Existence Results For p-Superlinear Neumann Problems With A Nonhomogeneous Differential Operator

Giuseppina Barletta

Mediterranean University of Reggio Calabria Faculty of Architecture P.A.U.-Department giuseppina.barletta@unirc.it

NONLINEAR PDEs AND FUNCTIONAL INEQUALITIES WORKSHOP,
UAM Madrid (Spain), September 19-20, 2011

$$
\begin{equation*}
-\operatorname{div}\left(a(z, D u(z))=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right. \tag{1}
\end{equation*}
$$

THE PROBLEM

$$
\begin{equation*}
-\operatorname{div}\left(a(z, D u(z))=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right. \tag{1}
\end{equation*}
$$

Nikolaos S. Papageorgiou,
National Technical University, Departement of Mathematics, Zagrafou Campus, Athens 15780 (Greece).

$$
\begin{equation*}
-\operatorname{div}\left(a(z, D u(z))=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right. \tag{1}
\end{equation*}
$$

Nikolaos S. Papageorgiou,
National Technical University, Departement of Mathematics, Zagrafou Campus, Athens 15780 (Greece).
G. Barletta-N. S. Papageorgiou: A Multiplicity theorem for p-superlinear Neumann problems with a nonhomogeneous differential operator, preprint.

$$
\begin{equation*}
-\operatorname{div}\left(a(z, D u(z))=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right. \tag{1}
\end{equation*}
$$

Nikolaos S. Papageorgiou,
National Technical University, Departement of Mathematics, Zagrafou Campus, Athens 15780 (Greece).
G. Barletta-N. S. Papageorgiou: A Multiplicity theorem for p-superlinear Neumann problems with a nonhomogeneous differential operator, preprint.
$\Omega \subseteq \mathbb{R}^{N}$ is a bounded domain with a C^{2}-boundary $\partial \Omega, n(\cdot)$ stands for the outward unit normal on $\partial \Omega$ and $\frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}}$ is the normal derivative of u on $\partial \Omega$.
$a: \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$.

$$
\begin{equation*}
-\operatorname{div}\left(a(z, D u(z))=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right. \tag{1}
\end{equation*}
$$

Nikolaos S. Papageorgiou,
National Technical University, Departement of Mathematics, Zagrafou
Campus, Athens 15780 (Greece).
G. Barletta-N. S. Papageorgiou: A Multiplicity theorem for
p-superlinear Neumann problems with a nonhomogeneous differential operator, preprint.
$\Omega \subseteq \mathbb{R}^{N}$ is a bounded domain with a C^{2}-boundary $\partial \Omega, n(\cdot)$ stands for the outward unit normal on $\partial \Omega$ and $\frac{\partial u}{\partial n}=(D u, n)_{\mathbb{R}^{N}}$ is the normal derivative of u on $\partial \Omega$.
$a: \bar{\Omega} \times \mathbb{R}^{N} \rightarrow \mathbb{R}^{N}$.
The reaction term $f(z, x)$ is a Carathéodory function that exhibits a ($p-1$)-superlinear growth with respect to $x \in \mathbb{R}$ near to $\pm \infty$

$$
\lim _{|x| \rightarrow \infty} \frac{f(z, x)}{|x|^{p-2} x}=+\infty \text { uniformly for a.a. } z \in \Omega
$$

Superlinear Problems with Dirichlet boundary conditions

[4] T. Bartsch-Z. Liu-T. Weth: Nodals solutions of a p-Laplacian equation, Proc. London Math. Soc. 91 (2005), 129-152.

$$
-\triangle_{p} u=f(z, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega .
$$

Superlinear Problems with Dirichlet boundary conditions

[4] T. Bartsch-Z. Liu-T. Weth: Nodals solutions of a p-Laplacian equation, Proc. London Math. Soc. 91 (2005), 129-152.

$$
-\triangle_{p} u=f(z, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

[5] M. Filippakis-A. Kristaly-N. S. Papageorgiou: Existence of five nonzero solutions with exact sign for a p-Laplacian equation, Discrete Cont. Dyn. Systems 24 (2009), 405-440.

$$
-\triangle_{p} u=f(z, u, \lambda) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

Superlinear Problems with Dirichlet boundary conditions

[4] T. Bartsch-Z. Liu-T. Weth: Nodals solutions of a p-Laplacian equation, Proc. London Math. Soc. 91 (2005), 129-152.

$$
-\triangle_{p} u=f(z, u) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

[5] M. Filippakis-A. Kristaly-N. S. Papageorgiou: Existence of five nonzero solutions with exact sign for a p-Laplacian equation, Discrete Cont. Dyn. Systems 24 (2009), 405-440.

$$
-\triangle_{p} u=f(z, u, \lambda) \text { in } \Omega, \quad u=0 \text { on } \partial \Omega
$$

[6] J. P. Garcia Azorero-J. Manfredi-I. Peral Alonso: Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Comm. Contemp. Math., 2 (2000), 385-404.

$$
-\triangle_{p} u=|u|^{r-2} u+\lambda|u|^{q-2} u \text { in } \Omega, \quad u=0 \text { on } \partial \Omega .
$$

Superlinear Problems with Dirichlet boundary conditions

[8] Z. Guo-Z. Zhang: $W^{1, p}$ versus C^{1} local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), 32-50.

$$
-\triangle_{p} u=\lambda u^{q}+u^{\omega}, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega .
$$

The authors show the existence of at least two positive solutions for $\lambda \in] 0, \Lambda[$ and of at least one positive solution for $\lambda=\Lambda$.

Superlinear Problems with Dirichlet boundary conditions

[8] Z. Guo-Z. Zhang: $W^{1, p}$ versus C^{1} local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), 32-50.

$$
-\triangle_{p} u=\lambda u^{q}+u^{\omega}, u>0 \text { in } \Omega, u=0 \text { on } \partial \Omega .
$$

The authors show the existence of at least two positive solutions for $\lambda \in] 0, \Lambda[$ and of at least one positive solution for $\lambda=\Lambda$.

$$
-\triangle_{p} u=\lambda|u|^{q-1} u+g(u), \text { in } \Omega, \quad u=0 \text { on } \partial \Omega .
$$

This problem admits at least two positive solutions for $\lambda \in] 0, \Lambda^{+}[$, two negative solutions for $\lambda \in] 0, \Lambda^{-}$[and a nodal solution for $\lambda \in] 0, \min \left\{\Lambda^{-}, \Lambda^{+}\right\}[$.

Superlinear Problems with Neumann boundary conditions

[2] S. Aizicovici-N. S. Papageorgiou-V. Staicu: Existence of multiple solutions with precise sign informations for superlinear Neumann problems, Annali di Mat. Pura ed Applicata 188 (2009), 679-719.

$$
-\triangle_{p} u+\beta|u|^{p-2} u=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega .
$$

Superlinear Problems with Neumann boundary conditions

[2] S. Aizicovici-N. S. Papageorgiou-V. Staicu: Existence of multiple solutions with precise sign informations for superlinear Neumann problems, Annali di Mat. Pura ed Applicata 188 (2009), 679-719.

$$
-\triangle_{p} u+\beta|u|^{p-2} u=f(z, u(z)) \text { in } \Omega, \quad \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega .
$$

AR-condition

There exists $\mu>p$ and $M>0$ such that

$$
\begin{equation*}
0<\mu F(z, x) \leq f(z, x) x \text { for a.a. } z \in \Omega, \text { all }|x| \geq M . \tag{2}
\end{equation*}
$$

Neumann Problems that exclude a $(p-1)$-superlinear reaction

[7] L. Gasinski-N. S. Papageorgiou: Nonlinear Analysis, Chapman Hall/ CRC Press, Boca Raton, FL. (2006).
[9] D. Motreanu- N. S. Papageorgiou: Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc. 139 (2011), no. 10, 35273535.

$$
C_{n}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}): \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}
$$

and $W_{n}^{1, p}(\Omega)={\overline{C_{n}^{1}(\bar{\Omega})}}^{\|\cdot\|}$ where $\|\cdot\|$ is the usual norm on $W^{1, p}(\Omega)$. $C_{n}^{1}(\bar{\Omega})$ is a Banach space with ordered positive cone

$$
\begin{gathered}
C_{+}=\left\{u \in C_{n}^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\} . \\
\text { int } C_{+}=\left\{u \in C_{n}^{1}(\bar{\Omega}): u(z)>0 \text { for all } z \in \bar{\Omega}\right\} .
\end{gathered}
$$

$$
C_{n}^{1}(\bar{\Omega})=\left\{u \in C^{1}(\bar{\Omega}): \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega\right\}
$$

and $W_{n}^{1, p}(\Omega)={\overline{C_{n}^{1}(\bar{\Omega})}}^{\|\cdot\|}$ where $\|\cdot\|$ is the usual norm on $W^{1, p}(\Omega)$. $C_{n}^{1}(\bar{\Omega})$ is a Banach space with ordered positive cone

$$
\begin{gather*}
C_{+}=\left\{u \in C_{n}^{1}(\bar{\Omega}): u(z) \geq 0 \text { for all } z \in \bar{\Omega}\right\} \\
\text { int } C_{+}=\left\{u \in C_{n}^{1}(\bar{\Omega}): u(z)>0 \text { for all } z \in \bar{\Omega}\right\} . \\
-\operatorname{div}\left(|D u(z)|^{p-2} D u(z)\right)=\widehat{\lambda}|u(z)|^{p-2} u(z) \text { in } \Omega, \frac{\partial u}{\partial n}=0 \text { on } \partial \Omega . \tag{3}
\end{gather*}
$$

A number $\widehat{\lambda} \in \mathbb{R}$ for which problem (3) has a nontrivial solution \widehat{u}, is an eigenvalue of $\left(-\Delta_{p}, W_{n}^{1, p}(\Omega)\right)$ and \widehat{u} is a corresponding eigenfunction.
$\widehat{\lambda} \geq 0$, and $\widehat{\lambda}_{0}=0$ is an eigenvalue with corresponding eigenspace \mathbb{R}. By \widehat{u}_{0} we denote the corresponding L^{p}-normalized eigenfunction, i.e. $\widehat{u}_{0}(z)=\frac{1}{|\Omega|_{N}^{\frac{1}{p}}}$. If $\sigma(p)$ is the set of all eigenvalues of (3), then the increasing sequence $\left\{\widehat{\lambda}_{n}\right\}_{n \geq 0}$ of the "LS-eigenvalues" is contained in

Assumptions on a

$H(a): a(z, y)=h(z,\|y\|) y$ for all $(z, y) \in \bar{\Omega} \times \mathbb{R}^{N}$ with $h(z, t)>0$ for all $(z, t) \in \bar{\Omega} \times(0,+\infty)$ and
(i) $a \in C^{0, \alpha}\left(\bar{\Omega} \times \mathbb{R}^{N}, \mathbb{R}^{N}\right) \cap C^{1}\left(\bar{\Omega} \times \mathbb{R}^{N} \backslash\{0\}, \mathbb{R}^{N}\right)$ with $0<\alpha<1$;
(ii) for all $(z, y) \in \bar{\Omega} \times \mathbb{R}^{N} \backslash\{0\}$, we have $\left\|D_{y} a(z, y)\right\| \leq c_{1}\|y\|^{p-2}$ for some $c_{1}>0,1<p<\infty$;
(iii) for all $(z, y) \in \bar{\Omega} \times \mathbb{R}^{N} \backslash\{0\}$ and all $\xi \in \mathbb{R}^{N}$, we have

$$
\left(D_{y} a(z, y) \xi, \xi\right)_{\mathbb{R}^{N}} \geq c_{0}\|y\|^{p-2}\|\xi\|^{2} \text { for some } c_{0}>0 ;
$$

(iv) the \mathbb{R}-valued function $G(z, y)$ defined by $D_{y} G(z, y)=a(z, y)$ and $G(z, 0)=0$ for all $(z, y) \in \bar{\Omega} \times \mathbb{R}^{N}$, satisfies

$$
\beta(z) \leq p G(z, y)-(a(z, y), y)_{\mathbb{R}^{N}} \text { for a.a. } z \in \Omega \text { with } \beta \in L^{1}(\Omega) .
$$

The map V

Let $V: W_{n}^{1, p}(\Omega) \rightarrow W_{n}^{1, p}(\Omega)^{*}$ be the nonlinear map defined by

$$
\begin{equation*}
\langle V(u), y\rangle=\int_{\Omega}(a(z, D u), D y)_{\mathbb{R}^{N}} d z \text { for all } u, y \in W_{n}^{1, p}(\Omega) . \tag{4}
\end{equation*}
$$

If hypotheses $H(a)$ hold, then V defined by (4) is maximal monotone and of type $(S)_{+}$, that is for every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq W_{n}^{1, p}(\Omega)$ such that $x_{n} \rightharpoonup x$ in $W_{n}^{1, p}(\Omega)$ and $\lim \sup _{n \rightarrow+\infty}\left\langle V\left(x_{n}\right), x_{n}-x\right\rangle \leq 0$, one has $x_{n} \rightarrow x$ in $W_{n}^{1, p}(\Omega)$.

Examples

In what follows $\theta \in C^{1}(\bar{\Omega})$ and $\theta(z)>0$ for all $z \in \bar{\Omega}$.

$$
a(z, y)=\theta(z)\|y\|^{p-2} y \text { with } 1<p<\infty .
$$

Examples

In what follows $\theta \in C^{1}(\bar{\Omega})$ and $\theta(z)>0$ for all $z \in \bar{\Omega}$.

$$
\begin{gathered}
a(z, y)=\theta(z)\|y\|^{p-2} y \text { with } 1<p<\infty . \\
a(z, y)=\theta(z)\left(\|y\|^{p-2} y+\ln \left(1+\|y\|^{p-2}\right) y\right) \text { with } p>2 .
\end{gathered}
$$

Examples

In what follows $\theta \in C^{1}(\bar{\Omega})$ and $\theta(z)>0$ for all $z \in \bar{\Omega}$.

$$
\begin{gathered}
a(z, y)=\theta(z)\|y\|^{p-2} y \text { with } 1<p<\infty \\
a(z, y)=\theta(z)\left(\|y\|^{p-2} y+\ln \left(1+\|y\|^{p-2}\right) y\right) \text { with } p>2 . \\
a(z, y)=\left\{\begin{array}{cc}
\theta(z)\left(\|y\|^{p-2} y+\|y\|^{q-2} y\right) & \text { if }\|y\| \leq 1 \\
\theta(z)\left(\|y\|^{p-2} y+c\|y\|^{\tau-2} y-(c-1) y\right) & \text { if }\|y\|>1 .
\end{array}\right.
\end{gathered}
$$

where $c=\frac{q-2}{\tau-2}, 1<\tau<p \leq q, \tau \neq 2$,

Examples

In what follows $\theta \in C^{1}(\bar{\Omega})$ and $\theta(z)>0$ for all $z \in \bar{\Omega}$.

$$
\begin{gathered}
a(z, y)=\theta(z)\|y\|^{p-2} y \text { with } 1<p<\infty \\
a(z, y)=\theta(z)\left(\|y\|^{p-2} y+\ln \left(1+\|y\|^{p-2}\right) y\right) \\
a(z, y)=\left\{\begin{array}{cc}
\theta \text { ith } p>2 \\
\theta(z)\left(\|y\|^{p-2} y+\|y\|^{q-2} y\right) & \text { if }\|y\| \leq 1 \\
\theta\left(z y\left\|^{p-2} y+c\right\| y \|^{\tau-2} y-(c-1) y\right) & \text { if }\|y\|>1
\end{array}\right.
\end{gathered}
$$

where $c=\frac{q-2}{\tau-2}, 1<\tau<p \leq q, \tau \neq 2$,

$$
\begin{gathered}
a(z, y)=\theta(z)\left(\|y\|^{p-2} y+c \frac{\|y\|^{p-2} y}{1+\|y\|^{p}}\right) \\
0<c<4 p(p-1) \quad \text { if } 1 \leq p<2, \quad 0<c<\frac{4 p}{(p-1)^{2}} \quad \text { if } p \geq 2
\end{gathered}
$$

Assumptions on f

$H(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for a.a. $z \in \Omega f(z, 0)=0$ and
(i) $|f(z, x)| \leq a(z)+c|x|^{r-1}$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$ with $a \in L^{\infty}(\Omega)_{+}, c>0,1<p<r<p^{*} ;$

Assumptions on f

$H(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for a.a. $z \in \Omega f(z, 0)=0$ and
(i) $|f(z, x)| \leq a(z)+c|x|^{r-1}$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$ with $a \in L^{\infty}(\Omega)_{+}, c>0,1<p<r<p^{*} ;$
(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$ and $\xi(z, x)=f(z, x) x-p F(z, x)$, then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \frac{F(z, x)}{|x|^{p}}=+\infty \text { uniformly for a.a. } z \in \Omega \tag{5}
\end{equation*}
$$

and there exists $\beta^{*} \in L^{1}(\Omega)_{+}$such that

$$
\begin{equation*}
\xi(z, x) \leq \xi(z, y)+\beta^{*}(z) \text { for a.a. } z \in \Omega, \text { all } 0 \leq x \leq y \text { or } y \leq x \leq 0 \tag{6}
\end{equation*}
$$

Assumptions on f

$H(f): f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Carathéodory function such that for a.a. $z \in \Omega f(z, 0)=0$ and
(i) $|f(z, x)| \leq a(z)+c|x|^{r-1}$ for a.a. $z \in \Omega$, all $x \in \mathbb{R}$ with $a \in L^{\infty}(\Omega)_{+}, c>0,1<p<r<p^{*} ;$
(ii) if $F(z, x)=\int_{0}^{x} f(z, s) d s$ and $\xi(z, x)=f(z, x) x-p F(z, x)$, then

$$
\begin{equation*}
\lim _{|x| \rightarrow \infty} \frac{F(z, x)}{|x|^{p}}=+\infty \text { uniformly for a.a. } z \in \Omega \tag{5}
\end{equation*}
$$

and there exists $\beta^{*} \in L^{1}(\Omega)_{+}$such that

$$
\begin{equation*}
\xi(z, x) \leq \xi(z, y)+\beta^{*}(z) \text { for a.a. } z \in \Omega, \text { all } 0 \leq x \leq y \text { or } y \leq x \leq 0 \tag{6}
\end{equation*}
$$

(iii) there exists $\lambda^{*}>\frac{c_{1}}{p-1} \widehat{\lambda}_{1}$ such that

$$
\lambda^{*} \leq \liminf _{x \rightarrow 0} \frac{p F(z, x)}{|x|^{p}} \text { uniformly for a.a. } z \in \Omega
$$

(iv) there exist functions $w_{+}, w_{-} \in C^{1}(\bar{\Omega})$ such that

$$
\begin{gathered}
w_{-}(z) \leq c_{-}<0<c_{+} \leq w_{+}(z) \text { for all } z \in \bar{\Omega}, \\
V\left(w_{-}\right) \leq 0 \leq V\left(w_{+}\right) \text {in } W_{n}^{1, p}(\Omega)^{*},
\end{gathered}
$$

and

$$
\operatorname{esssup}_{\Omega} f\left(\cdot, w_{+}(\cdot)\right) \leq \beta_{+}<0<\beta_{-} \leq \operatorname{essinf}_{\Omega} f\left(\cdot, w_{-}(\cdot)\right) ;
$$

(iv) there exist functions $w_{+}, w_{-} \in C^{1}(\bar{\Omega})$ such that

$$
\begin{gathered}
w_{-}(z) \leq c_{-}<0<c_{+} \leq w_{+}(z) \text { for all } z \in \bar{\Omega}, \\
V\left(w_{-}\right) \leq 0 \leq V\left(w_{+}\right) \text {in } W_{n}^{1, p}(\Omega)^{*},
\end{gathered}
$$

and

$$
\operatorname{esssup}_{\Omega} f\left(\cdot, w_{+}(\cdot)\right) \leq \beta_{+}<0<\beta_{-} \leq \operatorname{essinf}_{\Omega} f\left(\cdot, w_{-}(\cdot)\right) ;
$$

(v) for every $\rho>0$ there exists $\theta_{\rho}>0$ such that for a.a. $z \in \Omega$, $x \rightarrow f(z, x)+\theta_{\rho}|x|^{p-2}$ is nondecreasing on $[-\rho, \rho]$.

Example

The following function satisfies hypotheses $H(f)$:

$$
f(x)=\left\{\begin{array}{cc}
\eta\left(|x|^{p-2} x-2|x|^{r-2} x\right) & \text { if }|x| \leq 1 \\
\left(|x|^{p-2} x \ln |x|-\eta|x|^{\tau-2} x\right) & \text { if }|x|>1
\end{array}\right.
$$

with $\eta>\frac{c_{1}}{p-1} \widehat{\lambda}_{1}, 1<\tau<p<q<+\infty$. Note that $f(\cdot)$ does not satisfy the $A R$-condition (2).

Introduction Mathematical background Main Five Solut Existence of two constant sign solutions Existence of ano First result

First result

Theorem 1

If hypotheses $H(a)$ and $H(f)(i),(i v),(v)$ hold, then problem (1) has at least two nontrivial, constant sign smooth solutions

$$
\begin{gathered}
u_{0} \in \operatorname{int} C_{+}, v_{0} \in-i n t C_{+} \text {and } \\
w_{-}(z)<v_{0}(z)<0<u_{0}(z)<w_{+}(z) \text { for all } z \in \bar{\Omega} .
\end{gathered}
$$

Theorem 1

If hypotheses $H(a)$ and $H(f)(i),(i v),(v)$ hold, then problem (1) has at least two nontrivial, constant sign smooth solutions

$$
\begin{gathered}
u_{0} \in \operatorname{int} C_{+}, v_{0} \in-i n t C_{+} \text {and } \\
w_{-}(z)<v_{0}(z)<0<u_{0}(z)<w_{+}(z) \text { for all } z \in \bar{\Omega} .
\end{gathered}
$$

We introduce the following Carathéodory truncations-perturbations of $f(z, \cdot)$:

$$
\begin{gather*}
\widehat{f}_{+}(z, x)=\left\{\begin{array}{cc}
0 & \text { if } x<0 \\
f(z, x)+x^{p-1} & \text { if } 0 \leq x \leq w_{+}(z) \\
\text { if } w_{+}(z)<x
\end{array}\right. \text { and } \\
\widehat{f}_{-}(z, x)=\left\{\begin{array}{cc}
f\left(z, w_{+}(z)\right)+w_{+}(z)^{p-1} & \text { (z))+|w-(z)|} \begin{array}{cc}
p-2 \\
w_{-} & (z) \\
f(z, x)+|x|^{p-2} x & \text { if } x<w_{-}(z) \\
0 & \text { if } w_{-}(z) \leq x \leq 0 \\
\text { if } 0<x
\end{array}
\end{array} .\right. \tag{7}
\end{gather*}
$$

We set $\widehat{F}_{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{ \pm}(z, s) d s$ and consider the C^{1}-functionals $\widehat{\varphi}_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\widehat{\varphi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

We set $\widehat{F}_{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{ \pm}(z, s) d s$ and consider the C^{1}-functionals $\widehat{\varphi}_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\widehat{\varphi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

- $\widehat{\varphi}_{+}$is coercive and sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $u_{0} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{+}\left(u_{0}\right)=\inf \left[\widehat{\varphi}_{+}(u): u \in W_{n}^{1, p}(\Omega)\right]=\widehat{m}_{+} . \tag{8}
\end{equation*}
$$

We set $\widehat{F}_{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{ \pm}(z, s) d s$ and consider the C^{1}-functionals $\widehat{\varphi}_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\widehat{\varphi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

- $\widehat{\varphi}_{+}$is coercive and sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $u_{0} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{+}\left(u_{0}\right)=\inf \left[\widehat{\varphi}_{+}(u): u \in W_{n}^{1, p}(\Omega)\right]=\widehat{m}_{+} . \tag{8}
\end{equation*}
$$

- $u_{0} \neq 0$.

We set $\widehat{F}_{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{ \pm}(z, s) d s$ and consider the C^{1}-functionals $\widehat{\varphi}_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\widehat{\varphi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

- $\widehat{\varphi}_{+}$is coercive and sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $u_{0} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{+}\left(u_{0}\right)=\inf \left[\widehat{\varphi}_{+}(u): u \in W_{n}^{1, p}(\Omega)\right]=\widehat{m}_{+} . \tag{8}
\end{equation*}
$$

- $u_{0} \neq 0$.
- Acting on

$$
\begin{equation*}
0=\widehat{\varphi}_{+}^{\prime}\left(u_{0}\right)=V\left(u_{0}\right)+\left|u_{0}\right|^{p-2} u_{0}-N_{\widehat{f}_{+}}\left(u_{0}\right), \tag{9}
\end{equation*}
$$

where $N_{\widehat{f}_{+}}(\cdot)=\widehat{f}_{+}(\cdot, u(\cdot))$ for all $u \in W_{n}^{1, p}(\Omega)$, with suitable test functions we deduce

We set $\widehat{F}_{ \pm}(z, x)=\int_{0}^{x} \widehat{f}_{ \pm}(z, s) d s$ and consider the C^{1}-functionals $\widehat{\varphi}_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\widehat{\varphi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{F}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

- $\widehat{\varphi}_{+}$is coercive and sequentially weakly lower semicontinuous. So, by the Weierstrass theorem, we can find $u_{0} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{\varphi}_{+}\left(u_{0}\right)=\inf \left[\widehat{\varphi}_{+}(u): u \in W_{n}^{1, p}(\Omega)\right]=\widehat{m}_{+} . \tag{8}
\end{equation*}
$$

- $u_{0} \neq 0$.
- Acting on

$$
\begin{equation*}
0=\hat{\varphi}_{+}^{\prime}\left(u_{0}\right)=V\left(u_{0}\right)+\left|u_{0}\right|^{p-2} u_{0}-N_{\widehat{f}_{+}}\left(u_{0}\right), \tag{9}
\end{equation*}
$$

where $N_{\widehat{f}_{+}}(\cdot)=\widehat{f}_{+}(\cdot, u(\cdot))$ for all $u \in W_{n}^{1, p}(\Omega)$, with suitable test functions we deduce

- $u_{0} \in\left[0, w_{+}\right]=\left\{u \in W_{n}^{1, p}(\Omega): 0 \leq u(z) \leq w_{+}(z)\right.$ a.e. in $\left.\Omega\right\}$, that is

$$
\begin{equation*}
-\operatorname{div} a\left(z, D u_{0}(z)\right)=f\left(z, u_{0}(z)\right) \text { a.e. in } \Omega, \frac{\partial u_{0}}{\partial n}=0 \text { on } \partial \Omega \tag{10}
\end{equation*}
$$

- $u_{0} \in C_{+} \backslash\{0\}$.
- $u_{0} \in C_{+} \backslash\{0\}$.
- Using $H(f)(v)$ and $H(f)(i v)$, we obtain $0<u_{0}<w_{+}$.
- $u_{0} \in C_{+} \backslash\{0\}$.
- Using $H(f)(v)$ and $H(f)(i v)$, we obtain $0<u_{0}<w_{+}$.
- Working with $\hat{\varphi}_{-}$, we obtain a nontrivial negative solution $v_{0} \in-$ int C_{+}, with $w_{-}(z)<v_{0}(z)<0$ for all $z \in \bar{\Omega}$.

Mathematical background for the second existence result

Let X be a Banach space and X^{*} its topological dual. Let $\varphi \in C^{1}(X)$. We say that φ satisfies the " C -condition at the level $c \in \mathbb{R}$ " (the C_{c}-condition for short), if the following is true:

$$
\begin{gathered}
\text { "Every sequence }\left\{x_{n}\right\}_{n \geq 1} \subseteq X \text { such that } \\
\varphi\left(x_{n}\right) \rightarrow c \text { and }\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \text { in } X^{*} \text { as } n \rightarrow \infty
\end{gathered}
$$ admits a strongly convergent subsequence".

Mathematical background for the second existence

 resultLet X be a Banach space and X^{*} its topological dual. Let $\varphi \in C^{1}(X)$. We say that φ satisfies the " C -condition at the level $c \in \mathbb{R}$ " (the C_{c}-condition for short), if the following is true:
"Every sequence $\left\{x_{n}\right\}_{n \geq 1} \subseteq X$ such that

$$
\varphi\left(x_{n}\right) \rightarrow c \text { and }\left(1+\left\|x_{n}\right\|\right) \varphi^{\prime}\left(x_{n}\right) \rightarrow 0 \text { in } X^{*} \text { as } n \rightarrow \infty,
$$

admits a strongly convergent subsequence".

Theorem (MPT, [3])

If $\varphi \in C^{1}(X)$ and $r>0$ satisfies
$\max \left\{\varphi\left(x_{0}\right), \varphi\left(x_{1}\right)\right\} \leq \inf \left[\varphi(x):\left\|x-x_{0}\right\|=r\right]=\eta_{r},\left\|x_{1}-x_{0}\right\|>r$
$c=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \varphi(\gamma(t))$, with
$\Gamma=\left\{\gamma \in C([0,1], X): \gamma(0)=x_{0}, \gamma(1)=x_{1}\right\}$, and
φ satisfies the C_{c}-condition,
then $c \geq \eta_{r}$ and c is a critical value of φ. Moreover, if $c=\eta_{r}$, then φ has a critical point $x \in X$ such that $\varphi(x)=c$ and $\left\|x-x_{0}\right\|=r$.

If $\varphi: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ is the energy functional for problem (1) defined by

$$
\varphi(u)=\int_{\Omega} G(z, D u) d z-\int_{\Omega} F(z, u) d z \quad \text { for all } u \in W_{n}^{1, p}(\Omega),
$$

then from (7) it follows that $\varphi_{\left[\left[0, w_{+}\right]\right.}=\widehat{\varphi}_{+\mid\left[0, w_{+}\right]}$and $\varphi_{\mid\left[w_{-}, 0\right]}=\widehat{\varphi}_{-\mid\left[w_{-}, 0\right]}$, and so from the proof of Theorem 1 it follows that u_{0}, v_{0} are both local $C_{n}^{1}(\bar{\Omega})$-minimizers of φ, hence the result below guarantees that u_{0}, v_{0} are also local $W_{n}^{1, p}(\Omega)$-minimizers of φ.

If $\varphi: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ is the energy functional for problem (1) defined by

$$
\varphi(u)=\int_{\Omega} G(z, D u) d z-\int_{\Omega} F(z, u) d z \quad \text { for all } u \in W_{n}^{1, p}(\Omega)
$$

then from (7) it follows that $\varphi_{\mid\left[0, w_{+}\right]}=\widehat{\varphi}_{+\mid\left[0, w_{+}\right]}$and $\varphi_{\mid\left[w_{-}, 0\right]}=\widehat{\varphi}_{-\mid\left[w_{-}, 0\right]}$, and so from the proof of Theorem 1 it follows that u_{0}, v_{0} are both local $C_{n}^{1}(\bar{\Omega})$-minimizers of φ, hence the result below guarantees that u_{0}, v_{0} are also local $W_{n}^{1, p}(\Omega)$-minimizers of φ.

Theorem (Motreanu-Papageorgiou, [9])

If $u_{0} \in W_{n}^{1, p}(\Omega)$ is a local $C_{n}^{1}(\bar{\Omega})$-minimizer of φ, i.e. there exists $\rho_{0}>0$ such that

$$
\varphi\left(u_{0}\right) \leq \varphi\left(u_{0}+h\right) \text { for all } h \in C_{n}^{1}(\bar{\Omega}),\|h\|_{C_{n}^{1}(\bar{\Omega})} \leq \rho_{0}
$$

then $u_{0} \in C_{n}^{1}(\bar{\Omega})$ and u_{0} is a local $W_{n}^{1, p}(\Omega)$-minimizer of φ, i.e. there exists $\rho_{1}>0$ such that

$$
\varphi\left(u_{0}\right) \leq \varphi\left(u_{0}+h\right) \text { for all } h \in W_{n}^{1, p}(\Omega),\|h\| \leq \rho_{1}
$$

Second Existence Result

Theorem 2

If hypotheses $H(a)$ and $H(f)$ hold, then problem (1) has two more nontrivial, constant sign smooth solutions

$$
\widehat{u} \in \operatorname{int} C_{+}, u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u}, \widehat{v} \in-i n t C_{+}, \widehat{v} \leq v_{0}, \widehat{v} \neq v_{0}
$$

Second Existence Result

Theorem 2

If hypotheses $H(a)$ and $H(f)$ hold, then problem (1) has two more nontrivial, constant sign smooth solutions

$$
\widehat{u} \in \operatorname{int} C_{+}, u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u}, \widehat{v} \in-i n t C_{+}, \widehat{v} \leq v_{0}, \widehat{v} \neq v_{0}
$$

We consider the following Carathéodory truncation-perturbation of the reaction $f(z, x)$:

$$
\begin{gather*}
\widehat{h}+(z, x)=\left\{\begin{array}{cc}
f\left(z, u_{0}(z)\right)+u_{0}(z)^{p-1} & \text { if } x \leq u_{0}(z) \\
f(z, x)+x^{p-1} & \text { if } u_{0}(z)<x
\end{array}\right. \text { and } \\
\widehat{h}_{-}(z, x)=\left\{\begin{array}{cc}
f(z, x)+|x|^{p-2} x & \text { if } x<v_{0}(z) \\
f\left(z, v_{0}(z)\right)+\left|v_{0}(z)\right|^{p-2} v_{0}(z) & \text { if } v_{0}(z) \leq x
\end{array}\right. \tag{11}
\end{gather*}
$$

We set $\widehat{H}_{ \pm}(z, x)=\int_{0}^{x} \widehat{h}_{ \pm}(z, s) d s$ and consider the C^{1}-functionals $\widehat{\psi}_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad \text { for all } u \in W_{n}^{1, p}(\Omega) .
$$

$\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

- $\widehat{\psi}_{+}$satisfies the C-condition.
$\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $\widehat{\psi}_{+}$satisfies the C-condition.
- We obtain a nontrivial positive smooth solution of (1), $\tilde{u}_{0} \in \operatorname{int} C_{+}, u_{0} \leq \tilde{u}_{0}$.
$\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $\widehat{\psi}_{+}$satisfies the C-condition.
- We obtain a nontrivial positive smooth solution of (1), $\tilde{u}_{0} \in \operatorname{int} C_{+}, u_{0} \leq \tilde{u}_{0}$.
- If $\tilde{u}_{0} \neq u_{0}$, then we are done.
$\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $\widehat{\psi}_{+}$satisfies the C-condition.
- We obtain a nontrivial positive smooth solution of (1), $\tilde{u}_{0} \in \operatorname{int} C_{+}, u_{0} \leq \tilde{u}_{0}$.
- If $\tilde{u}_{0} \neq u_{0}$, then we are done.
- If $u_{0}=\tilde{u}_{0}$ then it is a local $W_{n}^{1, p}(\Omega)$-minimizer of $\widehat{\psi}_{+}$. If it is not an isolated critical point of $\widehat{\psi}_{+}$, then we have a whole sequence of distinct positive smooth solutions $u_{n} \in \operatorname{int} C_{+}$of (1) such that $u_{n} \geq u_{0}$ for all $n \geq 1$ and so we are done.
$\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $\widehat{\psi}_{+}$satisfies the C-condition.
- We obtain a nontrivial positive smooth solution of (1), $\tilde{u}_{0} \in \operatorname{int} C_{+}, u_{0} \leq \tilde{u}_{0}$.
- If $\tilde{u}_{0} \neq u_{0}$, then we are done.
- If $u_{0}=\tilde{u}_{0}$ then it is a local $W_{n}^{1, p}(\Omega)$-minimizer of $\widehat{\psi}_{+}$. If it is not an isolated critical point of $\widehat{\psi}_{+}$, then we have a whole sequence of distinct positive smooth solutions $u_{n} \in \operatorname{int} C_{+}$of (1) such that $u_{n} \geq u_{0}$ for all $n \geq 1$ and so we are done.
- If $u_{0}=\tilde{u}_{0}$ is an isolated critical point of $\widehat{\psi}_{+}$then we can apply the MPT and we obtain $\widehat{u} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{u} \geq u_{0}, \widehat{u} \neq u_{0} \widehat{u} \in \operatorname{int} C_{+}, \text {and solves (1). } \tag{12}
\end{equation*}
$$

$\widehat{\psi}_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{1}{p}\|u\|_{p}^{p}-\int_{\Omega} \widehat{H}_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.

- $\widehat{\psi}_{+}$satisfies the C-condition.
- We obtain a nontrivial positive smooth solution of (1), $\tilde{u}_{0} \in \operatorname{int} C_{+}, u_{0} \leq \tilde{u}_{0}$.
- If $\tilde{u}_{0} \neq u_{0}$, then we are done.
- If $u_{0}=\tilde{u}_{0}$ then it is a local $W_{n}^{1, p}(\Omega)$-minimizer of $\widehat{\psi}_{+}$. If it is not an isolated critical point of $\widehat{\psi}_{+}$, then we have a whole sequence of distinct positive smooth solutions $u_{n} \in \operatorname{int} C_{+}$of (1) such that $u_{n} \geq u_{0}$ for all $n \geq 1$ and so we are done.
- If $u_{0}=\tilde{u}_{0}$ is an isolated critical point of $\widehat{\psi}_{+}$then we can apply the MPT and we obtain $\widehat{u} \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\widehat{u} \geq u_{0}, \widehat{u} \neq u_{0} \widehat{u} \in \operatorname{int} C_{+}, \text {and solves (1). } \tag{12}
\end{equation*}
$$

- Similarly, working this time with $\widehat{\psi}_{-}$, we obtain a second negative smooth solution $\widehat{v} \in-i n t C_{+}, \widehat{v} \leq v_{0}, \widehat{v} \neq v_{0}$.

Proposition (Aizicovici-Papageorgiou-Staicu [1])

Let $\partial B_{1}^{L^{p}}=\left\{u \in L^{p}(\Omega):\|u\|_{p}=1\right\}$ and $S=W_{n}^{1, p}(\Omega) \cap \partial B_{1}^{L^{p}}$. We have:
$\widehat{\lambda}_{1}=\inf _{\widehat{\gamma} \in \widehat{\Gamma}} \max _{-1 \leq t \leq 1}\|D \widehat{\gamma}(t)\|_{p}^{p}$, where
$\widehat{\Gamma}=\left\{\widehat{\gamma} \in C([-1,1], S): \widehat{\gamma}(-1)=-\widehat{u}_{0}, \widehat{\gamma}(1)=\widehat{u}_{0}\right\}$.

Third Existence Result

Theorem 3.1

If hypothesis $H(a)$ and $H(f)$ hold, then problem (1) has a nontrivial smooth solution $y \in C_{n}^{1}(\bar{\Omega})$ such that $v_{0} \leq y \leq u_{0}, y \neq v_{0}, y \neq u_{0}$.

Third Existence Result

Theorem 3.1

If hypothesis $H(a)$ and $H(f)$ hold, then problem (1) has a nontrivial smooth solution $y \in C_{n}^{1}(\bar{\Omega})$ such that $v_{0} \leq y \leq u_{0}, y \neq v_{0}, y \neq u_{0}$.

- Let $\rho=\max \left\{\left\|u_{0}\right\|_{\infty},\left\|v_{0}\right\|_{\infty}\right\}$ and take $\theta_{\rho}>0$ as in hypothesis $H(f)(v)$.

Third Existence Result

Theorem 3.1

If hypothesis $H(a)$ and $H(f)$ hold, then problem (1) has a nontrivial smooth solution $y \in C_{n}^{1}(\bar{\Omega})$ such that $v_{0} \leq y \leq u_{0}, y \neq v_{0}, y \neq u_{0}$.

- Let $\rho=\max \left\{\left\|u_{0}\right\|_{\infty},\left\|v_{0}\right\|_{\infty}\right\}$ and take $\theta_{\rho}>0$ as in hypothesis $H(f)(v)$.
- We introduce the following Carathéodory truncation-perturbation of $f(z, x)$:
$l(z, x)=\left\{\begin{array}{cc}f\left(z, v_{0}(z)\right)+\theta_{\rho}\left|v_{0}(z)\right|^{p-2} v_{0}(z) & \text { if } x<v_{0}(z) \\ f(z, x)+\theta_{\rho}|x|^{p-2} x & \text { if } v_{0}(z) \leq x \leq u_{0}(z) \\ f\left(z, u_{0}(z)\right)+\theta_{\rho} u_{0}(z)^{p-1} & \text { if } u_{0}(z)<x .\end{array}\right.$
$L(z, x)=\int_{0}^{x} l(z, s) d s$.

Third Existence Result

Theorem 3.1

If hypothesis $H(a)$ and $H(f)$ hold, then problem (1) has a nontrivial smooth solution $y \in C_{n}^{1}(\bar{\Omega})$ such that $v_{0} \leq y \leq u_{0}, y \neq v_{0}, y \neq u_{0}$.

- Let $\rho=\max \left\{\left\|u_{0}\right\|_{\infty},\left\|v_{0}\right\|_{\infty}\right\}$ and take $\theta_{\rho}>0$ as in hypothesis $H(f)(v)$.
- We introduce the following Carathéodory truncation-perturbation of $f(z, x)$:

$$
l(z, x)=\left\{\begin{array}{cc}
f\left(z, v_{0}(z)\right)+\theta_{\rho}\left|v_{0}(z)\right|^{p-2} v_{0}(z) & \text { if } x<v_{0}(z) \tag{13}\\
f(z, x)+\theta_{\rho}|x|^{p-2} x & \text { if } v_{0}(z) \leq x \leq u_{0}(z) \\
f\left(z, u_{0}(z)\right)+\theta_{\rho} u_{0}(z)^{p-1} & \text { if } u_{0}(z)<x
\end{array}\right.
$$

$L(z, x)=\int_{0}^{x} l(z, s) d s$.

- The corresponding energy functional $\tau: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\tau(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L(z, u) d z \quad \text { for all } u \in W_{n}^{1, p}(\Omega)
$$ is C^{1}.

- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $\tau_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\tau_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L_{ \pm}(z, u) d z \quad \text { for all } u \in W_{n}^{1, p}(\Omega) .
$$

- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $\tau_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\tau_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $K_{\tau}=\left\{u \in W_{n}^{1, p}(\Omega): \tau^{\prime}(u)=0\right\} \subseteq\left[v_{0}, u_{0}\right]$, $K_{\tau_{+}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{+}^{\prime}(u)=0\right\} \subseteq\left[0, u_{0}\right]$, $K_{\tau_{-}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{-}^{\prime}(u)=0\right\} \subseteq\left[v_{0}, 0\right]$.
- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $\tau_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\tau_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $K_{\tau}=\left\{u \in W_{n}^{1, p}(\Omega): \tau^{\prime}(u)=0\right\} \subseteq\left[v_{0}, u_{0}\right]$, $K_{\tau_{+}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{+}^{\prime}(u)=0\right\} \subseteq\left[0, u_{0}\right]$, $K_{\tau_{-}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{-}^{\prime}(u)=0\right\} \subseteq\left[v_{0}, 0\right]$.
- If $\tilde{u} \in K_{\tau_{+}}$and $\tilde{u} \notin\left\{0, u_{0}\right\}$, then $\tilde{u} \in \operatorname{int} C_{+}, \tilde{u} \leq u_{0} \leq \widehat{u}$ is a third positive solution of (1) so we are done. Similarly for $K_{\tau_{-}}$.
- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $\tau_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\tau_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $K_{\tau}=\left\{u \in W_{n}^{1, p}(\Omega): \tau^{\prime}(u)=0\right\} \subseteq\left[v_{0}, u_{0}\right]$, $K_{\tau_{+}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{+}^{\prime}(u)=0\right\} \subseteq\left[0, u_{0}\right]$, $K_{\tau_{-}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{-}^{\prime}(u)=0\right\} \subseteq\left[v_{0}, 0\right]$.
- If $\tilde{u} \in K_{\tau_{+}}$and $\tilde{u} \notin\left\{0, u_{0}\right\}$, then $\tilde{u} \in \operatorname{int} C_{+}, \tilde{u} \leq u_{0} \leq \widehat{u}$ is a third positive solution of (1) so we are done. Similarly for $K_{\tau_{-}}$.
- $K_{\tau_{+}}=\left\{0, u_{0}\right\}, K_{\tau_{-}}=\left\{v_{0}, 0\right\}$.
- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $\tau_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\tau_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $K_{\tau}=\left\{u \in W_{n}^{1, p}(\Omega): \tau^{\prime}(u)=0\right\} \subseteq\left[v_{0}, u_{0}\right]$, $K_{\tau_{+}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{+}^{\prime}(u)=0\right\} \subseteq\left[0, u_{0}\right]$, $K_{\tau_{-}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{-}^{\prime}(u)=0\right\} \subseteq\left[v_{0}, 0\right]$.
- If $\tilde{u} \in K_{\tau_{+}}$and $\tilde{u} \notin\left\{0, u_{0}\right\}$, then $\tilde{u} \in \operatorname{int} C_{+}, \tilde{u} \leq u_{0} \leq \widehat{u}$ is a third positive solution of (1) so we are done. Similarly for $K_{\tau_{-}}$.
- $K_{\tau_{+}}=\left\{0, u_{0}\right\}, K_{\tau_{-}}=\left\{v_{0}, 0\right\}$.
- u_{0} and v_{0} are local $W_{n}^{1, p}(\Omega)$-minimizer of τ.
- $l_{ \pm}(z, x)=l\left(z, \pm x^{ \pm}\right)$and $L_{ \pm}(z, x)=\int_{0}^{x} l_{ \pm}(z, s) d s$
- $\tau_{ \pm}: W_{n}^{1, p}(\Omega) \rightarrow \mathbb{R}$ defined by
$\tau_{ \pm}(u)=\int_{\Omega} G(z, D u) d z+\frac{\theta_{\rho}}{p}\|u\|_{p}^{p}-\int_{\Omega} L_{ \pm}(z, u) d z \quad$ for all $u \in W_{n}^{1, p}(\Omega)$.
- $K_{\tau}=\left\{u \in W_{n}^{1, p}(\Omega): \tau^{\prime}(u)=0\right\} \subseteq\left[v_{0}, u_{0}\right]$, $K_{\tau_{+}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{+}^{\prime}(u)=0\right\} \subseteq\left[0, u_{0}\right]$,
$K_{\tau_{-}}=\left\{u \in W_{n}^{1, p}(\Omega): \tau_{-}^{\prime}(u)=0\right\} \subseteq\left[v_{0}, 0\right]$.
- If $\tilde{u} \in K_{\tau_{+}}$and $\tilde{u} \notin\left\{0, u_{0}\right\}$, then $\tilde{u} \in \operatorname{int} C_{+}, \tilde{u} \leq u_{0} \leq \widehat{u}$ is a third positive solution of (1) so we are done. Similarly for $K_{\tau_{-}}$.
- $K_{\tau_{+}}=\left\{0, u_{0}\right\}, K_{\tau_{-}}=\left\{v_{0}, 0\right\}$.
- u_{0} and v_{0} are local $W_{n}^{1, p}(\Omega)$-minimizer of τ.
- As before, we may assume that u_{0} is an isolated critical point of τ. Since τ satisfies the C-condition we can use the MPT. So, we can find $y \in W_{n}^{1, p}(\Omega)$ such that

$$
\begin{equation*}
\tau\left(v_{0}\right) \leq \tau\left(u_{0}\right)<\eta_{\rho} \leq \tau(y)=\inf _{\gamma \in \Gamma} \max _{0 \leq t \leq 1} \tau(\gamma(t)) \tag{14}
\end{equation*}
$$

where $\Gamma=\left\{\gamma \in C\left([0,1], W_{n}^{1, p}(\Omega)\right): \gamma(0)=v_{0}, \gamma(1)=u_{0}\right\}$ and

$$
\begin{equation*}
\tau^{\prime}(y)=0 \tag{15}
\end{equation*}
$$

- From (14) we see that $y \notin\left\{u_{0}, v_{0}\right\}$, while from (15) it follows that $y \in\left[v_{0}, u_{0}\right]$.
- From (14) we see that $y \notin\left\{u_{0}, v_{0}\right\}$, while from (15) it follows that $y \in\left[v_{0}, u_{0}\right]$.
- It remains to show that $y \neq 0$. To this end, by virtue of (14) it suffices to produce a path $\gamma_{*} \in \Gamma$ such that $\tau_{\mid \gamma_{*}}<0=\tau(0)$.
- From (14) we see that $y \notin\left\{u_{0}, v_{0}\right\}$, while from (15) it follows that $y \in\left[v_{0}, u_{0}\right]$.
- It remains to show that $y \neq 0$. To this end, by virtue of (14) it suffices to produce a path $\gamma_{*} \in \Gamma$ such that $\tau_{\mid \gamma_{*}}<0=\tau(0)$.
- We can find $s^{*} \in(0,1)$ and a continuous path $\widehat{\gamma}$, such that $\widehat{\gamma}_{0}=s^{*} \widehat{\gamma}$ connects $-s^{*} \widehat{u}_{0}$ and $s^{*} \widehat{u}_{0}$ and satisfies

$$
\begin{equation*}
\tau_{\mid \widehat{\gamma}_{0}}<0 . \tag{16}
\end{equation*}
$$

- From (14) we see that $y \notin\left\{u_{0}, v_{0}\right\}$, while from (15) it follows that $y \in\left[v_{0}, u_{0}\right]$.
- It remains to show that $y \neq 0$. To this end, by virtue of (14) it suffices to produce a path $\gamma_{*} \in \Gamma$ such that $\tau_{\mid \gamma_{*}}<0=\tau(0)$.
- We can find $s^{*} \in(0,1)$ and a continuous path $\widehat{\gamma}$, such that $\widehat{\gamma}_{0}=s^{*} \widehat{\gamma}$ connects $-s^{*} \widehat{u}_{0}$ and $s^{*} \widehat{u}_{0}$ and satisfies

$$
\begin{equation*}
\tau_{\mid \widehat{\gamma}_{0}}<0 . \tag{16}
\end{equation*}
$$

- We can find two continuous path $\widehat{\gamma}_{+}$and $\widehat{\gamma}_{-}$, connecting respectively $s^{*} \widehat{u}_{0}$ and u_{0} and $-s^{*} \widehat{u}_{0}$ and v_{0}. These paths satisfies

$$
\begin{equation*}
\tau_{\mid \hat{\gamma}_{+}}<0, \tau_{\mid \hat{\gamma}_{-}}<0 \tag{17}
\end{equation*}
$$

- From (14) we see that $y \notin\left\{u_{0}, v_{0}\right\}$, while from (15) it follows that $y \in\left[v_{0}, u_{0}\right]$.
- It remains to show that $y \neq 0$. To this end, by virtue of (14) it suffices to produce a path $\gamma_{*} \in \Gamma$ such that $\tau_{\mid \gamma_{*}}<0=\tau(0)$.
- We can find $s^{*} \in(0,1)$ and a continuous path $\widehat{\gamma}$, such that $\widehat{\gamma}_{0}=s^{*} \widehat{\gamma}$ connects $-s^{*} \widehat{u}_{0}$ and $s^{*} \widehat{u}_{0}$ and satisfies

$$
\begin{equation*}
\tau_{\mid \widehat{\gamma}_{0}}<0 . \tag{16}
\end{equation*}
$$

- We can find two continuous path $\widehat{\gamma}_{+}$and $\widehat{\gamma}_{-}$, connecting respectively $s^{*} \widehat{u}_{0}$ and u_{0} and $-s^{*} \widehat{u}_{0}$ and v_{0}. These paths satisfies

$$
\begin{equation*}
\tau_{\mid \widehat{\gamma}_{+}}<0, \tau_{\mid \widehat{\gamma}_{-}}<0 \tag{17}
\end{equation*}
$$

- Concatenating $\widehat{\gamma}_{-}, \widehat{\gamma}_{0}$ and $\widehat{\gamma}_{+}$, we produce a path $\widehat{\gamma}_{*} \in \Gamma$ such that

$$
\tau_{\mid \widehat{\gamma}_{*}}<0
$$

hence, owing to (14) we deduce $y \neq 0$.

Theorem 3.2

If hypotheses $H(a)$ and $H(f)$ hold, then problem (1) has at least five nontrivial smooth solutions

$$
\begin{gathered}
u_{0}, \widehat{u} \in \operatorname{int} C_{+}, u_{0} \leq \widehat{u}, u_{0} \neq \widehat{u}, v_{0}, \widehat{v} \in-\operatorname{int} C_{+}, \widehat{v} \leq v_{0}, v_{0} \neq \widehat{v} \\
\text { and } y \in C_{n}^{1}(\bar{\Omega}) \backslash\{0\}, v_{0} \leq y \leq u_{0}, y \neq u_{0}, y \neq v_{0} .
\end{gathered}
$$

S．Aizicovici－N．S．Papageorgiou－V．Staicu：The spectrum and an index formula for the Neumann p－Laplacian and multiple solutions for problems with a crossing nonlinearity，Discrete Contin．Dyn．Systems 25 （2009），431－456．

國 S．Aizicovici－N．S．Papageorgiou－V．Staicu：Existence of multiple solutions with precise sign informations for superlinear Neumann problems，Annali di Mat．Pura ed Applicata 188 （2009），679－719．

A．Ambrosetti－P．Rabinowitz：Dual variational methods in the critical point theory and application，J．Funct．Anal．14，（1973）， 349－381．

T．Bartsch－Z．Liu－T．Weth：Nodals solutions of a p－Laplacian equation，Proc．London Math．Soc． 91 （2005），129－152．

國 M．Filippakis－A．Kristaly－N．S．Papageorgiou：Existence of five nonzero solutions with exact sign for a p－Laplacian equation， Discrete Cont．Dyn．Systems 24 （2009），405－440．

䍰 J．P．Garcia Azorero－J．Manfredi－I．Peral Alonso：Sobolev versus Hölder local minimizers and global multiplicity for some 385-404.
L. Gasinski-N. S. Papageorgiou: Nonlinear Analysis, Chapman Hall/ CRC Press, Boca Raton, FL. (2006).

囯 Z. Guo-Z. Zhang: $W^{1, p}$ versus C^{1} local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), 32-50.
D. Motreanu- N. S. Papageorgiou: Multiple solutions for nonlinear Neumann problems driven by a nonhomogeneous differential operator, Proc. Amer. Math. Soc. 139 (2011), no. 10, 35273535.

