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Abstract

We prove some existence results for the fractional Yamabe problem in the case that
the boundary manifold is umbilic, thus covering some of the cases not considered by
González and Qing. These are inspired by the work of Coda-Marques on the boundary
Yamabe problem but, in addition, a careful understanding of the behavior at infinity for
asymptotically hyperbolic metrics is required.

1 Introduction and statement of results

Suppose that Xn+1 is a smooth manifold with smooth boundary Mn for n ≥ 3. A function
ρ is a defining function on the boundary Mn in Xn+1 if

ρ > 0 in Xn+1, ρ = 0 on Mn, dρ 6= 0 on Mn.

We say that a Riemannian metric g+ on Xn+1 is conformally compact if, for some defining

function ρ, the metric ḡ = ρ2g+ extends smoothly to X
n+1

. This induces a conformal class
of metrics ĥ = ḡ|TMn on Mn as defining functions vary. The conformal manifold (Mn, [ĥ]) is
called the conformal infinity of (Xn+1, g+).

A metric g+ is said to be asymptotically hyperbolic if it is conformally compact and
the sectional curvature approaches −1 at infinity, which is equivalent to |dρ|ḡ = 1 on Mn.
If we have that Ric[g+] = −ng+, then we call (Xn+1, g+) a conformally compact Einstein
manifold. In these settings, given a representative ĥ of the conformal infinity, there exists a
unique defining function ρ such that in a tubular neighborhood near M , the metric g+ has
the normal form

g+ =
dρ2 + hρ

ρ2
, (1.1)
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where hρ is a one-parameter family of metrics on M satisfying h0 = ĥ. In the Einstein case
we may assume that hρ as an asymptotic expansion which is even in powers of ρ. This is only
true up to order n, but it will not be relevant to our study (see [10] for an introduction). We
also denote ḡ = ρ2g+.

For the rest of the paper, we will fix γ ∈ (0, 1). The conformal fractional Laplacian P ĥγ is
constructed as the Dirichlet-to-Neumann operator for the scattering problem for (X, g+). In
particular, from [16] and [11], it is known that if given f ∈ C∞(M), then for all but a discrete
set of values s ∈ C, the generalized eigenvalue problem

−∆g+u− s(n− s)u = 0, in X, (1.2)

has a solution of the form

u = Fρn−s +Gρs, F,G ∈ C∞(X̄), F |ρ=0 = f. (1.3)

The scattering operator on M is defined as

S(s)f = G|M ,

and it is a meromorphic family of pseudo-differential operators in whole complex plane. In
fact, the values s = n

2 , n
2 + 1,... are simple poles of finite rank, these are called the trivial

poles. S(s) may have other poles (corresponding to the L2-eigenvalues for −∆g+), but we
will assume in the rest of the paper that we are not in such cases. More precisely, we will
require that λ1(−∆g+) > n2

4 − γ
2, if one writes s = n

2 + γ for γ ∈ (0, 1) (this condition on
−∆g+ was not written in [5] but it should be added in [9] for the study of the fractional

Yamabe problem). Then the conformal fractional Laplacian on (M, ĥ) is defined as

P ĥγ = dγS(
n

2
+ γ), for a constant dγ = 22γ Γ(γ)

Γ(−γ)
.

Here the dependence on g+ is always implicitly understood. With this normalization, the

principal symbol of the operator P ĥγ equals that of (−∆ĥ)γ . The operators P ĥγ satisfy the
following conformal covariance property: under a conformal change of metric

ĥw = w
4

n−2γ ĥ, w > 0,

we have

P ĥwγ φ = w
−n+2γ
n−2γP ĥγ (wφ), (1.4)

for all smooth functions φ. One can also define “fractional order curvature”

Qĝγ := P ĥγ (1). (1.5)

From (1.4) and (1.5), we obtain the fractional curvature equation

P ĥγ w = w
n+2γ
n−2γQĥwγ (1.6)
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The fractional Yamabe problem for γ ∈ (0, 1) was introduced in [9]. In that paper the
authors consider the following scale-free functional on metrics in the conformal class [ĥ] given
by

Iγ [ĥ] =

∫
M Qĥγ dvĥ

(
∫
M dvĥ)

n−2γ
n

.

Iγ called the γ−Yamabe functional. Once ĥ is fixed, one can write

Iγ [w, ĥ] := Iγ [ĥw] =

∫
M wP ĥγ w dvĥ(∫
M w2∗ dvĥ

) 2
2∗
,

where 2∗ = 2n
n−2γ . The corresponding γ−Yamabe problem is to find a metric in the conformal

class [ĥ] that minimizes the γ−Yamabe functional Iγ . As in the scalar curvature case one
defines the γ−Yamabe constant by

Λγ(M, [ĥ]) = inf{Iγ [h] : h ∈ [ĥ]}.

It is clear that Λγ(M, [ĥ]) is an invariant in the conformal class [ĥ] when g+ is fixed.

In particular, if w is a minimizer of Iγ [w, ĥ], then the metric ĥw has constant fractional
curvature; indeed, such w is a solution to

P ĥγ w = cw
n+2γ
n−2γ . (1.7)

It is well known ([9]) that the sign of such constant c is equal (or zero) to the one of Λ(M, [ĥ]).
The non-local equation (1.6) on M may be written as a degenerate elliptic problem in X.

Indeed, one has the following extension problem (see [5, 9, 4]). For the rest of the paper, we
consider γ ∈ (0, 1) and we write a = 1− 2γ.

Lemma 1.1 ([5]). Let (X, g+) be an asymptotically hyperbolic manifold as explained above.
Given f ∈ C∞(M), the generalized eigenvalue problem (1.2)-(1.3) is equivalent to{

−div(ρa∇U) + E(ρ)U = 0 in (X, ḡ),

U |ρ=0 = f on M,

where U = ρs−nu and U is the unique minimizer of the energy

F [V ] =

∫
X
ρa|∇V |2ḡ dvḡ +

∫
X
E(ρ)|V |2 dvḡ

among all the functions V ∈W 1,2(X, ρa) with fixed trace V |ρ=0 = f . Here

E(ρ) = ρ−1−s(−∆g+ − s(n− s))ρn−s.

or equivalently,

E(ρ) =
n− 1 + a

4n

[
R[ḡ]−

(
n(n+ 1) +R[g+]

)
ρ−2
]
ρa.

Moreover,
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1. For γ ∈ (0, 1
2),

P ĥγ f = −d∗γ lim
ρ→0

ρa∂ρU. (1.8)

2. For γ = 1
2 ,

P ĥ1
2

f = − lim
ρ→0

∂ρU + n−1
2 Hf,

where H is the mean curvature of (M, ĥ).

3. For γ ∈ (1
2 , 1), expression (1.8) holds if and only if H = 0.

Here the constant is given by

d∗γ =
22γ−1Γ(γ)

γΓ(−γ)
. (1.9)

In the following we assume that H ≡ 0 in the case γ ∈ (1/2, 1). Note that this is
automatically true in the Einstein case since the term hρ in the normal form (1.1) for the
metric g+ only has even terms in the expansion.

We also define the functional

Iγ [U, ĥ] =
d∗γ
∫
X

(
ρa|∇U |2ḡ + E(ρ)U2

)
dvḡ

(
∫
M U2∗ dvĥ)2/2∗

. (1.10)

As a consequence of Lemma 1.1, a minimizer Iγ will give a minimizer for the γ-Yamabe
functional Iγ . In particular, if one defines

Λγ(X, [ĥ]) = inf{Iγ [U, ĥ] : U ∈W 1,2(X, ρa)},

then
Λγ(X, [ĥ]) = Λγ(M, [ĥ]).

We define the usual fractional Sobolev norm on M

‖w‖2Hγ(M) := ‖w‖2L2(M) +

∫
M
w(−∆ĥ)γw dvĥ,

and the weighted norm in the extension

‖U‖2W 1,2(X,ρa) =

∫
X
ρa|∇U |2ḡ dvḡ +

∫
X
ρaU2 dvḡ.

Thus the minimization problem for the functional (1.10) is related to the well known trace
Sobolev embedding

W 1,2(M,ρa)→ Hγ(M)→ L2∗(M).

(see the papers [9] and [13], and the references therein). On the Euclidean case M = Rn,
X = Rn+1

+ the best constant in the Sobolev inequality above may be explicitly calculated.
Indeed, for every U ∈W 1,2(Rn+1

+ , ya), let w := U(·, 0), then

‖w‖2
L2∗ (Rn)

≤ S̄(n, γ)

∫
Rn+1
+

ya|∇U |2 dxdy, (1.11)
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where

S̄(n, γ) := d∗γS(n, γ), S(n, γ) =
Γ
(
n−2γ

2

)
Γ
(
n+2γ

2

) |vol(Sn)|−
2γ
n .

Equality holds if and only if

w(x) = c

(
µ

|x− x0|2 + µ2

)n−2γ
2

, x ∈ Rn,

for c ∈ R, µ > 0 and x0 ∈ Rn fixed, and U is the Poisson extension of w given by

U(x, y) =

∫
Rn

y1−a

(|x− ξ|2 + y2)
n+1−a

2

w(ξ) dξ.

In addition, (1.11) allows to calculate the best γ-Yamabe constant on the sphere with its
canonical metric as the boundary of the Poincaré ball Λγ(Sn, [gc]) by stereographic projection.
Indeed,

Λγ(Sn, [gc]) =
1

S(n, γ)
. (1.12)

The manifold version of (1.11) was considered in [13]. From their results one can show
that, in general,

Λγ(M, [ĥ]) > −∞.

We have all the ingredients needed to handle the fractional Yamabe problem. Indeed, as
in the standard Yamabe problem (cf. [14, 19]), one must compare the value of the Yamabe
constant to the one on the sphere:

Proposition 1.2 ([9]). Fix γ ∈ (0, 1). Let (Xn+1, g+) be an asymptotically hyperbolic mani-
fold with conformal infinity (M, [ĥ]) as explained above and assume, in addition, that H = 0
when γ ∈ (1

2 , 1). Then,

Λγ(M, [ĥ]) ≤ Λγ(Sn, [gc]).

Moreover, the strict inequality

Λγ(M, [ĥ]) < Λγ(Sn, [gc]) (1.13)

ensures that the γ−Yamabe problem for (M, ĥ) is solvable.

The question is now when the strict inequality is attained. Note that when γ = 1/2, in
the conformally compact Einstein setting, the lower order term has a very simple expression
E(ρ) = n−1

4n Rḡ and the functional simply reduces to

I1/2[U, ĥ] =

∫
Xn+1

(
|∇U |2ḡ + n−1

4n RḡU
2
)
dvḡ

(
∫
Mn U2∗ dvĥ)2/2∗

.

Thus the 1/2-Yamabe problem is almost exactly the boundary problem proposed by Escobar
in [6] and later studied by Marques [15], Han and Li [12] and Brendle [2], for instance. The
problem consists of looking for a conformal metric on (X, ḡ) of zero scalar curvature and
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constant mean curvature on the boundary. Escobar [6] considered the case that M as a non-
umbilic point for dimensions n > 5, and some other particular cases. Marques completed the
umbilic case for large dimensions under some non-vanishing conditions on the Weyl tensor.

For the fractional Yamabe problem, the only case that has been studied so far is when
M contains a non-umbilic point under some dimension and curvature restrictions (see [9]).
In particular, there it is assumed that

ρ−2
(
R[g+]−Ric[g+](ρ∂ρ) + n2

)
, as ρ→ 0. (1.14)

Their main result is the construction of a suitable test function near the non-umbilic point
satisfying

Λγ(M, [ĥ]) < Λγ(Sn, [gc])

and hence the γ−Yamabe problem is solvable for γ ∈ (0, 1). Note that condition (1.14) is an
intrinsic curvature condition of an asymptotically hyperbolic manifold, which is independent
of the choice of geodesic defining functions.

On the other hand, compactness and asymptotic behavior results for Palais-Smale se-
quences for fractional Laplacian equations with critical nonlinearities such as (1.7) were con-
sidered in [17, 18, 7].

The main purpose of this paper is to use Marques results in [15] on the umbilic case
in order to give further results on the solvability of the fractional Yamabe problem for any
γ ∈ (0, 1). In the proof we need to use the construction of conformally compact Einstein
metrics with prescribed conformal infinity by Fefferman and Graham [8].

Theorem 1.3. Fix n ≥ 5. Suppose that (Xn+1, g+) is an (n+1)-dimensional asymptotically
hyperbolic manifold with conformal infinity (M, [ĥ]) satisfying

ĥijFij |ρ=0 = 0, (1.15)

∂ρF |ρ=0 = 0, (1.16)

ĥij∂ρρρFij |ρ=0 = 0, (1.17)

where F is the tensor
F [g+] = ρ(Ric[g+] + ng+).

Assume that M is umbilic. Then if there is a point p ∈M such that

Ricρρ,ρ[ḡ](p) < 0, (1.18)

then
Λγ(M, [ĥ]) < Λγ(Sn, [gc]),

where Ric[ḡ] is the Ricci tensor for the metric ḡ = ρ2g+ and ρ is the geodesic defining function
that appears in the normal form of g+ with respect to the choice of conformal representative
ĥ in the conformal infinity.

Remark 1.4. As shown in Lemma 2.3 and (2.17), the condition of the existence of point p
satisfying (1.18) is intrinsic for g+, and it does not depend on the choice of the representative
in the conformal class (M, [ĥ]). Note also that condition (1.15) is precisely (1.14). Moreover,
the umbilicity condition together with (1.15) imply that F |ρ=0 = 0. In the Einstein case,
F ≡ 0.
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Theorem 1.5. Fix n > 5+2γ. Suppose that (Xn+1, g+) is an (n+1)-dimensional conformal
compact Einstein manifold with conformal infinity (M, [ĥ]) and such that M is umbilic. Then
if there is a point q ∈M such that W [ĥ](q) 6= 0,

Λγ(M, [ĥ]) < Λγ(Sn, [gc]).

Here W [ĥ] stands for the Weyl tensor of the metric ĥ.

Remark 1.6. The condition on the Weyl tensor in the theorem above is also conformal
invariant on M . As we will see in the proof of this theorem, it is enough to assume that the
first and third terms h(1) and h(3) in the expansion of the metric hρ vanish, which is weaker
than the Einstein condition.

The idea of the proof of both theorems is to find a suitable test function to calculate the
value of the functional (1.10) and compare it to its value on the sphere. The first step is
to choose a particular background metric (X, ḡ) with very precise asymptotic behavior near
p. However, in contrast to the works of Escobar [6] and Marques [15] on the 1/2-Yamabe
problem, where they are free to choose conformal Fermi coordinates on the whole extension
manifold (X, ḡ), our freedom of choice of metrics is restricted to the boundary. Once h1 ∈ [ĥ]
is chosen, then the metric ḡ1 is uniquely given by the defining function ρ1 appearing in the
normal form (1.1), i.e., ḡ1 = (ρ1)2ḡ. Hence we will make some assumptions on the behavior
of the asymptotically hyperbolic manifold in order to have a suitable background metric on
the conformal infinity, and we will develop some generalized conformal Fermi coordinates.

2 Suitable conformal Fermi coordinates

We fix (Xn+1, ḡ) a smooth Riemannian manifold with boundary Mn, and let ĥ = ḡ|M . As we
have mentioned in the introduction, we need to choose a very particular background metric
for X near an umbilic point p ∈M .

We follow the notation from [15]. Throughout this section we will make use of the
index notation for tensors; commas will denote covariant differentiation. When dealing with
manifolds with boundary, we will use the indices 1 ≤ i, j, k, l,m, p, r, s ≤ n and 1 ≤ a, b, c, d ≤
n+1. The Greek letters α and β will be multiindices. In Fermi coordinates on a neighborhood
M × [0, ε) the letter t will refer to the normal direction to M , and we can write

ḡ = ĥ+ h(1)t+ h(2)t2 + h(3)t3 + h(4)t4 + o(t4).

In particular, h(1) is the second fundamental form on M (up to a constant factor), and the
mean curvature (up to a constant factor) is given by

H =
1

n
Trĥ h

(1).

We say that a point p ∈M is umbilic if the tensor Tij = h
(1)
ij −Hḡij vanishes at p.

We will denote ∇ the covariant derivative and by Rabcd the full Riemannian curvature
tensor. The Ricci tensor will be denoted by Ricab, the scalar curvature by R. The Weyl
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tensor will be denoted by W . Tensors in the metric ḡ will be over-lined; an object without
lines will be given with respect to the boundary metric ĥ. We will also use the definition

Symi1...ir Ti1...ir =
1

r!

∑
σ

Tiσ(1)...iσ(r) ,

where σ ranges over all the permutations of the set {1, ..., r}.
We finally recall that

Trĥ h
(2) = −2Ric[ḡ](∂ρ) + 1

2‖h
(1)‖2. (2.1)

and
R[ḡ] = 2Ric[ḡ](∂ρ) +R[ĥ] + 1

4

(
‖h(1)‖2

ĥ
−H2

)
. (2.2)

The following lemma is about expansions for the metric ḡij under an additional hypothesis
on the second fundamental form at p ∈ ∂X,

Lemma 2.1 ([15]). Suppose ∇αh(1)
ij = 0 at p ∈ ∂M for every |α| ≤ 3. Then, in Fermi

coordinates around p,

ḡij(x, t) = δij +
1

3
Rikjlxkxl + R̄titjt

2

+
1

6
Rikjl,mxkxlxm + R̄titj,kt

2xk +
1

3
R̄titj,tt

3

+

(
1

20
Rikjl,mp +

1

15
RikslRjmsp

)
xkxlxmxp

+

(
1

2
R̄titj,kl +

1

3
Symij(RikslR̄tstj)

)
t2xkxl

+
1

3
R̄titj,tkt

3xk

+
1

12
(R̄titj,tt + 8R̄titsR̄tstj)t

4 +O(r5),

(2.3)

where r = |(x, t)|, and the curvatures are evaluated at p. In addition,

det ḡ = 1− 1
6Rickl,mxkxlxm −Rictt,kt

2xk

− 1
3Rictt,tt

3 +
(
− 1

20Rickl,mp −
1
90RikslRimsp

)
xkxlxmxp

− 1
2Rictt,klt

2xkxl −
1

3
Rictt,tkt

3xk

+ 1
24(−2Rictt,tt − 4(Rtitj)

2)t4 +O(|(x, t)|5).

(2.4)

Next, as we have mentioned in the introduction, given an asymptotically hyperbolic man-
ifold (Xn+1, g+) and a representative ĥ of the conformal infinity (Mn, [ĥ]), one can find a
geodesic defining function ρ such that in a neighborhood M × (0, ε) of X the metric g+ has
the form

g+ =
dρ2 + hρ

ρ2
, (2.5)
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where hρ is a 1-parameter family of metrics on M satisfying h0 = ĥ. We say that such g+ is
written in normal form. We write

ḡ = ρ2g+ = dρ2 + hρ = dρ2 + ĥ+ h(1)ρ+ h(2)ρ2 + h(3)ρ3 + h(4)ρ4 + o(ρ4) (2.6)

near the conformal infinity. One may define an umbilic point p ∈ M for the asymptotically
hyperbolic case if such point is umbilic with respect to this metric ḡ. If every point at
the boundary is umbilic, we say that the asymptotically hyperbolic manifold has umbilical
boundary.

Note that the set of umbilic points of the boundary is a conformal invariant. Assume
that we are given ρ and ρ̃ two different geodesic defining functions of M in X associated with
representatives ĥ and h̃ of the conformal infinity (Mn, [ĥ]), respectively. We may write

g+ = ρ−2(dρ2 + hρ) = ρ̃−2(dρ̃2 + h̃ρ̃)

near M , where
hρ = ĥ+ ρh(1) +O(ρ2), h̃ρ̃ = h̃+ ρ̃h̃(1) +O(ρ̃2)

near the conformal infinity. Then it was proven in [9] that

h̃(1) = (ρ̃/ρ)|ρ=0 h
(1) on M.

In particular
H = (ρ̃/ρ)|ρ=0 H̃ on M.

In the following lemmas we will present some technical results on the expansion on the
metric written in normal form (2.5)-(2.6) near the conformal infinity under some extra ge-
ometric assumptions. These will be needed in the proof of the main proposition in this
section.

Lemma 2.2. Suppose that (Xn+1, g+) is an asymptotically hyperbolic manifold and ρ is a
geodesic defining function associated with a representative ĥ of the conformal infinity (Mn, [ĥ])
such that g+ is written in normal form. Assume that X has umbilical boundary, and that
(1.15)-(1.17) hold. Then, for every point on the boundary ρ = 0,

H = 0, h(1) = 0, (2.7)

Trĥ h
(2) =

R[ĥ]

2(1− n)
(2.8)

h(2) =
R[ĥ]ĥ+ 2(1− n)Ric[ĥ]

2(n− 2)(n− 1)
, (2.9)

Trĥ h
(4) =

R[hρ],ρρ|ρ=0 − 2(n− 2)‖h(2)‖2
ĥ

8(2− n)
. (2.10)

Proof. The ideas come from [9] and go back to the work of Fefferman and Graham [8] on
the construction of Einstein metrics with prescribed conformal infinity. Recall formula (2.5)
from [10]

ρh′′ij + (1− n)h′ij − hklh′klhij − ρhklh′ikh′jl +
1

2
ρhklh′klh

′
ij − 2ρRicij [hρ] = Fij , (2.11)
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where hij denotes the tensor h := hρ, derivation ′ denotes ∂ρ, and Ric[hρ] denotes the Ricci
tensor of hρ with ρ fixed.

In the first step, taking trace in (2.11) with respect to hρ gives

ρTrh h
′′ + (1− 2n) Trh h

′ − ρ‖h′‖2h + 1
2ρ(Trh h

′)2 − 2ρR[ĥ] = Trhρ F,

which implies, using (1.15), that

Trĥ h
(1) = 0 at ρ = 0.

Together with the umbilicity condition we can conclude (2.7) and, as a particular consequence,
F |ρ=0 = 0.

Next, we differentiate (2.11) with respect to ρ and set ρ = 0. We obtain

(2−n)h′′ij + ‖h′‖2hij − (Trĥ h
′′)hij − 1

2(Trĥ h
′)h′ij −hklh′ikh′jl− 2Rij = ∂ρFij at ρ = 0. (2.12)

Taking the trace, and using (2.7) and that we are umbilic we arrive at

Trĥ h
′′ =

R[ĥ]

1− n
at ρ = 0,

which immediately yields (2.8). As a consequence, we also have from (2.12), recalling that
we are in the umbilic boundary case and (1.16), that

h(2) =
R[ĥ]ĥ+ 2(1− n)Ric[ĥ]

2(n− 2)(n− 1)
.

Differentiating (2.11) three times and setting ρ = 0 (again, recalling that we are umbilic
so all the terms with h′ij drop out) gives

24(4− n)h
(4)
ij + 12‖h(2)‖2

ĥ
ĥij − 24 Trĥ h

(4)ĥ− 24ĥklh
(2)
ik h

(2)
jl = 6Ricij [hρ],ρρ|ρ=0 + ∂ρρρFij |ρ=0,

(2.13)
where we note that

hklρ = ĥkl − ĥkrh(2)
rs ĥ

slρ2

+ (ĥksh(2)
sp ĥ

pp′h
(2)
p′rĥ

rl − ĥksh(4)
sr ĥ

rl)ρ4 +O(ρ6).

Take trace to (2.13) gives

24(4− 2n) Trĥ h
(4) + (12n− 24)‖h(2)‖2

ĥ
= 6ĥijRicij [hρ],ρρ|ρ=0 + Trĥ ∂ρρρF |ρ=0,

from where we obtain (2.10), recalling (1.17). This completes the proof of the proposition.
�
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The following lemma, together with (2.17), shows that condition (1.18) is independent of
the choice of representative in the conformal infinity (M, [ĥ]).

Lemma 2.3. Let (Xn+1, g+) be an asymptotically hyperbolic manifold with umbilical bound-
ary. Let ĥ be another representative of the conformal class [ĥ], and let ρ and ρ̃ be the geodesic
defining functions associated with ĥ and h̃, respectively, such that g+ is written in normal
form in both cases. Assume that conditions (1.15)-(1.17) are is satisfied. Then at ρ = 0,

Trĥ h
(3) = Trh̃ h̃

(3)e3w.

Proof. We follow [10] on the construction of the normal form for both ĥ and h̃. Let ρ̃ = ewρ
near the conformal infinity, then

1 = |d(ewρ)|2e2wρ2g+ ,

which implies

2∂ρw + ρ
[
(∂wρ)

2 + |∇w|2hρ
]

= 0, (2.14)

and
∂ρρρw = −∂ρ(|∇w|2hρ), (2.15)

on ρ = 0.
Next, since we write

g+ =
dρ2 + ĥ+ h(2)ρ2 + h(3)ρ3 +O(ρ4)

ρ2
=
dρ̃2 + h̃+ h̃(2)ρ̃2 + h̃(3)ρ̃3 +O(ρ̃4)

ρ̃2
,

comparing the coefficients of ρ3, we must have that

h(3) + h(1)wρρ +
1

3
ĥwρρρ =

1

2
h̃(1)e−wwρρ + h̃(3)ew,

and thus
Trĥ h

(3) +
n

3
wρρρ = Trh̃ h̃

(3)e3w.

We claim that wρρρ = 0 on ρ = 0. This is so because from (2.15) we can write

wρρρ = −∂ρ
(
hij∂iw∂jw

)
= (∂ρh

ij)∂iw∂jw + 2hij∂iρw∂jw.

The first term vanishes at ρ = 0 since h(1) ≡ 0 on M , while the second vanishes too because
(2.14) implies that wρ ≡ 0 on M .

The proof of the lemma is completed. �

Now we are ready for the main result in this section: the construction of conformal Fermi
coordinates in the asymptotic hyperbolic case.

Proposition 2.4. Suppose that (Xn+1, g+) is asymptotically hyperbolic manifold with um-
bilical boundary and (1.15)-(1.17) hold. Then given a point p ∈ M , there exists a represen-
tative ĥ of the conformal infinity such that, for the metric written in normal form, we have:
g+ = ρ−1(dρ2 + hρ) = ρ−2ḡ,

(i). H = 0 on M ,

11



(ii). Ric[ĥ](p) = 0 on M ,

(iii). Ric[ḡ](∂ρ)(p) = 0 on M ,

(iv). R[ḡ](p) = 0 on M ,

(v). The expansion for the determinant of the metric, assuming p to be the origin of the
coordinate system {x1, . . . , xn} on M ,

det ḡ = 1− 1
3Ricρρ,ρ[ḡ](p)ρ3

+
{
− 1

20Rickl,mp[ĥ]− 1
90Riksl[ĥ]Rimsp[ĥ]

}
(p)xkxlxmxp

− 1
2Ricρρ,kl[ḡ](p)ρ2xkxl −

1

3
Ricρρ,ρk[ḡ](p)ρ3xk

+ 1
24

{
−2Ricρρ,ρρ[ḡ]− 4(Rρiρj [ḡ])2

}
(p) ρ4 +O(|(x, ρ)|5).

(2.16)

(vi). Sym(Rij,kl[ĥ] + 2
9Rpijm[ĥ]Rpklm[ĥ])(p) = 0.

(vii). And for the derivatives of the Ricci curvature,

Ricρρ,ρ[ḡ](p) = −3 Trĥ h
(3)(p), (2.17)

Ricρρ,kk[ḡ](p) =
R,ii[ĥ](p)

2(n− 1)
= −|W |

2[ĥ](p)

12(n− 1)
. (2.18)

Here W [ĥ] is the Weyl tensor for the metric ĥ.

Moreover, if (X, g+) is a conformally compact Einstein manifold, written in normal form as

g+ =
dρ2 + hρ

ρ2
=
dρ2 + ĥ+ h(2)ρ2 + h(4)ρ4 +O(ρ6)

ρ2
,

we also have

Ricρρ,ρ[ḡ](p) = 0, (2.19)

Rρiρj [ḡ](p) = 0, (2.20)

Ricρρ,ρρ[ḡ](p) = 0, (2.21)

Rρiρj,ij [ḡ](p) =
R,ii[ĥ](p)

2(n− 1)
= −|W |

2[ĥ](p)

12(n− 1)
, (2.22)

R,ρρ[ḡ](p) = 0. (2.23)

Proof. We fix p ∈M . The proof uses [14, Theorem 5.1] on the existence of conformal normal
coordinates {x1, . . . , xn} on M centered at p. In particular, we can choose a representative
ĥ of the conformal infinity such that, at p:

(a) Ricij [ĥ] = 0,

(b) Ricij,k[ĥ] +Ricjk,i[ĥ] +Ricki,j [ĥ] = 0,

(c) Sym(Ricij,kl[ĥ] + 2
9Rpijm[ĥ]Rpklm[ĥ]) = 0,

12



(e) R,ii[ĥ] = −1
6 |W |

2[ĥ], and moreover, near p, R[ĥ] = O(|x|2).

We immediately get that properties (ii) and (vi) are true.
We know that there exists a geodesic defining function ρ such that we can write g+ in

normal form (2.5)-(2.6). From Lemma 2.2 and the umbilicity property we must have

h(1) = 0 and H = 0 on M,

which in particular implies that

∇αH = 0 and ∇αh(1) = 0 on M.

In the following, we will use overline for curvatures referring to ḡ, while without overline
will mean quantities with respect to the metric ĥ.

Next, we look at the metric ḡ near p. Statement (iii) follows from (2.1) and (2.8), using
(ii), while (iv) is an immediate consequence of (2.2).

Now we look at the expansion for the determinant det(ḡ) in the umbilic case given in
(2.4). The term with xkxlxm vanishes because of the choice of ĥ satisfying condition (b). In
addition, recalling (2.1) and (2.8), we have that in in the umbilic case

Ricρρ,k = −1
2

(
Trĥ h

(2)
)
,k

= 1
4(1−n)R,k.

Using (e) above we see that Ricρρ,k vanishes at the point. Thus from (2.4) and the previous
remarks we obtain (v).

Finally, we show (vii). For an expansion

hρ = ĥ+ h(2)ρ2 + h(3)ρ3 + h(4)ρ4 +O(ρ5),

we have that

dethρ = det ĥ
[
1 + Trĥ h

(2)ρ2 + Trĥ h
(3)ρ3 +

{
Trĥ h

(4) + 1
2(Trĥ h

(2))2 − 1
2‖h

(2)‖2
ĥ

}
ρ4 +O(ρ5)

]
.

(2.24)
We first recall formula (2.8) for Trĥ h

(2). Comparing the coefficients of ρ2 in (2.24) with (2.16)
we must have that, at the point p,

Ricρρ,kk =
R,ii

2(n− 1)
,

and (2.18) follows from property (e) above. Next, comparing the coefficients of ρ3 we obtain
that at the point p,

−1
3Ricρρ,ρ = Trĥ h

(3),

which shows (2.17).

From now on we assume that h(3) and h(5) vanish. In this case, we have the asymptotics

hρ = ĥ+ h(2)ρ2 + h(4)ρ4 +O(ρ6),

In particular, (2.24) reduces to

det(hρ) = det ĥ
[
1 + Trĥ h

(2)ρ2 +
{

Trĥ h
(4) + 1

2(Trĥ h
(2))2 − 1

2‖h
(2)‖2

ĥ

}
ρ4 +O(ρ6)

]
. (2.25)
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Comparing the coefficients of in the asymptotics of (2.16) and (2.25) we conclude that,
recalling (a), (e), (2.8), (2.9) and (2.10), at a point p ∈M ,

Ricρρ,ρ = 0, (2.26)

− 1

2
Rρρ,kk =

R,ii
4(1− n)

, (2.27)

− 1

12
Ricρρ,ρρ −

1

6
(Rρiρj)

2 =
ĥijRicij [hρ],ρρ|ρ=0

8(2− n)
=
R′′[hρ]|ρ=0

8(2− n)
. (2.28)

Equation (2.26) is precisely (2.19). On the other hand, note that

Ricij [hρ] = −hklρ
[

1

2

(
∂2hkl(ρ)

∂xi∂xj
+
∂2hij(ρ)

∂xk∂xl
− ∂2hil(ρ)

∂xk∂xj
−
∂2hkj(ρ)

∂xi∂xl

)
+ Γpkl(hρ)Γ

r
ij(hρ)hpr(ρ)− Γpil(hρ)Γ

r
kj(hρ)hpr(ρ)

]
.

By (2.9), taking derivatives twice in ρ, the expression above simplifies to

ĥijRic′′ij [h(ρ)](p) = −ĥij(p)ĥkl(p)

 ∂2h
(2)
kl

∂xi∂xj
+

∂2h
(2)
ij

∂xk∂xl
−

∂2h
(2)
il

∂xk∂xj
−
∂2h

(2)
kj

∂xi∂xl

 (p)

= −2

(
∂2h

(2)
kk

∂(xi)2
−

∂2h
(2)
ki

∂xk∂xi

)
(p).

(2.29)

Using the formula for h(2) from (2.9)

∂2h
(2)
kk

∂(xi)2 −
∂2h

(2)
ki

∂xk∂xi

=
1

2(n− 2)(n− 1)
([nR,ii + 2(1− n)Rickk,ii − 2(1− n)Ricki,ki −R,ii] .

(2.30)

But, contracting the Bianchi identity

Rlkjm,ii +Rlkij,mi +Rlkmi,ji = 0,

on the indices l, j and again k,m, we get

Ricki,ki = 1
2R,ii,

so we get that expression (2.30) vanishes at p. Thus, from (2.28) and (2.29) we can conclude
that

− 1

12
Ricρρ,ρρ −

1

6
(R̄ρiρj)

2 = 0. (2.31)

On the other hand, for every point on M ,

R̄ρiρj = −1

2

(
∂2ḡρρ
∂xi∂xj

+
∂2ḡij
∂ρ2

− ∂2ḡiρ
∂ρ∂xj

− ∂2ḡρj
∂ρ∂xj

)
− ΓqρρΓ

s
ij ḡqs + ΓqiρΓ

s
ρj ḡqs

= −h(2)
ij ,

(2.32)
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which vanishes at the point p. Thus (2.20) holds. Moreover, putting together (2.31) with
(2.32) we arrive to conclusion (2.21).

Moreover, differentiating (2.32) on the tangential variables, recalling (2.9),

R̄ρiρj,ij = −R,ij ĥij + 2(1− n)Ricij,ij
2(n− 2)(n− 1)

,

which, after evaluating at p yields

R̄ρiρj,ij = 1
2(n−1)R,ii. (2.33)

This shows (2.22). In addition, we recall the second Bianchi identity

R̄abcd,ρ + R̄abρc,d + R̄abdρ,c = 0.

In particular, contracting

R̄abcd,ρρ + R̄abρc,dρ + R̄abdρ,cρ = 0,

gives
R̄,ρρ = 2Riciρ,iρ + 2Ricρρ,ρρ (2.34)

and contracting
R̄abcd,ρi + R̄abρc,di + R̄abdρ,ci = 0

yields
Ricρi,ρi = Ricρρ,kk − R̄ρiρj,ij . (2.35)

Thus from (2.33) and (2.27) we conclude that

Ricρi,ρi = 0 (2.36)

and the point p. Next, from (2.34), interchanging the order of covariant differentiation and
recalling (2.21),

R̄,ρρ = 2Ricρi,ρi + 2(R̄aρiρRicai + R̄aiiρRicρa) = 2Ricρi,ρi,

where we have used (iii) and (2.20) to cancel out terms. As a consequence, from (2.36), we
conclude

R̄,ρρ = 0,

which is (2.23). �

3 Some technical lemmas in Rn+1
+

We only consider the case γ ∈ (0, 1) \ {1/2}, since γ = 1/2 is much simpler. For the rest of
the section, we also assume that n > 4 + 2γ.

At first, we review the following fact about Bessel functions (see section 9.6.1 in [1])
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Lemma 3.1. The solution of ODE

∂ssφ+
a

s
∂sφ− φ = 0 (3.1)

maybe written as φ(s) = sγψ(s), for a = 1 − 2γ, where ψ solves that is well known Bessel
equation

s2ψ
′′

+ sψ
′ − (s2 + γ2)ψ = 0. (3.2)

In addition, (3.2) has two independent solutions, Iγ, Kγ, which are the modified Bessel func-
tions. Their asymptotic behavior is given precisely by

Iγ(s) ∼ 1

Γ(γ + 1)

(s
2

)γ (
1 +

s2

4(γ + 1)
+

s4

32(γ + 1)(γ + 2)
+ ...

)
,

Kγ(s) ∼ Γ(γ)

2

(
2

s

)γ (
1 +

s2

4(γ + 1)
+

s4

32(γ + 1)(γ + 2)
+ ...

)
+

Γ(−γ)

2

(s
2

)γ (
1 +

s2

4(γ + 1)
+

s4

32(γ + 1)(γ + 2)
+ ...

)
,

for s→ 0+, γ /∈ Z. And when s→ +∞,

Iγ(s) ∼ 1√
2πs

es
(

1− 4γ2 − 1

8s
+

(4γ2 − 1)(4γ2 − 9)

2!(8s)2
− ...

)
,

Kγ(s) ∼
√
π

2s
e−s

(
1 +

4γ2 − 1

8s
+

(4γ2 − 1)(4γ2 − 9)

2!(8s)2
+ ...

)
.

We have the following identities:

Lemma 3.2. Let φ(s) = sγKγ(s) be the solution to (3.1) (up to multiplicative constant).
Then: ∫ +∞

0
sa+3

(
φ2 + φ′

2
)
ds =

3(a+ 2)

2

∫
sa+1φ2ds, (3.3)∫ +∞

0
sa+2φ′2ds =

3 + a

3− a

∫ ∞
0

sa+2φ2ds, (3.4)∫ +∞

0
sa+4φ′

2
ds =

(a+ 5)(a+ 3)

5

∫ +∞

0
sa+2φ2ds, (3.5)∫ +∞

0
sa+4φ2ds =

(a+ 3)(5− a)

5

∫ +∞

0
sa+2φ2ds, (3.6)∫ +∞

0
sn−4+aφ2ds =

(n− 4)(n− 5 + a)(n− 3− a)

4(n− 3)

∫ +∞

0
sn−6+aφ2ds. (3.7)

Proof. We only prove (3.5), (3.6) and (3.7) here. Multiply (3.1) by sa+5φ′ and integrate by
parts, we get

0 = −
∫ +∞

0
sa+5φ · φ′ds+ a

∫ +∞

0
sa+4φ′

2
ds+

∫ +∞

0
sa+5φ′φ′′ds

=
a+ 5

2

∫ +∞

0
sa+4φ2ds+ a

∫ +∞

0
sa+4φ′

2
ds− a+ 5

2

∫ +∞

0
sa+4φ′

2
ds.
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Then ∫ +∞

0
sa+4φ′

2
ds =

5 + a

5− a

∫ +∞

0
sa+4φ2ds. (3.8)

Next, multiply (3.1) by sa+4φ(s) and integrate by parts. Using (3.8) we can get

0 = −
∫ +∞

0
sa+4φ2ds+ a

∫ +∞

0
sa+3φ · φ′ds+

∫ +∞

0
sa+4φ · φ′′ds

= −4

∫ +∞

0
sa+3φ · φ′ds−

∫ +∞

0
sa+4φ2ds−

∫ +∞

0
sa+4φ′

2
ds

= 2(a+ 3)

∫ +∞

0
sa+2φ2ds− 10

5− a

∫ +∞

0
sa+4φ2ds.

(3.9)

Then (3.8) and (3.9) tell us that∫ +∞

0
sa+4φ2ds =

(a+ 3)(5− a)

5

∫ +∞

0
sa+2φ2ds,

and ∫ +∞

0
sa+4φ′

2
ds =

(a+ 5)(a+ 3)

5

∫ +∞

0
sa+2φ2ds,

so (3.5) and (3.6) are proved. Next, multiplying (3.1) by sn−4+aφ and integrating, we can
get

−
∫ +∞

0
sn−4+aφ′

2
ds+

(n− 4)(n− 5 + a)

2

∫ +∞

0
sn−6+aφ2ds =

∫ +∞

0
sn−4+aφ2ds. (3.10)

On the other hand, multiply (3.1) by sn−3+aφ′ and integrate it; we obtain∫ +∞

0
sn−4+aφ′

2
ds =

n− 3 + a

n− 3− a

∫ +∞

0
sn−4+aφ2ds. (3.11)

Finally, (3.10) and (3.11) show that (3.7) is true. �

The following lemma is very classical:

Lemma 3.3 ([3]). Given w ∈ Hγ(Rn), there exists a unique solution U ∈ W 1,2(Rn+1
+ , ya)

for the problem {
div(ya∇U) = 0, in Rn+1

+ ,
U(x, 0) = w, on Rn × {0}. (3.12)

In Fourier variables it is written as

Û(ζ, y) = ŵ(ζ)φ(|ζ|y), (3.13)

where

φ(s) = c1s
γKγ(s) (3.14)
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for a constant c1 = 21−γ

Γ(γ) . In particular,

U(x, y) = Kγ ∗x w = Cn,γ

∫
Rn

y1−a

(|x− x̃|2 + |y|2)
n+1−a

2

w(x̃) dx̃, (3.15)

where Kγ is the Poisson kernel for the problem (3.12). In addition,

(−∆Rn)γw = −d∗γ lim
y→0

ya∂yU,

where the constant d∗γ is given by (1.9).

Proof. We recall some details of the proof for convenience of the reader. Taking Fourier
transform in (3.12) with respect to the variable x we obtain − |ζ|

2Û(ζ, y) +
a

y
Ûy(ζ, y) + Ûyy(ζ, y) = 0,

Û(ζ, 0) = ŵ(ζ).

Thus we can write
Û(ζ, y) = ŵ(ζ)φ(|ζ|y),

where φ(t) solves the ODE  ∂ssφ+
a

s
∂sφ− φ = 0, s ∈ R+,

φ(0) = 1, lim
s→+∞

φ(s) = 0,

Then Lemma 3.1 gives the desired identity (3.14). �

We denote |∇U |2 = (∂x1U)2+...+(∂xnU)2+(∂yU)2, and |∇xU |2 = (∂x1U)2+...+(∂xnU)2.

Lemma 3.4. Let

w(x) =

(
1

|x|2 + 1

)n−2γ
2

, x ∈ Rn, (3.16)

and set U = Kγ ∗x w as given in (3.15). Define

I1 =

∫
Rn+1
+

ya+2x2
1(∂1U)2dxdy,

I2 =

∫
Rn+1
+

ya+2x2
1(∂2U)2dxdy,

I3 =

∫
Rn+1
+

ya+2x1x2∂1U∂2Udxdy,

I4 =

∫
Rn+1
+

ya+4|∇xU |2dxdy,

I5 =

∫
Rn+1
+

ya+2x2
1(∂yU)2dxdy,

I6 =

∫
Rn+1
+

ya+4|∂yU |2dxdy,

I7 =

∫
Rn+1
+

yax2
1U

2dxdy.
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Then
3I2 = 3I3 = I1, (3.17)

and

I3 =
5n3 − 10n2 − (a2 − 2a+ 25)n− 2a2 + 4a+ 30

20n(n+ 2)(n− 3)

∫
Rn+1
+

y2+aU2dxdy,

I4 =
(a+ 3)(5− a)

5

∫
Rn+1
+

y2+aU2dxdy,

I5 =
3 + a

20n(3− a)(n− 3)

(
5n3 − 30n2 − (a2 + 2a− 55)n− 2a2 + 16a− 30

)
·
∫
Rn+1
+

ya+2U2dxdy,

I6 =
(a+ 5)(a+ 3)

5

∫
Rn+1
+

ya+2U2dxdy,

I7 =
3n2 − 18n− (a2 − 2a− 27)

2(n− 3)(3− a)(a+ 1)

∫
Rn+1
+

ya+2U2dxdy.

Proof. We write here ζ = (ξ, η̄) the Fourier variable for x, where η̄ = (η1, ...ηn−1) = (η1, η̃) ∈
Rn−1 for η̃ ∈ Rn−2. We only calculate I3 and I4 here, the rest are very similar. First, note
that

I1 =

∫ ∞
0

ya+2

∫
Rn−1

∫
R

∣∣∣∂ξ[ξÛ(ξ, η̄, y)]
∣∣∣2 dξdη̄dy,

I2 =

∫ ∞
0

ya+2

∫
Rn−1

∫
R
|∂ξ[η1Û(ξ, η̄, y)]|2dξdη̄dy,

I3 =

∫ ∞
0

ya+2

∫
Rn
ξη1(∂ξÛ)(∂η1Û) dζdy,

I4 =

∫ +∞

0
y4+a

∫
Rn
|ζ|2|Û(ζ, y)|2dζdy,

I5 =

∫ +∞

0
y2+a

∫
Rn
|∂y∂ξÛ(ζ, y)|2dζdy,

I6 =

∫ +∞

0
ya+4

∫
Rn

(∂yÛ(ζ, y))2dζdy,

I7 =

∫ +∞

0
ya
∫
Rn
|∂ξÛ(ζ, y)|2dζdy.

From Lemma 3.3 we can write

Û(ζ, y) = φ(|ζ|y)ŵ(ζ), (3.18)
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and one may prove that Û is radial in the variable ζ. Then we compute

I1 =

∫ +∞

0
ya+2

∫
Rn

[
ξ2|∂ξÛ |2 + 2ξÛ∂ξÛ + Û2

]
dζdy

=

∫ +∞

0
ya+2

∫
Rn
ξ2|∂ξÛ |2dζdy

=

∫ +∞

0
ya+2

∫
Rn

ξ4

|ζ|2
Û ′2(|ζ|, y)dζdy,

and

I2 =

∫ +∞

0
ya+2

∫
Rn
η2

1|∂ξÛ |2dζdy

=

∫ +∞

0
ya+2

∫
Rn

ξ2η2
1

|ζ|2
Û ′2(|ζ|, y)dζdy.

Next, for any f(|ζ|) radial function, we define

Xα :=

∫
Rn

f2(|ζ|)ξ4

|ζ|α
dζ,

Yα :=

∫
Rn

f2(|ζ|)ξ2η2
1

|ζ|α
dζ.

We claim that
Xα = 3Yα. (3.19)

Indeed, this is a simple symmetry argument: note that∫
Rn

f2(|ζ|)(ξ + η1)4

|ζ|α
dζ = 2Xα + 6Yα,

and, on the other hand, ∫
Rn

f2(|ζ|)(ξ + η1)4

|ζ|α
dζ = 4Xα,

where the last integral is computed using the change of variables

ξ̄ =
1√
2

(ξ + η1), η̄1 =
1√
2

(ξ − η1).

Then, from (3.19) we immediately obtain that I1 = 3I2. The relation with I3 may be
computed in a similar way. This shows (3.17). Finally, the integral Xα may be calculated
thanks to ∫

Rn

f̂2|ζ|4

|ζ|α
dζ =

∫
Rn

f̂2|ξ2 + η2
1 + |η̃|2|2

|ζ|α
dζ

= nXα + n(n− 1)Yα =
n(n+ 2)

3
Xα.

(3.20)
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On the other hand, recalling expression (3.18),

I1 =

∫ +∞

0
ya+2

∫
Rn
ξ2|∂ξÛ |2dζdy

=

∫ +∞

0
ya+2

∫
Rn
ξ2|∂ξŵ|2 · φ2(|ζ|y) dζdy

+ 2

∫ +∞

0
ya+3

∫
Rn

ξ3

|ζ|
ŵ∂ξŵφ(|ζ|y)φ

′
(|ζ|y)dζdy

+

∫ +∞

0
ya+4

∫
Rn

ξ4

|ζ|2
ŵ2φ′2(|ζ|y) dζdy

=:H1 +H2 +H3.

Direct calculation shows that, after the change of variables s = |ζ|y,

H1 =

∫ +∞

0
sa+2φ2(s) ds

∫
Rn

ξ2

|ζ|a+3
|∂ξŵ|2dζ,

H2 =

∫ +∞

0
sa+3φ(s) · φ′(s)ds

∫
Rn

(a+ 2)ξ4 − 3ξ2|η̄|2

|ζ|a+7
ŵ2 dζ,

H3 =

∫ +∞

0
sa+4φ′

2
(s) ds

∫
Rn

ξ4

|ζ|a+7
ŵ2dζ.

Thus, using (3.19) and (3.20) for Xα,

H2 = (a− n+ 3)

∫ +∞

0
sa+3φ(s)φ′(s) ds

∫
Rn

ŵ2ξ4

|ζ|a+7
dζ

=
3(a− n+ 3)

n(n+ 2)

∫ +∞

0
sa+3φ(s)φ′(s) ds

∫
Rn

ŵ2

|ζ|a+3
dζ

=
3(n− a− 3)(a+ 3)

2n(n+ 2)

∫ +∞

0
sa+2φ2(s) ds

∫
Rn

ŵ2

|ζ|a+3
dζ

=
3(n− a− 3)(a+ 3)

2n(n+ 2)

∫ +∞

0
ya+2

∫
Rn
Û2 dζdy,

and again, thanks to (3.20), and the relation between φ and φ′ given in (3.5),

H3 =
1

3

∫ +∞

0
sa+4φ′

2
ds

∫
Rn

ŵ2ξ4

|ζ|a+7
dζ

=
1

3n(n+ 2)

∫ +∞

0
sa+4φ′(s)2

∫
Rn

ŵ2

|ζ|a+3
dζ

=
(a+ 5)(a+ 3)

5n(n+ 2)

∫ +∞

0
ya+2

∫
Rn
U2dxdy.

Next, we give the estimate for H1. Note that for w as given (3.16) we have that

ŵ(ζ) = C0|ζ|−γKγ(|ζ|), (3.21)
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where Kγ(s) is the modified Bessel function from Lemma 3.1. This is a well known formula
for which we have not found a proof, so we provide one in the Appendix. We have that

∂ξŵ = C0

[
−γ|ζ|−γ−1Kγ(|ζ|) + |ζ|−γK ′γ(|ζ|)

]
· ξ
|ζ|
.

We may calculate directly from (3.20),

H1 =
3C2

0

n(n+ 2)

∫ +∞

0
sa+2φ2(s)

∫
Rn

[
K ′γ(|ζ|)− γKγ(|ζ|)

|ζ|

]2

|ζ|2
dζ

=
3C2

0 |Sn−1|
n(n+ 2)

∫ +∞

0
sa+2φ2(s)

∫ +∞

0
tn−3(K ′γ(t)− γKγ(t)/t)2 dt.

(3.22)

Note that Kγ(t) is a solution of (3.2). Thus, multiplying this equation by tn−4K ′γ(t) and
integrating we arrive at

0 =

∫ +∞

0
tn−2K ′γK

′′
γdt+

∫
tn−3K ′γ

2
dt−

∫ ∞
0

tn−2KγK
′
γdt− γ2

∫ +∞

0
tn−4KγK

′
γ dt

= −n−2
2

∫ +∞

0
tn−3K ′γ

2
dt+

∫ +∞

0
tn−3K ′γ

2
dt+ n−2

2

∫ +∞

0
tn−3K2

γ dt

+ γ2(n−4)
2

∫ +∞

0
tn−5K2

γ dt,

from which we get∫ +∞

0
tn−3K ′γ

2
dt =

1

n− 4

{
(n− 2)

∫ +∞

0
tn−3K2

γ dt+ γ2(n− 4)

∫ +∞

0
tn−5K2

γ dt

}
.

Expanding out (3.22), taking into account the above expression we arrive at

H1 =
3C2

0 |Sn−1|
n(n+ 2)

∫ +∞

0
sa+2φ2(s) ds

·
(
n− 2

n− 4

∫ +∞

0
tn−3K2

γ dt+ (2γ2 + γ(n− 4))

∫ +∞

0
tn−5K2

γ dt

)
=

3|Sn−1|C2
0

n(n+ 2)

(
(n− 2)(n− 5 + a)(n− 3− a)

4(n− 3)
+ γ(n− 4) + 2γ2

)
·
∫ +∞

0
sa+2φ2(s) ds

∫ +∞

0
tn−5K2

γ dt,

where we have used (3.7) to combine both terms above, since φ(t) := tγKγ(t) satisfies (3.1).
Finally, since

|Sn−1|C2
0

∫ +∞

0
sa+2φ2(s) ds

∫ +∞

0
tn−5K2

γ(t)dt =

∫ +∞

0
sa+2φ2(s) ds

∫
Rn

ŵ2(|ζ|)
|ζ|a+3

dζ

=

∫
Rn+1
+

ya+2U2dxdy,
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we obtain a formula for H1

H1 =
2

n(n+ 2)

(
(n− 2)(n− 5 + a)(n− 3− a)

4(n− 3)
+ γ(n− 4) + 2γ2

)∫
Rn+1
+

ya+2U2dxdy.

From here we can calculate I1, I2, I3 and, in particular,

I3 =

(
5n2 + 5(a+ 1)n+ 4a2 − 18a− 10

20n(n+ 2)
− a(n− 2)(n− 5 + a)

4n(n− 3)(n+ 2)

)∫
Rn+1
+

y2+aU2dxdy

=
5n3 − 10n2 − (a2 − 2a+ 25)n− 2a2 + 4a+ 30

20n(n+ 2)(n− 3)

∫
Rn+1
+

y2+aU2dxdy.

Similarly,

I4 =

∫ +∞

0
s4+aφ2(s)ds

∫
Rn

|ŵ|2(ζ)

|ζ|3+a
dζ =

(a+ 3)(5− a)

5

∫
Rn+1
+

ya+2U2dxdy.

�

4 Proof of Theorem 1.5

By the work of [9], it is enough to find a suitable test function such that inequality (1.13) is
strictly satisfied.

On Rn, we fix the conformal diffeomorphisms of the sphere

wµ(x) :=

(
µ

|x|2 + µ2

)n−2γ
2

,

which satisfy

(−∆)γwµ = cw
n+2γ
n−2γ
µ , (4.1)

for some positive constant c. We also consider the corresponding extension Uµ := U(wµ)
from Lemma 3.3, that can be written as

Uµ(x, y) = Kγ ∗x wµ.

It is clear that

wµ(x) =
1

µ
n−2γ

2

w1

(
x

µ

)
, and Uµ(x, y) =

1

µ
n−2γ

2

U1

(
x

µ
,
x

µ

)
.

These functions attain the best constant in the trace Sobolev inequality (1.11). More precisely,
looking at (1.12),

‖wµ‖2L2∗ (Rn)
= S̄(n, γ)

∫
Rn+1
+

ya|∇Uµ|2 dxdy. (4.2)

From (4.1) we know that Uµ is the (unique) solution of the problem div(ya∇Uµ) = 0 in Rn+1
+ ,

− lim
y→0

ya∂yUµ = cn,γ(wµ)
n+2γ
n−2γ on Rn,

(4.3)

23



On the other hand, if we multiply equation (4.3) by Uµ and integrate by parts,∫
Rn+1
+

ya|∇Uµ|2 dxdy = cn,γ

∫
Rn

(wµ)2∗ dx. (4.4)

Now we compare (4.4) with (4.2). Using (1.12) we arrive at

Λγ(Sn, [gc]) = cn,γd
∗
γ

[∫
Rn

(wµ)2∗dx

] 2γ
n

. (4.5)

Note that wµ is also radially symmetric and nonincreasing, so also Uµ = Kγ ∗x wµ is
radially symmetric and non-increasing since the kernel Kγ is as such.

Given any ε > 0, let Bε be the ball of radius ε centered at the origin in Rn+1 and B+
ε

be the half ball of radius ε in Rn+1
+ . Choose a smooth radial cutoff function η, 0 ≤ η ≤ 1,

supported on B2ε, and satisfying η = 1 on Bε. For µ << ε, we choose as test function simply

Vµ := ηUµ,

for the functional (1.10), which we recall is given by

Iγ [V, ĥ] =
d∗γ
∫
Xn+1

(
ρa|∇V |2ḡ + E(ρ)V 2

)
dvḡ

(
∫
Mn V 2∗ dvĥ)2/2∗

(4.6)

Step 1: Computation of the Energy in B+
ε .

Here Vµ = Uµ. By Proposition 2.4, using the expansion for
√

det ḡ,∫
B+
ε

ya|∇Uµ|2ḡdvḡ =

∫
B+
ε

ya[ḡij∂iUµ(∂jUµ) + (∂yUµ)2]dvḡ

=

∫
B+
ε

ya|∇Uµ|2ḡdxdy +

∫
B+
ε

ya|∇Uµ|2ḡ ·O(|(x, y)|5)dxdy

− 1

6
Ricyy,y

∫
B+
ε

ya+3|∇Uµ|2ḡdxdy +
1

2

∫
B+
ε

ya|∇Uµ|2ḡ(det ḡ)(4)dxdy

= I + II + III + IV,

(4.7)

where (det ḡ)(4) means the fourth order O(r4), r = |(x, y)|, in the expansion of det ḡ.
As to II,∫

B+
ε

ya|∇Uµ|2ḡ ·O(|(x, y)|5)dxdy ≤ Cµ5

∫
B+
ε/µ

ya|(x, y)|5|∇U1|2dxdy

= µ5[Ẽ5 + o(1)],

(4.8)

where f = o(1) means that
lim

ε/µ→∞
f = 0,

and

Ẽk :=

∫
Rn+1
+

ya|(x, y)|k|∇U1|2dxdy.
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From (3.21) and expansion formula for Kγ in Lemma 3.1, it is easy to check that both

Ek :=

∫
Rn+1
+

ya+k|∇U1|2dxdy < +∞

and ∫
Rn+1
+

ya|x|5|∇U1|2dxdy < +∞

are finite when n > 5 + 2γ, as a consequence, Ẽ5 <∞.

Next, we estimate the term III,

III = −1

6
Ricyy,yµ

3

∫
B+
ε/µ

ya+3|∇U1|2dxdy −
1

6
Ricyy,y

∫
B+
ε

ya+3(ḡij − δji )(∂iU1)(∂jU1)dxdy

= −1

6
R̄yy,yµ

3

∫
B+
ε/µ

ya+3|∇U1|2dxdy

+ µ5

(∫
Rn+1
+

ya+3O(|(x, y)|2)|∇U1|2dxdy + o(1)

)
.

While using (3.3) from Lemma 3.2, recalling (3.13) and the change s = |ζ|y,∫
Rn+1
+

ya+3|∇U1|2dxdy =

∫
Rn

|ŵ|2(ζ)

|ζ|a+2

∫ +∞

0
sa+3

(
φ2(s) + φ′

2
(s)
)
ds

=
3(a+ 2)

2

∫
Rn

|ŵ|2(ζ)

|ζ|a+2

∫ +∞

0
sa+1φ2(s)ds

=
3(a+ 2)

2

∫
Rn+1
+

ya+1U2
1 (x, y)dxdy.

Thus, for n > 5 + 2γ,

III = −(a+ 2)

4
Ricyy,yµ

3

∫
Rn+1
+

ya+1U2
1 (x, y)dxdy +O(µ5). (4.9)

Now, we give an estimate IV . But, noting the symmetry property for the curvature and
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integral,

2 IV =

∫
B+
ε

ya|∇Uµ|2ḡ(det ḡ)(4)dxdy

=

∫
B+
ε

ya(det ḡ)(4)|∇Uµ|2dxdy +

∫
B+
ε

ya(det g)(4)(ḡij − δij)(∂iUµ)(∂jUµ) dxdy

=

∫
B+
ε

ya(det ḡ)(4)|∇Uµ|2dxdy +O(µ5)

=

(
− 1

20
Rickl,mp −

1

90
R̄ikslRimsp

)∫
B+
ε

yaxkxlxmxp|∇Uµ|2dxdy

− 1

2

∑
k

Ricyy,kk

∫
B+
ε

yax2
1|∇Uµ|2dxdy

− 1

12

(
Ricyy,yy + 2(R̄yiyj)

2
) ∫

B+
ε

ya+4|∇Uµ|2dxdy

+O(µ5)

= IV.1 + IV.2 + IV.3 +O(µ5)

Proposition 2.4(vi) immediately gives that IV.1 = 0. Next, we estimate IV.2. For that, we
write

IV.2 = −1

2
µ4

n∑
k=1

Ricyy,kk(IV.2.1 + (n− 1)IV.2.2 + IV.2.3) + µ4o(1),

where

IV.2.1 =

∫ +∞

0

∫
Rn
ya+2x2

1(∂1U1)2dxdy,

IV.2.2 =

∫ +∞

0

∫
Rn
ya+2x2

2(∂1U1)2dxdy,

IV.2.3 =

∫ +∞

0

∫
Rn
ya+2x2

1(∂yU1)2dxdy.

Then Lemma 3.4 quickly yields that

IV.2 = −1

2
Ricyy,kkµ

4 ((n+ 2)I3 + I5) .

Finally, using the notation from the same lemma, we can write the term IV.3 as

IV.3 = − 1

12
(Ricyy,yy + 2(R̄yiyj)

2)(I4 + I6)µ4 + µ4o(1).

Thus, putting all together we arrive at

IV =

{
−1

4
Ricyy,kk ((n+ 2)I3 + I5)− 1

24

(
Ricyy,yy + 2(R̄yiyj)

2
)

(I4 + I6)

}
µ4 + µ4o(1),

(4.10)
for n > 5 + 2γ.
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To conclude, we give the estimate for the term I in (4.7). Direct calculation shows that

x1∂2U1 = x2∂1U1.

In fact, the Fourier transform of x1∂2U1 is

∂ξ(η1Û1(ξ, η1, η̃)) = η1∂ξ(φ(|ζ|y)ŵ1(ζ))

= η1

[
(∂ξŵ1)φ(|ζ|y) + y

ξ

|ζ|
ŵ1φ

′(|ζ|y)

]
,

and we have that x1∂2w1 = x2∂1w1. Thus the previous expression is symmetric with respect
to the first two variables.

Then an analogous symmetry argument yields that we may restrict to consider the fourth
order terms in the expansion of ḡij . Thus

I =

∫
B+
ε

ya|∇Uµ|2dxdy +

∫
B+
ε

ya(gij − δij)(∂iUµ)(∂jUµ)dxdy

=

∫
B+
ε

ya|∇Uµ|2dxdy

+

∫
B+
ε

(
1

24
ḡij,yyyyy

4 +
1

4
ḡij,yykly

2xkxl +
1

24
ḡij,klmpxkxlxmxp

)
(∂iUµ)(∂jUµ)dxdy

=

∫
B+
ε

ya|∇Uµ|2dxdy +A1 +A2 +A3.

(4.11)

First we estimate A1, given by

24A1 =

∫
B+
ε

ḡij,yyyyy
4+a(∂iUµ)(∂jUµ)dxdy.

Note that

∂iUµ = −Cn,γ(n+ 1− a)

∫
Rn

y1−a(xi − x̃i)
(|x− x̃|2 + y2)

n+1−a
2

+1
·
(

µ

|x̃|2 + µ2

)n−2γ
2

dx̃.

Then, because of expression (2.3) for the inverse of the metric we have that

24A1 =

∫
B+
ε

(2R̄yiyj,yy + 16R̄yiysR̄ysyj)y
4+a(∂iUµ)(∂jUµ)dxdy

=
1

n

∫
B+
ε

(2Ricyy,yy + 16(R̄yiyj)
2)y4+a|∇xUµ|2dxdy

=
2Ricyy,yy + 16(R̄yiyj)

2

n
µ4

∫
B+
ε/µ

y4+a|∇xU1|2(x, y)dxdy.

Also, using again expression (2.3), we have that

ḡij,yykl = 2R̄yiyj,kl;
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(the other terms vanish thanks to (2.20)). Thus, by a symmetry argument,

4A2 =

∫
B+
ε

ḡij,yykly
2+axkxl(∂iUµ)(∂jUµ)dxdy

= 2R̄yiyi,ii

∫
B+
ε

y2+ax2
i (∂iUµ)2dxdy

+
∑
i 6=j

2R̄yiyi,jj

∫
B+
ε

y2+ax2
i (∂jUµ)2dxdy

+
∑
i 6=j

4R̄yiyj,ij

∫
B+
ε

y2+axixj(∂iUµ)(∂jUµ)dxdy.

After changing variables and reordering, taking into account (3.17) to group some of the
terms,

4A2 = 2µ4R̄yiyi,ii

∫
B+
ε/µ

y2+ax2
i (∂iU1)2dxdy

+ 2µ4
∑
i 6=j

R̄yiyi,jj

∫
B+
ε/µ

ya+2x2
i (∂jU1)2dxdy

+ 4µ4
∑
i 6=j

R̄yiyj,ij

∫
B+
ε/µ

y2+axixj(∂iU1)(∂jU1)dxdy

= 2µ4
[
R̄yiyi,iiI1 +

∑
i 6=j

R̄yiyi,jjI2 + 2
∑
i 6=j

R̄yiyj,ijI3 + o(1)
]

= 2µ4
[{
R̄yiyi,ii + 2R̄yiyi,ii +

∑
i 6=j

R̄yiyi,jj + 2
∑
i 6=j

R̄yiyj,ij

}
I3 + o(1)

]
.

We conclude that

A2 =
µ4

2

∑
k

Ricyy,kk + 2
∑
i,j

R̄yiyj,ij

[∫
B+
ε/µ

y2+ax1x2(∂1U1)(∂2U1)dxdy + o(1)

]
.

As to the term
∫
B+
ε
ya|∇Uµ|2dxdy in expression (4.11), we use the equation (4.3) to get∫

B+
ε

ya|∇Uµ|2dxdy =

∫
Γ+
ε

yaUµ∂νUµdσ −
∫

Γ0
ε

lim
y→0

Uµy
a∂yUµ

≤ cn,γ
∫

Γ0
ε

w2∗
µ dx ≤

Λγ(Sn, [gc])
d∗γ

(∫
Γ0
ε

w2∗
µ dx

)n−2γ
n

,

where we have used that ∂νUµ ≤ 0 on Γ+
ε and (4.5). In addition, the third term A3 vanishes

due to the symmetries of the curvature tensor. Thus (4.11) reduces to

I ≤ Λγ(Sn, [gc])
d∗γ

(∫
Γ0
ε

w2∗
µ dx

)n−2γ
n

+

{
1

12n
(Ricyy,yy + 8(R̄yiyj)

2)I4 +
1

2
(Ricyy,kk + 2

∑
R̄yiyj,ij)I3

}
µ4 + µ4o(1).

(4.12)
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Finally, we can give an estimate for the energy (4.7). Putting together (4.12), (4.8), (4.9)
and (4.10) we conclude that

∫
B+
ε

ya|∇Vµ|2dvḡ ≤
Λγ(Sn, [gc])

d∗γ

(∫
Γ0
ε

w2∗
µ

)n−2γ
n

− (a+ 2)

4
Ricyy,yµ

3

∫
B+
ε/µ

ya+1U2
1dxdy

+

{
−1

4
Ricyy,kk((n+ 2)I3 + I5)− 1

24
Ricyy,yy(I4 + I6)

+
1

12n
Ricyy,yyI4 +

1

2
(Ricyy,kk + 2R̄yiyj,ij)I3

}
µ4

+ o(µ4),

(4.13)

for n > 5 + 2γ. Here we have used property (2.20) of the metric to cancel the terms R̄yiyj in
the integrals I and IV .

On the other hand, now we calculate the term
∫
B+
ε
E(y)U2

µdvḡ in the energy (4.6). For

a metric g+ = ρ−2(dρ2 + hρ) we may explicitly calculate its Laplace-Beltrami operator, and
thus,

E(ρ) =ρ−1−s(−∆g+ − s(n− s))ρn−s

= −n− s
2

ρn−2s∂ρ dethρ
dethρ

= −n− 1 + a

4
ρa−1∂ρ dethρ

dethρ
.

We need to calculate the expansion for
∂y dethy√

dethy
near p. But dethy = det ḡ, thus substituting

the expansion (2.16) we arrive at

∂y dethy√
dethy

= 1−Ricyy,klxkxlρ−Ricyy,yρ2 +
1

3
[−Ricyy,yy − 2(R̄yiyj)

2] + . . . ,

where we have not written terms that will integrate to zero, in particular because of statement
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(vi) in Proposition 2.4. Then, noting that dvḡ =
√

dethy dxdy, we have∫
B+
ε

E(y)U2
µdvḡ = −n− 1 + a

4

∫
B+
ε

ya−1

(
∂y dethy√

dethy

)
U2
µ dxdy

≤ n− 1 + a

4
Ricyy,y

∫
B+
ε

ya+1U2
µdxdy

+
n− 1 + a

4
Ricyy,kl

∫
B+
ε

yaxkxlU
2
µdxdy

+
n− 1 + a

12

(
Ricyy,yy + 2(R̄yiyj)

2
) ∫

B+
ε

ya+2U2
µdxdy

+ C

∫
B+
ε

ya|(x, y)|3U2
µdxdy

≤ n− 1 + a

4
Ricyy,yµ

3

∫
B+
ε/µ

ya+1U2
1dxdy

+
n− 1 + a

4
Ricyy,kkµ

4

∫
B+
ε/µ

yax2
1U

2
1dxdy

+
n− 1 + a

12
µ4
(
Ricyy,yy + 2(R̄yiyj)

2
) ∫

B+
ε/µ

ya+2U2
1dxdy

+ Cµ5(Ẽ3 + o(1)).

(4.14)

Step 2: Computation of the energy in the half-annulus B+
2ε \B+

ε .
At first, we note that on the half-annulus,

|∇Vµ|2ḡ ≤ c|∇Uµ|2 +
c

ε2
(Uµ)2. (4.15)

But ∫
B+

2ε\B
+
ε

ya(Uµ)2dxdy ≤ µ2

∫
B+

2ε/µ
\B+

ε/µ

ya(U1)2dxdy

≤ µ2

(
ε

µ

)−3 ∫
B+

2ε/µ
\B+

ε/µ

ya|(x, y)|3U2
1dxdy

≤ µ5ε−3o(1),

and ∫
B+

2ε\B
+
ε

ya|∇Uµ|2dxdy =

∫
B+

2ε/µ
\B+

ε/µ

ya|∇U1|2dxdy

≤ µ5ε−5o(1).

Thus from formula (4.15) we may estimate∫
B+

2ε\B
+
ε

ya|∇Vµ|2ḡ dvḡ ≤ cµ5ε−5o(1). (4.16)
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And similarly, ∫
B+

2ε\B
+
ε

E(y)V 2
µ dvḡ ≤ cµ5ε−3o(1). (4.17)

Step 3: Conclusion.
Next, (4.13), (4.14), (4.16) and (4.17) show that∫

X
ya|∇Vµ|2ḡ + E(y)V 2

µ (x, y)dvḡ

≤ Λγ(Sn, [gc])
d∗γ

(∫
Γ0
ε

w2∗
µ dx

)n−2γ
2

+
n− 3

4
Ricyy,yµ

3

∫
B+
ε/µ

ya+1U2
1dxdy

+ I3

(
−n+ 2

4
Ricyy,kk +

1

2
Ricyy,kk + R̄yiyj,ij

)
µ4

+ I4

(
− 1

24
Ricyy,yy +

Ricyy,yy
12n

)
µ4 + I5

(
−1

4
Ricyy,kk

)
µ4

+ I6

(
− 1

24
Ricyy,yy

)
µ4 + I7

(
n− 1 + a

4
Ricyy,kk

)
µ4

+
n− 1 + a

12
(Ricyy,yy + 2(R̄yiyj)

2)µ4

∫
Rn+1
+

ya+2U2
1dxdy + o(µ4)

Using (2.18), (2.20), (2.21) and (2.22) to simplify the coefficients, it follows that∫
X
ya|∇Vµ|2ḡ + E(y)V 2

µ (x, y)dvḡ

≤Λγ(Sn, [gc])
d∗γ

(∫
Γ0
ε

w2∗
µ dx

)n−2γ
2

+
n− 3

4
Ricyy,yµ

3

∫
B+
ε/µ

ya+1U2
1dxdy

+ µ4R,ii

{
4− n

8(n− 1)
I3 −

1

8(n− 1)
I5 +

n− 1 + a

8(n− 1)
I7

}
+ o(µ4).

(4.18)

Next, using the formulas from Lemma 3.4, a direct calculation shows that

(4− n)I3 − I5 + (n− 1 + a)I7 = θ(n, a)

∫
Rn+1
+

ya+2U2
1dxdy,

where we have defined

θ(a, n) :=
1

10n(n+ 2)(n− 3)(3− a)(a+ 1)
·
[
15n5 − 90n4 + (−10a2 + 20a+ 90)n3

+ (20a2 − 40a+ 300)n2 + (3a4 − 12a3 + 38a2 − 52a− 585)n

+ (a+ 1)(6a3 − 30a2 − 114a+ 270)
]
.

Thanks to (2.19), (2.20), (2.21) and (2.22) many curvature terms vanish and the energy (4.18)

31



just reduces to∫
X
ya|∇Vµ|2ḡ + E(y)V 2

µ (x, y) dvḡ ≤

=
Λγ(Sn, [gc])

d∗γ

(∫
M
w2∗
µ dvĥ

)n−2γ
2

− µ4 1

48(n− 1)
θ(n, a)|W |2(p)

∫
Rn+1
+

ya+2U2
1dxdy + o(µ4).

It is easy to show that θ(n, a) > 0 for n ≥ 6. It is actually possible to show the same result
for any real n > 5 + 2γ with the help of Matlab, but it is not relevant in our case. We may
conclude that

Īγ [Vµ, ĥ] < Λγ(Sn, [gc]),

as desired. Then the proof of Theorem 1.5 is completed in view of Proposition 1.2. �

5 Proof of Theorem 1.3

From the proof for Theorem 2, it is easy to see that∫
X
ya|∇Vµ|2ḡ + E(y)V 2

µ dvḡ

≤ Λ(Sn, [gc])
d∗γ

(∫
M
w2∗
µ dvĥ

)n−2γ
2

+
n− 3

4
Ricyy,yµ

3

∫
B+
ε/µ

ya+1U2
1dxdy + o(µ3).

In particular, all the extra information about Einstein was used only on the terms of order
µ4, so we have the same formula.

Direct calculation also shows that for n ≥ 6,∫
Rn+1

+

ya+1U2
1 (x, y)dxdy < +∞.

Indeed, we remind the reader that

Û = ŵ(|ζ|)φ(|ζ|y), ŵ(ζ) = C0|ζ|−γKγ(|ζ|), φ(s) = sγKγ(s),

and that ∫
Rn+1
+

ya+1U2(x, y) dxdy =

∫ +∞

0
sa+1φ2(s) ds

∫
Rn
ŵ2(ζ)

1

|ζ|a+2
dζ.

Looking the asymptotics from Lemma 3.1, this integral is finite when n−4−2γ > −1. Thus,
the existence of p ∈ M such that Ricyy,y(p) < 0 ensures the solvability of the fractional
Yamabe problem, as desired. �
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6 Appendix

Lemma 6.1. The Fourier transform of the function

w(x) =

(
1

1 + |x|2

)n−2γ
2

, x ∈ Rn,

is given by
ŵ(ζ) = C0|ζ|−γKγ(|ζ|),

for some constant C0 = C0(n, γ), and Kγ the modified Bessel function from Lemma 3.1.

Proof. In the following, all the equalities will be so up to multiplicative constant that may
change from line to line. Since w is a radial function, its Fourier transform will be radial
too, and we can choose coordinate axes such that ζ = |ζ|e1. Then, expanding in spherical
coordinates,

ŵ(ζ) =

∫
Rn
e−ix·ζw(x) dx =

∫ ∞
0

∫ π

0
e−i|ζ| cos θ1(1 + r2)−µrn−1 sinn−2 θ1 dθ1 dr.

It is well known ([20], page 48) that

Jn
2
−1(ar) = (ar)

n
2
−1

∫ π

0
eia cos θ sinn−2 θ dθ,

and this function is real. Thus

ŵ(ζ) = |ζ|−
n
2

+1

∫ ∞
0

r
n
2 Jn

2
−1(|ζ|r)(1 + r2)−µdr.

Finally, we recall (11.4.44 in [1]) that∫ ∞
0

rν+1Jν(ar)

(1 + r2)µ
dr = aµ−1Kν−µ+1(a),

so
ŵ(ζ) = |ζ|−

n
2

+µKn
2
−µ(|ζ|),

as desired. �
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