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Abstract
We look at complete, locally conformally flat metrics defined on a

domain Ω ⊂ Sn. There is a lot of information about the singular set ∂Ω
contained in the positivity of σk and, in particular, we obtain a bound
for the Hausdorff dimension of ∂Ω, in relation to Schoen-Yau’s work for
the scalar curvature. On the other hand, since some locally conformally
flat manifolds can be embedded into Sn, this dimension bound implies
several topological corollaries.

1 Introduction

Let (M, g) be a Riemannian manifold of dimension n ≥ 3, with a metric g. Denote
by Riem, Ric, R, the Riemmanian curvature tensor, the Ricci tensor and the scalar
curvature respectively. Construct the Schouten tensor as

Ãg
ij =

1
n− 2

(
Ricg

ij −
1

2(n− 1)
Rggij

)

Now transform the (0,2)-tensor Ãij to a (1, 1) tensor Aij by Ag = g−1Ãg. Note that
although the standard notation for a (1,1)-tensor is Aj

i , here we write both indexes as
subindexes without risk of confusion.

Let λ1, . . . , λn be the eigenvalues of the matrix Ag at each point. The main object
of study will be its kth-elementary symmetric function:

σk := σk(Ag) =
∑

i1<...<ik

λi1 . . . λik

These σk-curvatures have received a lot of attention recently. From the point of view
of conformal geometry, we are interested in the study of the Schouten tensor because
it contains all the conformal information about the curvatures of a manifold. This can
be seen from the decomposition (see [1])

Riem = W + Ã©∧ g,

where ©∧ is the Kulkarni-Nomizu product, and W the Weyl tensor, a conformal invari-
ant. For instance,

σ1 = λ1 + . . . + λn =
1

2(n− 1)
R
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so the study of σk gives a natural generalization of the Yamabe problem and scalar
curvature related issues.

In particular, we will be interested in locally conformally flat manifolds. We say
that a Riemmanian manifold (M, g) is locally conformally flat (l.c.f.) if the metric g
can be written, locally, as g = v−2|dx|2 for some smooth v−1 > 0, where |dx|2 is the
usual Euclidean metric.

The sign of σk will play an important role understanding the geometry. Indeed,
Guan-Viaclovsky-Wang [10] proved that l.c.f. metrics with σ1, . . . , σk ≥ 0 for some
k > 1 have

Ricg ≥ (2k − n)(n− 1)
(k − 1)

(
n

k

)−1/k

σk
1/k(Ag)g (1)

and thus Ricg > 0 when n < 2k.

Form the analytical point of view, these symmetric functions on l.c.f. manifolds
give rise to interesting elliptic fully non-linear equations of second order: in fact, for a
metric gv = v−2|dx|2, the Schouten tensor becomes

Ãgv = v−1(D2v)− 1
2
|∇v|2v−2I

and thus
σk(Agv) = vkσk(D2v) + lower order terms, (2)

a Hessian type equation. For k = 2,

2σ2(Agv) =
[
(∆v)2 − |D2v|2] v2 − (n− 1)∆v|∇v|2v +

n(n− 1)
4

|∇v|4

There has been a lot of recent work understanding this non-linear PDE. For in-
stance, Chang-Gursky-Yang [4], [3], Gursky-Viaclovsky [12], Li-Li [14], Guan-Wang
[11].

However, these σk have an underlying ‘almost’ divergence structure. This is the first
result in the present paper, and allows to use certain integral estimates. In particular,
we prove in section 4 that

mσm = v∂j

(
viT

m−1
ij

)
− nTm−1

ij vivj + n−m+1
2 σm−1|∇v|2 (3)

This analysis is the key for the study of singularities of the σk equation in the papers
[7] and [8].

We are interested in studying singular sets of locally conformally flat metrics with
positive σk curvature, and the topological information they contain. Let’s remark that
the cases n > 2k, n = 2k and n < 2k have very different behaviors.

Let g be a complete metric on a domain Ω ⊂ Sn, conformal to the standard met-
ric on the sphere gc. Assumptions on the positivity of the σ1, . . . , σk curvatures and
some technical assumptions on the scalar curvature will give an upper bound for the
Hausdorff dimension of the singular set ∂Ω:
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Theorem 1.1. Let g be a complete metric on a domain Ω ⊂ Sn, conformal to gc,
satisfying

σ1(Ag) ≥ C0 > 0 and σ2(Ag), . . . , σk(Ag) ≥ 0 (4)

for some integer 1 ≤ k < n/2. Then

dimH(∂Ω) ≤ n− 2k

2

Theorem 1.2. For the case k > 1 if, in addition, we have

|R|+ |∇gR| ≤ c0, (5)

then
dimH(∂Ω) <

n− 2k

2

Remark. The case k = 2 was addressed by Chang-Hang-Yang in [5]. The ideas in
their paper generalize for any k here once we understand the structure of (3). The
main step in the proof is an integral estimate that follows from that structure; this is
done in section 3.

In the paper [18] (see also chapter VI in [19] for a more detailed discussion), Schoen-
Yau proved the case k = 1, that gives a dimension estimate dimH(∂Ω) < n−2

2 for
complete metrics of positive scalar curvature. Theorem 1.2 improves this estimate to
n−2k

2 if we have the additional information on σk.
In the same crucial paper Schoen-Yau showed that any complete l.c.f. manifold

of positive scalar curvature is conformally equivalent to a subdomain Ω of the sphere.
Now, theorem 1.2 will give restrictions on the homotopy and cohomology groups of the
original manifold. In particular, when n = 2k + 1, n = 2k + 2 it implies a classification
result. These topological corollaries are resumed in section 2.

The last section of the paper will be a discussion about the sharpness of the bound
n−2k

2 . Unlike the case k = 1, where metrics with singular set of dimension close to n−2
2

can be constructed (see [15]), for general k the bound n−2k
2 seems not to be the best.

However, the problem is still open. The appendix contains the necessary computations
for the section.

We are left to study the singular set for the case 3 ≤ n ≤ 2k. But an easy argument,
summarized in section 7, gives that there is no singular set.

2 Topological corollaries

The significant work of Schoen-Yau ([19], chapter VI, theorem 4.1) tells us that, given
any compact locally conformally flat Riemannian manifold M of positive scalar curva-
ture, its universal covering can be viewed as a domain Ω in Sn through the developing
map φ : M̃ → Sn, conformal, one-to-one. As a consequence, the dimension estimate of
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Theorem 1.2 applies for Ω := Φ(M̃) ⊂ Sn. In particular, we have proved a bound for
the Schoen-Yau invariant (see section 3)

d(M) <
n− 2k

2
(6)

and thus several topological consequences follow.

A simple counting dimension argument in [19] (chapter VI, theorem 4.4) plus (6)
gives:

Corollary 2.1. Let (Mn, g), n > 2k, be a complete locally conformally flat manifold
such that

|R|+ |∇gR| ≤ c0

σ1(Ag) > 0 and σ2(Ag), . . . , σk(Ag) ≥ 0.

Then for any 2 ≤ i ≤ [
n
2

]
+ k − 1, the homotopy group

πi(M) = {0}

On the other hand, Schoen-Yau proved also that we can realize a compact manifold
M as a Kleinian manifold Ω/Γ for Ω ⊂ Sn and Γ a Kleinian group. From the work of
Nayatani [16] in Kleinian groups we have

Corollary 2.2. Under the same assumptions as in corollary 2.1, if in addition M is
compact, then the cohomology group

H i(M,R) = {0} (7)

for n−2k
2 + 1 ≤ i ≤ n+2k

2 − 1.

And from the work of Izeki [13],

Corollary 2.3. Let (Mn, g) be a compact locally conformally flat manifold with n =
2k + 1 or n = 2k + 2 satisfying

σ1(Ag) > 0 and σ2(Ag), . . . , σk(Ag) ≥ 0

Then there is a finite covering of M which is either diffeomorphic to Sn or a connected
sum of m copies of S1 × Sn−1.

Remark. Guan-Lin-Wang have recently proved corollary 2.2 independently (see [9]).
The case k = 1 already appeared in Bourguignon [2].
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3 Proof of the theorems

Remark. The proof is based on the case k = 2 (covered by Chang-Hang-Yang in [5]),
and the inductive formula developed in section 4.

The metric g in Ω is conformal to gc so it can be written as g = v−2
0 gc for some

v0 > 0. Call Λ = Sn\Ω the singular set. Assume, without loss of generality that the
North Pole N ∈ Ω, and for simplicity, that ∂Ω = Sn\Ω. We can transform the problem
from Sn to Rn through stereographic projection σ. Denote Λ̃ = σ(Λ) ⊂ Rn, that is a
compact set. Take r > 0 big enough so that Λ̃ ⊂⊂ Br.

The original metric in Ω transforms to a metric in Rn that is conformal to the
Euclidean one, call it gv = (σ−1)∗g = v−2|dx|2 for

v−2(x) = v−2
0 (σ−1(x))

(
2

1 + |x|2
)2

, x ∈ Rn

defined outside Λ̃. This v−1 is smooth as soon as we go far away from the singular set
Λ̃. For instance, there exists D > 0, 0 > θ > 1 such that |v−1| + |Dv| + |D2v| ≤ D if
|x| > r(1− θ).

Compute Agv and then σk := σk(Agv). Assumptions (4) and (5) translate to these
new σk because of their conformal invariance property. We will need the following
result from [5], proposition 8.1:

Lemma 3.1. Let Ω be a domain in Sn, n ≥ 3, be an open subset and g = v−2
0 gc a

complete metric in Ω conformal to the standard one gc. If Rg ≥ −C for some C > 0,
then v−1

0 (x) →∞ as x → ∂Ω.

In particular, we have for v,

lim
dist(x,Λ̃)→0

v−1(x) = ∞ (8)

Now denote, for λ > D,

Ωλ =
{

x ∈ Br\Λ̃ : v−1(x) < λ
}

(9)

The aim is to get a bound
∫

Ωλ

v−γdx ≤ C(γ) < ∞ (10)

for some suitable real γ, C independent of λ. Then, taking λ → ∞, and pulling back
to the sphere we would obtain

∫

Ω
v−γ
0 dvolgc ≤ C(γ) < ∞ (11)

The rest of the proof of theorems follows from in Schoen-Yau’s work (cf. [19], chapter
VI.2) for complete, l.c.f. manifolds of positive scalar curvature because an estimate
(11) gives a bound for the invariant

d(Ω) = inf
{

n− γ ∈ R :
∫

Ω
v−γ
0 dvolgc < ∞

}
(12)
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and the theorem will follow because

dimH(∂Ω) ≤ d(Ω)

Remark. The Hausdorff dimension estimate can be obtained without going through
Schoen-Yau’s work thanks to the following lemma and (21), for a suitable chosen γ.
Nevertheless, it is interesting to explore the relation to d(Ω) as we have done.

Lemma 3.2. Let F be a compact subset of Rn of empty interior. Assume that for
some r > 0 and α ≥ 1 we have F ⊂ Br and

∫

Br\F

(
1

dist(x, F )

)α

dx < ∞

then dimH(F ) ≤ n− α.

Proof. It is well known and can be found, for instance, in [5].

Now, the bound for (10) will follow from the assumptions (4) on the positivity of
σk, through an iteration method. The main lemma -which will be used repeatedly- is;

Lemma 3.3. If Λ̃, v−1, Ωλ, D, as above, then for any real number γ there exists
constants ck−s(γ) such that

∫

Ωλ

σkv
−γdx +

k∑

s=1

ck−s(γ)
∫

Ωλ

σk−s|∇v|2sv−γdx ≤ C (13)

for some C constant C = C(γ, D) but C not depending on λ. Also, ck−s(γ) > 0 for
s = 1, . . . , k if

γ < n− n− 2k

2
(14)

The proof of the lemma will be postponed for next sections. Now we resume the
proof of the theorem.

Claim 1. If we have the extra hypothesis σk ≥ C1 > 0, then
∫

Ωλ

v−γdx < C (15)

for any γ < n− n−2k
2 and some C = C(D, γ, C1) not depending on λ.

Proof. Follows easily from (13) because σ1, . . . , σk−1 > 0.

Claim 2. The assertion of claim 1 is true without the additional hypothesis σk ≥ C1 >
0.
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Proof. Look at the term with s = k in (13), since all the σk−s are positive by hypothesis,
we get for any γ < n− n−2k

2

∫

Ωλ

|∇v|2kv−γdx ≤ C < ∞ (16)

where C = C(γ, M). On the other hand, (13) for k = 1 and same γ gives
∫

Ωλ

σ1v
−γdx ≤ −c1−1(γ)

∫

Ωλ

|∇v|2v−γdx + C (17)

but we do not know the sign of the coefficient (−c1−1). Still using Holder in (17) we
arrive at

∫

Ωλ

σ1v
−γdx ≤ C̃ε

∫

Ωλ

|∇v|2kv−γdx + ε

∫

Ωλ

v−γdx + C ≤ Cε + ε

∫

Ωλ

v−γdx (18)

by (16). Taking ε = ε(k, C0, γ) small enough, the hypothesis σ1 ≥ C0 > 0 gives
∫

Ωλ

v−γdx ≤ C < ∞ for all γ > n− n− 2k

2

and C depends on D, γ, k, C0 but not on λ.

Claim 3. Theorem 1.1 follows.

Proof. The integral estimate (15) gives that
∫

Ω
v−γ
0 dvolgc ≤ C(γ) < ∞

for any γ < n− n−2k
2 . This implies dimH(∂Ω) ≤ d(Ω) ≤ n−2k

2 as we wanted. Note that
this part does not need the technical assumptions (5).

Claim 4. If, in addition, (5) is satisfied, then there exists some δ > 0 such that
∫

Ωλ

v−n+n−2k
2

−δdx < ∞ (19)

Proof. First of all, we have that Ricgv ≥ −C for some C > 0 as a consequence of the
Ricci bound (1) for k > 1 and the hypothesis that the scalar curvature is bounded from
below by a positive constant. This allows us to use Yau’s gradient estimates (see for
instance, [19], chapter VI, theorem 2.12), and so we have

|∇v| ≤ C in Br\Λ̃ ⊂ Rn (20)

v−1(x) ≥ C

dist(x, Λ̃)
for x ∈ Br\Λ̃ (21)
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Now observe that (13) for γ = n− n−2k
2 + δ will give:

∫

Ωλ

σkv
−γdx +

k−1∑

s=1

ck−s(γ)
∫

Ωλ

σk−s|∇v|2sv−γdx ≤ C − ck−k

∫

Ωλ

|∇v|2kv−γdx (22)

but now −ck−k = C(n, k)δ > 0, and ck−s(γ) > 0 for δ small enough, s = 1, . . . , k − 1.
Using again gradient estimates (20)

∫

Ωλ

|∇v|2kv−γdx .
∫

Ωλ

|∇v|2(k−1)v−γdx (23)

Since σ1 ≥ C0 > 0, together with (22) and (23) we arrive at

C0

∫

Ωλ

|∇v|2(k−1)v−γdx ≤
∫

Ωλ

σ1|∇v|2(k−1)v−γdx ≤ C + Cδ

∫

Ωλ

|∇v|2kv−γdx

. C + Cδ

∫

Ωλ

|∇v|2(k−1)v−γdx.

(24)

and thus, taking δ small enough we conclude from (24)
∫

Ωλ

|∇v|2(k−1)v−γdx < ∞ (25)

Putting together (23) and (25),
∫

Ωλ

|∇v|2kv−γdx < ∞

for γ = n− n−2k
2 + δ, and now proceeding as we did from (16) we achieve (19).

Theorem 1.2 follows from this last claim.

Remark. The conclusion of theorem (1.2) is also true for k = 1 if we add the extra
assumption Ric ≥ −C.

4 An ‘almost’ divergence formula for σk

For a general n × n matrix A, consider its eigenvalues λ1, . . . , λn and construct the
symmetric functions

σk(A) =
∑

i1<...<ik

λi1 . . . λik

Definition 4.1. Denote σk := σk(A); we can define the kth Newton tensor as

T k = σk − σk−1A + . . . + (−1)kAk = σkI − T k−1A (26)

Take σ0 := 1 and T 0
ij := δij . We can summarize a few well known properties in
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Lemma 4.2 ([6],[17]). We have

a. (n− k)σk(A) = trace(T k)

b. (k + 1)σk+1(A) = trace(AT k)

c. If σ1, . . . , σk > 0, then Tm is positive definite for m = 1, . . . k − 1.

d. If σ1, . . . , σk > 0, then also
σk ≤ Cn,kσ1

k

If we start with a manifold M with a metric gv = v−2|dx|2, we can compute the
Schouten tensor Ãgv and the matrix A = Agv at each point x ∈ M .

Remark. Here ∂̃j will denote the j − th covariant derivative with respect to the gv

metric, and ∂j denotes the usual Euclidean derivative. The strategy in the following
is just to translate all the covariant derivatives into derivatives with respect to the
Euclidean background metric, a task relatively straightforward due to the simple shape
of the metric.

Lemma 4.3 ([20]). Let A = Agv , then the Newton tensor Tm for m ≤ n− 1 defined
as in (26) is divergence-free with respect to the metric gv, i. e,

∑

j

∂̃jT
m
ij = 0 for all i

In this new metric g = gv = v−2|dx|2, write σk := σk(Ag) and compute:

• Christoffel symbols:

Γk
ij =

1
2

∑
s

gks (∂igsj + ∂jgis − ∂sgij) = −v−1 [viδkj + vjδik − vkδij ] (27)

• Covariant derivative of a (1,1)-tensor Bij :

∂̃jBij = ∂jBij −
∑

l

Γl
ijBlj +

∑

l

Γj
ljBil (28)

• Schouten tensor:
Ãij = vijv

−1 − 1
2 |∇v|2v−2δij

Aij = v2Ãij = vijv − 1
2 |∇v|2δij (29)

here vi means the Euclidean partial derivative of v. We will prove

Lemma 4.4.
∑

j

∂jT
m
ij = −(n−m)σmviv

−1 + n
∑

i

Tm
ij viv

−1 for each i (30)

mσm(Ag) = v
∑

i,j

∂j

(
viT

m−1
ij

)
− n

∑

i,j

Tm−1
ij vivj + n−m+1

2 σm−1|∇v|2 (31)
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Remark. Expression (31) is the key point for the later proofs. It shows the ‘almost”
divergence structure for σm, that resembles the structure of some linear PDE, plus
some terms of lower order m − 1, that will be handled through an inductive formula
developed in next section.

Proof. Using Lemma 4.3, and the definition of covariant derivative (28):

0 =
∑

j

∂̃jT
m
ij =

∑

j

(
∂jT

m
ij −

∑

l

Γl
ijT

m
lj +

∑

l

Γj
ljT

m
il

)
(32)

Now substitute (27),

0 =
∑

j

(
∂jT

m
ij + v−1

[
viT

m
jj + vjT

m
ij − vjT

m
ji

]− v−1
[
nvjT

m
ij + vjT

m
ij − vjT

m
ij

])

Lemma 4.2.a. gives the trace of Tm,

0 =
∑

j

∂jT
m
ij + (n−m)σmviv

−1 − n
∑

j

Tm
ij vjv

−1,

this establishes (30). To get (31) we use b. and then a.

mσm =
∑

i,j

Tm−1
ij Aij =

∑

i,j

Tm−1
ij

[
vvij − 1

2 |∇v|2δij

]

= v
∑

i,j

Tm−1
ij vij − n−m+1

2 σm−1|∇v|2

Substitute
∂j

(
Tm−1

ij vi

)
= Tm−1

ij vij + vi∂jT
m−1
ij

above and use (30) to get

mσm = v
∑

i,j

∂j

(
Tm−1

ij vi

)
− v

∑

i,j

vi

(
∂jT

m−1
ij

)
− n−m+1

2 σm−1|∇v|2

= v
∑

i,j

∂j

(
Tm−1

ij vi

)
+ (n−m + 1)σm−1|∇v|2 − n

∑

i,j

vivjT
m−1
ij

− n−m+1
2 σm−1|∇v|2

= v
∑

i,j

∂j

(
viT

m−1
ij

)
− n

∑

i,j

Tm−1
ij vivj + n−m+1

2 σm−1|∇v|2

We will need a technical formula that constitutes the main induction step:
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Lemma 4.5. Let U be an open set in Rn with smooth boundary, and v−1 ∈ C∞(U).
Denote ν = (ν1, . . . , νn) the outer normal to U and ds the (n− 1)-area element. Then
for 1 ≤ s ≤ k ≤ n integers and any γ real number,

∫

U

∑

i,j

T k−s
ij vivj |∇v|2(s−1)v−γdx

=
(
1 + k−s

2s

) ∫

U
σk−s|∇v|2sv−γdx + s+n+1−γ

2s

∫

U

∑

i,j

T k−s−1
ij vivj |∇v|2sv−γdx

−n−k+s+1
4s

∫

U
σk−s−1|∇v|2(s+1)v−γdx− 1

2s

∫

∂U

∑

i,j

T k−s−1
ij viνj |∇v|2sv1−γds

(33)

Proof. Using that
Tm

ij = σmδij −
∑

l

AilT
m−1
lj ,

and the expression for Aij (29) we arrive at
∫

U

∑

i,j

T k−s
ij vivj |∇v|2(s−1)v−γdx

=
∫

U
σk−s|∇v|2sv−γdx−

∫

U

∑

i,j,l

AilT
k−s−1
lj vivj |∇v|2(s−1)v−γdx

=
∫

U
σk−s|∇v|2sv−γdx−

∫

U

∑

i,j,l

vilT
k−s−1
lj vivj |∇v|2(s−1)v1−γdx

+1
2

∫

U

∑

ij

T k−s−1
ij vivj |∇v|2sv−γdx

(34)

Now look at the middle term above: through integration by parts we get

−
∫

U

∑

i,j,l

vilT
k−s−1
lj vivj |∇v|2(s−1)v1−γdx

= − 1
2s

∫

U

∑

j,l

∂l

(|∇v|2s
)
vjT

k−s−1
lj v1−γdx

= 1−γ
2s

∫

U

∑

j,l

T k−s−1
lj vlvj |∇v|2sv−γdx + 1

2s

∫

U

∑

j,l

∂l

(
vjT

k−s−1
lj

)
|∇v|2sv1−γdx

− 1
2s

∫

∂U

∑

j,l

T k−s−1
lj vjνl|∇v|2sv1−γds

(35)
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Substitute (31) into (35)
∫

U

∑

i,j,l

vilT
k−s−1
lj vivj |∇v|2(s−1)v1−γdx

= 1+n−γ
2s

∫

U

∑

i,j

T k−s−1
ij vivj |∇v|2sv−γdx + k−s

2s

∫

U
σk−s|∇v|2sv−γdx

− n−k+s+1
4s

∫

U
σk−s−1|∇v|2(s+1)v−γdx− 1

2s

∫

∂U

∑

j,l

T k−s−1
lj vjνl|∇v|2sv1−γds

(36)

We get (33) by substituting (36) into (34).

5 Proof of lemma 3.3

Integrate (31) over Ωλ and use integration by parts:

k

∫

Ωλ

σkv
−γ =

∫

Ωλ

∑

i,j

∂j

(
viT

k−1
ij

)
v1−γ − n

∫

Ωλ

∑

i,j

T k−1
ij vivjv

−γ

+n−k+1
2

∫

Ωλ

σk−1|∇v|2v−γ

=(γ − n− 1)
∫

Ωλ

∑

i,j

T k−1
ij vivjv

−γ + n−k+1
2

∫

Ωλ

σk−1|∇v|2v−γ

+
∫

∂Ωλ

∑

i,j

T k−1
ij viνjv

1−γds,

(37)

where ν = (ν1, . . . , νn) = − ∇v
|∇v| is the outer normal to ∂Ωλ. Now look at the boundary

of Ωλ

∂Ωλ = ∂Br ∪
{

x ∈ Br\Λ̃ : v−1(x) = λ
}

.

but actually for λ ≥ D the two sets are disjoint because of Λ̃ ⊂⊂ Br and the behavior
of v, so we get two boundary terms in (37):

∫

∂Ωλ

∑

i,j

T k−1
ij viνjv

1−γds =
∫

∂Br

. . . +
∫

{v−1=λ}
. . . (38)

The first part can be controlled by a constant C(D), not depending on λ. The second
boundary term is of the form

−
∫

{v−1=λ}

∑

i,j

T k−1
ij

vivj

|∇v| v
1−γds

and it has a sign because T k−1 is positive definite. Consequently, from (37) we get

k

∫

Ωλ

σkv
−γ ≤ (γ − n− 1)

∫

Ωλ

∑

i,j

T k−1
ij vivjv

−γ + n−k+1
2

∫

Ωλ

σk−1|∇v|2v−γ + C (39)
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Fix k and 1 ≤ s ≤ k integer. Define

Ik−s :=
(γ−n

s − 1
) ∫

Ωλ

∑

i,j

T k−s
ij vivj |∇v|2(s−1)v−γ + n−k+s

2s

∫

Ωλ

σk−s|∇v|2sv−γ (40)

then we see that expression (39) is nothing but the first step:

k

∫

Ωλ

σkv
−γ ≤ Ik−1 + C (41)

For the general step s, substitute (33) into (40)

Ik−s =
(

n−2k
2s + (γ−n)(k+s)

2s2

)∫

Ωλ

σk−s|∇v|2sv−γ +
(
1− γ−n

s

)
s+1
2s Ik−s−1

+
(n−γ

s + 1
)

1
2s

∫

∂Ωλ

∑

i,j

T k−s−1
ij viνj |∇v|2sv1−γds

(42)

The boundary term (actually, the two boundary terms) can be estimated in an analo-
gous manner as we did in (38), and as soon as n−γ

s + 1 > 0 we conclude from (42)

Ik−s ≤
(

n−2k
2s + (γ−n)(k+s)

2s2

)∫

Ωλ

σk−s|∇v|2sv−γ +
(
1− γ−n

s

)
s+1
2s Ik−s−1 + C (43)

Call ak−s = −
(

n−2k
2s + (γ−n)(k+s)

2s2

)
, s = 1, . . . , k. Substitute (43) into (41); an inductive

process using (43) several times gives
∫

Ωλ

σkv
−γ +

k∑

s=1

(ak−sbk−s)
∫

Ωλ

σk−s|∇v|2sv−γ ≤ C

for some constants bk−s that are positive because 1− γ−n
s > 0 if γ < n − n−2k

2 . Also,
all the coefficients ak−s are positive in this range of γ, so the lemma is proved.

6 Discussion about dimension n−2k
2

For k = 1 we have the dimension estimate dimH(∂Ω) ≤ n−2
2 . This is sharp, in the

sense that we can construct examples with singular set of dimensions as close as we
want to n−2

2 . For instance, Mazzeo-Pacard [15] construct metrics of constant positive
scalar curvature that are singular at any given disjoint union of smooth submanifolds
of Sn of dimensions 0 < ki ≤ n−2

2 .

The model problem is when the singular set is a meridian λ = Sl ⊂ Sn, here the
construction is simple because:

Lemma 6.1. Sn\Sl is conformal to Sn−l−1 × Hl+1 with its standard metric. In this
metric the Schouten tensor is diagonal and modulo a constant, its eigenvalues are 1
and −1, with multiplicities n− l − 1 and l + 1, respectively:

A =
1

n− 2

(
Ric− R

2(n− 1)
g

)
= cn




1
...

1 −1

...
−1
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Proof. Sn\Sl transforms to Rn\Rl through stereographic projection. Taking coordi-
nates y ∈ Rl, (r, θ) ∈ Rn−l polar, the flat metric in Rn is written as g0 = dr2 + r2dθ2 +
dy2. Consider now the conformal metric

g =
1
r2

g0 = dθ2 +
dr2 + dy2

r2

and this is the product metric on Sn−l−1 ×Hl+1.

In this section we will assume, without loss of generality, that cn = 1.

This example has scalar curvature R = n− 2l− 2, constant, positive when l < n−2
2 .

So basically, it shows that the dimension estimate is sharp. However, for bigger k this
example does not reach n−2k

2 . Indeed, the results of this section will tell us that the
best we can do in this particular example for fixed k > 1 and n >> k is dimH(Λ) ∼
n
2 − O(

√
n), n → ∞. The answer to the question: is n−2k

2 is sharp? is not known so
far, and maybe other type of constructions is needed.

Let’s go back to Hl+1 × Sn−l−1:

σr(Hl+1 × Sn−l−1) =
r∑

i=0

(
n− l − 1

i

)(
l + 1
r − i

)
(−1)r−i (44)

Fix 2 ≤ k < n
2 and define Pr(l) to be the polynomial of degree m given by expression

(44) in the variable l, for r = 1, . . . , k. We seek

lk = sup {l ≥ 0 : P1(l), . . . , Pk(l) > 0} (45)

Lemma 6.2. In this setting,

lk ≤ l2 ≤ n− 2
2

− 1
2
√

n.

Proof. Note that P1(l) > 0 if an only if l < n−2
2 . Now just look at P2, a second order

polynomial with roots l = n−2+
√

n
2 and l = n−2−√n

2 .

Let’s now look at the roots of Pk for k ≥ 2 fixed and study the behavior of lk when
n →∞.

Proposition 6.3. Fixed k > 1, let n →∞. Then

lk ∼ n− 2
2

− 0(
√

n)

more precisely
n

2
− C(k)

√
n ≤ lk ≤ n

2
− 2 +

√
n

2
for some constant C(k).
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Proof. Pk it is an even or odd polynomial around l = 1− n
2 , according to the parity of

k. Now change variables to l = −1 + n
2 + l̃, so P̃k(l̃) is symmetric (even or odd) around

zero and

P̃k(l̃) =
k∑

s=0

(n
2 − l̃

s

)(n
2 + l̃

k − s

)
(−1)k−s (46)

Lemma 6.4 does not give an exact answer but it tells us that

lk ≥ n

2
−O(

√
n)

The other side inequality follows from lemma 6.2.

Lemma 6.4. For k = 2m even, if the roots of P̃k are

−r1 ≤ −r2 ≤ . . . ≤ −rm ≤ rm ≤ . . . ≤ r1,

or for k = 2m + 1 odd, if P̃k has roots

−r1 ≤ −r2 ≤ . . . ≤ −rm ≤ 0 ≤ rm ≤ . . . ≤ r1,

then r1 = O(
√

n), when n →∞, fixed k. This means,

r1 ≤ C(k)
√

n for n →∞

Proof. Let’s do k even (the odd case follows similarly). By definition,

P̃k(l̃) =
m∏

i=1

(
l̃2 − r2

i

)
= l̃k + ak−2 l̃

k−2 + . . . + a0

where

ak−2 = −
m∑

i=1

r2
i (47)

On the other hand, we see from direct computation in (46) that

ak−2 =
1

4k!
Akn

2 + O(n) (48)

with

Ak =
k∑

s=0

(−1)k−s

(
k

s

)[(
s

2

)
−

(
s

1

)(
k − s

1

)
+

(
k − s

2

)]
(49)

It will be proved in the appendix that Ak = 0, thus the lemma follows from (47) and
(48).

Remark. As an illustrative example, for k = 3,

l3 =
n− 2−√−2 + 3n

2

and this is still far from n−6
2 .
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7 Case n < 2k

Proposition 7.1. Let k be an integer such that 3 ≤ n < 2k, and let g be a complete
metric on a domain Ω ⊂ Sn, conformal to gc with

σ1(Ag), . . . , σk(Ag) ≥ C0 > 0

Then Ω = Sn, i.e., there is no singular set.

Proof. The positivity of the k-curvatures implies that the Ricci tensor is positive def-
inite because of the estimate (1). Now, by the Bonnet-Myers theorem Ω must be
compact, and since Ω was by definition open, it must be the whole Sn.

Remark. When the dimension of the manifold is exactly n = 2k, estimate (1) only
gives Ric ≥ 0. Nevertheless, Guan-Viaclovsky-Wang proved, in the same paper, that
actually the Ricci tensor is positive definite at each point. Thus is we start with a
compact manifold M we can allow n = 2k:

Corollary 7.2. Let (Mn, g) be a compact l.c.f. manifold with

σ1(Ag), . . . , σk(Ag) > 0, 3 ≤ n ≤ 2k

Then M̃ is compact and moreover the image of the developing map is φ(M̃) = Sn so
the singular set Λ = Sn\φ(M̃) is empty.

A Appendix

Here we use a simple combinatorics argument to prove that

Lemma A.1. Ak = 0 for all k ∈ N, where Ak is defined as in (49).

Remark. By convention,
(
a
b

)
= 0 if a < b.

Proof. Define

Ek
s =

(
s

2

)
−

(
s

1

)(
k − s

1

)
+

(
k − s

2

)

so

Ak =
k∑

s=0

(−1)k−s

(
k

s

)
Ek

s

To understand the meaning of expression above, consider the following situation: fix
0 ≤ s ≤ k. From a set K of k elements, pick s and assign them the value −1. Assign
the value 1 to the rest (k− s) elements. Now pick any two elements in K and multiply
their values. Sum over all the possible combinations, that gives precisely the value of
Ek

s .

The proof goes by induction on k. k = 1 and k = 2 are easily checked. Assume
that Ak = 0, let’s try to prove that

Ak+2 :=
k+2∑

r=0

(
k + 2

r

)
(−1)k+2−rEk+2

r = 0.
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Following our interpretation, fix 0 ≤ r ≤ k + 2; we first need to pick r elements from
the k + 2. For that, we select first k of the k + 2 and then we pick; three possibilities
can happen:

1. All the r elements are among the selected k.

2. We pick r− 1 elements from those k, and then one of the two that were left. Call
r − 1 = s.

3. Pick r−2 elements from those k, and the two that were left apart. Denote r−2 = t.

Now we need to pick the pairs of ones and minus ones, and sum over all of them. With
this observations in sight we conclude:

(
k + 2

k

)−1

Ak+2 =
k∑

r=0

(−1)k+2−r

[(
r

2

)
−

(
r

1

)(
k + 2− r

1

)
+

(
k + 2− r

2

)]

+
k∑

s=0

2
(

k

s

)
(−1)k−s+1

[(
s

2

)
+

(
k − s

2

)
−

(
s

1

)(
k − s

1

)
− 1

]

+
k∑

t=0

(
k

t

)
(−1)k−t

[(
t

2

)
+

(
k − t

2

)
−

(
t

1

)(
k − t

1

)
+ 4t− 2k + 1

]

To finish, we just need to relate expression above to Ak:

(
k + 2

k

)−1

Ak+2 =
k∑

r=0

(
k

r

)
(−1)k−r

[
Ek

r + 2k − 4r + 1
]

−
k∑

s=0

2
(

k

s

)
(−1)k−s

[
Ek

s − 1
]

+
k∑

t=0

(
k

t

)
(−1)k−t

[
Ek

t − 2k + 4t + 1
]

Thus, Ak+2 = 0 because of our induction hypothesis.
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