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1 Introduction

Let B be the unit ball in Rn, n ≥ 3, carrying a conformally flat Riemannian metric
g = gv = v−2|dx|2 for some v−1 > 0; here |dx|2 denotes the Euclidean metric. Construct
the Schouten tensor as

Ãg =
1

n− 2

(
Ricg − 1

2(n− 1)
Rgg

)

where Ric and R are the Ricci tensor and the scalar curvature of the metric, respec-
tively. Let λ1, . . . , λn be the eigenvalues of the matrix Ag = g−1Ãg at each point, and
compute its kth elementary symmetric function:

σk := σk(Ag) =
∑

i1<...<ik

λi1 . . . λik

In the metric gv the Schouten tensor becomes

Agv = v(D2v)− 1
2
|∇v|2I

and thus σk curvatures give rise to interesting elliptic fully non-linear equations of
second order. As an example, for k = 2,

2σ2(v) =
[
(∆v)2 − |D2v|2] v2 − (n− 1)∆v|∇v|2v +

n(n− 1)
4

|∇v|4

The problem is elliptic (but in general, not uniformly elliptic) in the positive cone

Γ+
k = {v : σ1, . . . , σk(v) > 0}

These type of non-linear equations have an underlying divergence structure:

mσm = v∂j

(
viT

m−1
ij

)
− nTm−1

ij vivj + n−m+1
2 σm−1|∇v|2 (1)

where Tij denotes the Newton tensor. The non-divergence terms are of lower order and
indeed, they can be dealt through an inductive process. These facts were explored in
the previous paper [12], and are described in section 2.
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In this paper we are mostly interested in understanding the local behavior of sin-
gularities of the constant σk-curvature equation:

σk(v) = 1 on B\Λ
v > 0, v ∈ Γ+

k , n > 2k
(2)

where Λ ⊂ B, the singular set, is a compact subset of the unit ball in Rn.

The study of σk curvatures comes from conformal geometry: in fact, the full
Riemannian curvature tensor of a manifold (M, g) can be computed in terms of the
Schouten tensor through the formula (see [2]):

Riem = W + Ã©∧ g,

where ©∧ is the Kulkarni-Nomizu product, and W the Weyl tensor, a conformal invari-
ant. In particular, the scalar curvature is simply

σ1 = λ1 + . . . + λn =
1

2(n− 1)
R

From the point of view of calculus of variations, fixed (M, g0) a locally conformally
flat manifold of dimension n > 2k, we have that σk(v) = constant is precisely the
Euler-Lagrange equation for the functional

Fk(g) = (vol(g))−
n−2k

n

∫

M
σk(Ag)dvolg, (3)

where we take the infimum over all the metrics gv = v−2g0, v > 0. This functional was
first introduced by Viaclovsky [25], and it generalizes the Yamabe functional.

The sign of σk plays an important role understanding singularities. Indeed, in
[12] we looked at the singular set Λ̃ of a complete metric g on Sn\Λ̃, conformal to
the standard metric gc, for the case n > 2k. Under some positivity assumptions on
σ1, . . . , σk we were able to give an upper estimate for the Hausdorff dimension of this
singular set: dimH(Λ̃) ≤ n−2k

2 , together with some topological consequences. If we
translate the problem from Sn to Rn through stereographic projection, actually need
to study σk(v) for some gv = v−2|dx|2 defined on Rn\Λ. When the dimension is n < 2k
we saw that the singular set Λ̃ must be empty.

Here we are interested instead in the behavior of solutions of (2) near the singularity.
We will give a sufficient condition so that the function v−1 is bounded. This condition
is the smallness of volume of the metric gv; in our notation, vol(gv) =

∫
B v−ndx. The

methods we use are integral estimates and thus, we do not require a priori smoothness
of the function v−1. Note that we will be dealing mostly with the case n > 2k.

First look at the isolated singularity of

σk := σk(v) = 1 in B\{0}
v ∈ Γ+

k , v > 0, n > 2k
(4)
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Theorem 1.1. Let v−1 ∈ C3(B\{0}) be a solution of (4) such that
∫

ρ<|x|<1
v−n < a independently of ρ (5)

for some a > 0 small enough. Then
∫

ρ<|x|< 1
2

σk−s|∇v|2sv−ndx ≤ C(a)

for all s = 1, . . . , k, for some constant C(a) not depending on ρ > 0. In particular,
v−

n
2k ∈ W 1,2k

(
B1/2

)
and v−1 belongs to Lq̃(B1/2) for some q̃ > n.

Theorem 1.2. Under the same hypothesis as the previous theorem, if 0 < R < 1/2,
then

‖v−1‖L∞(BR) ≤
C

Rn/p
‖v−1‖Lp(B2R) (6)

for all

p > (n− 2k)
k

k + 1

Remark. Note that because of the -somewhat arbitrary- notation g = v−2|dx|2, we
are looking at regularity of the function v−1.

Corollary 1.3. In the same hypothesis as theorem 1.1, then also v−1 ∈ W 2,k(B 1
4
).

Corollary 1.4. The hypothesis v ∈ C3(B\{0}) can be relaxed to v−
n
k ∈ W 2,k

loc(B\{0})
and v−

n
2k ∈ W 1,k

loc(B\{0}) in theorems 1.1 and 1.2 (not in corollary 1.3).

In the case k = 1 the complete picture is understood. Indeed, substituting v−2 =
u

4
n−2 , the equation σ1(v) = 1 is equivalent to the constant scalar curvature equation

for gu

−∆u = u
n+2
n−2 (7)

Caffarelli-Gidas-Spruck [4] have given a complete local characterization of isolated sin-
gularities of this equation. Basically, if u is a positive solution of (7) on B\{0}, then
either the singularity is removable or the function has a determined asymptotic behavior
at the origin

C1

|x|n−2
2

≤ u(x) ≤ C2

|x|n−2
2

when |x| → 0 (8)

This is the type of result hoped for the σk problem; the present paper tries to give a
step forward towards this classification of singularities.

From another point of view, the radial solutions of −∆u = u
n+2
n−2 in Rn\{0} have

been well understood ([23]). Viaclovsky [25], in some cases, and then a recent paper
of Chang-Han-Yang [7], for the complete picture, have computed the radial singular
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solutions of σk(v) = 1 defined on an annulus. Although the computations are more
delicate, it turns out radial solutions with an isolated singularity still behave asymp-
totically like (8) when n > 2k. This seems to be a more interesting case because when
n < 2k, there are no singular radial solutions.

The global problem in Rn -that is equivalent to having an isolated singularity at
infinity-

σk(v) = 1 in Rn

has been well understood by Chang-Gursky-Yang [5], [6], Li-Li [18]. Indeed, a positive
C2(Rn) solution must be of the form

v−1(x) = c(n, k)
a

1 + a2|x− x̄|2

for some a > 0, x̄ ∈ Rn, i.e., it comes from the standard metric on Sn (or its image
under a conformal diffeomorphism).

Adding the finite volume condition to the theorem above, we are able to remove
the a-priori smoothness assumption, and we can give the related result:

Theorem 1.5. Let p1, . . . , pN be a finite number of points, and v a solution of

σk(v) = 1 in Rn\{p1, . . . , pN}
v > 0, v ∈ Γ+

k , n > 2(k + 1)
(9)

satisfying v−1 ∈ C3(Rn\{p1, . . . , pN}) with finite volume
∫
Rn v−n < ∞. Then the point

singularities are removable and v comes from a conformal diffeomorphism of the sphere
through stereographic projection, i.e., there exist x̄ ∈ Rn, a > 0 such that

v−1(x) = c(n, k)
a

1 + a2|x− x̄|2

Corollary 1.6. The v−1 ∈ C3(Rn\{p1, . . . , pN}) assumption in the theorem above can
be relaxed to v−1 ∈ L∞loc ∩W 2,k+1

loc ∩W
1,2(k+1)

loc (Rn\{p1, . . . , pN}), and D3v well defined
in Rn\{p1, . . . , pN}.
Remark. The assumption n > 2(k + 1) is a technical one and we expect the theorem
to be true for n > 2k. In particular, for k = 2, the theorem was proved for n ≥ 5 by
Chang-Gursky-Yang [6]. Note that in their proof, the volume finiteness requirement is
not needed for the case n = 5.

Note that Schoen [22] constructed a complete metric on Sn\{p1, . . . , pN} with con-
stant scalar curvature. In particular, the previous theorem gives a partial inverse: there
are no singular metrics on the sphere of finite volume with constant σk curvature.

As we mentioned before, the crucial idea in the proofs is the understanding the
‘almost’ divergence structure of the equation, (1). This summarized in section 2. With
those we are able to prove a Sobolev type inequality of the form

∫
σkdvolgv &

k∑

s=1

∫
σk−s|∇v|2sdvolgv
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A simple consequence of above formula is
∫

σkdvolgv ≥ C (vol(gv))
n−2k

n

for functions in the positive cone Γ+
k . This type of geometric inequalities has been devel-

oped in conformal geometry problems to understand the minimization of the functional
(3). Note the related work of Guan-Wang [13]. For Hessian equations, σk = σk(D2v),
there exist similar Sobolev inequalities (see [3] for a reference), however, it seems that
the structure of σk(Agv) is easier to understand that the one of σk(D2v).

Now, this inequality allows to adapt the Moser iteration scheme for equations in
divergence form, together with an inductive study of the errors. Here is where the small
volume hypothesis is used in a crucial way. This proves the L∞ estimate of theorem
1.2 (section 4).

The L∞ estimates for n = 4, k = 2 have been obtained independently by Han [15],
using also a divergence formula of the type (1). In fact, σk in dimension n = 2k can be
written in a purely divergence form without lower order terms.

Section 5 deals with the proof of theorem 1.5. The idea is to refine a standard Obata
type argument, together with the L∞ estimates obtained. The main improvement is
that it does not require the gradient estimates by Guan-Wang [14] and thus, some
smoothness hypothesis can be removed.

The same methods can be used to treat the more general problem (2), if we give
some capacity conditions on the singular set Λ. The classical notion of capacity ck,p(Λ)
was introduced to study linear and quasilinear PDE (a complete reference can be found
in [19]). In particular, for the Laplacian problem (7) the Newtonian capacity c1,2 is the
suitable one; see for instance, Chen-Lin [8]. For fully nonlinear equations a new notion
of capacity c̃ is required, this is done in section 6.

For Hessian equations of the type σk(D2v) Trudinger-Wang [24], Labutin [16] con-
sidered a related notion of capacity in terms of potential theory, however, it is not
known if this notion is equivalent to c̃.

Theorem 1.7. Let Λ ⊂ BR ⊂ Rn be a compact set, R < 1, with capacity

c̃k,p(Λ, BR) = 0

for a given 2k < p ≤ n. Let v−1 in Lq for some

q ≥ n and q > (n− 2k)
k

k + 1

(
p

p− 2k

)

be a solution of (2) with
‖v−1‖n

Ln < a (10)

for some a > 0 small enough. Then v−1 belongs to Lq̃ for some q̃ > n in a smaller
ball. Also,

‖v−1‖L∞(BR) ≤
C

Rn/p
‖v−1‖Lp(B2R) (11)

for all

p > (n− 2k)
k

k + 1
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In particular, we have the analogous to theorem 1.5:

Corollary 1.8. Let Λ be a finite disjoint union of compact, closed, smooth submanifolds
Λi of dimensions 0 ≤ ki < n(n−2k)

n+2k2 , and v a solution of

σk(v) = 1 on Rn\Λ
v > 0, v ∈ Γ+

k , n > 2(k + 1)
(12)

satisfying v−
n
k ∈ W 2,k

loc(R
n\Λ) and v−

n
2k ∈ W 1,2k

loc (Rn\Λ) with finite volume
∫
Rn v−n <

∞, D3v well defined on Rn\Λ. Then the singularities are removable and v comes from
a conformal diffeomorphism of the sphere through stereographic projection, i.e., there
exist x̄ ∈ Rn, a > 0 such that

v−1(x) = c(n, k)
a

1 + a2|x− x̄|2

Remark. Note that Mazzeo-Pacard [20] have constructed a positive constant scalar
curvature metric on Sn that is singular exactly along a finite disjoint union of smooth
submanifolds Λi of dimensions 0 ≤ ki ≤ n−2

2 .

The main open problem now is to get a complete classification of singularities for
for (4) in the manner of Caffarelli-Gidas-Spruck [4]. Nevertheless, this classification is
true for subcritical equations. Indeed, in the forthcoming paper [11] we prove:

Theorem 1.9. Fix α ∈ (0, α0). Let v be a solution of

σk(v) = vα in B\{0}
v > 0, v ∈ Γ+

k

for α0 small enough given in the proof, n > 2(k + 1), with v−1 ∈ C3(B\{0}). If the
function v−1 is not bounded near the origin, then there exists C1, C2 positive constants
such that

C1

|x| 2k
2k−α

≤ v−1(x) ≤ C2

|x| 2k
2k−α

when |x| → 0

The appendix contains some remarks about the relation between the PDE’s we
address in this paper and Hessian-type equations.

2 Algebraic properties of σk

For a general n × n matrix A, consider its eigenvalues λ1, . . . , λn, and construct the
symmetric functions σk. The Newton tensor given by

T k = σk − σk−1A + . . . + (−1)kAk = σkI − T k−1A (13)

By definition, take σ0 := 1 and T 0
ij := δij . Let us mention the work of Gȧrding

[9], Reilly [21], Viaclovsky [25]. Some well known properties are summarized in the
following lemma:
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Lemma 2.1 ([9], [21]). For A, T k as above,

a. (n− k)σk = trace(T k)

b. (k + 1)σk+1 = trace(AT k)

c. If σ1, . . . , σk > 0, then Tm is positive definite for m = 1, . . . k − 1.

d. If σ1, . . . , σk > 0, then also
σk ≤ Cn,k(σ1)k

The key point is expression (15): it shows the ‘almost’ divergence structure for σm,
that resembles the structure of some linear PDE, plus some terms of lower order m−1,
that will be handled through the inductive formula (16). The proof of the following
two lemmas can be found in the previous work [12]. Note that all the integrals are with
respect to dx.

Lemma 2.2. For a metric gv = v−2|dx|2, if A = Agv , then

Aij = vijv − 1
2 |∇v|2δij (14)

mσm(Ag) = v
∑

i,j

∂j

(
viT

m−1
ij

)
− n

∑

i,j

Tm−1
ij vivj + n−m+1

2 σm−1|∇v|2 (15)

Lemma 2.3. Let U be a domain in Rn, v−1 ∈ C∞(U) and ϕ ∈ C∞0 (U) a smooth cutoff.
Then for 1 ≤ s ≤ k ≤ n integers and γ any real number,
∫

U

∑

i,j

T k−s
ij vivj |∇v|2(s−1)ϕ2kv−γ

=
(
1 + k−s

2s

) ∫

U
σk−s|∇v|2sϕ2kv−γ + s+n+1−γ

2s

∫

U

∑

i,j

T k−s−1
ij vivj |∇v|2sϕ2kv−γ

−n−k+s+1
4s

∫

U
σk−s−1|∇v|2(s+1)ϕ2kv−γ + k

s

∫

U

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1v1−γ

(16)

3 A Sobolev-type inequality for σk

Using the ingredients developed in the last section we can give an integral expression
(17) relating σk to smaller σk−s. The proof of (17) follows the ideas in [12], but the
difference (and main difficulty) is to get the coefficients in front of the integrals with
the right sign.
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Proposition 3.1. Let U be a domain in Rn, n > 2k. Assume that v−1 ∈ C3
0(U),

v ∈ Γ+
k and fix γ ∈ R. Then, fixed {αk−s}k−1

s=1 positive real numbers, there exists a
decomposition

k

∫

U
σkv

−γ =
k−1∑

s=1

dk−sDk−s +
k−1∑

s=1

ck−s

∫

U
σk−s|∇v|2sv−γ + ck−k

∫

U
|∇v|2kv−γ , (17)

where
Dk−s =

(− s+n−γ
s + αk−s

) ∫

U

∑

i,j

T k−s
ij vivj |∇v|2(s−1)v−γ

for some constants dk−s, ck−s ∈ R; ck−s depending on the α’s. Moreover,

1. dk−s > 0

2. Dk−s ≥ 0 if αk−s ≥ s+n−γ
s

3. ck−s > 0 if 0 < αk−s < n−k+s
k+s

Remark. For γ > n − n−2k
k+1 , we can pick some {αk−s}k−1

s=1 such that both conditions
2., 3. are satisfied at the same time: ck−s > 0, Dk−s ≥ 0.

If v−1 does not have compact support, we can compute in the same fashion:

Corollary 3.2. Let v−1 ∈ C3(U), v > 0, v ∈ Γ+
k , n > 2k. Then for all ϕ ∈ C∞0 (U),

∫

U
σkϕ

2kv−γ ≥
k∑

s=1

ck−s(γ)
∫

U
σk−s|∇v|2sϕ2kv−γ + E(ϕ) (18)

where

E(ϕ) .
k∑

s=1

∣∣∣∣∣∣

∫

U

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1v1−γ

∣∣∣∣∣∣
and all the coefficients

ck−s(γ) > 0 for all γ > n− n− 2k

k + 1

The proof of above corollary will be postponed until the end of the section.

Corollary 3.3. If v−1 ∈ C∞0 (Rn), v > 0, v ∈ Γ+
k , n > 2k, then

∫
σkv

−n ≥
k∑

s=1

Ck−s

∫
σk−s|∇v|2sv−n

where Ck−s > 0 for all s = 1, . . . , k. In particular, denoting gv = v−2|dx|2,
∫

σk(Agv)dvolgv ≥ C (vol(gv))
n−2k

n (19)

where C depends on k, n but not on v, and vol(gv) =
∫

v−ndx.
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Proof. Take γ = n in proposition 3.1, and αk−s = s+n−γ
s so that Dk−s = 0. For the

last part, simply use the Sobolev embedding W 1,2k ↪→ Lp∗ with 1
p∗ = 1

2k − 1
n ,

∫
|∇v|2kv−n = C

∫ ∣∣∣∇
(
v−

n−2k
2k

)∣∣∣
2k
≥ C

(∫
v−n

)n−2k
n

Remark. This method does not give best constant in (19). However, in can be proved
that the infimum of (3) is achieved at the sphere, through a gluing method in analogy
to the Yamabe problem (see Lee-Parker [17] for a survey in the Yamabe problem).
Note the work Guan-Wang [13].

Remark. As we have mentioned, this inequality resembles some isoperimetric inequal-
ities for Hessian equations, σk(D2v) (see [3] for a reference). However, it is precisely the
special structure of the Schouten tensor Agv

ij what allowed us to prove the inequality -
the understanding of the lower orders played a crucial role.

Proof. of proposition 3.1: Fix γ ∈ R, integrate expression (15) over U and use inte-
gration by parts:

k

∫
σkv

−γ =
∫ ∑

i,j

∂j


vi

∑

i,j

T k−1
ij


 v1−γ − n

∫ ∑

i,j

T k−1
ij vivjv

−γ

+ n−k+1
2

∫
σk−1|∇v|2v−γ

= (−1 + γ − n)
∫ ∑

i,j

vivjT
k−1
ij v−γ + n−k+1

2

∫
σk−1|∇v|2v−γ

(20)

We could substitute directly expression (16) into (20) inductively. However, to get a
precise control on the sign of the coefficients a more careful computation is needed and
so we split in the following manner: for s = 1, . . . , k, let

Ak−s = −αk−s

∫ ∑

i,j

T k−s
ij vivj |∇v|2(s−1)v−γ + n−k+s

2s

∫
σk−s|∇v|2sv−γ

Dk−s =
(− s+n−γ

s + αk−s

) ∫ ∑

i,j

T k−s
ij vivj |∇v|2(s−1)v−γ

Substitute (16) into Ak−s to prove the induction step:

Ak−s =
[

n−k+s
2s − αk−s

(
1 + k−s

2s

)] ∫
σk−s|∇v|2sv−γ

+ αk−s
s+1
2s


− s+n−γ+1

s+1

∫ ∑

i,j

T k−s−1
ij vivj |∇v|2sv−γ




+ αk−s
s+1
2s

(
n−k+s+1

2(s+1)

∫
σk−s−1|∇v|2(s+1)v−γ

)

= c̃k−s

∫
σk−s|∇v|2sv−γ + d̃k−s (Ak−s−1 +Dk−s−1)

(21)
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for c̃k−s = n−k+s
2s − αk−s

(
1 + k−s

2s

)
and some constants d̃k−s > 0. Now (17) follows by

substituting (21) into (20) inductively.

Note that T k−s is positive definite. We want c̃k−s > 0, i.e.,

0 < αk−s < n−k+s
k+s

We also want Dk−s ≥ 0, i.e.,
αk−s ≥ s+n−γ

s

Proof. of corollary 3.2: We just need to take into account the terms
∫

U

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1v1−γ

that appear in the integration by parts (20) and (16) when there is a cutoff function ϕ
involved.

4 Moser iteration argument

Here we give the proofs of theorems 1.1 and 1.2. All the integrations will be Euclidean
over the unit ball B unless it is written otherwise. Call χ = n

n−2k > 1.
First note that v−1 is bounded from below by a positive constant, because of su-

perharmonicity (lemma 6.5 for Λ = {0}).

Proof. of Theorem 1.1: The proof is basically a Moser-Trudinger iteration, using
expression (18) with the right test function: fix 0 < ρ < 1 small and let η be smooth
cutoff such that

η =
{

1 if 0 < |x| < ρ
0 if 2ρ < |x| (22)

and φ ∈ C∞0 (B). Now ϕ = (1−η)φ has compact support on B\{0}. Fix δ, β > n− n−2k
k+1

real numbers, m ∈ N and take

V = Vm = min{v−β,mv−δ}

Call Bβ = {x : V = v−β}, Bδ = {x : V = mv−δ}. We would like to use V ϕ2k as a test
function. However, we need to rewrite the proof of (17) and (18) for this new function
V instead of just v−γ . Basically, the inductive process follows the same way just by
taking into account the different subsets Bβ, Bδ. So we have the analogous to (18)

E(ϕ) +
∫

B
σkV ϕ2k

&
k∑

s=1

ck−s(β)
∫

Bβ

σk−s|∇v|2ϕ2kv−β +
k∑

s=1

dk−s(δ)m
∫

Bδ

σk−s|∇v|2ϕ2kv−δ

(23)
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with cs, ds > 0 because δ, β > n− n−2k
k+1 and error

E(ϕ) ≤
k∑

s=1

ek−s(β)

∣∣∣∣∣∣

∫

Bβ

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1vV

∣∣∣∣∣∣

+
k∑

s=1

ek−s(δ)

∣∣∣∣∣∣

∫

Bδ

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1vV

∣∣∣∣∣∣

(24)

Remark. For simplicity, we will just write

E(ϕ) ≤
k∑

s=1

ek−s(β, δ)

∣∣∣∣∣∣

∫

Bβ∪Bδ

∑

i,j

T k−s
ij vjϕi|∇v|2(s−1)ϕ2k−1vV

∣∣∣∣∣∣

In general, we will use the following notation convention throughout the rest of the
section:

c(β, δ)
∫

Bβ∪Bδ

. . . := c(β)
∫

Bβ

. . . + c(δ)
∫

Bδ
. . .

although the coefficients in front of the integration are different in each of the subsets
Bβ, Bδ.

To estimate this error term we need a little algebra lemma:

Lemma 4.1. If σ1, . . . , σm > 0, m ≤ n, then

|Tm−1
ij xiyj | ≤ Cm,nσm−1|x||y|

for all vectors x = (x1, . . . , xn), y = (y1, . . . , yn).

Proof. Follows basically because Tm−1 is positive definite. To estimate its norm we
just need to look at the biggest eigenvalue. We are done because

trace(Tm−1) = (n−m)σm−1

Now we can say

E(ϕ) .
k∑

s=1

ek−s(β, δ)
∫

Bβ∪Bδ

σk−s|∇ϕ||∇v|2(s−1)+1ϕ2k−1vV

We want to use Hölder with some small ε > 0; there exists Cε such that

ab ≤ εap + Cεb
q, 1 =

1
p

+
1
q

11



Take p = 2s
2(s−1)+1 , q = 2s:

E(ϕ) ≤
k∑

s=1

e1
k−s

∫

Bβ∪Bδ

σk−s|∇v|2sϕ2kV

+
k∑

s=1

e2
k−s

∫

Bβ∪Bδ

σk−s|∇ϕ|2sϕ2k−2sv2sV

(25)

Fixed β, δ, we can choose e1
k−s = e1

k−s(β, δ) wisely small and absorb the first term of
(25) into the right hand side of (23) and thus:

k∑

s=1

ck−s

∫

Bβ∪Bδ

σk−s|∇v|2sϕ2kV

.
∫

Bβ∪Bδ

V ϕ2k +
k∑

s=1

e2
k−s

∫

Bβ∪Bδ

σk−s|∇ϕ|2sϕ2k−2sv2sV

(26)

We still need to control the ‘bad’ term in (26)

B :=
∫

B
V ϕ2k (27)

For that we will use the ‘good’ term when s = k in the right hand side of (26):

G := ck−k

∫

Bβ∪Bδ

|∇v|2kϕ2kV (28)

Lemma 4.2. If
∫

v−n < a,

B ≤ Cβ,δ

(
a

2k
n G + E(ϕ)

)

with constant C depending on δ, β but not on v.

Proof. Call F = V v2kϕ2k, then this good term satisfies

G ≥ Cβ,δ

∫

B
|∇F

1
2k | 1

2k (29)

plus some terms in derivatives of ϕ that we will be able to absorb into E(ϕ). F is a
compactly supported function on the unit ball B. Sobolev embedding W 1,2k ↪→ Lp∗

with 1
p∗ = 1

2k − 1
n gives

∫

B
|∇F

1
2k |2k ≥ C

(∫

B
Fχ

)1/χ

(30)

Now use Hölder with p = n
2k , q = χ to give the estimate for the bad term:

B =
∫

B
V ϕ2k =

∫

B
Fv−2k .

(∫

B
Fχ

)1/χ (∫

B
v−n

) 2k
n

(31)

This proves the lemma.

12



Let us continue with the proof of the theorem. By the assumption of smallness of
volume and the lemma, for β, δ fixed we can absorb the bad term (27) into (28) and
from (26) we get

k∑

s=1

ck−s(β, δ)
∫

Bβ∪Bδ

σk−s|∇v|2sϕ2kV ≤
k∑

s=1

dk−s(β, δ)
∫

Bβ∪Bδ

σk−s|∇ϕ|2sϕ2k−2sv2sV

(32)

Remark. This is the place where the hypothesis of volume small is used in a crucial
way.

We will refer to the terms

k∑

s=1

∫
σk−s|∇v|2sϕ2kV

in the left hand side of (32) as ‘good’ terms, and the terms with derivatives in ϕ =
(1− η)φ as ‘error’ terms. Because of our divergence formula

(k − s)σk−s = v∂j

(
viT

k−s−1
ij

)
− nT k−s−1

ij vivj + n−k+s+1
2 σk−s−1|∇v|2

we see that the error terms can be estimated by

k∑

s=1

∫
σk−s|∇ϕ|2sϕ2k−2sv2sV .

k∑

s=1

∫
σk−s−1|∇v|2|∇ϕ|2sϕ2k−2sv2sV

+
k∑

s=1

∫
σk−s−1|∇v| ∣∣∇|∇ϕ|2s

∣∣ϕ2k−2sv2s+1V

+
k∑

s=1

∫
σk−s−1|∇v||∇ϕ|2s+1ϕ2k−2s−1v2s+1V

=:
k∑

s=1

(I + II + III)

(33)

Now let’s study the errors I, II, III one by one: use Hölder with p = s + 1, q = s+1
s

for some ε > 0,

I . ε

∫
σk−s−1|∇v|2(s+1)ϕ2kV + Cε

∫
σk−s−1|∇ϕ|2(s+1)ϕ2k−2(s+1)v2(s+1)V

The first part can be absorbed in the good terms as soon as we take ε > 0 small enough,
and the second will be handled by an induction process, as we will see in a few lines.
Hölder again with p = 2(s + 1), q = 2(s+1)

2s+1 gives:

II . ε

∫
σk−s−1|∇v|2(s+1)ϕ2kV

+ Cε

∫
σk−s−1

∣∣∇|∇ϕ|2s
∣∣ 2(s+1)
2(s+1)−1 ϕ2kϕ−2s

2(s+1)
2s+1 v2(s+1)V

13



Again, the first part gets absorbed and for the second, induction. And finally, take
p = q = 2,

III . ε

∫
σk−s−1|∇v|2|∇ϕ|2sϕ2k−2sV + Cε

∫
σk−s−1|∇ϕ|2(s+1)ϕ2k−2(s+1)v2(s+1)V

The first part is of type I and the second goes to the induction process. Basically, we
are left with terms that contain 2(s + 1) derivatives in ϕ, and those are the ones that
will be handled by induction as follows: we will consider

Us = Us(ϕ) = group of derivatives of ϕ of order exactly 2s

They will be defined inductively. The starting point is Us = |∇ϕ|2s, αU = 2s; we have
reduced the errors in (33) to errors containing Us+1.

For the general induction step, assume we have an error term of the form
∫

σk−sUsϕ
2kϕ−αU v2sV (34)

Analogous Hölder estimates allow us to reduce it to an error term in Us+1, and continue
the induction process until we arrive to Uk: as before, (34) can be estimated by the
following three terms:

I =
∫

σk−s−1|∇v|2Usϕ
2k−αU v2sV

. ε

∫
σk−s−1|∇v|2(s+1)ϕ2kV + Cε

∫
σk−s−1 (Us)

s+1
s ϕ2k−αU

s+1
s v2s+2V

II =
∫

σk−s−1|∇v|(∇Us)ϕ2k−αU v2s+1V

. ε

∫
σk−s−1|∇v|2(s+1)ϕ2kV + Cε

∫
σk−s−1 |∇Us|

2(s+1)
2(s+1)−1 ϕ

2k−αU

�
2(s+1)

2(s+1)−1

�
v2s+2V

III =
∫

σk−s−1|∇v||∇ϕ|Usϕ
2k−αU−1v2s+1V

. ε

∫
σk−s−1|∇v|2Usϕ

2k−αU v2sV + Cε

∫
σk−s−1

[|∇ϕ|2Us

]
ϕ2k−αU−2v2(s+1)V

Here we have terms that can be absorbed and terms in Us+1 only, so the induction step
is proved.

At the last step s = k we will have error terms that can be handled as follows
∫

Uk(ϕ)ϕ2k−αU v2kV 6
(∫ (

Uk(ϕ)ϕ2k−αU

)p
)1/p (∫ (

v2kV
)q

)1/q

(35)

where Uk = Uk(ϕ), ϕ = (1− η)φ, 1
p + 1

q = 1. Note that we do not have to worry about
the exponents 2k − αU being positive because we could have started with a higher
power of ϕ. Now, the part of φ is controlled because it is a smooth fixed function on
the ball, so φ and its derivatives are bounded by a constant. Thus we only need to
worry about the cutoff η. Choose the η defined in (22) satisfying

Uk(η) ≤ c

ρ2k

14



We basically want (35) to tend to zero when ρ → 0, i.e, we want both

1
ρ2k

ρn/p → 0 when ρ → 0

and ∫ (
v2kV

)q
≤ m

∫
v(2k−δ)q < ∞

at the same time. And it can be done: there exists δ > n− n−2k
k+1 such that q(2k− δ) =

−n, and n
p − 2k > 0.

This basically shows that we can forget about the point singularity and that for all
φ ∈ C∞0 (B):

k∑

s=1

ck−s(β, δ)
∫

Bβ∪Bδ

σk−s|∇v|2sφ2kVm .
∫

B
Uk(φ)φ2k−αU v2kVm (36)

fixed δ as before, for all β > n − n−2k
k+1 . We actually only need one good term in the

sum (36) so ∫

B
|∇v|2kφ2kVm ≤ C(β, δ)

∫

Bβ∪Bδ

Uk(φ)φ2k−αU v2kVm

We had Vm = inf{v−γ ,mv−δ}. Note that v−1 is bounded from below and let m →∞.
We arrive at ∫

|∇v|2kφ2kv−β ≤ c(β)
∫

Uk(φ)φ2k−αU v2k−β (37)

φ is smooth, so Uk(φ) is bounded by constant. Call −β̃ = 2k − β and use Sobolev
(don’t worry about terms with derivatives in φ because they can be handled as the rest
of the errors).

∫
v−β̃ &

∫
|∇v|2kv−β &

∫ ∣∣∣∣∇
(

v−
β̃
2k φ

)∣∣∣∣
2k

&
(∫

v−χβ̃φχ

)1/χ

(38)

If we start with fixed β̃ = n, the theorem is proved because χ = n
n−2k > 1.

Proof. of theorem 1.2: Once a Lq̃ estimate is reached for some q̃ > n, the L∞ estimate
follows by a well known Moser iteration argument, by iteration of (37). Fix R < 1

2 and
choose a cutoff φ as

φ =
{

1 if 0 < |x| < R
0 if 2R < |x| < 1

and
Uk(φ) . c

R2k

Call β̃ = β − 2k. From (37) and Sobolev embedding we get

(∫

BR

(v−1)χβ̃

)1/χ

≤ C(β)
R2k

∫

B2R

(v−1)β̃

15



for β̃ > n− n−2k
k+1 − 2k. Take β̃−root on both sides

‖v−1‖
Lβ̃χ(BR)

≤
(

C(β)
R2k

) 1
β̃ ‖v−1‖

Lβ̃(B2R)
(39)

for χ = n
n−2k > 1.

We actually need to be careful with the dependence C = C(β) because we will let
β →∞. In particular, lemma 4.2 needs to be replaced by:

Lemma 4.3. For any ε > 0, if v−1 ∈ Lq̃ for some q̃ > n, then

B ≤ C1εG + C2E(φ)

for some constant C1 = C1(δ) but not depending on β, and C2 = C2(β, δ, ε).

Proof. Denote q̃
2k = q, 1 = 1

p + 1
q . By hypothesis, 1 < p < χ = n

n−2k . Call F :=
V v2kϕ2k. Using Hölder with those p, q, the bad term satisfies

B =
∫

B
V ϕ2k ≤

(∫
v−q̃

) 1
q
(∫

F p

) 1
p

(40)

There exists 0 < λ < 1 such that p = λ+(1−λ)χ so we can use interpolation to control
the second term:

(∫
F p

) 1
p

≤
(∫

F

) 1−λ
p

(∫
Fχ

)λ
p

=
[∫

Fχ

] 1
χ

[(∫
F

)(∫
Fχ

)− 1
χ

]λ
p

(41)

Fix ε > 0 small. Since λ
p < 1, Young’s inequality with ε̃ reads

x
λ
p ≤ Cε̃x + ε̃

If we substitute x =
(∫

F
) (∫

Fχ
)− 1

χ , together with (41) we get

(∫
F p

) 1
p

≤ ε

(∫
Fχ

) 1
χ

+ Cε

∫
F

Now, from (40), using the hypothesis on v,

B . ε̃

(∫
Fχ

) 1
χ

+ Cε̃

∫
F (42)

On the other hand, fixed δ, we had proved in (30) that

G ≥ C−1
β

(∫
Fχ

) 1
χ

+ C−1
β E(ϕ)

For each β, choose ε̃ = ε̃(β, ε) small enough and the lemma follows. (The part
∫

F in
(42) will be included in E(ϕ)).
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Taking into account that limβ→∞C(β)1/β = C0, expression (39) is the estimate
we needed. From here we can iterate to get an L∞ bound using the argument by
Moser, that we sketch here (a good reference is [10], chapter 8): call pm = χmp,
Rm = R

(
1 + 1

2 + . . . + 1
2m

)
. Applying (39) inductively,

‖v−1‖Lpm (BR) ≤ C

(
1
R

)Pm−1
i=1

2k
χip

(
C

2

)Pm−1
i=0

2k(i+1)

χip ‖v−1‖Lp(B2R)

Use that, for χ = n
n−2k > 1,

∞∑

i=0

2k

χip
=

n

p
and

∞∑

i=0

i

χi
< ∞

to arrive at
‖v−1‖L∞(BR) ≤

C

Rn/p
‖v−1‖Lp(B2R)

for all
p > (n− 2k)

k

k + 1
.

Corollary 4.4 (Harnack inequality). Let v as in theorem 1.1. Then

sup
B1/2

v−1 ≤ C inf
B1/2

v−1

for some constant C depending on a, k, n, but not on v.

Proof. Once we have the L∞ estimate (6), the estimate of inf v−1 follows from standard
elliptic theory since a function in the positive cone Γ+

k is automatically superharmonic.

Proof. of corollary 1.3: Once a L∞ estimate is reached, it is well known that C0

estimates imply C2 estimates for the σk equation, by the gradient estimates of Guan-
Wang [14], Li-Li [18] (theorem 1.6.). These estimates are true even if v−1 has an
isolated singularity, using a simple covering argument by Li-Li that we sketch here:

Assume that we have proved c1 ≤ v−1(x) ≤ c2 for all x ∈ B. Now, fixed r < 2
3 ,

define
vr(y) =

1
r
v (ry) for y ∈ B 3

2
, x = ry

Cover the circle |ȳ| = 1 by balls
{

B 1
2
(ȳ) : |ȳ| = 1

}
. This vr is still a solution of

σk(vR) = 1 for all y in B 1
2
(ȳ), smooth. By the gradient estimates we can conclude:

|∇ log vr| ≤ C, |D2 log vr| ≤ C in B 1
4
(ȳ), |ȳ| = 1
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But this precisely tells us that, translating back to v,

|D2v|(x) ≤ C

|x|2 for all 0 < |x| < 2
3

Now it is easy to see that v ∈ W 2,k because
∫

Br

|D2v|dx . rn−2k → 0 as r → 0.

Remark. The same proof gives v ∈ W 2,p for p < n
2 .

Remark. This argument does not allow to remove the regularity hypothesis v−1 ∈
C3\{0}.

5 Global problem

In this section we deal with the global problem (9). The main ingredient is basically
a refinement of an Obata-type argument, developed in the forthcoming paper [11].
Obata-type proofs have proved to be very successful when dealing with this type of σk

equations, see for instance, [25], [5], [6], [18].
Here we make use of the traceless Newton tensor Lk := n−k

n σkI − T k. One of the
properties we are interested in is that in the positive cone, Lk

ijEij ≥ 0, where E = L1 is
constant times the traceless Ricci tensor; and it is zero just if E ≡ 0. In [11] we prove:

Proposition 5.1. Let n > 2k, U domain in Rn. Take v−1 ∈ C3(U) and η ∈ C∞0 (U),
v ∈ Γ+

k . We have then

∫

U

∑

i,j

Lk
ijEijv

−δη +
k∑

s=1

(1 + n− δ)ck−s(δ)
∫

U
σk−s|∇v|2(s+1)v−δη

= E(η) + (1 + n− δ)k(n+2)
2n

∫

U
σk|∇v|2v−δη

(43)

for some constants ck−s where

E(η) .

∣∣∣∣∣∣

∫

U

∑

i,j

Lk
ijviηjv

1−δ

∣∣∣∣∣∣
+

k∑

s=1

∣∣∣∣∣∣

∫

U

∑

i,j

T k−s
ij vjηj |∇v|2sv1−δ

∣∣∣∣∣∣
(44)

In addition, if δ < n + 1 and δ close enough n + 1, all the coefficients ck−s(δ) are
positive.

Denote Aa,b to be the annulus {a ≤ |x| ≤ b}. Fix 0 < ρ < R. Construct a smooth
cutoff function

η =
{

1 if x ∈ Aρ,R

0 if 0 < |x| < ρ
2 , 2R < |x|

18



satisfying

|∇η| . 1
ρ
, |D2η| . 1

ρ2
in A ρ

2
,ρ,

|∇η| . 1
R

, |D2η| . 1
R2

in AR,2R.

If we substitute this particular cutoff in (43), after an inductive study of the error terms
in a similar manner as in the previous section, we can give an estimate for E(η):

Lemma 5.2. Fix ε > 0. In the same hypothesis as the previous proposition, and the
cutoff constructed above, then

E(η) ≤ε
k∑

s=0

∫

A ρ
2 ,ρ∪AR,2R

σk−s|∇v|2(s+1)ηv−δ

+
Cε

ρ2(k+1)

∫

A ρ
2 ,ρ

v2(k+1)−δ +
Cε

R2(k+1)

∫

AR,2R

v2(k+1)−δ

(45)

Proof. of theorem 1.5: We can assume that there is only one singular point p = 0 but
it is clear that a similar cutoff can be constructed in the general case.

Now, use expressions (43) and (45) for δ < n + 1, but sufficiently close to n + 1, ε
small enough, and note that Lk

ijEij ≥ 0,

k∑

s=1

ck−s(δ)
∫

σk−s|∇v|2(s+1)v−δη

. 1
ρ2(k+1)

∫

Aρ,2ρ

v2(k+1)−δ +
1

R2(k+1)

∫

AR,2R

v2(k+1)−δ +
∫

Aρ,R

σk|∇v|2v−δη

(46)

If we take ρ small enough, the volume on B4ρ can be made very small, so we can
apply theorem 1.2 to get an L∞ bound for v−1 in a small ball. Thus

1
ρ2(k+1)

∫

Aρ,2ρ

v2(k+1)−δ ≤ Cρn−2(k+1). (47)

For the term in AR,2R, near infinity, use Hölder with p = n
δ−2(k+1) , q = p

p−1

1
R2(k+1)

∫

AR,2R

vδ−2(k+1) ≤
(∫

v−n

) 1
p

R
n
q
−2(k+1) → 0

when R →∞ because when δ > n,

n

q
< 2(k + 1)

For the third term in (46), note that
∫

Rn\{0}
|∇v|2v−δη < ∞ (48)
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This is so because near the origin, the hypothesis that the volume is finite allows to
use theorems 1.1 and 1.2, and near infinity, the bound follows from lemma 5.3 below.
We have proved, looking at (46), that

k∑

s=1

∫

Rn\{0}
σk−s|∇v|2(s+1)v−δ0η ≤ C (49)

for some n < δ0 < n + 1. Now use again (43) with δ = n + 1 and a similar cutoff:

∫

Aρ,R

∑

i,j

Lk
ijEijv

−n−1 .ε
k∑

s=0

∫

A ρ
2 ,ρ∪AR,2R

σk−s|∇v|2(s+1)ηv−n−1

+
1

ρ2(k+1)

∫

A ρ
2 ,ρ

v2(k+1)−n−1 +
1

R2(k+1)

∫

AR,2R

v2(k+1)−n−1

(50)

The integral over Aρ/2,ρ goes to zero as ρ → 0 by arguments as in (47), and the same
can be said for the integral over AR,2R. We will be done if

k∑

s=0

∫

A ρ
2 ,ρ∪AR,2R

σk−s|∇v|2(s+1)ηv−n−1 → 0

when ρ → 0, R → ∞. First observe that in a small ball Bρ0 , v−1 is bounded from
above and below so (49) implies that

k∑

s=0

∫

A ρ
2 ,ρ

σk−s|∇v|2(s+1)ηv−n−1 → 0 as ρ → 0

From (49), and the fact that δ0 < n + 1, we can also conclude that

k∑

s=0

∫

AR,2R

σk−s|∇v|2(s+1)ηv−n−1 → 0 as R →∞

because when |x| > R0, for some R0 big enough, |v−1(x)| < 1, as a consequence of
lemma 5.3.

In view of this discussion, (50) implies that
∫

Aρ,R

∑

i,j

Lk
ijEijv

−n−1 → 0 as ρ → 0, R →∞

and as a consequence, Lk
ijEij = 0 on Rn\{0}. This implies that E ≡ 0. By the second

Bianchi Identity, Rgv is identically constant on Rn\{0}, let’s say Rgv ≡ 1, and we have
reduced the problem to

−∆u = u
n+2
n−2 in Rn\{0} (51)

for u
4

n−2 = v−2. This problem cannot have isolated singularities because of the weak
removable singularities theorem (it can be found in Lee-Parker [17], proposition 2.7.),
so we must have that u is a weak solution of (51) in the whole Rn.

Elliptic regularity for the Laplacian equation gives u ∈ C∞(Rn), and the theorem
is proved by the classification result of smooth solutions on Rn.
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Remark. As we have mentioned previously, this theorem does not use the gradient
estimates of Guan-Wang [13], and thus, it does not require a-priori smoothness of the
function v−1. Corollary 1.6 follows.

Lemma 5.3. For R big enough, if v is as in theorem 1.5, δ > n, then
∫

|x|>2R
|∇v|2v−δdx < ∞

and v−1 ≤ C
|x|2 when |x| → ∞.

Proof. First, make an inversion with respect to the unit circle

w(y) = |y|2v
(

y

|y|2
)

, x =
y

|y|2
This w is still a solution of σk(w) = 1 for y ∈ B 1

R
. Moreover, the volume of w in the

ball B 1
R

is exactly ∫

|x|>R
v−ndx

and by hypothesis, this quantity is can be made as small as we want by taking R big
enough. Thus we can apply theorem 1.1 and theorem 1.2 to w and obtain that w−1 is
bounded from above and below near zero and∫

B 1
2R

|∇w|2kdy < ∞

In particular, ∫

B 1
2R

|∇w|2dy < ∞ (52)

Now, |∇v|2 can be estimated in terms of w2|x|2 and |∇w|2. But because of lemma
5.4, from (52) we quickly conclude

∫

|x|>2R
|∇v|2v−δdx .

∫

|y|< 1
2R

|∇w|2|y|2(δ−n)w−δdy < ∞

This proves the lemma.

Lemma 5.4. For the w constructed above,
∫

B
w2 1
|y|2 dy ≤ C

∫

2B
|∇w|2dy

Proof. If w has compact support, just use integration by parts and Hölder inequality:
∫

B
w2 1
|y|2 dy .

∫

B
|∇w|w 1

|y|dy ≤
(∫

B
|∇w|2dy

) 1
2
(∫

B
w2 1
|y|2 dy

) 1
2

If w does not have compact support, a cutoff η2 needs to be introduced, but the proof
is straightforward.
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Remark. For n < 2k, all the radial solutions are smooth.

Conjecture 5.5. There are no singular solutions of σk(Agv) = 1 on B\{0} when
n < 2k.

6 A new notion of capacity

The classical notion of capacity was introduced to treat singularities of linear and
quasilinear PDE (see Adams-Hedberg [1], Malý-Ziemer [19] for good introductions to
the subject), and it is defined as:

Definition 6.1. Let Λ be a compact subset of Rn. We consider

ck,p(Λ) := inf
{‖η‖p

W k,p : η ∈ C∞0 , η ≥ 1 on Λ
}

(53)

Note that the actual definition of ck,p is an equivalent notion to (53), but it does
not make any significant difference in the following.

It is natural to introduce a new concept of capacity to treat specifically the type
fully non-linear equations we are interested in this paper:

Definition 6.2. Let Λ be a compact subset of Rn. For p ≥ 2k, define

c̃k,p(Λ) = inf



‖η‖

p
Lp +

∑

Uk

∫
(Uk(η))

p
2k dx : η ∈ C∞0 , η ≥ 1 on Λ





with the Uk constructed inductively in the proof of the theorem 1.1.

For k = 1 this corresponds to the classical definition of (1, p)−capacity,

c1,p(Λ) = inf
{
‖η‖p

Lp +
∫ (|∇η|2)

p
2 dx : η ∈ C∞0 , η ≥ 1 on Λ

}

The Uk in the definition of capacity can be computed inductively, and in particular
for k = 2 we have

c̃2,p(Λ) = inf
{
‖η‖p

Lp +
∫
|∇η|pdx +

∫ ∣∣∇|∇η|2∣∣
p
3 dx : η ∈ C∞0 , η ≥ 1 on Λ

}

Note that a simple Hölder estimate with p = 3
2 , q = 3:

∫
(ηijηj)

p
3 .

∫
η

p/2
ij +

∫
ηp

k

gives
c2,p/2(Λ) = c1,p(Λ) = 0 ⇒ c̃2,p(Λ) = 0

Lemma 6.3. For general k:

1. If ck,p/k(Λ) = ck−1,p/(k−1)(Λ) = . . . = c1,p(Λ) = 0, then c̃k,p(Λ) = 0
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2. If dimH(Λ) < n− p for n > p > 2k, then c̃k,p(Λ) = 0

Proof. Each of the Uk(η) is bounded by
∫

Uk(η)
p
2k ≤

∫ (
|Dkη|βk |Dk−1η|βk−1 . . . |Dη|β1

) p
2k

for kβk + (k − 1)βk−1 + . . . + 1β1 = 2k, counting the orders. Using Hölder with
(

2k

kβk

)−1

+
(

2k

(k − 1)βk−1

)−1

+ . . . +
(

2k

β1

)−1

= 1

gives ∫
Uk(η)

p
2k .

∫
|Dkη| pk +

∫
|Dk−1η| p

k−1 + . . . +
∫
|Dη| p1

and the first assertion follows.
For the second, just note that the restriction in the Hausdorff dimension implies

that all ck,p/k(Λ) = ck−1,p/(k−1)(Λ) = . . . = c1,p(Λ) = 0.

Remark. It is not known if the converse to the first statement in lemma 6.3 is true,
i.e., if this new notion of capacity is different from the standard one.

In general, to simplify the proofs, we will consider instead the related notion:

Definition 6.4. (p ≥ 2k) Let Λ be a compact subset of the ball BR for some R > 0.
Define

c̃k,p(Λ, BR) = inf



‖η‖

p
Lp +

∑

Uk

∫
(Uk(η))

p
2k dx : η ∈ C∞0 (BR), η ≥ 1 on Λ





with the Uk constructed inductively in the proof of the theorem 1.1.

Lemma 6.5. Let Λ be a compact subset of B with Newtonian capacity c1,2(Λ) = 0,
and let v with v−1 ∈ C3(B̄\{Λ}) be a solution of (2). Then v−1 is bounded from below
by a positive constant on B̄\Λ.

Proof. Rewriting v−2 = u
4

n−2 , we see that u is a superharmonic function on B\Λ:

−∆u = Rguu
n+2
n−2 ≥ 0 on B\Λ

The estimate follows from standard elliptic theory, for instance, lemma 2.1. in [8].

Proof. of Theorem 1.7: The proof is the same as in the isolated singularity case except
in the way we choose the cutoff ϕ = (1− η)φ. By hypothesis, we know Λ ⊂⊂ BR. Pick
R < R1, R2 < 1 and choose φ a smooth function, φ ≡ 1 in BR1 , and zero outside BR2 .

We need to estimate (35)
∫

Uk(ϕ)v2kV =
∫

BR

Uk(η)v2kV +
∫

R1<|x|<R2

Uk(φ)v2kV
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The second term is bounded by a constant depending on R1, R2. And for the first term,
∫

BR

Uk(η)v2kV ≤
(∫

[Uk(η)]
p
2k

) 2k
p

(∫ (
v2kV

) p
p−2k

) p−2k
p

→ 0

by choosing a suitable sequence of cutoffs η such that 0 ≤ η ≤ 1, {η = 1} ⊃ Λ̄, and the
fact that c̃k,p(Λ, BR) = 0. We will be done if we can choose δ > n− n−2k

k+1 such that
∫

v
(2k−δ) p

p−2k < ∞

and this is precisely our hypothesis.

Proof. of corollary 1.8: The only difference is the way the cutoff η is constructed near
each singularity Λi. In particular, if ρ denotes the distance to Λi, (47) becomes

1
ρ

∫

Aρ,2ρ

v2(k−1)−δ ≤ Cρn−ki−2(k+1)

Note that the dimension restriction implies that ki < n − 2(k + 1), needed in the
estimate of the errors.

Corollary 6.6. A sufficient condition on Λ to get the L∞ estimates of theorem 1.7 is

dimH(Λ) <
n(n− 2k)
n + 2k2

.

Proof. If we ask (n − 2k) k
k+1

(
p

p−2k

)
= n we the seeked value for p. Note that 2k <

p < n. And a sufficient condition to achieve c̃k,p(Λ) = 0 is to ask

dimH(Λ) < n− p =
n(n− 2k)
n + 2k2

Remark. We do not know if this condition is also necessary.

Hypothesis (10) is only used to control the left hand side of the equation as we did
in lemma 4.2. If we had a very good LHS this condition could be removed, and for
instance,

Corollary 6.7. Let Λ ⊂ B ⊂ Rn be a compact set with capacity

c̃k,p(Λ) = 0, 2k < p ≤ n.

Let ε̂ > 0 and v−1 in L
(n−2k) k

k+1

�
p

p−2k

�
+ε̂(B) be a solution of

σk(v) = 0 on B\Λ
v ∈ Γ+

k , v > 0

Then v−1 is bounded near Λ.
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A Appendix

In general, the most reasonable notation seems to be

v−2 = u
2(k+1)
n−2k

Call
(2k)∗ =

n(k + 1)
n− 2k

Then our equation σk(Agv) = 1 becomes

Pk(u) = σk(−D2u) + l.o.t. = u(2k)∗−1, u ∈ Γ+
k

where D2u is the Hessian matrix of u.

In particular, we have proved (see (19)):

Corollary A.1. If u ∈ C∞0 , n > 2k, u ∈ Γ+
k ,

∫
Pk(u)u ≥ C

(∫
u(2k)∗

)n−2k
n

Trudinger [24] has defined a notion of k-capacity for σk(D2u) from the notion of
Hessian measures:

c′k(Λ) := sup
{∫

Λ
σk(D2u) : u k-convex, − 1 < u < 0

}

We know c′1 is equivalent to c̃1,2 because of potential theory for the Laplacian, but the
relation between the different capacities remains open for general k.

Conjecture A.2. c′k ∼ c̃k,2k

As we have mentioned, we do not know if the capacity conditions in theorem 1.7
are also necessary, and we believe not. Look at the following construction: let Λ be an
(n− s)-dim plane in Rn, that has c1,s(Λ) = 0, and consider the function

u(ρ) =
1

ρ
p−2k

k

where ρ denotes the distance to Λ. This function would make Theorem 1.7 sharp but
it is not a solution of σk(Agu) = 1 but of the Hessian problem

σk(D2u) = 0 in Rn\Λ

This gives some evidence that the new capacity defined here is the suitable one for
Hessian equations.
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