Qualitative behavior of global solutions to some nonlinear fourth order differential equations

Elvise BERCHIO

Dipartimento di Matematica, Politecnico di Milano
Madrid, September 19-20, 2011

The equation

Consider the equation

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

where $k \in \mathbb{R}$ and f is a locally Lipschitz function
$\Rightarrow k>0$ Swift-Hohenberg equation
$\Rightarrow k \leq 0$ extended Fisher-Kolmogorov equation

- L.A. Peletier, W.C. Troy, Birkhäuser Boston Inc. (2001)

A connected biharmonic Gelfand-type equation

Let $u=u(r), r:=|x|$ be a radial solution to

$$
\Delta^{2} u+e^{u}=\frac{1}{|x|^{4}} \quad \text { in } \mathbb{R}^{4} \backslash\{0\}
$$

and with the change of variables

$$
s=\log r \quad w(s):=u\left(e^{s}\right)+4 s \quad s \in \mathbb{R}
$$

we get

$$
w^{\prime \prime \prime \prime}(s)-4 w^{\prime \prime}(s)+e^{w(s)}-1=0 \quad s \in \mathbb{R}
$$

- C.S. Lin, (1998); S.Y.A. Chang, W. Chen (2001);
- G.Arioli, F.Gazzola, H.-Ch.Grunau, (2006); G.Arioli, F.Gazzola, H.-Ch.Grunau, E.Mitidieri, (2005); E.Berchio, D.Cassani, F.Gazzola, (2010); E.Berchio, F.Gazzola, (2005); J.Dávila, L.Dupaigne, I.Guerra, M.Montenegro, (2007); J.Dávila, I.Flores, I.Guerra, (2009)

A connected biharmonic Gelfand-type equation

Let $k \in \mathbb{R}$ and $u=u(r), r:=|x|$ be a radial solution to

$$
\begin{gathered}
\Delta^{2} u-2(n-4) \frac{x \cdot \nabla \Delta u}{|x|^{2}}+\left(n^{2}-6 n+12+k\right) \frac{\Delta u}{|x|^{2}} \\
-(n-2)\left[(n-2)^{2}+k\right] \frac{x \cdot \nabla u}{|x|^{4}}+e^{u}=\frac{1}{|x|^{4}}
\end{gathered}
$$

in $\mathbb{R}^{n} \backslash\{0\}(n \geq 2)$, with the change of variables

$$
s=\log r \quad w(s):=u\left(e^{s}\right)+4 s \quad s \in \mathbb{R}
$$

w solves

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+e^{w(s)}-1=0 \quad s \in \mathbb{R}
$$

Physical models

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad(s, k \in \mathbb{R})
$$

\Rightarrow Suspension bridge model

$$
f(w)=(w+1)^{+}-1 ; \quad f(w)=e^{w}-1
$$

- P.J. McKenna, W. Walter (1990); Y. Chen, P.J. McKenna (1997)
\Rightarrow Configuration of a nonlinearly supported elastic strut

$$
f(w)=w-w^{2} ; \quad f(w)=w-w^{3}+w^{5}
$$

- G.W. Hunt, H.M. Bolt, J.M.T. Thompson (1989);
C.J. Amick, J.F. Toland (1992); L.A. Peletier (2001)
\Rightarrow Pattern formation in physical, chemical or biological systems

$$
f(w)=w^{3}-w
$$

- L.A. Peletier, W.C. Troy (2001); D. Bonheure, L.Sanchez(2006)

Main assumption on f

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

we assume

$$
\text { (S) } \quad f \in \operatorname{Lip}_{\text {loc }}(\mathbb{R}), \quad f(t) t>0 \quad \text { for every } t \in \mathbb{R} \backslash\{0\}
$$

- E.B., A. Ferrero, F. Gazzola, P. Karageorgis, J. Diff. Eq. 2011

Global continuation

Theorem

Let $k \in \mathbb{R}$ and assume that f satisfies (S).
(i) If a local solution to

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

blows up at some finite $R \in \mathbb{R}$, then

$$
\liminf _{s \rightarrow R} w(s)=-\infty \quad \text { and } \quad \limsup _{s \rightarrow R} w(s)=+\infty
$$

(ii) If f also satisfies

$$
\text { (L) } \quad \limsup _{t \rightarrow+\infty} \frac{f(t)}{t}<+\infty \quad \text { or } \quad \limsup _{t \rightarrow-\infty} \frac{f(t)}{t}<+\infty \text {. }
$$

Then, any local solution exists for all $s \in \mathbb{R}$.

Sketch of the proof of (i)

Key Lemma

Assume that f satisfies (S) and let w be a solution in a maximal interval of continuation $(0, R)$. The following implications hold

$$
\begin{aligned}
& \text { 1) } \exists C \in \mathbb{R}, \quad w(s) \leq C \quad \forall s \in(0, R) \Longrightarrow R=+\infty, \\
& \text { 2) } \exists C \in \mathbb{R}, \quad w(s) \geq C \quad \forall s \in(0, R) \Longrightarrow R=+\infty .
\end{aligned}
$$

Plan of the proof of 1). By contradiction, let $R<+\infty$:

- $\exists C \in \mathbb{R}, \quad w(s) \leq C \quad \forall s \in(0, R) \quad \Longrightarrow \quad w$ bounded in $(0, R)$;
- w bounded in $(0, R) \quad \Longrightarrow \quad w^{\prime \prime}$ bounded in $(0, R)$;
$v:=w^{\prime \prime}+k w, v^{\prime \prime}=-f(w) \Longrightarrow v$ bdd in $(0, R) \Longrightarrow w^{\prime \prime}=v-k w$ bdd
- $w, w^{\prime \prime}$ bounded in $(0, R) \Longrightarrow w^{\prime \prime \prime \prime}=-k w^{\prime \prime}-f(w)$ bounded $(0, R)$;
- All the derivatives of w bounded $\Longrightarrow w$ can be continued beyond R.

Sketch of the proof of (i)

$$
\exists C \in \mathbb{R}, \quad w(s) \leq C \quad \forall s \in(0, R) \quad \Longrightarrow \quad w \text { bounded in }(0, R) .
$$

Set $v(s):=w^{\prime \prime}(s)+k w(s)$, from the equation

$$
v^{\prime \prime}(s)=w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)=-f(w(s)) \geq C_{1} \quad \forall s \in(0, R)
$$

Integrating twice, $v(s) \geq C_{2}$ in $(0, R)$.
If $\mathbf{k} \geq 0$, this gives

$$
w^{\prime \prime}(s)=v(s)-k w(s) \geq C_{2}-k C \quad \Longrightarrow \quad w \text { bounded from below. }
$$

If $\mathbf{k}<0$, we exploit the fact that

$$
w(s)=w(0) \operatorname{Ch}(\sqrt{|k|} s)+\frac{w^{\prime}(0)}{\sqrt{|k|}} \operatorname{Sh}(\sqrt{|k|} s)+\frac{1}{\sqrt{|k|}} \int_{0}^{s} \operatorname{Sh}[\sqrt{\mid k}(s-t)] v(t) d t
$$

A connected biharmonic Gelfand-type equation

Corollary

Let B_{R} be the ball in $\mathbb{R}^{n}(n \geq 2)$ with radius $0<R<+\infty$ and center the origin. Then, any radial solution to

$$
\begin{gathered}
\Delta^{2} u-2(n-4) \frac{x \cdot \nabla \Delta u}{|x|^{2}}+\left(n^{2}-6 n+12+k\right) \frac{\Delta u}{|x|^{2}} \\
-(n-2)\left[(n-2)^{2}+k\right] \frac{x \cdot \nabla u}{|x|^{4}}+e^{u}=\frac{1}{|x|^{4}}
\end{gathered}
$$

in $B_{R} \backslash\{0\}$ admits a radial extension to $\mathbb{R}^{n} \backslash\{0\}$.
In particular, the equation subject to the boundary condition

$$
\lim _{|x| \rightarrow R} u(x)=\infty
$$

admits no radial solution.
Explicit solution $u(x)=-4 \log |x| \Longleftrightarrow w \equiv 0$

Qualitative behavior when $k>0$

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

Theorem

Let $k \geq 0$ and f satisfy (S). If w is a global solution, then

$$
\liminf _{s \rightarrow+\infty} w(s) \leq 0 \leq \limsup _{s \rightarrow+\infty} w(s)
$$

so that if $\lim _{s \rightarrow+\infty} w(s)$ exists then

$$
\lim _{s \rightarrow+\infty} w(s)=0
$$

Furthermore, if $w \not \equiv 0$ then $w(s)$ changes sign infinitely many times as $s \rightarrow+\infty$. Similar statements hold for $s \rightarrow-\infty$.

$$
\begin{gathered}
w^{\prime \prime \prime \prime}(s)+4 w^{\prime \prime}(s)+e^{w(s)}-1=0 \\
w(0)=0 \quad w^{\prime}(0)=0 \quad w^{\prime \prime}(0)=-2 \quad w^{\prime \prime \prime}(0)=0
\end{gathered}
$$

$$
\begin{gathered}
w^{\prime \prime \prime \prime}(s)-4 w^{\prime \prime}(s)+e^{w(s)}-1=0 \quad s \in \mathbb{R} \\
w(0)=0 \quad w^{\prime}(0)=0 \quad w^{\prime \prime}(0)=-2 \quad w^{\prime \prime \prime}(0)=0
\end{gathered}
$$

Qualitative behavior when $k<0$

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

Theorem

Let $k<0$ and assume that f satisfies (S) and

$$
\begin{equation*}
\inf _{t \in \mathbb{R}} f(t)=-M>-\infty, \tag{1}
\end{equation*}
$$

then there exists a global solution w which is eventually negative, decreasing, and concave as $s \rightarrow+\infty$ and

$$
\lim _{s \rightarrow+\infty} w(s)=-\infty
$$

Similar statement if

$$
\sup _{t \in \mathbb{R}} f(t)=M<+\infty
$$

Sketch of the proof

Let $k<0$ and $\inf _{t \in \mathbb{R}} f(t)=-M>-\infty$. Consider a solution to

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

satisfying

$$
\begin{gathered}
w(0)=0, \quad w^{\prime}(0)=0, \quad w^{\prime \prime}(0)<-\frac{M}{|k|}<0, \quad w^{\prime \prime \prime}(0)=0 . \\
\Longrightarrow \quad w^{\prime \prime \prime \prime}(0)=-k w^{\prime \prime}(0)<-M
\end{gathered}
$$

Set

$$
\bar{s}:=\sup \left\{s>0: w^{\prime \prime \prime \prime}(\sigma)<0 \text { for all } \sigma \in(0, s)\right\} \in(0,+\infty] .
$$

Claim: $\bar{s}=+\infty$.

Sketch of the proof

$$
\bar{s}:=\sup \left\{s>0: w^{\prime \prime \prime \prime}(\sigma)<0 \text { for all } \sigma \in(0, s)\right\} \in(0,+\infty] .
$$

Were $\bar{s}<+\infty \quad \Longrightarrow \quad w^{\prime \prime \prime \prime}(\bar{s})=0$.
$\Longrightarrow w^{\prime \prime \prime}(s) \searrow$ in $(0, s], w^{\prime \prime \prime}(0)=0 \Longrightarrow w^{\prime \prime \prime}(s)<0$ in $(0, s]$
$\Longrightarrow w^{\prime \prime}(s) \searrow$ in $(0, \bar{s}], w^{\prime \prime}(0)<0 \Longrightarrow w^{\prime \prime}(s)<0$ in $(0, \bar{s}]$
$\Longrightarrow w^{\prime}(s) \searrow$ in $(0, \bar{s}], w^{\prime}(0)=0 \Longrightarrow w^{\prime}(s)<0$ in $(0, \bar{s}]$
$\Longrightarrow w(s) \searrow$ in $(0, \bar{s}], w(0)=0 \Longrightarrow w(s)<0$ in $(0, \bar{s}]$

$$
w^{\prime \prime \prime \prime}(\bar{s})=|k| w^{\prime \prime}(\bar{s})-f(w(\bar{s})) \leq|k| w^{\prime \prime}(0)+M<0
$$

a contradiction $\Longrightarrow \bar{s}=+\infty$.

Qualitative behavior when $k<0$

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

Theorem

Let $k<0$ and f satisfy (S), $\sup _{t \in \mathbb{R}} f(t)=M<+\infty$ and

$$
\lim _{t \rightarrow-\infty} \frac{f(t)}{t}=+\infty
$$

Then any solution w is global and

$$
\sup _{s \in \mathbb{R}} w(s)=+\infty \quad \text { and } \quad \inf _{s \in \mathbb{R}} w(s)>-\infty
$$

Energy functions

$$
\begin{aligned}
F(w):= & \int_{0}^{w} f(\tau) d \tau \\
& E(s):=\frac{1}{2} w^{\prime \prime}(s)^{2}-\frac{k}{2} w^{\prime}(s)^{2}-F(w(s)) \quad s \in \mathbb{R} .
\end{aligned}
$$

If w is a solution and $w^{\prime}\left(s_{1}\right)=w^{\prime}\left(s_{2}\right)=0 \Longrightarrow E\left(s_{1}\right)=E\left(s_{2}\right)$.

$$
\mathcal{E}(s):=E(s)-w^{\prime}(s) w^{\prime \prime \prime}(s) \quad s \in \mathbb{R}
$$

If w is a solution $\Longrightarrow \mathcal{E}^{\prime}(s)=0 \Longrightarrow \mathcal{E}(s)=C$, for some $C \in \mathbb{R}$.

Energy functions

$$
H(s):=w^{\prime}(s) w^{\prime \prime}(s)-w(s) w^{\prime \prime \prime}(s)-k w(s) w^{\prime}(s)
$$

and its antiderivative

$$
G(s):=w^{\prime}(s)^{2}-w(s) w^{\prime \prime}(s)-\frac{k}{2} w(s)^{2} \quad s \in \mathbb{R}
$$

w solution, $k \leq 0 \Longrightarrow H^{\prime}(s)=w^{\prime \prime}(s)^{2}-k w^{\prime}(s)^{2}+w(s) f(w(s)) \geq 0$
$\Longrightarrow H$ is nondecreasing and G is convex.

An application

Proposition

Let $k \leq 0$ and f satisfy (S). Then, the equation

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

has no nontrivial bounded solutions. In particular, the equation has no nontrivial homoclinic solutions.

- L.A. Peletier, W.C. Troy, Birkhäuser Boston Inc. (2001)

A simpler proof
w homoclinic $\Leftrightarrow \lim _{s \rightarrow \pm \infty} w(s)=0 \Rightarrow \lim _{s \rightarrow \pm \infty} w^{i}(s)=0$ for $i=1, . ., 4$
Recall the energy function

$$
H(s):=w^{\prime}(s) w^{\prime \prime}(s)-w(s) w^{\prime \prime \prime}(s)-k w(s) w^{\prime}(s)
$$

$H^{\prime}(s) \geq 0$ for $k \leq 0 \Longrightarrow \lim _{s \rightarrow \pm \infty} H(s)=0 \Longrightarrow H=H^{\prime} \equiv 0 \Longrightarrow w \equiv 0$

A connected biharmonic Gelfand-type equation

Corollary

Let $k \leq 0$ and u be a radial solution to

$$
\begin{gathered}
\Delta^{2} u-2(n-4) \frac{x \cdot \nabla \Delta u}{|x|^{2}}+\left(n^{2}-6 n+12+k\right) \frac{\Delta u}{|x|^{2}} \\
-(n-2)\left[(n-2)^{2}+k\right] \frac{x \cdot \nabla u}{|x|^{4}}+e^{u}=\frac{1}{|x|^{4}}
\end{gathered}
$$

in $\mathbb{R}^{n} \backslash\{0\}(n \geq 2)\left(\right.$ in $\left.\mathbb{R}^{4} \backslash\{0\}\right)$. If

$$
\lim _{|x| \rightarrow 0}(u(x)+4 \log |x|)=0=\lim _{|x| \rightarrow+\infty}(u(x)+4 \log |x|),
$$

then $u(x) \equiv-4 \log |x|$.

Dynamical system

Put

$$
Y(s)=\left(y_{1}(s), y_{2}(s), y_{3}(s), y_{4}(s)\right)=\left(w(s), w^{\prime}(s), w^{\prime \prime}(s), w^{\prime \prime \prime}(s)\right)
$$

the equation

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

may be rewritten as

$$
\left\{\begin{array}{l}
y_{1}^{\prime}=y_{2} \\
y_{2}^{\prime}=y_{3} \\
y_{3}^{\prime}=y_{4} \\
y_{4}^{\prime}=-k y_{3}-f\left(y_{1}\right) .
\end{array}\right.
$$

$\mathbf{(S)} \Rightarrow$ unique stationary point $O=(0,0,0,0)$ corresponding to $w \equiv 0$

Proposition

Assume (S) and f differentiable near the origin: $f^{\prime}(0)=1$.
(i) If $k<-2, O$ has a 2 -dimensional stable manifold and a 2-dimensional unstable manifold, both not oscillating near O;
(ii) if $k=-2, O$ has a 2 -dimensional stable manifold and a 2-dimensional unstable manifold;
(iii) if $-2<k<2, O$ has a 2 -dimensional stable manifold and a 2-dimensional unstable manifold, both having locally the form of a spiral near O;
(iv) if $k=2$, the linearized problem at O has 2 (opposite) double purely imaginary eigenvalues;
(v) if $k>2$, the linearized problem at O has 4 purely imaginary eigenvalues.

Theorem

Assume that f satisfies (S).
(i) If $k \leq-2$ and f satisfies one of the following

$$
f(t) \geq t \quad \text { near } t=0 \quad \text { or } \quad f(t) \leq t \quad \text { near } t=0
$$

any global solution: $\lim _{s \rightarrow+\infty} w(s)=0$ is of one sign as $s \rightarrow+\infty$.
Similar statement with $+\infty$ replaced by $-\infty$.
(ii) If $-2<k<0, f^{\prime}(0)=1$ and

$$
\liminf _{|t| \rightarrow+\infty} \frac{f(t)}{t}>k^{2}
$$

any global solution changes sign infinitely many times both as $s \rightarrow \pm \infty$.

Sketch of the proof of (i)

$$
\begin{aligned}
& \lim _{s \rightarrow+\infty} w(s)=0 \Rightarrow \lim _{s \rightarrow+\infty}\left(w(s), w^{\prime}(s), w^{\prime \prime}(s), w^{\prime \prime \prime}(s)\right)=(0,0,0,0) \\
& k \leq-2 \Rightarrow 4 \text { real eigenvalues } \pm \lambda, \pm \mu: \lambda \geq \mu>0 \\
& \Longrightarrow \quad\left(\partial_{s}-\lambda\right)\left(\partial_{s}-\mu\right)\left(\partial_{s}+\lambda\right)\left(\partial_{s}+\mu\right) w(s)=w(s)-f(w(s)) \\
& f(t) \geq t \text { near } t=0 \Longrightarrow \quad\left(e^{-\lambda s}\left(\partial_{s}-\mu\right)\left(\partial_{s}+\lambda\right)\left(\partial_{s}+\mu\right) w(s)\right)^{\prime} \leq 0 s \text { large } \\
& \quad e^{-\lambda s}\left(\partial_{s}-\mu\right)\left(\partial_{s}+\lambda\right)\left(\partial_{s}+\mu\right) w(s) \rightarrow 0 \text { as } s \rightarrow+\infty \\
& \Longrightarrow e^{-\mu s}\left(\left(\partial_{s}+\lambda\right)\left(\partial_{s}+\mu\right) w(s)\right) \nearrow 0 \\
& \quad\left(\partial_{s}+\lambda\right)\left(\partial_{s}+\mu\right) w(s) \leq 0 \text { for } s \text { large }
\end{aligned}
$$

$\Longrightarrow s \mapsto e^{\lambda s}\left(w^{\prime}(s)+\mu w(s)\right)$ decreasing.

Sketch of the proof of (i)

$\Rightarrow s \mapsto e^{\lambda s}\left(w^{\prime}(s)+\mu w(s)\right)$ decreasing.

Case $1 \exists s_{0}: w^{\prime}\left(s_{0}\right)+\mu w\left(s_{0}\right)<0$
$\Rightarrow w^{\prime}(s)+\mu w(s)<0$ for all $s \geq s_{0} \Rightarrow e^{\mu s} w(s) \searrow \ell \in \mathbb{R}$ as $s \rightarrow+\infty$
If $\ell>0$ or $\ell<0 \Rightarrow w$ is eventually of one sign.
If $\ell=0 \Rightarrow e^{\mu s} w(s) \searrow 0 \Rightarrow w$ is eventually positive.

Case $2 w^{\prime}+\mu w \geq 0$ for every $s \in R$
$\Rightarrow e^{\mu s} w(s) \nearrow \ell$ as $s \rightarrow+\infty \ldots .$.

Homoclinics

$$
w \text { homoclinic } \Longleftrightarrow \lim _{s \rightarrow \pm \infty} w(s)=0
$$

Proposition

Let $k \leq 0$ and f satisfy (S). Then, the equation

$$
w^{\prime \prime \prime \prime}(s)+k w^{\prime \prime}(s)+f(w(s))=0 \quad s \in \mathbb{R}
$$

has no nontrivial bounded solutions. In particular, the equation has no nontrivial homoclinic solutions.

- L.A. Peletier, W.C. Troy, Birkhäuser Boston Inc. (2001)

Homoclinics

Theorem

Let $k>0$.
(i) $k \leq 2$ and $\frac{f(t)}{t} \geq 1$ for all $t \neq 0$

\Longrightarrow no homoclinics

(ii) f satisfies (S) and $f^{\prime}(0)=1,\left\{s_{m}\right\}_{m \geq 1}$ increasing sequence of zeroes of an homoclinic (as $s \rightarrow+\infty$)

$$
\Longrightarrow \quad \liminf _{m \rightarrow+\infty}\left(s_{m+1}-s_{m}\right) \geq \frac{\pi \sqrt{k+\sqrt{k^{2}+12}}}{\sqrt{6}}
$$

Similar statement as $s \rightarrow-\infty$.
(iii) $k<2, f$ satisfies (\mathbf{S}) and $f^{\prime}(0)=1, w$ is a homoclinic

$$
\Longrightarrow \quad w \in H^{2}(\mathbb{R})
$$

Sketch of the proof of (i)

w homoclinic, $k>0 \Rightarrow w$ changes sign infinitely many times.
Let $s_{1}<s_{2}$ any two of its roots

$$
\begin{gathered}
2 \int_{s_{1}}^{s_{2}} w^{\prime}(s)^{2} d s=-2 \int_{s_{1}}^{s_{2}} w(s) w^{\prime \prime}(s) d s \\
=\int_{s_{1}}^{s_{2}}\left[w(s)^{2}+w^{\prime \prime}(s)^{2}\right] d s-\int_{s_{1}}^{s_{2}}\left[w(s)+w^{\prime \prime}(s)\right]^{2} d s \\
\leq \int_{s_{1}}^{s_{2}}\left[w(s)^{2}+w^{\prime \prime}(s)^{2}\right] d s .
\end{gathered}
$$

\Longrightarrow there exist two roots $\bar{s}_{1}<\bar{s}_{2}$ such that $<$ holds (otherwise $w^{\prime \prime}(s)+w(s)=0$ for all $s \in \mathbb{R}$, contradicting w homoclinic).
If $s_{1} \leq \bar{s}_{1}<\bar{s}_{2} \leq s_{2} \Longrightarrow \int_{s_{1}}^{s_{2}}\left[w(s)^{2}+w^{\prime \prime}(s)^{2}\right] d s>2 \int_{s_{1}}^{s_{2}} w^{\prime}(s)^{2} d s$.

Sketch of the proof of (i)

$$
H(s):=w^{\prime}(s) w^{\prime \prime}(s)-w(s) w^{\prime \prime \prime}(s)-k w(s) w^{\prime}(s)
$$

Since $\frac{f(t)}{t} \geq 1$

$$
\begin{gathered}
H\left(s_{2}\right)-H\left(s_{1}\right)=\int_{s_{1}}^{s_{2}}\left[w^{\prime \prime}(s)^{2}-k w^{\prime}(s)^{2}+w(s) f(w(s))\right] d s \\
\geq \int_{s_{1}}^{s_{2}}\left[w^{\prime \prime}(s)^{2}-k w^{\prime}(s)^{2}+w(s)^{2}\right] d s>(2-k) \int_{s_{1}}^{s_{2}} w^{\prime}(s)^{2} d s \geq 0
\end{gathered}
$$

whenever $s_{1} \leq \bar{s}_{1}<\bar{s}_{2} \leq s_{2}$
w homoclinic $\Longrightarrow H(s) \rightarrow 0$ as $s \rightarrow \pm \infty$, a contradiction.

