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Abstract

We address the study of isolated singularities for a fully non-linear elliptic
PDE, of subcritical type, arising in conformal geometry. This equation appears
when dealing with the k-curvature of a locally conformally flat manifold, that
generalizes the scalar curvature. We give a classification result: either the function
is bounded near the singularity or it has a specific asymptotic behavior.

1 Introduction

The study of singularities for the the subcritical problem

−∆u = uβ in B\{0}, β ∈
(

n

n− 2
,
n + 2
n− 2

)
(1)

has received a lot of attention. In particular, Gidas-Spruck [5] gave a classification
result: a positive solution of (1) with a non-removable singularity at zero must behave
like

v−1(x) = (1 + o(1))
c0

|x| 2
β−1

near x = 0

for some c0 = c0(β, n). In this paper we deal with a more general subcritical equation,
of the form

σk(Ag) = vα in B\{0}, α > 0, (2)

where g = v−2|dx|2, v > 0, is a locally conformally flat metric on the unit ball B ⊂ Rn

with an isolated singularity at the origin. The matrix Ag is given by Ag = g−1Ãg, Ãg

is the Schouten tensor

Ãg
ij =

1
n− 2

(
Ricij − R

2(n− 1)
gij

)

and Ric, R denote the Ricci tensor and the scalar curvature of g, respectively. In this
metric, the Schouten tensor becomes

Agv = v(D2v)− 1
2
|∇v|2I

These σk curvatures are defined as the symmetric functions of the eigenvalues λ1, . . . , λn

of the (1, 1)-tensor Ag,

σk := σk(Ag) =
∑

i1<...<ik

λi1 . . . λik
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The scalar curvature is simply

σ1 = λ1 + . . . + λn =
R

2(n− 1)

Here we see that problem (2) for k = 1 becomes the well known (1). In fact, if we write
u

4
n−2 = v−2 and 1 + n

2 − n−2
2 β = α, then both problems are equivalent. Note that the

critical exponent is β = n+2
n−2 or α = 0.

For general k, we are dealing with a fully non-linear equation of second order. The
problem is elliptic (but in general, not uniformly elliptic) in the positive cone

Γ+
k = {v : σ1(Agv), . . . , σk(Agv) > 0}

However, it still carries a divergence structure

mσm = v∂j

(
viT

m−1
ij

)
− nTm−1

ij vivj + n−m+1
2 σm−1|∇v|2

that was explored in the previous paper [7].

The main result of this paper is a classification of isolated singularities of (2).

Theorem 1.1. Let α ∈ (0, k), n > 2(k + 1), and take v a solution of

σk(v) = vα in B\{0}
v > 0, v ∈ Γ+

k

(3)

with v−1 ∈ C3(B\{0}). Then

v−1(x) ≤ C

|x| 2k
2k−α

near x = 0

Theorem 1.2. Let v be a solution of (3) for α ∈ (0, 2k
k+1), n > 2(k + 1) with v−1 ∈

C3(B\{0}). Then, if the function v−1 is not bounded near the origin, there exists
c1, c2 > 0 such that

c1

|x| 2k
2k−α

≤ v−1(x) ≤ c2

|x| 2k
2k−α

near x = 0

On the other hand, the local behavior of singularities for the critical problem
σk(v) = 1 has been addressed in the previous paper [6]. There we gave a sufficient
condition for the function to be bounded near the singularity: the finiteness of volume
of the metric gv, for the case n > 2k. The same result was given by Hang [8] for n = 2k.
For the Laplacian (k = 1) problem, a complete classification of solutions was obtained
by Caffarelli-Gidas-Spruck in the significant paper [1]. This the result hoped for the
σk equation, however, so far are just able to deal with the subcritical version of the
problem.

One of the motivations for the study of (1) is because it appears in the resolution
of the Yamabe problem (see [9] for a very good survey). We can establish an analogous
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k-Yamabe problem: find the infimum over all the metrics gv = v−2g0, v > 0, of the
functional

Fk(g) = (vol(g))−
n−2k

n

∫

M
σk(Ag)dvolg, (4)

This functional was first introduced by Viaclovsky [14], and it generalizes the Yamabe
functional. Its Euler equation is precisely σk(v) = 1.

The global subcritical problem has been understood by Li-Li in [10]. Indeed, if v is
a positive solution of

σk(v) = vα in Rn

for α ≥ 0 that satisfies v−1 ∈ C2(Rn), then either v ≡ constant or α = 0 and

v−1(x) =
(

a

1 + b2|x− x̄|2
)

for some x̄ ∈ Rn and some positive constants a, b.

The methods of Gidas-Spruck [5] for the problem for k = 1 can be generalized to
our case. The key ingredient in the present paper is to understand the structure of
σk and, in particular, to replace the traceless Ricci tensor by the traceless k-Newton
tensor (6).

The paper is structured as follows: in section 2 we give some properties of σk that
will be crucial in the proofs. We use the divergence structure of σk (9), an inductive
process (11), and the properties of the traceless Newton tensor (6).

In section 3 we prove the expression that will allow us to obtain the necessary Lp

estimates, through a generalization of an argument due originally to Obata and that
has been very successfully used by Chang-Gursky-Yang [2], and then by Li-Li [11]. In
particular, we give a more refined formula (13). This is precisely the ingredient missing
in the critical problem. The Lp estimates are found in section 4, and in the last two
sections we give the proof of the theorems.

2 Algebraic properties of σk

For a general n × n matrix A, consider its eigenvalues λ1, . . . , λn, construct the sym-
metric functions σk, and the two tensors

• kth Newton tensor

T k := σk − σk−1A + . . . + (−1)kAk = σkI − T k−1A (5)

• Traceless Newton tensor
Lk :=

n− k

n
σkI − T k (6)

Remark. Note that although the standard notation for a (1,1)-tensor is Aj
i , here we

write both indexes as subindexes without risk of confusion. Take σ0 := 1 and T 0
ij := δij .
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Lemma 2.1 ([4], [13]). We have

a. (n− k)σk = trace(T k)

b. (k + 1)σk+1 = trace(AT k)

c. trace(Lk) = 0

d. If σ1, . . . , σk > 0, then Tm is positive definite for m = 1, . . . k − 1.

e. If σ1, . . . , σk > 0, then also
σk ≤ Cn,k(σ1)k

In particular, if A = Agv for gv = v−2|dx|2, the Schouten tensor becomes

Aij = vijv − 1
2 |∇v|2δij (7)

and the traceless Ricci tensor (actually, a constant multiple of the actual traceless Ricci
tensor):

Eij := L1
ij = vvij − 1

nv∆vδij (8)

Lemma 2.2 (Viaclovsky [14]). Let g = v−2|dx|2. Then the Newton tensor Tm for
m ≤ n− 1 is divergence-free with respect to this metric gv, i.e,

∑

j

∂̃jT
m
ij = 0 for all i

As a consequence, ∑

j

∂̃jL
m
ij = n−m

n ∂iσm(Agv)

where ∂̃j is the j− th covariant derivative with respect to the gv metric, and ∂j denotes
the usual Euclidean derivative.

The following two lemmas were proved in the previous paper [7]. Expression (10)
shows the ‘almost’ divergence structure of σm, and (11) is an inductive formula that
allows to handle the non-divergence terms (of order m− 1) that appear in (10).

Lemma 2.3. In this setting,
∑

j

∂jT
m
ij = −(n−m)σmviv

−1 + n
∑

i

Tm
ij viv

−1 for each i (9)

mσm(Ag) = v
∑

i,j

∂j

(
viT

m−1
ij

)
− n

∑

i,j

Tm−1
ij vivj + n−m+1

2 σm−1|∇v|2 (10)
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Lemma 2.4. Let U be a domain in Rn, v−1 ∈ C∞(U) and ϕ ∈ C∞0 (U) a smooth cutoff.
Then for 1 ≤ s ≤ k ≤ n integers and any γ real number,
∫

U

∑

i,j

T k−s
ij vivj |∇v|2(s−1)ϕ2kv−γdx

=
(
1 + k−s

2s

) ∫

U
σk−s|∇v|2sϕ2kv−γdx + s+n+1−γ

2s

∫

U

∑

i,j

T k−s−1
ij vivj |∇v|2sϕ2kv−γdx

−n−k+s+1
4s

∫

U
σk−s−1|∇v|2(s+1)ϕ2kv−γdx + k

s

∫

U

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1v1−γdx

(11)

We will need a similar formula for the traceless Newton tensor in section 3.

Corollary 2.5. Fixed i,

∑

j

∂j

(
Lm

ij

)
=

n−m

n
∂iσk + n

∑

j

Lm
ij viv

−1 (12)

Proof. Follows easily from (9) and (6).

Now we estimate the norm of the Newton tensor:

Lemma 2.6. If σ1, . . . , σm > 0, m ≤ n, then

‖Tm−1
ij ‖ ≤ Cm,nσm−1

Proof. Because of lemma 2.1, Tm−1 is positive definite and thus to estimate its norm
we just need to look at the biggest eigenvalue. We are done because

trace(Tm−1) = (n−m)σm−1

One of the main properties of the Traceless Newton tensor is the following well
known lemma:

Lemma 2.7. For any 1 ≤ k ≤ n− 1, if we have a metric g = v−2|dx|2 in the positive
cone Γ+

k , ∑

i,j

Lk
ijEij ≥ 0,

with equality if and only if E = 0.

Proof. Because Eij is traceless,
∑

i,j

Lk
ijEij = −

∑

i,j

T k
ijEij
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But using that Eij = −1
n σ1δij + Aij , and

(k + 1)σk+1 = T k
ijAij , T k

ijδij = (n− k)σk,

we see that ∑

i,j

T k
ijEij = −n− k

n
σkσ1 + (k + 1)σk+1

The result follows by the general inequality for matrices in the positive cone Γ+
k

σk+1 ≤ n− k

n(k + 1)
σ1σk

with equality if and only if E ≡ 0.

3 Obata type formula

Obata’s original result (see [12]) states that if we have a metric g on the unit sphere
Sn, conformal to the standard one gc, of constant scalar curvature, then E ≡ 0, i.e., g
is the standard metric gc or it is obtained from gc by a conformal diffeomorphism of
the sphere . His method uses crucially the traceless Ricci tensor Eij = vvij − 1

nv∆vδij ,
and the Bianchi identity ∇iEij = ∇jR. Indeed, the main step is to prove that

∑

i,j

∫

Sn

EijEijv
−1dvolgc = 0.

and thus, g is an Einstein metric on Sn.

This same argument was generalized for σk = cst instead of R by Viaclovsky [14],
here the role of E is played by Lk, and the Bianchi identity is replaced by (12). If
the metric is defined on Rn instead of Sn, an analogous argument works but a cutoff
η is introduced and in order to get the same conclusion a careful estimate of the error
terms is needed. Let’s mention the work of Chang-Gursky-Yang [2], [3], and then by
Li-Li [11].

However, we are now interested in the subcritical problem approach by Gidas-
Spruck [5]. They refined the computation of

0 ≤
∫

B

∑

i,j

EijEijv
−δηdx = . . .

for any δ ∈ R. The main result of this section is the corresponding refinement for σk.

Proposition 3.1. Let α > 0, n > 2k. Take v−1 ∈ C3(U) solution of σk(v) = vα in U ,
v ∈ Γ+

k , v > 0, and η ∈ C∞0 (U), U domain in Rn, θ big positive integer. We have then
∫

U

∑

i,j

Lk
ijEijv

−δηθ +
(

n−k
n α− (1 + n− δ)k(n+2)

2n

)∫

U
vα|∇v|2v−δηθ

+(1 + n− δ)
k∑

s=1

dk−s

∫

U
σk−s|∇v|2(s+1)v−δηθ = E1(η)

(13)
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for some constants dk−s where

E1(η) .

∣∣∣∣∣∣

∫

U

∑

i,j

Lk
ijviηjv

1−δηθ−1

∣∣∣∣∣∣
+

k∑

s=1

∣∣∣∣∣∣

∫

U

∑

i,j

T k−s
ij vjηj |∇v|2sv1−δηθ−1

∣∣∣∣∣∣
(14)

In addition, if δ < n + 1 and δ close enough n + 1, all the coefficients in front of the
integrals in the left hand side of (13) side are positive.

Proof. It uses the inductive method developed in the previous papers [7] and [6], and
the properties of Lk. In view of (8), integrate over U ,∫ ∑

i,j

Lk
ijEijv

−δηθ =
∫ ∑

i,j

Lk
ijvijv

1−δηθ − 1
n

∫ ∑

i,j

Lk
ij(∆v)v1−δδijη

θ (15)

The second term in (15) vanishes since Lk is trace-free, and thus, integrating by parts
and (12),∫ ∑

i,j

Lk
ijEijv

−δηθ = −
∫ ∑

i,j

(
∂iL

k
ij

)
vjv

1−δηθ − (1− δ)
∫ ∑

i,j

Lk
ijvivjv

−δηθ

−
∫ ∑

i,j

Lk
ijviηjv

1−δηθ−1

= −n−k
n

∫
(∂iσk) viv

1−δηθ − (1 + n− δ)
∫ ∑

i,j

Lk
ijvivjv

−δηθ

−
∫ ∑

i,j

Lk
ijviηjv

1−δηθ−1

Group in E1(η) all the terms with derivatives in η. Now compute, using (5), (6) and
(7) ∫ ∑

i,j

Lk
ijvivjv

−δηθ = n−k
n

∫
σk|∇v|2v−δηθ −

∫ ∑

i,j

T k
ijvivjv

−δηθ

= − k
n

∫
σk|∇v|2v−δηθ +

∫ ∑

i,j,l

T k−1
il Aljvivjv

−δηθ

= − k
n

∫
σk|∇v|2v−δηθ +

∫ ∑

i,j,l

T k−1
il vljvivjv

1−δηθ

− 1
2

∫ ∑

i,j

T k−1
ij vivjv

−δηθ

(16)

The middle term above can be handled in a similar manner as in [7], section 4:∫ ∑

i,j,l

T k−1
il vljvivjv

1−δηθ = 1
2

∫ ∑

i,l

∂l

(|∇v|2)T k−1
il viv

1−δηθ

= − δ−1
2

∫ ∑

i,l

T k−1
il vivl|∇v|2v−δηθ − 1

2

∫ ∑

i,l

∂l

(
T k−1

il vi

)
|∇v|2v1−δηθ

− 1
2

∫ ∑

i,l

T k−1
il viηl|∇v|2v1−δηθ−1

(17)
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To eliminate the term ∂l

(
T k−1

il vi

)
in (17) just use the equality (9) and then substitute

(17) into (16). We obtain
∫

Lk
ijvivjv

−δηθ = −kn+2
2n

∫
σk|∇v|2v−δηθ − 2+n−δ

2

∫ ∑

i,j

T k−1
ij vivj |∇v|2v−δηθ

+ n−k+1
4

∫
σk−1|∇v|4v−δηθ + E1(η)

= −kn+2
2n

∫
σk|∇v|2v−δηθ + Bk−1 + E1(η)

(18)

where we have defined for fixed k, s = 1, . . . , k − 1,

Bk−s = − s+1+n−δ
s+1

∫ ∑

i,j

T k−s
ij vivj |∇v|2sv−δηθ + n−k+s

2(s+1)

∫
σk−s|∇v|2(s+1)v−δηθ

The computations in (17) can be redone for T k−s and thus

Bk−s = d̃k−s

∫
σk−s|∇v|2(s+1)v−δηθ + c̃k−s−1Bk−s−1 + E1(η) (19)

with
d̃k−s = − s+n+1−δ

s+1

(
1 + k−s

2(s+1)

)
+ n−k+s

2(s+1)

and
c̃k−s = (s+n+1−δ)(s+2)

2(s+1)2

The last step is

B1 = d̃1

∫
σ1|∇v|2kv−δη + c̃1d̃0

∫
|∇v|2(k+1)v−δη

Substitute (19) into (18), inductively. This proves (13) for some constants ck−s, dk−s

obtained from c̃k−s, d̃k−s. Note that that ck−s > 0 if δ < n+1. We also want dk−s > 0
for s = 1, . . . , k, and this is achieved when δ is close enough to n+1 because n > 2k.

Lemma 3.2. With the same hypothesis as in the previous lemma,
∫

U
vα/k−γηθ .

(−1 + γ − n
2

) ∫

U
σk|∇v|2v−γηθ + E2(η) (20)

where

E2(η) .
∣∣∣∣∣
∫

U

∑

i

viηiv
1−γηθ−1

∣∣∣∣∣ (21)

Proof. Since σk(v) = vα and σk ≤ C(n, k)σk
1 (lemma 2.1) we get

σ1(v) & vα/k.

It is easy to see that
∫

σ1v
−γηθ =

(−1 + γ − n
2

) ∫
|∇v|2v−γηθ + E2(η)

and the lemma is proved.
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4 Main estimates

Here we obtain the Lp estimate needed as a consequence of (13). The terms on the left
hand side of (13) will be ‘good’ terms, and we will give an estimate of the error terms.

Proposition 4.1. Let n > 2k, α ∈ (0, k), v solution of (3). We have
∫

ρ<|x|<Mρ
vα k+1

k
−δ . 1

ρ2(k+1)

∫

Aρ∪AMρ

v2(k+1)−δ +
1
ρ2

∫

Aρ∪AMρ

v2+α−δ (22)

for δ < n + 1 close enough to n + 1, where Aρ = {ρ
2 < |x| < ρ}, AMρ = {Mρ < |x| <

2Mρ}, and the constants depend on M but not in ρ.

Proof. If we take α− δ = −γ, then −1− n
2 + γ > 0 and the lemma above allows us to

replace ∫
|∇v|2vα−δηθ by

∫
v

k+1
k

α−δηθ + E2(η)

in expression (13). Let η be a smooth cutoff such that

η =
{

1 if ρ < |x| < Mρ
0 if 0 < |x| < ρ

2 , 2Mρ < |x|
and

|∇η| . 1
ρ
, |D2η| . 1

ρ2
.

The errors E1(η) in (14) are of one of these two types:

E11(η) .

∣∣∣∣∣∣

∫

Aρ∪AMρ

∑

i,j

Lk
ijviηjv

1−δηθ−1

∣∣∣∣∣∣

E12(η) .
k∑

s=1

∣∣∣∣∣∣

∫

Aρ∪AMρ

∑

i,j

T k−s
ij vjηj |∇v|2sv1−δηθ−1

∣∣∣∣∣∣
They will get handled as in the proof of theorem 1.1. in [6]. However, here we give a
clearer proof for this particular cutoff.

To understand the part E11 substitute Lk = n−k
n σkI − T k so

E11(η) .
∫

Aρ∪AMρ

σkviηiv
1−δηθ−1 +

∫

Aρ∪AMρ

T k
ijviηjv

1−δηθ−1 (23)

However, here we cannot use the standard trick to estimate the norm ‖T k‖ . σk as in
lemma 2.6 because we cannot conclude that T k is positive definite from the information
on σ1, . . . , σk and we need to write everything in terms of smaller T k−s. An inductive
process is needed.

Substitute T k
ij = σkδij − AilT

k−1
lj and Ail = vvil − 1

2 |∇v|2δil in (23), together with
lemma 2.6,

E11(η) .
∫

σk|∇v||∇η|v1−δηθ−1 +
∫

σk−1|∇v|3|∇η|v1−δηθ−1

+
∣∣∣∣
∫

T k−1
lj vilviηjv

2−δηθ−1

∣∣∣∣
(24)
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Now, for the last term, proceed as in (17),
∫

T k−1
lj vilviηjv

2−δηθ−1 = 1
2

∫
∂l

(|∇v|2) T k−1
lj ηjv

2−δηθ−1

= −1
2

∫ (
∂lT

k−1
lj

)
|∇v|2ηjv

2−δηθ−1

− 1
2

∫
T k−1

lj |∇v|2ηljv
2−δηθ−2 − 2−δ

2

∫
T k−1

lj ηlvj |∇v|2v1−δηθ−1

(25)

Note that (9) helps to compute ∂lT
k−1
lj and thus from (25) and lemma 2.6 we get

∣∣∣∣
∫

T k−1
lj vilviηjv

2−δηθ−1

∣∣∣∣ .
∫

σk−1|D2η||∇v|2v2−δηθ−2 +
∫

σk−1|∇v|3|∇η|v1−δηθ−1

(26)
Young’s inequality for a small ε, (24) and (26) give

E11(η) . ε

∫
σk|∇v|2ηθv−δ +

Cε

ρ2

∫

Aρ∪AMρ

σkv
2−δηθ−2

+ ε

∫
σk−1|∇v|4ηθv−δ +

Cε

ρ4

∫

Aρ∪AMρ

σk−1v
4−δηθ−4

(27)

To finish the estimate we just need (29) from the lemma below, applied iteratively.
Thus

E11(η) . ε
k∑

s=0

∫
σk−s|∇v|2(s+1)ηθv−δ +

Cε

ρ2(k+1)

∫

Aρ∪AMρ

v2(k+1)−δ (28)

The estimate for E12(η) follows in a similar manner. For the errors in E2(η), defined
in (21), use Young’s inequality with p = q = 2:

E2(η) .
∫
|∇v||∇η|v1−γηθ−1 . ε

∫
|∇v|2vα−δηθ +

Cε

ρ2

∫

Aρ∪AMρ

v2+α−δ

Putting all together in (13), and taking into account that
∑

i,j Lk
ijEij ≥ 0

∫

ρ<|x|<Mρ
vα k+1

k
−δ ≤

∫
vα k+1

k
−δηθ . 1

ρ2(k+1)

∫

Aρ∪AMρ

v2(k+1)−δ +
1
ρ2

∫

Aρ∪AMρ

v2+α−δ

Lemma 4.2. For all ε > 0, s = 0, . . . , k − 1, θ big positive integer,

1
ρ2(s+1)

∫
σk−sv

2(s+1)−δηθ−2(s+1) ≤ ε

∫
σk−s−1|∇v|2(s+2)ηθv−δ

+
Cε

ρ2(s+2)

∫

{|∇η| 6=0}
σk−s−1η

θ−2(s+2)v2(s+2)−δ
(29)

10



Proof. First use the ‘divergence’ formula (10) for σk−s and integration by parts:

(k − s)
∫

σk−sv
2(s+1)−δηθ−2(s+1) = n−k+s+1

2

∫
σk−s−1|∇v|2ηθ−2(s+1)v2(s+1)−δ

− (n + 2(s + 1)− δ + 1)
∫

T k−s−1
ij vivjη

θ−2(s+1)v2(s+1)−δ

−
∫

T k−s−1
ij viηjη

θ−2(s+1)−1v2(s+1)−δ+1

(30)

Now use lemma 2.6 again to bound the norm of the Newton tensor in (30),
∫

σk−sv
2(s+1)−δηθ−2(s+1) .

∫
σk−s−1|∇v|2ηθ−2(s+1)v2(s+1)−δ

+
1
ρ

∫
σk−s−1|∇v|ηθ−2(s+1)−1v2(s+1)−δ+1

(31)

Young’s inequality with ε, p = s + 2, q = s+2
s+1 reads

∫
σk−s−1|∇v|2ηθ−2(s+1)v2(s+1)−δ . ερ2(s+1)

∫
σk−s−1|∇v|2(s+1)ηθv−δ

+
Cε

ρ2

∫
σk−s−1η

θ−2(s+2)v2(s+2)−δ
(32)

And for the second part in (31), take p = 2(s + 2), q = 2(s+2)
2(s+2)−1 ,

1
ρ

∫
σk−s−1|∇v|ηθ−2(s+2)−1v2(s+1)−δ+1 . ερ2(s+1)

∫
σk−s−1|∇v|2(s+2)ηθv−δ

+
Cε

ρ2

∫
σk−s−1η

θ−2(s+2)v2(s+2)−δ
(33)

The lemma is proved by substituting (32) and (33) into (31).

Proposition 4.3. For n ≥ 2(k + 1), α ∈ (0, k), v solution of (3) we have

∫

ρ<|x|<Mρ
vα k+1

k
−δ ≤ Cρ

n− δ−α k+1
k

1− α
2k , (34)

where C depends on M and δ but not in ρ.

Proof. Use Hölder with

p =
δ − αk+1

k

δ − 2(k + 1)
, q =

p

p− 1

to get
1

ρ2(k+1)

∫

Aρ∪AMρ

v2(k+1)−δ ≤ ε

∫

Aρ∪AMρ

vα k+1
k
−δ + Cερ

n−2(k+1)q (35)
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for some ε small chosen later. Also, a Hölder estimate with

p̃ =
δ − αk+1

k

δ − 2− α
, q̃ =

p̃

p̃− 1

gives
1
ρ2

∫

Aρ∪AMρ

v2+α−δ ≤ ε

∫

Aρ∪AMρ

vα k+1
k
−δ + Cερ

n−2q̃ (36)

Note that when α ∈ (0, k) and δ close enough to n + 1, then both p, p̃ > 1. Now, look
at the powers of ρ in (35) and (36):

n− 2(k + 1)q = n− 2q̃ = n− δ − αk+1
k

1− α
2k

Choosing ε small enough we conclude from (22)

∫

ρ<|x|<Mρ
vα k+1

k
−δ ≤ Cρ

n− δ−α k+1
k

1− α
2k

5 Proof of theorem 1.1

The following proposition is the analogous to the study of the critical problem in [6].
In particular, a “volume finiteness” condition gives regularity near the singularity.

Proposition 5.1. Let α ∈ (0, k), n > 2k, v > 0, v ∈ Γ+
k be a solution of (3),

Bρ(x0) ⊂ B.

1. If the integral ∫

Bρ(x0)
v(α−2k)

n
2k ≤ a (37)

for some a small enough (not depending on ρ) then

sup
Bρ/2(x0)

|v−1| ≤ C

ρn/p
‖v−1‖Lp(Bρ(x0)) (38)

for all

p > (n− 2k)
k

k + 1

2. In particular, if ∫

ε<|x|<1
v(α−2k) n

2k < C < ∞ (39)

for some constant C independent of ε, then the function is bounded near the
origin.
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Proof. Similar to Theorem 1.2. in [6] for the critical problem. Condition (39) is the
analogous to the “smallness volume” condition there.

Proof. of Theorem 1.1: Fix x0 small enough and take 2R = |x0|. First note that Hölder
estimates with

r =
δ − k+1

k
n
2k (2k − α)

> 1, 1 =
1
r

+
1
s

give

∫

BR(x0)
v(α−2k) n

2k ≤
(∫

R≤|x|≤3R
v

k+1
k
−δ

) 1
r

ε
n
s . R

�
n− δ−α k+1

k
1− α

2k

�
1
r
R

n
s . R0 < ∞ (40)

independently of x0. We cannot apply proposition 5.1 directly to v, but however, we
could have started with the function ṽ(y) = A

2k
2k−α v( y

A) for some A big enough of the
form

A = (constant)
∫

R≤|x|≤3R
v(α−2k) n

2k ,

that still satisfies the same equation σk(ṽ) = ṽα.
Since we are interested just in the local behavior near zero, we can assume that

(38) gives an estimate for v

sup
BR/2(x0)

|v−1| ≤ C

Rn/p
‖v−1‖Lp(BR(x0))

for all p > (n− 2k) k
k+1 , and C depending on

∫

R≤|x|≤3R
v(α−2k) n

2k

that is anyway uniformly bounded independently of R by a constant because of (40).
In any case, it is also true

sup
BR/2(x0)

|v−1| ≤ C

|x0|n/p
‖v−1‖Lp({R≤|x|≤3R}) (41)

for all p > (n− 2k) k
k+1 . Let p = δ−αk+1

k ; this choice is valid when α ∈ (0, k), n > 2k;
and now use (34) again

∫

{R≤|x|≤3R}
v−p ≤ C|x0|

n− p
1− α

2k

and thus from (41) we arrive at

v−1(x0) ≤ C

|x0|
2k

2k−α

as desired.
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Corollary 5.2 (Harnack). In these hypothesis, there exists M0 > 0 such that for all
ρ > 0, M ≤ M0,

sup
ρ≤|x|≤ρM

v−1 ≤ C inf
ρ≤|x|≤ρM

(42)

where C is independently of v, ρ and M .

Proof. Once we get a sup estimate (41) for a ball, the inf estimate follows from standard
elliptic theory. In particular, writing v−2 = u

2
n−2 , then u is a superharmonic function.

To finish, we need to use a covering argument for the annulus {ρ ≤ |x| ≤ ρM}.
Corollary 5.3. If v is a solution of (3), either v−1 is bounded near the origin or

v−1(x) →∞ as x → 0

Proof. Follows the steps of corollary 3.3. in [5], using the second part of proposition
5.1.

6 Proof of theorem 1.2

We have proved the estimate

v−1(x) ≤ C

|x| 2k
2k−α

(43)

Now we would like to get the opposite inequality. Suppose that

lim
x→0

inf |x| 2k
2k−α v−1(x) = 0

By the Harnack estimate (42), also

lim
x→0

|x| 2k
2k−α v−1(x) = 0 (44)

We want to see that in this case the function v−1 is bounded near the origin and thus
the theorem follows. So it suffices to establish (39).

Let’s review two results from [6]:

Proposition 6.1. Let v−1 ∈ C3(U), v > 0, v ∈ Γ+
k , n > 2k. Then for all ϕ ∈ C∞0 (U),

θ a big positive integer,
∫

U
σkϕ

θv−γ ≥
k∑

s=1

ck−s(γ)
∫

U
σk−s|∇v|2sϕθv−γ + E(ϕ) (45)

where

E(ϕ) .
k∑

s=1

∣∣∣∣∣∣

∫

U

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕθ−1v1−γ

∣∣∣∣∣∣
(46)

and all the coefficients ck−s(γ) > 0 for all for all

γ > n− n− 2k

k + 1
(47)
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Proposition 6.2. For all ε > 0, the error terms (46) can be estimated by

E(ϕ) ≤ ε
k∑

s=1

∫
σk−s|∇v|2sϕθv−γ + Cε

∑

Uk

∫
Uk(ϕ)ϕθ−αkv2k−γ

where the Uk(ϕ) are groups of derivatives of ϕ of order 2k, and αk ∈ R depending
on each of the Uk; these concepts are defined inductively in the following manner: the
starting point is, fixed s = 1, . . . , k

Us(ϕ)ϕαs = |∇ϕ|2sϕ−2s

For each integer l = 0, 1, . . ., given Us+lϕ
αs+l, the following step s + l + 1 is of these

three shapes: (call s + l = m)

Um+1ϕ
−αm+1 =





U
m+1

m
m ϕ−αm

m+1
m

|∇Um|
2(m+1)

2(m+1)−1 ϕ
−αm

�
2(m+1)

2(m+1)−1

�

[|∇ϕ|2Um

]
ϕ−αm−2

(48)

the ending point is s + l = k.

We will use (45) for a suitable cutoff function. Take ϕ = ηr, where η ∈ C∞0 (B\{0}),
such that

η =
{

1 if ε < |x| < R
0 if |x| < ε/2, |x| > 2R

and such that the derivatives the derivatives have a good bound ε/2 < |x| < ε, R <
|x| < 2R. The value of γ will be chosen later. Now rewrite (45) as

∫
σkv

−γϕθ &
k∑

s=1

∫
σk−s|∇v|2sv−γϕθ −

∫
T k−1

ij viϕjϕ
θ−1v1−γ + Ẽ(ϕ) (49)

with

Ẽ(ϕ) .
k∑

s=2

∣∣∣∣
∫

T k−s
ij viϕj |∇v|2(s−1)ϕθ−1v1−γ

∣∣∣∣

since we will look more carefully at the term in T k−1. Integration by parts gives:

−
∫ ∑

i,j

T k−1
ij viϕjϕ

θ−1v1−γ

= − 1
2− γ

∫ ∑

i,j

T k−1
ij ∂i

(
v2−γ

)
ϕjϕ

θ−1 =
1

2− γ

∫ ∑

i,j

T k−1
ij ϕijϕ

θ−1v2−γ

+
1

2− γ

∫ ∑

i,j

∂i

(
T k−1

ij

)
ϕjϕ

θ−1v2−γ +
θ − 1
2− γ

∫ ∑

i,j

T k−1
ij ϕiϕjϕ

θ−2v2−γ

(50)
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Substituting (9) into (50) we get:

−(n + 2−γ)
∫ ∑

i,j

T k−1
ij viϕjϕ

θ−1v1−γ =
∫ ∑

i,j

T k−1
ij ϕijϕ

θ−1v2−γ

− (n− k + 1)
∫ ∑

i

σk−1viϕiϕ
θ−1v1−γ + (θ − 1)

∫ ∑

i,j

T k−1
ij ϕiϕjϕ

θ−2v2−γ

(51)

Now substitute (51) into (49)

∫
σkϕ

θv−γ ≥
k∑

s=1

∫
σk−s|∇v|2sϕθv−γ

+
1

n + 2− γ




∫ ∑

i,j

T k−1
ij ϕijϕ

θ−2v2−γ + (θ − 1)
∫ ∑

i,j

T k−1
ij ϕiϕjϕ

θ−2v2−γ




− n− k + 1
n + 2− γ

∫ ∑

i

σk−1viϕiϕ
θ−1v1−γ + Ẽ(ϕ)

(52)

Group all the error terms in the line above in

E(ϕ) .
k∑

s=1

∫
σk−s|∇ϕ||∇v|ϕθ−1v1−γ

Compute
ϕi =

xi

r
η + E1(ϕ)

ϕij = r−1
[
−xixj

r2
+ δij

]
η + E1(ϕ)

∑

i,j

T k−1
ij ϕij = r−1


−

∑

i,j

T k−1
ij

xixj

r2
+ (n− k + 1)σk−1


 η + E1(ϕ)

Since T k−1 is positive definite and trace(T k−1) = (n− k + 1)σk−1, as long as we keep
1 < θ we have

∑

i,j

T k−1
ij

[
ϕij + (θ − 1)ϕiϕjr

−θ
]
≥ C(θ)σk−1r

−1η2 + E1(ϕ)

for some C(θ) > 0. If we keep γ < n + 2 we can conclude from (52):

E(ϕ) + E1(ϕ) +
∫

σkϕ
θv−γ &

k∑

s=1

∫
σk−s|∇v|2sϕθv−γ +

∫
σk−1r

−2ϕθv2−γ (53)

We have not been very precise with the errors E1(ϕ), however, they are of a similar
type to E(ϕ) and they are treated in the same manner. Note that, in the positive cone,

σk−1 & σ
k−1

k
k = vα k−1

k

16



so we actually have proved from (53)

E(ϕ) &
∫ [

v
k−1

k
α+2−γr−2 − vα−γ

]
ϕθ +

k∑

s=1

∫
σk−s|∇v|2sϕθv−γ (54)

To handle E(ϕ) we need to control the error terms that appear in proposition 6.2.
Using the lemma below,

∫
Uk(ϕ)ϕθ−αkv2k−γ .

∫
r−2kϕθv2k−γ

+
1

ε2k

∫

ε/2<|x|<ε
rθv2k−γ +

1
R2k

∫

R<|x|<2R
rθv2k−γ

(55)

Looking at the terms above one by one:

1
ε2k

∫

ε/2<|x|<ε
rθv2k−γ → 0 as ε → 0

using the previous estimate (43) and the definition of η, as soon as we choose some

γ > n− α

(
n− 2k

2k

)
(56)

An analogous argument gives

1
R2k

∫

R<|x|<2R
rθv2k−γ ≤ C

The other integral in (55) is bounded by
∫

r−2kϕθv2k−γ .
∫ (

v
k−1

k
α+2−γr−2

)(
v−

k−1
k

α−2+2kr2−2k
)

ϕθ

But because our assumption (44),

v−
k−1

k
α−2+2kr2−2k = o(1)

and thus from (54) we obtain:

C &
∫ [

v
k−1

k
α+2−γr−2 − vα−γ

]
ϕθ

Note that again, because of (44),

r2v
α−2k

2 = o (1)

Now, theorem 1.1 gives

vα−γ .
(
vα k−1

k
+2−γr−2

)(
r2v

α−2k
2

)
(57)

Comparing the orders of (57), we quickly obtain
∫

vα k−1
k r−2v2−γϕθ < ∞ (58)
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But this is precisely the term (39) that we need to estimate because
∫

ε≤|x|≤R
v(α−2k) n

2k =
∫

v
k−1

k
α+2−γv−

k−1
k

α−n+α n
2k
−2+γηθ

.
∫

v
k−1

k
α+2−γr(−

k−1
k

α−n+α n
2k
−2+γ)( 2k

2k−α)ηθ

=
∫

v
k−1

k
α+2−γr−2ϕθ

(59)

using Theorem 1.1, and where the choice of θ, γ is
(
−k − 1

k
α− n + α

n

2k
− 2 + γ

)(
2k

2k − α

)
= −2 + θ (60)

i.e.

γ = n− α

(
n− 2k

2k

)
+ θ

(
1− α

2k

)

This is an admissible value for γ because when α < 2k
k+1 , it can be chosen to satisfy

(47), (56), γ < n + 2 and θ > 1.

Lemma 6.3. For the cutoff ϕ = rη constructed in the previous proof,

Uk(ϕ)ϕθ−αk . r−2kϕθ + ε−2krθχ{ε/2≤|x|<ε} + R−2krθχ{R≤|x|<2R}

Proof. The definition of the Uk is given in proposition 6.2. We are just interested in
the orders of r and ε. Fixed s = 1, . . . , k, the initial step is

Us(ϕ)ϕθ−2s = |∇ϕ|2sϕθ−2s . |∇r|2sϕθ−2sη2s + |∇η|2sr2sϕθ−2s . r−2sϕθ + ε−2srθη2s

Next, assume that the result is true for s + l, (call s + l = m)

Um(ϕ)ϕθ−αm . r−2mϕθ + ε−2mrθη2m

the proof for m + 1 follows easily from (48).

Remark. We hope that theorem 1.2 is true also for n = 2k + 1, but as in the case of
the Laplacian, it needs different estimates in (34).
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