambda_j, \Phi_j, \) \( j = 1, 2, \ldots \) be its eigenvalues, and the corresponding \( L^2 \)-normalized eigenfunctions. The spectral representation for the heat semigroup gives

\[
  u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_{\Omega} u_0 \Phi_j \, dx
\]

so that

\[
  \theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \sim \frac{c_2}{c_1} \frac{\Phi_2}{\Phi_1} e^{-(\lambda_2 - \lambda_1) t}.
\]

In other words, the solution \( u(t) \) behaves like \( U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1 \) and the relative error \( \theta \), decays exponentially in time with a rate \( \lambda_2 - \lambda_1 \). (recall that \( \Phi_2 / \Phi_1 \) is bounded.)
Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation $u_\tau = \Delta u$.

- Rescale $v(x, t) = e^{\lambda_1 t} u(x, t)$ to get the equation $v_t = \Delta v + \lambda_1 v$.
- The role of the stationary solution $S$ is now played by the first nonnegative eigenfunction $\Phi_1 > 0$ of the Dirichlet Laplacian.
- The equation for the relative error $\theta = v/\Phi_1 - 1$ is $\theta_t = \Phi_1^{-2} \nabla \cdot (\Phi_1^2 \nabla \theta)$.
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let $\lambda_j, \Phi_j, j = 1, 2, \ldots$ be its eigenvalues, and the corresponding $L^2$-normalized eigenfunctions. The spectral representation for the heat semigroup gives

$$u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_{\Omega} u_0 \Phi_j \, dx$$

so that

$$\theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \sim \frac{c_2}{c_1} \frac{\Phi_2}{\Phi_1} e^{-(\lambda_2 - \lambda_1) t}.$$  

In other words, the solution $u(t)$ behaves like $U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1$ and the relative error $\theta$, decays exponentially in time with a rate $\lambda_2 - \lambda_1$. (recall that $\Phi_2/\Phi_1$ is bounded.)
Short review on the linear case.

Consider the homogeneous Dirichlet problem for the linear heat equation $u_\tau = \Delta u$. 

- Rescale $v(x, t) = e^{\lambda_1 t} u(x, t)$ to get the equation $v_t = \Delta v + \lambda_1 v$. 
- The role of the stationary solution $S$ is now played by the first nonnegative eigenfunction $\Phi_1 > 0$ of the Dirichlet Laplacian. 
- The equation for the relative error $\theta = v/\Phi_1 - 1$ is $\theta_t = \Phi_1^{-2} \nabla \cdot (\Phi_1^2 \nabla \theta)$ 
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let $\lambda_j, \Phi_j, j = 1, 2, \ldots$ be its eigenvalues, and the corresponding $L^2$-normalized eigenfunctions. The spectral representation for the heat semigroup gives 
  \[ u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_\Omega u_0 \Phi_j \, dx \]

so that 
\[ \theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \sim \frac{c_2}{c_1} \frac{\Phi_2}{\Phi_1} e^{-(\lambda_2 - \lambda_1) t}. \]

In other words, the solution $u(t)$ behaves like $U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1$ and the relative error $\theta$, decays exponentially in time with a rate $\lambda_2 - \lambda_1$. (recall that $\Phi_2/\Phi_1$ is bounded.)
Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation $u_\tau = \Delta u$.

- Rescale $v(x, t) = e^{\lambda_1 t} u(x, t)$ to get the equation $v_t = \Delta v + \lambda_1 v$.
- The role of the stationary solution $S$ is now played by the first nonnegative eigenfunction $\Phi_1 > 0$ of the Dirichlet Laplacian.
- The equation for the relative error $\theta = \frac{v}{\Phi_1} - 1$ is $\theta_t = \Phi_1^{-2} \nabla \cdot (\Phi_1^2 \nabla \theta)$.
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let $\lambda_j, \Phi_j, j = 1, 2, \ldots$ be its eigenvalues, and the corresponding $L^2$-normalized eigenfunctions. The spectral representation for the heat semigroup gives

$$u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_{\Omega} u_0 \Phi_j \, dx$$

so that

$$\theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \sim \frac{c_2}{c_1 \Phi_1} \Phi_2 e^{-(\lambda_2 - \lambda_1) t}.$$ 

In other words, the solution $u(t)$ behaves like $U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1$ and the relative error $\theta$, decays exponentially in time with a rate $\lambda_2 - \lambda_1$. (recall that $\Phi_2/\Phi_1$ is bounded.)
Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation $u_\tau = \Delta u$.

- Rescale $v(x, t) = e^{\lambda_1 t}u(x, t)$ to get the equation $v_t = \Delta v + \lambda_1 v$.
- The role of the stationary solution $S$ is now played by the first nonnegative eigenfunction $\Phi_1 > 0$ of the Dirichlet Laplacian.
- The equation for the relative error $\theta = v/\Phi_1 - 1$ is $\theta_t = \Phi_1^{-2}\nabla \cdot (\Phi_1^2 \nabla \theta)$.
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let $\lambda_j, \Phi_j$, $j = 1, 2, \ldots$ be its eigenvalues, and the corresponding $L^2$-normalized eigenfunctions. The spectral representation for the heat semigroup gives

\[ u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_\Omega u_0 \Phi_j \, dx \]

so that

\[ \theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \sim \frac{c_2}{c_1} \frac{\Phi_2}{\Phi_1} e^{-(\lambda_2 - \lambda_1)t}. \]

In other words, the solution $u(t)$ behaves like $U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1$ and the relative error $\theta$, decays exponentially in time with a rate $\lambda_2 - \lambda_1$. (recall that $\Phi_2/\Phi_1$ is bounded.)
Short review on the linear case.
Consider the homogeneous Dirichlet problem for the linear heat equation \( u_\tau = \Delta u \).

- Rescale \( v(x, t) = e^{\lambda_1 t} u(x, t) \) to get the equation \( v_t = \Delta v + \lambda_1 v \).
- The role of the stationary solution \( S \) is now played by the first nonnegative eigenfunction \( \Phi_1 > 0 \) of the Dirichlet Laplacian.
- The equation for the relative error \( \theta = v/\Phi_1 - 1 \) is \( \theta_t = \Phi_1^{-2} \nabla \cdot (\Phi_1^2 \nabla \theta) \).
- The so-called Dirichlet Laplacian has purely discrete spectrum. Let \( \lambda_j, \Phi_j, j = 1, 2, \ldots \) be its eigenvalues, and the corresponding \( L^2 \)-normalized eigenfunctions. The spectral representation for the heat semigroup gives
  \[
  u(x, t) = \sum_{j=1}^{\infty} c_j e^{-\lambda_j t} \Phi_j(x) \quad \text{with} \quad c_j = \int_{\Omega} u_0 \Phi_j \, dx
  \]
  so that
  \[
  \theta := \frac{u}{c_1 e^{-\lambda_1 t} \Phi_1} - 1 \xrightarrow{t \to +\infty} \frac{c_2 \Phi_2}{c_1 \Phi_1} e^{-(\lambda_2 - \lambda_1) t}.
  \]
  In other words, the solution \( u(t) \) behaves like \( U_1(x, t) = c_1 e^{-\lambda_1 t} \Phi_1 \) and the relative error \( \theta \), decays exponentially in time with a rate \( \lambda_2 - \lambda_1 \). (recall that \( \Phi_2/\Phi_1 \) is bounded.)
Short review on the linear case (continued).

- In the nonlinear setting, no spectral representation is available. It is natural to investigate the behaviour of $\theta$ by working in the weighted space $L^2(\Phi_1^2 \, dx)$, where the weighted mean is preserved:

$$\frac{d}{dt} \int_\Omega \theta \Phi_1^2 \, dx = \int_\Omega \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = 0.$$

Then we notice that:

$$\frac{d}{dt} \int_\Omega \theta^2 \Phi_1^2 \, dx = 2 \int_\Omega \theta \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = -2 \int_\Omega |\nabla \theta|^2 \Phi_1^2 \, dx.$$

We shall assume that $\theta_{\Phi_1} = 0$, where $g_{\Phi_1} = (\int_\Omega g \Phi_1^2 \, dx) / (\int_\Omega \Phi_1^2 \, dx)$.

- In order to get a decay rate for $E[\theta] = \int_\Omega \theta^2 \Phi_1^2 \, dx$ we need the following intrinsic Poincaré inequality: for all $f \in W^{1,2}_0(\Omega)$ and $g = f/\Phi_1$, we have

$$(\lambda_2 - \lambda_1) \int_\Omega |g - g_{\Phi_1}|^2 \Phi_1^2 \, dx \leq \int_\Omega |\nabla g|^2 \Phi_1^2 \, dx.$$

- Poincaré inequality for $g = \theta$, with $\theta_{\Phi_1} = 0$, gives $\|\theta(t)\|_2 \leq e^{-(\lambda_2 - \lambda_1)t} \|\theta_0\|_2$.

- Sharp upper and lower bounds on $\lambda_2 - \lambda_1$ for convex domains (Singer, Yu, Ling, ...)

$$\frac{\pi^2}{\text{diam}(\Omega)^2} < \lambda_2 - \lambda_1 \leq \frac{d\pi^2}{\text{inr}(\Omega)^2}.$$

This bounds can be improved when further geometrical properties of $\Omega$ hold.
Short review on the linear case (continued).

- In the nonlinear setting, no spectral representation is available. It is natural to investigate the behaviour of $\theta$ by working in the weighted space $L^2(\Phi_1^2 \, dx)$, where the weighted mean is preserved:

$$\frac{d}{dt} \int_{\Omega} \theta \Phi_1^2 \, dx = \int_{\Omega} \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = 0.$$  

Then we notice that:

$$\frac{d}{dt} \int_{\Omega} \theta^2 \Phi_1^2 \, dx = 2 \int_{\Omega} \theta \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = -2 \int_{\Omega} |\nabla \theta|^2 \Phi_1^2 \, dx.$$  

We shall assume that $\theta_{\Phi_1} = 0$, where $g_{\Phi_1} = (\int_{\Omega} g \Phi_1^2 \, dx) / (\int_{\Omega} \Phi_1^2 \, dx)$.

- In order to get a decay rate for $E[\theta] = \int_{\Omega} \theta^2 \Phi_1^2 \, dx$ we need the following intrinsic Poincaré inequality: for all $f \in W^{1,2}_0(\Omega)$ and $g = f / \Phi_1$, we have

$$(\lambda_2 - \lambda_1) \int_{\Omega} |g - g_{\Phi_1}|^2 \Phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \Phi_1^2 \, dx.$$  

- Poincaré inequality for $g = \theta$, with $\theta_{\Phi_1} = 0$, gives $\|\theta(t)\|_2 \leq e^{-(\lambda_2 - \lambda_1)t} \|\theta_0\|_2$.  

- Sharp upper and lower bounds on $\lambda_2 - \lambda_1$ for convex domains (Singer, Yu, Ling, ...)

$$\frac{\pi^2}{\text{diam}(\Omega)^2} < \lambda_2 - \lambda_1 \leq \frac{d \pi^2}{\text{inr}(\Omega)^2}.$$  

This bounds can be improved when further geometrical properties of $\Omega$ hold.
Short review on the linear case (continued).

- In the nonlinear setting, no spectral representation is available. It is natural to investigate the behaviour of $\theta$ by working in the weighted space $L^2(\Phi_1^2 \, dx)$, where the weighted mean is preserved:

$$\frac{d}{dt} \int_\Omega \theta \Phi_1^2 \, dx = \int_\Omega \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = 0.$$

Then we notice that:

$$\frac{d}{dt} \int_\Omega \theta^2 \Phi_1^2 \, dx = 2 \int_\Omega \theta \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = -2 \int_\Omega |\nabla \theta|^2 \Phi_1^2 \, dx.$$

We shall assume that $\theta_{\Phi_1} = 0$, where $g_{\Phi_1} = (\int_\Omega g \Phi_1^2 \, dx) / (\int_\Omega \Phi_1^2 \, dx)$.

- In order to get a decay rate for $E[\theta] = \int_\Omega \theta^2 \Phi_1^2 \, dx$ we need the following *intrinsic Poincaré inequality*: for all $f \in W^{1,2}_0(\Omega)$ and $g = f / \Phi_1$, we have

$$(\lambda_2 - \lambda_1) \int_\Omega |g - g_{\Phi_1}|^2 \Phi_1^2 \, dx \leq \int_\Omega |\nabla g|^2 \Phi_1^2 \, dx.$$

- Poincaré inequality for $g = \theta$, with $\theta_{\Phi_1} = 0$, gives $\|\theta(t)\|_2 \leq e^{-(\lambda_2 - \lambda_1)t} \|\theta_0\|_2$.

- Sharp upper and lower bounds on $\lambda_2 - \lambda_1$ for convex domains (Singer, Yu, Ling, ...)

$$\frac{\pi^2}{\text{diam}(\Omega)^2} < \lambda_2 - \lambda_1 \leq \frac{d \pi^2}{\text{inr}(\Omega)^2}.$$

This bounds can be improved when further geometrical properties of $\Omega$ hold.
Short review on the linear case (continued).

- In the nonlinear setting, no spectral representation is available. It is natural to investigate the behaviour of $\theta$ by working in the weighted space $L^2(\Phi_1^2 \, dx)$, where the weighted mean is preserved:

$$\frac{d}{dt} \int_{\Omega} \theta \Phi_1^2 \, dx = \int_{\Omega} \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = 0.$$ 

Then we notice that:

$$\frac{d}{dt} \int_{\Omega} \theta^2 \Phi_1^2 \, dx = 2 \int_{\Omega} \theta \nabla \cdot \left( \Phi_1^2 \nabla \theta \right) \, dx = -2 \int_{\Omega} |\nabla \theta|^2 \Phi_1^2 \, dx.$$ 

We shall assume that $\theta \Phi_1 = 0$, where $g_{\Phi_1} = (\int_{\Omega} g \Phi_1^2 \, dx) / (\int_{\Omega} \Phi_1^2 \, dx)$.

- In order to get a decay rate for $E[\theta] = \int_{\Omega} \theta^2 \Phi_1^2 \, dx$ we need the following intrinsic Poincaré inequality: for all $f \in W_0^{1,2}(\Omega)$ and $g = f / \Phi_1$, we have

$$(\lambda_2 - \lambda_1) \int_{\Omega} |g - g_{\Phi_1}|^2 \Phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \Phi_1^2 \, dx.$$ 

- Poincaré inequality for $g = \theta$, with $\theta \Phi_1 = 0$, gives $\|\theta(t)\|_2 \leq e^{-(\lambda_2 - \lambda_1)t} \|\theta_0\|_2$.

- Sharp upper and lower bounds on $\lambda_2 - \lambda_1$ for convex domains (Singer, Yu, Ling, ...)

$$\frac{\pi^2}{\text{diam}(\Omega)^2} < \lambda_2 - \lambda_1 \leq \frac{d\pi^2}{\text{inr}(\Omega)^2}.$$ 

This bounds can be improved when further geometrical properties of $\Omega$ hold.
Short review on the linear case (continued).

- In the nonlinear setting, no spectral representation is available. It is natural to investigate the behaviour of $\theta$ by working in the weighted space $L^2(\Phi_1^2 \, dx)$, where the weighted mean is preserved:

$$\frac{d}{dt} \int_{\Omega} \theta \Phi_1^2 \, dx = \int_{\Omega} \nabla \cdot (\Phi_1^2 \nabla \theta) \, dx = 0.$$

Then we notice that:

$$\frac{d}{dt} \int_{\Omega} \theta^2 \Phi_1^2 \, dx = 2 \int_{\Omega} \theta \nabla \cdot (\Phi_1^2 \nabla \theta) \, dx = -2 \int_{\Omega} |\nabla \theta|^2 \Phi_1^2 \, dx.$$

We shall assume that $\theta_{\Phi_1} = 0$, where $g_{\Phi_1} = (\int_{\Omega} g \Phi_1^2 \, dx) / (\int_{\Omega} \Phi_1^2 \, dx)$.

- In order to get a decay rate for $E[\theta] = \int_{\Omega} \theta^2 \Phi_1^2 \, dx$ we need the following intrinsic Poincaré inequality: for all $f \in W^{1,2}_0(\Omega)$ and $g = f / \Phi_1$, we have

$$(\lambda_2 - \lambda_1) \int_{\Omega} |g - g_{\Phi_1}|^2 \Phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \Phi_1^2 \, dx.$$

- Poincaré inequality for $g = \theta$, with $\theta_{\Phi_1} = 0$, gives $\|\theta(t)\|_2 \leq e^{-(\lambda_2 - \lambda_1)t} \|\theta_0\|_2$.

- Sharp upper and lower bounds on $\lambda_2 - \lambda_1$ for convex domains (Singer, Yu, Ling, ...)

$$\frac{\pi^2}{\text{diam}(\Omega)^2} < \lambda_2 - \lambda_1 \leq \frac{d\pi^2}{\text{inr}(\Omega)^2}.$$

This bounds can be improved when further geometrical properties of $\Omega$ hold.
Sketch of the proof.

Step 1: an “entropy functional" and its derivative. Recall that

\[ E[\theta(t)] = \frac{1}{2} \int_{\Omega} |\theta(t) - \bar{\theta}(t)|^2 S^{1+m} \, dx, \]

where \( S \) is a (positive) solution to the elliptic problem

\[
\begin{aligned}
-\Delta S^m &= c S \quad \text{in } \Omega \\
S &= 0 \quad \text{on } \partial\Omega
\end{aligned}
\]

whenever \( m_s < m < 1 \). We then have:

(Entropy/Entropy-production)

Let \( m_s < m < 1 \) and \( \theta \) be the solution to the equation

\[ \theta_t = \frac{1}{S^{m+1}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + cf(\theta), \]

with \( f(\theta) = (1 + \theta) - (1 + \theta)^m \).

Then the following inequality holds

\[
-\frac{d}{dt} E[\theta(t)] \geq m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx - 2c [1 - m + \varepsilon(t)] E[\theta(t)]
\]

for all sufficiently large times, where \( \varepsilon(t) := \|\theta(t, \cdot)\|_\infty \to 0 \).
Sketch of the proof.
Step 1: an “entropy functional" and its derivative. Recall that

\[ \mathcal{E}[\theta(t)] = \frac{1}{2} \int_{\Omega} |\theta(t) - \bar{\theta}(t)|^2 S^{1+m} \, dx, \]

where \( S \) is a (positive) solution to the elliptic problem

\[
\begin{aligned}
-\Delta S^m &= c \, S \quad \text{in } \Omega \\
S &= 0 \quad \text{on } \partial \Omega
\end{aligned}
\]

whenever \( m_s < m < 1 \). We then have:

\[(\text{Entropy/Entropy-production})\]

Let \( m_s < m < 1 \) and \( \theta \) be the solution to the equation

\[ \theta_t = \frac{1}{S^{m+1}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + c \, f(\theta), \quad \text{with} \quad f(\theta) = (1 + \theta) - (1 + \theta)^m. \]

Then the following inequality holds

\[ -\frac{d}{dt} \mathcal{E}[\theta(t)] \geq m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t,x)|^2 S^{2m} \, dx - 2c [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)] \]

for all sufficiently large times, where \( \varepsilon(t) := \|\theta(t, \cdot)\|_{\infty} \to 0 \).
The fast diffusion equation on bounded domains

Entropy-entropy production

Sketch of the proof.

Step 1: an "entropy functional" and its derivative. Recall that

\[ E[\theta(t)] = \frac{1}{2} \int_\Omega |\theta(t) - \bar{\theta}(t)|^2 S^{1+m} \, dx, \]

where \( S \) is a (positive) solution to the elliptic problem

\[
\begin{cases}
-\Delta S^m = c \, S & \text{in } \Omega \\
S = 0 & \text{on } \partial \Omega
\end{cases}
\]

whenever \( m_s < m < 1 \). We then have:

**Entropy/Entropy-production**

Let \( m_s < m < 1 \) and \( \theta \) be the solution to the equation

\[
\theta_t = \frac{1}{S^{m+1}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + c \, f(\theta), \quad \text{with} \quad f(\theta) = (1 + \theta) - (1 + \theta)^m.
\]

Then the following inequality holds

\[
- \frac{d}{dt} E[\theta(t)] \geq m [1 + \varepsilon(t)]^{m-1} \int_\Omega |\nabla \theta(t, x)|^2 S^{2m} \, dx - 2c \, [1 - m + \varepsilon(t)] \, E[\theta(t)]
\]

for all sufficiently large times, where \( \varepsilon(t) := ||\theta(t, \cdot)||_\infty \to 0 \).
Sketch of the proof.
Step 1: an “entropy functional" and its derivative. Recall that

$$\mathcal{E}[\theta(t)] = \frac{1}{2} \int_{\Omega} |\theta(t) - \bar{\theta}(t)|^2 S^{1+m} \, dx,$$

where $S$ is a (positive) solution to the elliptic problem

$$\begin{cases} 
-\Delta S^m = c \, S & \text{in } \Omega \\
S = 0 & \text{on } \partial \Omega 
\end{cases}$$

whenever $m_s < m < 1$. We then have:

(Entropy/Entropy-production)

Let $m_s < m < 1$ and $\theta$ be the solution to the equation

$$\theta_t = \frac{1}{S^{m+1}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + c \, f(\theta), \quad \text{with} \quad f(\theta) = (1 + \theta) - (1 + \theta)^m.$$

Then the following inequality holds

$$\frac{d}{dt} \mathcal{E}[\theta(t)] \geq m [1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t,x)|^2 S^{2m} \, dx - 2c \, [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)],$$

for all sufficiently large times, where $\varepsilon(t) := \|\theta(t, \cdot)\|_\infty \to 0.$
Sketch of the proof.  
Step 1: an "entropy functional" and its derivative. Recall that 

\[
E[\theta(t)] = \frac{1}{2} \int_{\Omega} |\theta(t) - \bar{\theta}(t)|^2 S^{1+m} \, dx,
\]

where \( S \) is a (positive) solution to the elliptic problem

\[
\begin{cases}
-\Delta S^m = c \, S & \text{in } \Omega \\
S = 0 & \text{on } \partial\Omega
\end{cases}
\]

whenever \( m_s < m < 1 \). We then have:

(Entropy/Entropy-production) 

Let \( m_s < m < 1 \) and \( \theta \) be the solution to the equation

\[
\theta_t = \frac{1}{S^{m+1}} \nabla \cdot (S^{2m} \nabla (1 + \theta)^m) + cf(\theta), \quad \text{with} \quad f(\theta) = (1 + \theta) - (1 + \theta)^m.
\]

Then the following inequality holds

\[
-\frac{d}{dt} E[\theta(t)] \geq m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx - 2c \, [1 - m + \varepsilon(t)] \, E[\theta(t)]
\]

for all sufficiently large times, where \( \varepsilon(t) := \|\theta(t, \cdot)\|_{\infty} \rightarrow 0 \).
Step 2: a weighted Poincaré inequality. We prove the following:

**Poincaré inequalities**

Let $f \in W^{1,2}_0(\Omega)$, $\phi_1$ the ground state eigenfunction of the Dirichlet Laplacian, $g = f / \phi_1$ and $S$ as above. Then the following inequality holds

$$c \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|_{\infty}^{1-m}} \int_\Omega \left| g - \bar{g} \right|^2 \phi_1^{1+m} \, dx \leq \int_\Omega |\nabla g|^2 \phi_1^{2m} \, dx$$

where $\Lambda = \lambda_2 - \lambda_1 > 0$ is the optimal constant in the intrinsic Poincaré inequality

$$(\lambda_2 - \lambda_1) \int_\Omega |g - g\phi_1|^2 \phi_1^2 \, dx \leq \int_\Omega |\nabla g|^2 \phi_1^2 \, dx \quad g\phi_1 = \frac{\int_\Omega g\phi_1^2 \, dx}{\int_\Omega \phi_1^2 \, dx},$$

we have set

$$\bar{g} = \frac{\int_\Omega gS^{1+m} \, dx}{\int_\Omega S^{1+m} \, dx}$$

and the constants $k_0, k_1$ are such that

$$k_0(m) \leq \frac{S_m}{\phi_1} \leq k_1(m).$$
Step 2: a weighted Poincaré inequality. We prove the following:

**Poincaré inequalities**

Let \( f \in W^{1,2}_0(\Omega) \), \( \phi_1 \) the ground state eigenfunction of the Dirichlet Laplacian, \( g = f/\phi_1 \) and \( S \) as above. Then the following inequality holds

\[
\mathbf{c} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{||S||^{1-m}} \int_{\Omega} |g - \overline{g}|^2 S^{1+m} \, dx \leq \int_{\Omega} |\nabla g|^2 S^{2m} \, dx
\]

where \( \Lambda = \lambda_2 - \lambda_1 > 0 \) is the optimal constant in the intrinsic Poincaré inequality

\[
(\lambda_2 - \lambda_1) \int_{\Omega} |g - g_{\phi_1}|^2 \phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \phi_1^2 \, dx \quad g_{\phi_1} = \frac{\int_{\Omega} g \phi_1^2 \, dx}{\int_{\Omega} \phi_1^2 \, dx},
\]

we have set

\[
\overline{g} = \frac{\int_{\Omega} g S^{1+m} \, dx}{\int_{\Omega} S^{1+m} \, dx}
\]

and the constants \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S_m}{\phi_1} \leq k_1(m).
\]
Step 2: a weighted Poincaré inequality. We prove the following:

**Poincaré inequalities**

Let \( f \in W^{1,2}_0(\Omega) \), \( \phi_1 \) the ground state eigenfunction of the Dirichlet Laplacian, \( g = f / \phi_1 \) and \( S \) as above. Then the following inequality holds

\[
\mathbf{c} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|^{1-m}} \int_{\Omega} |g - \bar{g}|^2 S^{1+m} \, dx \leq \int_{\Omega} |\nabla g|^2 S^{2m} \, dx
\]

where \( \Lambda = \lambda_2 - \lambda_1 > 0 \) is the optimal constant in the intrinsic Poincaré inequality

\[
(\lambda_2 - \lambda_1) \int_{\Omega} |g - g_{\phi_1}|^2 \phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \phi_1^2 \, dx \quad g_{\phi_1} = \frac{\int_{\Omega} g \phi_1^2 \, dx}{\int_{\Omega} \phi_1^2 \, dx},
\]

we have set

\[
\bar{g} = \frac{\int_{\Omega} g S^{1+m} \, dx}{\int_{\Omega} S^{1+m} \, dx}
\]

and the constants \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S_m}{\phi_1} \leq k_1(m).
\]
Step 2: a weighted Poincaré inequality. We prove the following:

**Poincaré inequalities**

Let \( f \in W_0^{1,2}(\Omega), \phi_1 \) the ground state eigenfunction of the Dirichlet Laplacian, \( g = f / \phi_1 \) and \( S \) as above. Then the following inequality holds

\[
\mathbf{c} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|_{1-m}} \int_{\Omega} |g - \overline{g}|^2 S^{1+m} \, dx \leq \int_{\Omega} |\nabla g|^2 S^{2m} \, dx
\]

where \( \Lambda = \lambda_2 - \lambda_1 > 0 \) is the optimal constant in the intrinsic Poincaré inequality

\[
(\lambda_2 - \lambda_1) \int_{\Omega} |g - g_{\phi_1}|^2 \phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \phi_1^2 \, dx \quad g_{\phi_1} = \frac{\int_{\Omega} g \phi_1^2 \, dx}{\int_{\Omega} \phi_1^2 \, dx},
\]

we have set

\[
\overline{g} = \frac{\int_{\Omega} g S^{1+m} \, dx}{\int_{\Omega} S^{1+m} \, dx}
\]

and the constants \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S_m^m}{\phi_1} \leq k_1(m).
\]
Step 2: a weighted Poincaré inequality. We prove the following:

**Poincaré inequalities**

Let \( f \in W^{1,2}_0(\Omega) \), \( \phi_1 \) the ground state eigenfunction of the Dirichlet Laplacian, \( g = f / \phi_1 \) and \( S \) as above. Then the following inequality holds

\[
c \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{||S||_{1-m}} \int_{\Omega} |g - \bar{g}|^2 S^{1+m} \, dx \leq \int_{\Omega} |\nabla g|^2 S^{2m} \, dx
\]

where \( \Lambda = \lambda_2 - \lambda_1 > 0 \) is the optimal constant in the intrinsic Poincaré inequality

\[
(\lambda_2 - \lambda_1) \int_{\Omega} |g - g\phi_1|^2 \phi_1^2 \, dx \leq \int_{\Omega} |\nabla g|^2 \phi_1^2 \, dx \quad g\phi_1 = \frac{\int_{\Omega} g\phi_1^2 \, dx}{\int_{\Omega} \phi_1^2 \, dx},
\]

we have set

\[
\bar{g} = \frac{\int_{\Omega} gS^{1+m} \, dx}{\int_{\Omega} S^{1+m} \, dx}
\]

and the constants \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S_m}{\phi_1} \leq k_1(m).
\]
Step 2: a weighted Poincaré inequality. We prove the following:

Poincaré inequalities

Let \( f \in W_0^{1,2}(\Omega) \), \( \phi_1 \) the ground state eigenfunction of the Dirichlet Laplacian, \( g = f / \phi_1 \) and \( S \) as above. Then the following inequality holds

\[
\begin{align*}
&c \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|_{\infty}^{1-m}} \int_\Omega |g - \bar{g}|^2 S^{1+m} \, dx \\
&\leq \int_\Omega |\nabla g|^2 S^m \, dx
\end{align*}
\]

where \( \Lambda = \lambda_2 - \lambda_1 > 0 \) is the optimal constant in the intrinsic Poincaré inequality

\[
(\lambda_2 - \lambda_1) \int_\Omega |g - g_{\phi_1}|^2 \phi_1^2 \, dx \leq \int_\Omega |\nabla g|^2 \phi_1^2 \, dx \quad g_{\phi_1} = \frac{\int_\Omega g \phi_1^2 \, dx}{\int_\Omega \phi_1^2 \, dx},
\]

we have set

\[
\bar{g} = \frac{\int_\Omega g S^{1+m} \, dx}{\int_\Omega S^{1+m} \, dx}
\]

and the constants \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S_m}{\phi_1} \leq k_1(m).
\]
Therefore

\[
\frac{d}{dt} \mathcal{E}[\theta(t)] \leq -m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx + 2c [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)]
\]

\[
\leq c \left\{ -m[1 + \varepsilon(t)]^{m-1} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|^{1-m}_{1-\infty}} + 2[1 - m + \varepsilon(t)] \right\} \mathcal{E}[\theta(t)]
\]

Hence it is necessary to get information on the ratio \(k_0(m)^2/k_1(m)^2\) in order to get exponential decay for \(\mathcal{E}\) from the above inequalities, at least when \(m\) is close to one. Recall that \(k_0, k_1\) are such that

\[
k_0(m) \leq \frac{S^m}{\phi_1} \leq k_1(m).
\]

where \(\phi_1\) is the ground state eigenfunction of the Dirichlet Laplacian and \(S\) satisfies the nonlinear elliptic problem

\[
\begin{cases}
-\Delta S^m = c S & \text{in } \Omega, \\
S = 0 & \text{on } \partial \Omega
\end{cases}
\]

Recall that \(c = 1/(1 - m)T \to \lambda_1\) as \(m \to 1^-\).
Therefore

\[
\frac{d}{dt} \mathcal{E}[\theta(t)] \leq -m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx + 2c [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)]
\]

\[
\leq c \left\{ -m[1 + \varepsilon(t)]^{m-1} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{||S||_1^{1-m}} + 2[1 - m + \varepsilon(t)] \right\} \mathcal{E}[\theta(t)]
\]

Hence it is necessary to get information on the ratio \( \frac{k_0(m)^2}{k_1(m)^2} \) in order to get exponential decay for \( \mathcal{E} \) from the above inequalities, at least when \( m \) is close to one. Recall that \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S^m}{\phi_1} \leq k_1(m).
\]

where \( \phi_1 \) is the ground state eigenfunction of the Dirichlet Laplacian and \( S \) satisfies the nonlinear elliptic problem

\[
\begin{cases} 
-\Delta S^m = c S & \text{in } \Omega, \\
S = 0 & \text{on } \partial \Omega
\end{cases}
\]

Recall that \( c = 1/(1 - m)T \to \lambda_1 \) as \( m \to 1^- \).
Therefore

\[
\frac{d}{dt} E[\theta(t)] \leq -m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx + 2c [1 - m + \varepsilon(t)] E[\theta(t)]
\]

\[
\leq c \left\{ -m[1 + \varepsilon(t)]^{m-1} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|_{1-\infty}} + 2[1 - m + \varepsilon(t)] \right\} E[\theta(t)]
\]

Hence it is necessary to get information on the ratio \(\frac{k_0(m)^2}{k_1(m)^2}\) in order to get exponential decay for \(E\) from the above inequalities, at least when \(m\) is close to one. Recall that \(k_0, k_1\) are such that

\[
k_0(m) \leq \frac{S^m}{\phi_1} \leq k_1(m).
\]

where \(\phi_1\) is the ground state eigenfunction of the Dirichlet Laplacian and \(S\) satisfies the nonlinear elliptic problem

\[
\begin{cases}
-\Delta S^m = c S & \text{in } \Omega, \\
S = 0 & \text{on } \partial \Omega
\end{cases}
\]

Recall that \(c = 1/(1 - m)T \to \lambda_1\) as \(m \to 1^−\).
Therefore

\[
\frac{d}{dt} \mathcal{E}[\theta(t)] \leq -m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx + 2c [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)] \\
\leq c \left\{ -m[1 + \varepsilon(t)]^{m-1} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|^{1-m}} + 2[1 - m + \varepsilon(t)] \right\} \mathcal{E}[\theta(t)]
\]

Hence it is necessary to get information on the ratio \( \frac{k_0(m)^2}{k_1(m)^2} \) in order to get exponential decay for \( \mathcal{E} \) from the above inequalities, at least when \( m \) is close to one. Recall that \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S^m}{\phi_1} \leq k_1(m).
\]

where \( \phi_1 \) is the ground state eigenfunction of the Dirichlet Laplacian and \( S \) satisfies the nonlinear elliptic problem

\[
\begin{cases}
-\Delta S^m = c S & \text{in } \Omega, \\
S = 0 & \text{on } \partial \Omega
\end{cases}
\]

Recall that \( c = \frac{1}{(1 - m)^T} \to \lambda_1 \) as \( m \to 1^- \).
Therefore

\[
\frac{d}{dt} \mathcal{E}[\theta(t)] \leq -m [1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx + 2c [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)]
\]

\[
\leq c \left\{ -m [1 + \varepsilon(t)]^{m-1} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|_{1-m}^1} + 2 [1 - m + \varepsilon(t)] \right\} \mathcal{E}[\theta(t)]
\]

Hence it is necessary to get information on the ratio \( \frac{k_0(m)^2}{k_1(m)^2} \) in order to get exponential decay for \( \mathcal{E} \) from the above inequalities, at least when \( m \) is close to one. Recall that \( k_0, k_1 \) are such that

\[
k_0(m) \leq \frac{S^m}{\phi_1} \leq k_1(m).
\]

where \( \phi_1 \) is the ground state eigenfunction of the Dirichlet Laplacian and \( S \) satisfies the nonlinear elliptic problem

\[
\begin{cases}
-\Delta S^m = c S & \text{in } \Omega, \\
S = 0 & \text{on } \partial \Omega
\end{cases}
\]

\[
c = \frac{1}{(1-m)T}
\]

Recall that \( c = 1/(1 - m)T \rightarrow \lambda_1 \) as \( m \rightarrow 1^- \).
Therefore

\[
\frac{d}{dt} \mathcal{E}[\theta(t)] \leq -m[1 + \varepsilon(t)]^{m-1} \int_{\Omega} |\nabla \theta(t, x)|^2 S^{2m} \, dx + 2c [1 - m + \varepsilon(t)] \mathcal{E}[\theta(t)]
\]

\[
\leq c \left\{ -m[1 + \varepsilon(t)]^{m-1} \frac{k_0(m)^2}{k_1(m)^2} \frac{\Lambda}{\|S\|_{1-\infty}^{1-m}} + 2[1 - m + \varepsilon(t)] \right\} \mathcal{E}[\theta(t)]
\]

Hence it is necessary to get information on the ratio $\frac{k_0(m)^2}{k_1(m)^2}$ in order to get exponential decay for $\mathcal{E}$ from the above inequalities, at least when $m$ is close to one. Recall that $k_0, k_1$ are such that

\[
k_0(m) \leq \frac{S^m}{\phi_1} \leq k_1(m).
\]

where $\phi_1$ is the ground state eigenfunction of the Dirichlet Laplacian and $S$ satisfies the nonlinear elliptic problem

\[
\begin{cases}
-\Delta S^m = c S & \text{in } \Omega, \\
S = 0 & \text{on } \partial\Omega
\end{cases}
\]

with

\[
c = \frac{1}{(1-m)T}.
\]

Recall that $c = 1/(1 - m)T \to \lambda_1$ as $m \to 1^-$. 
Step 3 (conclusion).

The difficult issue is to estimate the ratio \( \frac{k_0(m)^2}{k_1(m)^2} \).

On the one hand, one can prove results about quantitative elliptic Harnack inequalities for the equation \(-\Delta u = u^p\). This is the topic of M.B., G. Grillo, J.L. Vázquez (2011, in preparation).

The resulting bounds give explicit constants in the Harnack inequality. It is then possible to use them to compare solutions with different values of \( p \), which then yield the required bounds on \( \frac{k_0(m)^2}{k_1(m)^2} \).

Such bounds then yield explicit \( m_\# \) and \( \gamma_0 \), but it has to be remarked that unfortunately

\[
\lim_{m \uparrow 1} \frac{k_0(m)^2}{k_1(m)^2} < 1
\]

which is not what is expected.

But we can also prove the following purely elliptic result (see also Grossi (Annali Pisa, 2009) for related results):
Step 3 (conclusion).

The difficult issue is to estimate the ratio $\frac{k_0(m)^2}{k_1(m)^2}$.

On the one hand, one can prove results about quantitative elliptic Harnack inequalities for the equation $-\Delta u = u^p$. This is the topic of M.B., G. Grillo, J.L. Vázquez (2011, in preparation).

The resulting bounds give explicit constants in the Harnack inequality. It is then possible to use them to compare solutions with different values of $p$, which then yield the required bounds on $\frac{k_0(m)^2}{k_1(m)^2}$.

Such bounds then yield explicit $m_\#$ and $\gamma_0$, but it has to be remarked that unfortunately

$$\lim_{m \uparrow 1} \frac{k_0(m)^2}{k_1(m)^2} < 1$$

which is not what is expected.

But we can also prove the following purely elliptic result (see also Grossi (Annali Pisa, 2009) for related results):
Step 3 (conclusion).

The difficult issue is to estimate the ratio \( \frac{k_0(m)^2}{k_1(m)^2} \).

On the one hand, one can prove results about quantitative elliptic Harnack inequalities for the equation \(-\Delta u = u^p\). This is the topic of M.B., G. Grillo, J.L. Vázquez (2011, in preparation).

The resulting bounds give explicit constants in the Harnack inequality. It is then possible to use them to compare solutions with different values of \( p \), which then yield the required bounds on \( \frac{k_0(m)^2}{k_1(m)^2} \).

Such bounds then yield explicit \( m_\# \) and \( \gamma_0 \), but it has to be remarked that unfortunately

\[
\lim_{m \uparrow 1} \frac{k_0(m)^2}{k_1(m)^2} < 1
\]

which is not what is expected.

But we can also prove the following purely elliptic result (see also Grossi (Annali Pisa, 2009) for related results):
Step 3 (conclusion).
The difficult issue is to estimate the ratio \( \frac{k_0(m)^2}{k_1(m)^2} \).

On the one hand, one can prove results about quantitative elliptic Harnack inequalities for the equation \(-\Delta u = u^p\). This is the topic of M.B., G. Grillo, J.L. Vázquez (2011, in preparation).

The resulting bounds give explicit constants in the Harnack inequality. It is then possible to use them to compare solutions with different values of \( p \), which then yield the required bounds on \( \frac{k_0(m)^2}{k_1(m)^2} \).

Such bounds then yield explicit \( m_\# \) and \( \gamma_0 \), but it has to be remarked that unfortunately

\[
\lim_{m \uparrow 1} \frac{k_0(m)^2}{k_1(m)^2} < 1
\]

which is not what is expected.

But we can also prove the following purely elliptic result (see also Grossi (Annali Pisa, 2009) for related results):
Step 3 (conclusion).
The difficult issue is to estimate the ratio $\frac{k_0(m)^2}{k_1(m)^2}$.

On the one hand, one can prove results about quantitative elliptic Harnack inequalities for the equation $-\Delta u = u^p$. This is the topic of M.B., G. Grillo, J.L. Vázquez (2011, in preparation).

The resulting bounds give explicit constants in the Harnack inequality. It is then possible to use them to compare solutions with different values of $p$, which then yield the required bounds on $\frac{k_0(m)^2}{k_1(m)^2}$.

Such bounds then yield explicit $m_\#$ and $\gamma_0$, but it has to be remarked that unfortunately

$$\lim_{m \uparrow 1} \frac{k_0(m)^2}{k_1(m)^2} < 1$$

which is not what is expected.

But we can also prove the following purely elliptic result (see also Grossi (Annali Pisa, 2009) for related results):
Nonlinear elliptic problems near $p = 1$

Let $p = 1/m$. Let $U_p$ be a family of solutions of the problem

$$
\begin{cases}
  -\Delta U = \lambda_p \, U^p & \text{in } \Omega \\
  U > 0 & \text{in } \Omega \\
  U = 0 & \text{on } \partial \Omega
\end{cases}
$$

with $p \in [1, p_s)$, $p_s = \frac{d+2}{d-2}$, $\|U_p\|_{p+1} = 1$, so that $\|\nabla U_p\|_2^2 = \lambda_p$. Then as $p \to 1$, one has $\lambda_p \to \lambda_1$, $U_p \to \Phi_1$ in $L^\infty(\Omega)$, $\nabla U_p \to \nabla \Phi_1$ in $(L^2(\Omega))^d$. Besides, there exist two explicit constants $0 < c_0 < c_1$ such that

$$
c_0^{p-1} \lambda_1 \leq \lambda_p \leq c_1^{p-1} \lambda_1.
$$

Moreover, there exists constants $0 < \tilde{k}_0(p) \leq \tilde{k}_1(p)$ such that $\tilde{k}_i(p) \to 1$ as $p \to 1^+$, such that

$$
\tilde{k}_0(p) \leq \frac{U_p(x)}{\Phi_1(x)} \leq \tilde{k}_1(p), \quad \text{for all } x \in \Omega.
$$
Nonlinear elliptic problems near $p = 1$

Let $p = 1/m$. Let $U_p$ be a family of solutions of the problem

$$
\begin{aligned}
-\Delta U &= \lambda_p U^p & \text{in } \Omega \\
U &> 0 & \text{in } \Omega \\
U &= 0 & \text{on } \partial \Omega
\end{aligned}
$$

with $p \in [1, p_s)$, $p_s = \frac{d+2}{d-2}$, $\|U_p\|_{p+1} = 1$, so that $\|\nabla U_p\|_{L^2}^2 = \lambda_p$. Then as $p \to 1$, one has $\lambda_p \to \lambda_1$, $U_p \to \Phi_1$ in $L^\infty(\Omega)$, $\nabla U_p \to \nabla \Phi_1$ in $(L^2(\Omega))^d$. Besides, there exist two explicit constants $0 < c_0 < c_1$ such that

$$
c_0^{p-1} \lambda_1 \leq \lambda_p \leq c_1^{p-1} \lambda_1. \tag{5}
$$

Moreover, there exists constants $0 < \tilde{k}_0(p) \leq \tilde{k}_1(p)$ such that $\tilde{k}_i(p) \to 1$ as $p \to 1^+$, such that

$$
\tilde{k}_0(p) \leq \frac{U_p(x)}{\Phi_1(x)} \leq \tilde{k}_1(p), \quad \text{for all } x \in \Omega. \tag{6}
$$
Nonlinear elliptic problems near \( p = 1 \)

Let \( p = 1/m \). Let \( U_p \) be a family of solutions of the problem

\[
\begin{align*}
-\Delta U &= \lambda_p \, U^p \quad \text{in } \Omega \\
U &> 0 \quad \text{in } \Omega \\
U &= 0 \quad \text{on } \partial \Omega
\end{align*}
\]

with \( p \in [1, p_s) \), \( p_s = \frac{d+2}{d-2} \), \( \|U_p\|_{p+1} = 1 \), so that \( \|\nabla U_p\|_2^2 = \lambda_p \). Then as \( p \to 1 \), one has \( \lambda_p \to \lambda_1 \), \( U_p \to \Phi_1 \) in \( L^\infty(\Omega) \), \( \nabla U_p \to \nabla \Phi_1 \) in \( (L^2(\Omega))^d \). Besides, there exist two explicit constants \( 0 < c_0 < c_1 \) such that

\[
c_0^{p-1} \lambda_1 \leq \lambda_p \leq c_1^{p-1} \lambda_1 .
\]

Moreover, there exists constants \( 0 < \tilde{k}_0(p) \leq \tilde{k}_1(p) \) such that \( \tilde{k}_i(p) \to 1 \) as \( p \to 1^+ \), such that

\[
\tilde{k}_0(p) \leq \frac{U_p(x)}{\Phi_1(x)} \leq \tilde{k}_1(p), \quad \text{for all } x \in \Omega .
\]
Nonlinear elliptic problems near $p = 1$

Let $p = 1/m$. Let $U_p$ be a family of solutions of the problem

\[
\begin{cases}
-\Delta U = \lambda_p U^p & \text{in } \Omega \\
U > 0 & \text{in } \Omega \\
U = 0 & \text{on } \partial\Omega
\end{cases}
\]  

with $p \in [1, p_s), p_s = \frac{d+2}{d-2}$, $\|U_p\|_{p+1} = 1$, so that $\|\nabla U_p\|_2^2 = \lambda_p$. Then as $p \to 1$, one has $\lambda_p \to \lambda_1$, $U_p \to \Phi_1$ in $L^\infty(\Omega)$, $\nabla U_p \to \nabla \Phi_1$ in $(L^2(\Omega))^d$. Besides, there exist two explicit constants $0 < c_0 < c_1$ such that

$$c_0^{p-1} \lambda_1 \leq \lambda_p \leq c_1^{p-1} \lambda_1.$$  

Moreover, there exists constants $0 < \tilde{k}_0(p) \leq \tilde{k}_1(p)$ such that $\tilde{k}_i(p) \to 1$ as $p \to 1^+$, such that

$$\tilde{k}_0(p) \leq \frac{U_p(x)}{\Phi_1(x)} \leq \tilde{k}_1(p), \quad \text{for all } x \in \Omega.$$
Nonlinear elliptic problems near $p = 1$

Let $p = 1/m$. Let $U_p$ be a family of solutions of the problem

\[
\begin{align*}
-\Delta U &= \lambda_p U^p & \text{in } \Omega \\
U &> 0 & \text{in } \Omega \\
U &= 0 & \text{on } \partial \Omega
\end{align*}
\]

(4)

with $p \in [1, p_s)$, $p_s = \frac{d+2}{d-2}$, $\|U_p\|_{p+1} = 1$, so that $\|\nabla U_p\|_2^2 = \lambda_p$. Then as $p \to 1$, one has $\lambda_p \to \lambda_1$, $U_p \to \Phi_1$ in $L^\infty(\Omega)$, $\nabla U_p \to \nabla \Phi_1$ in $(L^2(\Omega))^d$. Besides, there exist two explicit constants $0 < c_0 < c_1$ such that

\[
c_0^{p-1} \lambda_1 \leq \lambda_p \leq c_1^{p-1} \lambda_1.
\]

(5)

Moreover, there exists constants $0 < \tilde{k}_0(p) \leq \tilde{k}_1(p)$ such that $\tilde{k}_i(p) \to 1$ as $p \to 1^+$, such that

\[
\tilde{k}_0(p) \leq \frac{U_p(x)}{\Phi_1(x)} \leq \tilde{k}_1(p), \quad \text{for all } x \in \Omega.
\]

(6)
The fast diffusion equation on bounded domains

Entropy-entropy production

The End

Thank you!!!
The kind of argument outlined here can be used to study other related problems. For example consider positive solutions to the fast diffusion equation

\[ \dot{u} = \Delta u^m, \quad \text{on } \mathbb{H}^n \]

where

- \( m \in (m_s, 1] \)
- \( \mathbb{H}^n \) is the hyperbolic space and \( \Delta \) the corresponding Riemannian Laplacian.

Recall that, on the hyperbolic space, both the Sobolev inequality and the \( L^2 \)-Poincaré inequality hold, so that the \( L^2 \)-spectrum of \( -\Delta \) is \( \left[ \frac{(n-1)^2}{4}, +\infty \right) \).

Certain classes of positive solutions do vanish in a finite time (Bonforte, G. Vazquez, JEE 2008). There are some rough estimates on the extinction time there.
The kind of argument outlined here can be used to study other related problems. For example consider positive solutions to the fast diffusion equation

$$\dot{u} = \Delta u^m, \quad \text{on } \mathbb{H}^n$$

where

- $m \in (m_s, 1]$,
- $\mathbb{H}^n$ is the hyperbolic space and $\Delta$ the corresponding Riemannian Laplacian.

Recall that, on the hyperbolic space, both the Sobolev inequality and the $L^2$-Poincaré inequality hold, so that the $L^2$-spectrum of $-\Delta$ is $\left[\frac{(n-1)^2}{4}, +\infty\right)$. Certain classes of positive solutions do vanish in a finite time (Bonforte, G. Vazquez, JEE 2008). There are some rough estimates on the extinction time there.
The kind of argument outlined here can be used to study other related problems. For example consider positive solutions to the fast diffusion equation

\[ \dot{u} = \Delta u^m, \quad \text{on } \mathbb{H}^n \]

where

- \( m \in (m_s, 1] \)
- \( \mathbb{H}^n \) is the hyperbolic space and \( \Delta \) the corresponding Riemannian Laplacian.

Recall that, on the hyperbolic space, both the Sobolev inequality and the \( L^2 \)-Poincaré inequality hold, so that the \( L^2 \)-spectrum of \( -\Delta \) is \( \left[ \frac{(n-1)^2}{4}, +\infty \right) \).

Certain classes of positive solutions do vanish in a finite time (Bonforte, G. Vazquez, JEE 2008). There are some rough estimates on the extinction time there.
The kind of argument outlined here can be used to study other related problems. For example consider positive solutions to the fast diffusion equation

\[ \dot{u} = \Delta u^m, \quad \text{on } \mathbb{H}^n \]

where

- \( m \in (m_s, 1] \)
- \( \mathbb{H}^n \) is the hyperbolic space and \( \Delta \) the corresponding Riemannian Laplacian.

Recall that, on the hyperbolic space, both the Sobolev inequality and the \( L^2 \)-Poincaré inequality hold, so that the \( L^2 \)-spectrum of \( -\Delta \) is \( \left[ \frac{(n-1)^2}{4}, +\infty \right) \).

Certain classes of positive solutions do vanish in a finite time (Bonforte, G. Vazquez, JEE 2008). There are some rough estimates on the extinction time there.
It can be expected that the asymptotics of solutions is related to solutions, if any, of the elliptic problem \(-\Delta u = u^{1/m}\) (up to rescalings). No results on this till recently, but:

- Mancini-Sandeep (Annali Pisa, 2008) have shown that there exist exactly one solution \(U\) to the elliptic problem. It is radial, and it has finite energy, namely it belongs to \(W^{1,2}(\mathbb{H}^n)\). It decays at infinity as \(ce^{-(n-1)r}\), \(r\) being the Riemannian distance from the given point. There are infinitely many other radial positive solutions, but they have infinite energy. Notice that \(U^{1/m} \in L^1\).

- M.B., F. Gazzola, G. Grillo and J. L. Vázquez have just proved that there is no other positive radial solution apart the ones found above, and that all of them apart \(U\) decay polynomially at infinity, hence they do not belong to \(L^q\) for any \(q \neq \infty\) (recall that the Riemannian measure has a density whose radial part is \(e^{(n-1)r}\)).

Hence the asymptotics of solutions to the fast diffusions should be related to the separate variable solution \(U(t, x) = U(x)[(T-t)/T]^{1/(1-m)}\). Presently under investigation using the above methods, as a part of a more general study of nonlinear diffusions on manifolds.
It can be expected that the asymptotics of solutions is related to solutions, if any, of the elliptic problem $-\Delta u = u^{1/m}$ (up to rescalings). No results on this till recently, but:

- Mancini-Sandeep (Annali Pisa, 2008) have shown that there exist exactly one solution $U$ to the elliptic problem. It is radial, and it has finite energy, namely it belongs to $W^{1,2}(\mathbb{R}^n)$. It decays at infinity as $ce^{-(n-1)r}$, $r$ being the Riemannian distance from the given point. There are infinitely many other radial positive solutions, but they have infinite energy. Notice that $U^{1/m} \in L^1$.

- M.B., F. Gazzola, G. Grillo and J. L. Vázquez have just proved that there is no other positive radial solution apart the ones found above, and that all of them apart $U$ decay polynomially at infinity, hence they do not belong to $L^q$ for any $q \neq \infty$ (recall that the Riemannian measure has a density whose radial part is $e^{(n-1)r}$).

Hence the asymptotics of solutions to the fast diffusions should be related to the separate variable solution $U(t, x) = U(x)[(T-t)/T]^{1/(1-m)}$. Presently under investigation using the above methods, as a part of a more general study of nonlinear diffusions on manifolds.
It can be expected that the asymptotics of solutions is related to solutions, if any, of the elliptic problem $-\Delta u = u^{1/m}$ (up to rescalings). No results on this till recently, but:

- Mancini-Sandeep (Annali Pisa, 2008) have shown that there exist exactly one solution $U$ to the elliptic problem. It is radial, and it has finite energy, namely it belongs to $W^{1,2}(\mathbb{H}^n)$. It decays at infinity as $ce^{-(n-1)r}$, $r$ being the Riemannian distance from the given point. There are infinitely many other radial positive solutions, but they have infinite energy. Notice that $U^{1/m} \in L^1$.

- M.B., F. Gazzola, G. Grillo and J. L. Vázquez have just proved that there is no other positive radial solution apart the ones found above, and that all of them apart $U$ decay polynomially at infinity, hence they do not belong to $L^q$ for any $q \neq \infty$ (recall that the Riemannian measure has a density whose radial part is $e^{(n-1)r}$).

Hence the asymptotics of solutions to the fast diffusions should be related to the separate variable solution $U(t,x) = U(x)[(T-t)/T]^{1/(1-m)}$. Presently under investigation using the above methods, as a part of a more general study of nonlinear diffusions on manifolds.
It can be expected that the asymptotics of solutions is related to solutions, if any, of the elliptic problem $\Delta u = u^{1/m}$ (up to rescalings). No results on this till recently, but:

- Mancini-Sandeep (Annali Pisa, 2008) have shown that there exist exactly one solution $U$ to the elliptic problem. It is radial, and it has finite energy, namely it belongs to $W^{1,2}(\mathbb{H}^n)$. It decays at infinity as $ce^{-(n-1)r}$, $r$ being the Riemannian distance from the given point. There are infinitely many other radial positive solutions, but they have infinite energy. Notice that $U^{1/m} \in L^1$.

- M.B., F. Gazzola, G. Grillo and J. L. Vázquez have just proved that there is no other positive radial solution apart the ones found above, and that all of them apart $U$ decay polynomially at infinity, hence they do not belong to $L^q$ for any $q \neq \infty$ (recall that the Riemannian measure has a density whose radial part is $e^{(n-1)r}$).

Hence the asymptotics of solutions to the fast diffusions should be related to the separate variable solution $\mathcal{U}(t, x) = U(x)[(T-t)/T]^{1/(1-m)}$. Presently under investigation using the above methods, as a part of a more general study of nonlinear diffusions on manifolds.