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Abstract

We give a notion of renormalized weighted volume in the setting of conformal
geometry following the ideas of Fefferman-Graham. Indeed, it is a precise term in
the asymptotic expansion near the boundary for a weighted volume related to the
conformal fractional Laplacian operator and fractional order Q-curvature.

1 Introduction

The relation between Pincaré-Einstein metrics and conformal objects on the bound-
ary has arisen a lot of interest, in some sense motivated by the so called Anti-de-
Sitter/Conformal Field Theory (in short AdS/CFT) correspondence in Physics. Since
the publication of [13], there has been a great deal of literature on the ambient and
Poincaré metrics. In particular, the notions of renormalized volume and area intro-
duced in the physics literature are now important objects of study in the area of
geometrical analysis and conformal geometry.

On the other hand, for γ ∈ (0, n/2) one can consider the conformal fractional
Laplacian (Paneitz) operator Pγ defined on the boundary of a conformally compact
Einstein manifold Xn+1, as introduced in [20], [24] coming from scattering theory. In
the Euclidean case, Pγ is just the standard fractional Laplacian (−∆Rn)γ , but in the
general case it is a non-local conformally covariant operator of fractional order.

When γ is an integer, say γ = k, the Pk are the conformally invariant powers
of the Laplacian constructed by Graham-Jenne-Mason-Sparling [18], that are local
operators. In particular, when k = 1 we have the well known conformal Laplacian,

P1 = −∆ +
n− 2

4(n− 1)
R,

and when k = 2, the Paneitz operator ([25])

P2 = (−∆)2 + δ (anRg + bnRic) d+ n−4
2 Q2.

It is interesting to note here that, as it was pointed out in [10], the conformal
fractional Laplacian can be characterized as the Dirichlet-to-Neumann operator for
a divergence-type, second order degenerate elliptic equation with a weight in the
Muckenhoupt class A2. This characterization allows to study non-local operators by
using the available tools for elliptic equations.

The associated fractional order curvature Qγ defined on the boundary of a confor-
mally compact Einstein manifold can be introduced as Qγ = Pγ1, and it satisfies an
important conformally covariant property. In particular, Q1 is just the scalar curva-
ture. However, for non-integer powers γ, the geometrical properties of Qγ are not yet
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well understood (see the related works [26], [15], [16], [22], for instance).

The notion of renormalized volume was first investigated by the physicists in re-
lation to the Ads/CFT correspondence. It was considered by Fefferman-Graham [14]
(see also [17] and [12] for good surveys with many explicit examples). Given Xn+1

an asymptotically hyperbolic manifold with boundary Mn and defining function ρ,
one may compute the asymptotic expansion of the volume of the region {ρ > ε}. The
renormalized volume is defined as one very specific term in this asymptotic expansion.
When the dimension n is odd, the renormalized volume is a conformal invariant of the
conformally compact structure, and it can be calculated as the conformal primitive
of the Q-curvature coming from the scattering operator (this is the case γ = n/2).
In that case that n is even, the picture is more complex, and one can show the that
the renormalized volume is one term of the Chern-Gauss-Bonnet formula in higher
dimensions (c.f. [11]).

The aim of this note is to give a weighted version for the renormalized volume,
and to find its relation to the fractional curvature Qγ , for values γ ∈ (0, 1). The
volume in this case is computed with respect to a very specific weight function ρ∗

that will be introduced later in Lemma 2.2. This weight function is adapted to each
fractional order problem, and it is interpreted as the defining function that in some
sense straightens out the coordinates of M × (0, δ). We show that:

Theorem 1.1. Let (Xn+1, g+) be a conformally compact Einstein manifold, and ρ a
defining function for Mn = ∂X, such that in a neighborhood M × (0, δ) the metric is
written in normal form g+ = ρ−2(dρ2 + gρ) with gρ = ĥ + O(ρ2), for some ĥ in the
conformal infinity. Then we have the following asymptotic expansion when ε→ 0 for
the weighted volume:

volg+,γ({ρ > ε}) : =
∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+

=
(
n
2 + γ

)−1
vol(M)ε−

n
2−γ + Vγε

−n2 +γ +O
(
ε−

n
2−γ+2

)
,

(1.1)

where the weight ρ∗ is the special defining function found in Lemma 2.2. Moreover,
the term Vγ := Vγ [g+, ĥ] can be precisely computed as

Vγ =
1

dγ
(
n
2 − γ

) ∫
M

Qγ [g+, ĥ] dvolĥ. (1.2)

Remark. We define Vγ as the renormalized weighted volume. Contrary to the usual
definition of renormalized volume, Vγ is not a conformal invariant in the class [ĥ],
however, it is interesting to set up a fractional order Yamabe type problem for (1.2),
that has been partially solved in [16]. For the critical power γ = n/2, the renormalized
weighted volume will correspond to the standard notion of renormalized volume.

Remark. Note that (4.17) can be interpreted as a first variation formula for Qγ ,
which can shed some light on the geometrical interpretation for a fractional order
non-local curvature Qγ .

For integer values of γ, the renormalized volume for the Paneitz operator Pk was
already considered Chang-Fang [9], where they study a class of variational functionals,
that in locally conformally flat manifolds is deeply related to the symmetric functions
of the eigenvalues of the Schouten tensor.

Another interesting connection was pointed out by T. Rivière. Indeed, in the re-
cent work by Alexakis-Mazzeo [1] they consider the renormalized area for a complete
minimal surface in H3, which is equivalent to the classical Willmore energy of the
surface. In some sense, this corresponds, in our case, to the values n = 1 and γ = 1/2,
that are critical for the problem.
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From another point of view, given a smooth manifold compact manifold (Xn+1

with boundary M , endowed with a smooth metric ḡ, one can ask if there exists an
analogous construction. Indeed, in [10] it was shown that for exponents γ ∈ (0, 1/2)
it is possible to construct a fractional order operator Pγ on M through an extension
problem with respect to the metric ḡ, while for γ ∈ (0, 1/2), the existence of non-
vanishing mean curvature is an obstruction for the existence of such operator.

The same picture appears when computing the renormalized weighted volume. For
the case γ ∈ (0, 1/2) we have the analogous of Theorem 1.1, while for γ ∈ (1/2, 1) a
non-vanishing mean curvature would create a different term in the asymptotic expan-
sion (4.17). These results are summarized in Theorem 4.2 in the last section.

The inspiration for these results came from an apparently unrelated problem. In
the work [7] by Caffarelli-Souganidis they study some Bence-Merriman-Osher type
algorithms (c.f. [4]) corresponding to the fractional Laplacian (−∆Rn)γ . They show
convergence to moving fronts, with two different behaviors depending on the value of
γ: when 0 < γ < 1/2, the normal velocity of the interface depends on a fractional
order mean curvature Hγ , but in the case 1/2 < γ < 1, the resulting interface moves
simply by (suitable scaled) mean curvature flow. We try to obtain a similar result
geometry setting: the moving fronts in Caffarelli-Souganidis are replaced in our case
by the level sets of a weight ρ∗ that measures the distance to the boundary, and we
get the same dichotomy.

The fractional mean curvature Hγ is a non-local, fractional order curvature for the
boundary of a compact set in Euclidean space, defined by means of a singular integral.
It was been considered in the works of Caffarelli-Roquejoffre-Savin [6] and Caffarelli-
Valdinoci [8], for instance, but so far there is not a clear picture of its geometrical
meaning. Of course, the natural question is to find the relation between the curvatures
Hγ and Qγ , at least when γ ∈ (0, 1/2); this is work in progress with X. Cabré.

These types of results provide indications of the fact that, when γ < 1/2, the
operator presents very strong non-local behavior, and does not depend as much on
the local geometry.

The paper is structured as follows: in section 2 we review the important concepts
of scattering theory, the construction of the fractional Paneitz operator through an
extension problem and the notion of renormalized volume.

Then, in section 3 we consider the renormalized weighted volume in the conformally
compact Einstein setting in order to give the proof of Theorem 1.1. Finally, in section
4 we extend this notion to any compact manifold with smooth boundary and give the
proof of Theorem 4.2.

2 Background on the conformal fractional Laplacian

First we review the definition of the conformal fractional Laplacian as the scattering
operator in a conformally compact Einstein manifold. For an introduction, see for
instance the first sections of [10], and the references therein; here we give a brief
summary.

Let M be a compact manifold of dimension n with a metric ĥ. Let Xn+1 be a
smooth manifold of dimension n + 1 with boundary M . A function ρ is a defining
function of ∂X in X if ρ > 0 in X, ρ = 0 on ∂X, and dρ 6= 0 on ∂X. We say that
g+ is a conformally compact metric on X with conformal infinity (M, [ĥ]) if there
exists a defining function ρ such that the manifold (X̄, ḡ) is compact for ḡ = ρ2g+,
and ḡ|M ∈ [ĥ]. If, in addition (Xn+1, g+) is a conformally compact manifold and
Ric[g+] = −ng+, then we call (Xn+1, g+) a conformally compact Einstein manifold.

Given a conformally compact, asymptotically hyperbolic manifold (Xn+1, g+) and
a representative ĥ in [ĥ] on the conformal infinity M , there is a uniquely defining
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function ρ such that, on M × (0, δ) in X, g+ has the normal form

g+ = ρ−2(dρ2 + gρ) (2.3)

where gρ is a one parameter family of metrics on M satisfying gρ|M = ĥ. Moreover,
gρ has an asymptotic expansion which contains only even powers of ρ, at least up to
degree n. For the rest of the paper, we assume that the metric g+ is written in this
normal form.

It is well known (c.f. [20], [24]) that, given f ∈ C∞(M) and s ∈ C, the eigenvalue
problem

−∆g+u− s(n− s)u = 0, in X, (2.4)

has a solution of the form

u = Fρn−s +Gρs, F,G ∈ C∞(X), F |ρ=0 = f, (2.5)

for all s ∈ C unless s(n − s) belongs to the pure point spectrum of −∆g+ . Now, the
scattering operator on M is defined as S(s)f = G|M , it is a meromorphic family of
pseudo-differential operators in Re(s) > n/2. The values s = n/2, n/2 + 1, n/2 + 2, . . .
are simple poles of finite rank, these are known as the trivial poles; S(s) may have
other poles, however, for the rest of the paper we will always implicitly assume that
we are not in those exceptional cases.

Fixed a conformally compact Einstein manifold (X, g+) with conformal infinity
(M, [ĥ]), we define the conformally covariant fractional powers of the Laplacian on M
as follows: for s = n

2 + γ, γ ∈
(
0, n2

)
, γ 6∈ N, we set

P ĥγ := Pγ [g+, ĥ] = dγS
(n

2
+ γ
)
, dγ = 22γ Γ(γ)

Γ(−γ)
. (2.6)

With this choice of multiplicative factor, the principal symbol of Pγ is exactly the
principal symbol of the fractional Laplacian (−∆ĥ)γ .

The operators Pγ [g+, ĥ] satisfy an important conformal covariance property. In-
deed, for a conformal change of metric

ĥw = w
4

n−2γ ĥ, w > 0, (2.7)

we have that
Pγ [g+, ĥw]ϕ = w−

n+2γ
n−2γ Pγ [g+, ĥ] (wϕ) , (2.8)

for all smooth ϕ on M .
We define the Qγ curvature of the metric associated to the functional Pγ , to be

Qĥγ := Qγ [g+, ĥ] = Pγ [g+, ĥ](1). (2.9)

In particular, for a change of metric as (2.7), we obtain the equation for the Qγ
curvature:

P ĥγ (w) = w
n+2γ
n−2γQĥwγ .

Next, we consider the characterization of the fractional Paneitz operator Pγ on a
manifold M through an extension problem for a degenerate elliptic equation, in the
spirit of Caffarelli-Silvestre [5]. Indeed, the author, together with A. Chang, have
shown in [10] the following:
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Theorem 2.1. Let (X, g+) be any conformally compact Einstein manifold, and let
M be its boundary, with defining function ρ satisfying (2.3). Then, given f ∈ C∞(M)
and γ ∈ (0, 1), the Poisson problem (2.4)-(2.5) for s = n

2 + γ is equivalent to the
extension problem {

−div (ρa∇U) + E(ρ)U = 0 in (X, ḡ),
U = f on M,

(2.10)

where
ḡ = ρ2g+, U = ρs−nu, a = 1− 2γ, s = n

2 + γ,

and the derivatives in (2.10) are taken with respect to the metric ḡ. The lower order
term is given by

E(ρ) = −∆ḡ

(
ρ
a
2
)
ρ
a
2 +

(
γ2 − 1

4

)
ρ−2+a + n−1

4n Rḡρ
a. (2.11)

Moreover, we have the following expression for the fractional conformal Laplacian
(2.6):

Pγ [g+, ĥ]f =
dγ
2γ

lim
ρ→0

(ρa∂ρU) .

Before we continue, we remind the reader of how to compute the Qγ [g+, ĥ] curva-
ture, as defined in (4.12), for γ ∈

(
0, n2

)
\N, s = n

2 + γ. We set f ≡ 1, and find the
solution to the Poisson problem{

−∆g+v − s(n− s)v = 0, in X,

v = Fρn−s +Gρs, F = 1 +O(ρ2), G = h+O(ρ2).
(2.12)

Then,
Qγ [g+, ĥ] = dγh.

Next, we construct the special defining function ρ∗ that will be needed in the
definition of weighed volume. From the results in [10], [16], one can see that it is
possible to find some ρ∗ satisfying that the zero-th order term E(ρ∗) in equation
(2.10) vanishes so that the extension problem is a pure divergence equation. More
precisely,

Lemma 2.2. Let (X, g+) be a conformally compact Einstein manifold with conformal
infinity (M, [ĥ]). For each γ ∈ (0, 1), there exists another defining function ρ∗ on X,
satisfying ρ∗ = ρ+O(ρ2γ+1), and such that for the term E defined in (2.11) we have

E(ρ∗) ≡ 0.

The metric g∗ = (ρ∗)2g+ satisfies g∗|ρ=0 = ĥ and has asymptotic expansion

g∗ = (dρ∗)2
[
1 +O((ρ∗)2γ)

]
+ ĥ

[
1 +O((ρ∗)2γ)

]
. (2.13)

In addition, if U is a solution of{
−div ((ρ∗)a∇U) = 0 in (X, g∗),

U = f on M,
(2.14)

then
Pγ [g+, ĥ]f =

dγ
2γ

lim
ρ∗→0

(ρ∗)a∂ρ∗U + fQγ [g+, ĥ],

This defining function ρ∗ is related to the eigenfunctions of −∆g+ , and is con-
structed as follows: given γ ∈ (0, 1), solve the Poisson problem (2.12). Then we
simply set

ρ∗ := v
1

n−s . (2.15)
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3 A notion of renormalized weighted volume

Before we give the proof of Theorem 1.1, we recall the original notion of renormal-
ized volume, for n odd, as introduced by Fefferman-Graham [14]. Given (X, g+) a
conformally compact Einstein manifold with defining function ρ, we can expand

Volg+ ({ρ > ε}) = c0ε
−n + c2ε

−n+2 + . . .+ cn−1ε
−1 + V + o(1). (3.1)

We call the constant term V := Vn
2

[X, g+] the renormalized volume for (X, g+). It
is independent of the choice of ĥ in the class [ĥ]. And moreover, it can be computed
as follows: for each s ∈ C, consider find the solution us of (2.4) with boundary data
f ≡ 1. Set

v = − d

ds

∣∣∣∣
s=n

us.

Then v solves
−∆g+v = n in X,

and has the asymptotic behavior

v = log ρ+A+Bρn,

in a neighborhood of M , where A, B are functions even in ρ, and A|ρ=0 = 0.
If n is odd, then B|M is determined by the choice of Poincaré metric g+ and

representative metric ĥ. Moreover,

B|M = − d

ds
S(s)1

∣∣∣∣
s=n

.

The Qn
2

curvature is defined as

Qn
2

= Qn
2

[g+, ĥ] = dn
2
B|M = −dn

2

d

ds
S(s)1

∣∣∣∣
s=n

,

where the constant dn
2

is written as in (2.6). This quantity is globally determined and
depends in general on the extension X.

If ĥw = e2wĥ, then Qn
2

satisfies the transformation law

enwQn
2

[g+, ĥw] = Qn
2

[g+, ĥ] + dn
2
S(n)w.

Moreover,

Vn
2

[X, g+] =
1
dn

2

∫
M

Qn
2

[g+, ĥ]dvĥ.

Now we are ready for the proof of Theorem 1.1. Let (Xn+1, g+) be a conformally
compact Einstein manifold with conformal infinity (Mn, [ĥ]). We write the metric in
normal form, i.e., g+ = ḡ

ρ2 , for ḡ = dρ2 + gρ, at least in a neighborhood M × (0, δ).
Fix γ ∈ (0, 1) and s = n

2 + γ. Let v be the solution of the eigenvalue problem (2.12).
By construction, v has the precise asymptotic behavior

v = ρn−s(1 +O(ρ2)) + ρs(h+O(ρ2)), h = (dγ)−1Qγ [g+, ĥ]. (3.2)

On one hand, we integrate by parts,

I1 : = −
∫
{ρ>ε}

∆g+v dvolg+

= ε1−n
∫
{ρ=ε}

∂ρv dvolgε

= (n− s)ε−s
∫
{ρ=ε}

(
1 +O(ε2)

)
dvolgε + sε−n+s

∫
{ρ=ε}

(
h+O(ε2)

)
dvolgε ,

(3.3)

6



where we have used the asymptotic expansion for v given in (3.2).
Now we check that the expansion for the volume element is just

dvolgε = dvolĥ +O(ε2),

because gρ = ĥ+O(ρ2), and use that

Qγ = Pγ1 = dγh, s =
n

2
+ γ,

to arrive at

I1 =
(
n
2 − γ

)
ε−

n
2−γvol(M) +

1
dγ

(
n
2 + γ

)
ε−

n
2 +γ

∫
M

Qγ dvolĥ +O
(
ε−

n
2−γ+2

)
.

On the other hand, we recall the definition of the special defining function ρ∗ from
(2.15). Then

I2 :=
∫
{ρ>ε}

v dvolg+ =
∫
{ρ>ε}

(ρ∗)n−s dvolg+ .

We remind the reader that v is a solution of (2.12), so that

−∆g+v − s(n− s)v = 0. (3.4)

From equation (3.4), putting together I1 and I2, we obtain that∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+

=
(
n
2 + γ

)−1
ε−

n
2−γvol(M) +

1
dγ

(
n
2 − γ

)−1
ε−

n
2 +γ

∫
M

Qγ dvolĥ +O
(
ε−

n
2−γ+2

)
,

as desired.

4 Weighted normalized volume in a general setting

In this section we change our point of view and consider a more general problem.
Given any smooth compact manifold X with boundary and a metric ḡ, it is possible
it is possible to give a notion of the conformal Paneitz operator Pγ with respect to
the metric ḡ and its associated curvature in this setting. It was shown in [10] that:

Proposition 4.1. Let (Xn+1, ḡ) be a smooth compact manifold with boundary. Fix
γ ∈ (0, 1) and suppose that U is the solution to the boundary value problem (2.10).
Then one can construct the conformal fractional Laplacian as follows:

1. For γ ∈ (0, 1
2 ) and

Pγ [g+, ĥ]f = −d∗γ lim
ρ→0

ρa∂ρU, (4.1)

where

d∗γ =
22γ−1Γ(γ)
γΓ(−γ)

. (4.2)

2. For γ = 1
2 ,

P 1
2
[g+, ĥ]f = − lim

ρ→0
∂ρU + n−1

2 Hf,

where H := 1
2nTrĥ(h(1)) is the mean curvature of M .

3. For γ ∈
(

1
2 , 1
)
, (4.1) still holds if H = 0.
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We review this construction: Let (X̄, ḡ) be a smooth, compact manifold of dimen-
sion n+ 1 with boundary M of dimension n. Set X to be the interior of X̄. Let ρ be
a geodesic defining function for M and ĥ := ḡ|M . It is possible to find a solution for
the singular Yamabe problem to produce an asymptotically hyperbolic metric g+ in
X, conformal to ḡ, of negative constant scalar curvature Rg+ = −n(n+ 1), and with
a very precise polyhomogeneous expansion. Classical references are Aviles-MacOwen
[3], Mazzeo [23] or Andersson-Chrusciel-Friedrich [2]. More precisely, if write the met-
ric in X as ḡ = dρ2 + ḡρ, where gρ is a one-parameter family of metrics on M satisfying
gρ|ρ=0 = ĥ, then

g+ =
ḡ(1 + ρα+ ρnβ)

ρ2
, (4.3)

where α ∈ C∞(X̄), β ∈ C∞(X) and β has a polyhomogeneous expansion

β(ρ, x) =
∞∑
i=0

Ni∑
j=0

βijρ
i(log ρ)j (4.4)

near the boundary, Ni ∈ N ∪ {0} and βij ∈ C∞(X̄). Here we note that the log terms
do not appear in the first terms of the expansion so, for our purposes and because
γ ∈ (0, 1), they can be ignored. We define

1
ρ̂2

:=
1 + ρα+ ρnβ

ρ2
, (4.5)

so that (4.3) is rewritten as

g+ =
ḡ

ρ̂2
, (4.6)

On the other hand, note that ḡρ may not only have even terms in its expansion.
However, fixed the boundary metric ĥ := ḡρ|ρ=0 = ḡ|M , we can find a boundary
defining function y = ρ+O(ρ2) such that

g+ =
dy2 + gy

y2
(4.7)

near M , where gy is a one-parameter family of metrics on M such that gy|y=0 = ĥ,
with the regularity of ρα + ρnβ. The main property of gy is that, if we make the
expansion gy = g(0) + g(1)y + O(y2), then g(0) = ĥ and traceg(0)g(1) = 0. We set
g̃ = dy2 + gy so that

g+ =
g̃

y2
. (4.8)

The scattering operator can be solved in any smooth asymptotically hyperbolic man-
ifold (X, g+). First, solve the Poisson equation

−∆g+u− s(n− s)u = 0. (4.9)

For each f ∈ C∞(M), there exists a solution of the form

u = yn−sF + ysG, F = f +O(y2), G = h+O(y). (4.10)

Then, for s = n
2 + γ, we define the conformal fractional Laplacian in this setting as

Pγ [g+, ĥ]f = dγh, (4.11)

and the fractional order curvature

Qγ [g+, ĥ] := Pγ [g+, ĥ]1. (4.12)
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In our case, we do have some log terms in the expansion (4.4). However, they do appear
at order n, and consequently, they do not change the first terms in the asymptotic
expansion for u.

Let H be the mean curvature of ∂X as a boundary of the (n+ 1)-manifold (X̄, ḡ).
If we make the expansion ḡρ = ḡ(0) + ḡ(1)y +O(y2), ḡ(0) = ĥ, then it is easy to check
that

H :=
1

2n
traceĥ(ḡ(1)). (4.13)

It was shown in [10] that, indeed, ρ̂, ρ and y are related by the following relations:

ρ̂ = y(1−Hy +O(y2)), (4.14)

ρ = y
[
1 +

(
−H +

α

2

)
y +O(y2)

]
. (4.15)

Let v be the solution of the eigenvalue problem (4.9) with Dirichlet data f ≡ 1.
Then v has an asymptotic expansion

v = yn−s[1 +O(y2)] + ys[h+O(y)] (4.16)

where Qγ = dγh. We set, as in (2.15), ρ∗ = v
1

n−s . This is the weight we will be
considering.

We are ready to define a weighted version of volume for a compact manifold (X̄, ḡ)
with respect to a defining function ρ. Let γ ∈ (0, 1). For each ε > 0, we set

volg+,γ({ρ > ε}) :=
∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ , (4.17)

Our main result is the study of its asymptotic behavior when ε→ 0:

Theorem 4.2. Let (X̄, ḡ) be a smooth, (n+1)-dimensional smooth, compact manifold
with boundary, and let ĥ be the restriction of the metric ḡ to the boundary M := ∂X.
Let g+ be the asymptotically hyperbolic metric on X and ρ be the geodesic boundary
defining function constructed in (4.3). Let H be the mean curvature of M as defined
in (4.13), and Qγ the fractional order curvature given by (4.12). Then the weighted
volume (4.17) has an asymptotic expansion in ε given by

• If γ < 1
2 , or if γ > 1

2 but
∫
M

Ψ = 0, then

volg+,γ({ρ > ε}) = ε−
n
2−γ

[(
n
2 + γ

)−1
vol(M) + ε2γVγ + higher order terms

]
where

Vγ [g+, ĥ] :=
1
dγ

1
n
2 − γ

∫
M

Qγ [g+, ĥ] dvolĥ.

• However, if γ > 1
2 , and

∫
M

Ψ = 0, then

volg+,γ({ρ > ε}) = ε−
n
2−γ

[(
n
2 + γ

)−1
vol(M) + εW0 + higher order terms

]
for

W0 :=
(
n
2 + γ

)−1
∫
M

Ψ dvolĥ.

The quantity Ψ is defined in (4.19) and appears naturally in the proof.

Proof. Let v be the solution of the eigenvalue equation (4.9) with Dirichlet data f ≡ 1,
and integrate this relation in the set {ρ > ε}. First, we know that g+ = ḡ

ρ̂2 and that
ḡ = dρ2 + ḡρ. Then, integration by parts gives that

I1 := −
∫
{ρ>ε}

∆g+v dvolg+ =
∫
{ρ=ε}

ρ̂1−n∂ρv dvolḡε . (4.18)
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Now we check that the Taylor expansion for the volume element. Write the Taylor
expansion of the metric ḡ in coordinates y:

ḡρ = ĥ+ ḡ(1)y +O(y2).

Then

det(ḡρ) = det(ĥ)
(

1 + y traceĥḡ
(1) +O(y2)

)
= det(ĥ)

(
1 + y2nH +O(y2)

)
,

where we have used (4.13) for the last equality. Next, if ρ = ε, then y = ε(1 + O(ε)),
so

dvolḡρ|ρ=ε = dvolĥ
(
1 + nHε+O(ε2)

)
.

Now we write the expansion of v from (4.16) in the variable ρ, using (4.15):

v = ρn−s
[
1 + (n− s)

(
H − α

2

)
ρ+O(ρ2)

]
+ ρs [h+O(ρ)] .

Moreover, from (4.5),

ρ̂1−n = ρ1−n
[
1 + (n− 1)

α

2
ρ+O(ρ2)

]
.

Then, substituting all the terms in I1 when ρ = ε,

I1 = ε−s(n− s)vol(M)

+ (n− s)ε−s+1

∫
M

[
(2n− s+ 1)H + (s− 2)

α

2

]
dvolĥ +O(ε−s+2)

+ sεs−n
∫
M

h dvolĥ +O(εs−n+1).

We would like to find an asymptotic expansion for I1. As in (3.3), the main
order in the expansion will be ε−s, s = n

2 + γ. However, for the next order in the
expansion will come from a competition between ε−n+s, −n+ s = −n2 + γ and ε−s+1,
−s+ 1 = −n2 − γ + 1, which gives the dichotomy γ > 1

2 or γ < 1
2 .

Use that
Qγ = Pγ1 = dγh, s =

n

2
+ γ,

to arrive at

I1 =
(
n
2 − γ

)
ε−

n
2−γvol(M)

+
(
n
2 − γ

)
ε−

n
2−γ+1

∫
M

Ψ dvolĥ

+
1
dγ

(
n
2 + γ

)
ε−

n
2 +γ

∫
M

Qγ dvolĥ

where we write
Ψ :=

[
(2n− s+ 1)H + (s− 2)

α

2

]
, (4.19)

plus some higher order terms in ε that we do not care to write.
On the other hand, we use the explicit formula for the special defining function

ρ∗, i.e., ρ∗ = v
1

n−s , so we get

I2 :=
∫
{ρ>ε}

v dvolg+ =
∫
{ρ>ε}

(ρ∗)n−s dvolg+

From equation (4.9), putting together I1 and I2, we obtain that∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ =

(
n
2 + γ

)−1
ε−

n
2−γvol(M)

+
(
n
2 + γ

)−1
ε−

n
2−γ+1

∫
M

Ψ dvolĥ

+
1
dγ

(
n
2 − γ

)−1
ε−

n
2 +γ

∫
M

Qγ dvolĥ

+ h.o.t.
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Now look at the expansion: the first order term is clear. However, the next order term
depends on the value of γ. If γ < 1/2, then this term is just

Vγ :=
1
dγ

1
n
2 − γ

∫
M

Qγ dvolĥ,

and the same happens if
∫
M

Ψ dvolĥ = 0. In this case we can write∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ = ε−

n
2−γ

[(
n
2 + γ

)−1
vol(M) + ε2γVγ + h.o.t.

]
.

However, if γ > 1/2, and
∫
M

Ψ dvolĥ 6= 0, then the coefficient of the second order
term is

W0 :=
(
n
2 + γ

)−1
∫
M

Ψ dvolĥ

and we write∫
{ρ>ε}

(ρ∗)
n
2−γ dvolg+ = ε−

n
2−γ

[(
n
2 + γ

)−1
vol(M) + εW0 + h.o.t.

]
.

Remark. When the starting point is an asymptotically hyperbolic manifold (X, g+)
with defining function ρ̂ in the case γ > 1/2 we simply have

W0 =
(
n
2 + γ

)−1 (2n− s+ 1)
∫
M

H,

that is just the integral of the mean curvature. This is perhaps the most natural
setting for the problem.
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