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Abstract

We investigate the singular sets of solutions of a natural family of
conformally covariant pseudodifferential elliptic operators of fractional
order, with the goal of developing generalizations of some well-known
properties of solutions of the singular Yamabe problem.

1 Introduction

Let (M, g) be a compact n-dimensional Riemannian manifold, n ≥ 3. If
Λ ⊂ M is any closed set, then the ‘standard’ singular Yamabe problem
concerns the existence and geometric properties of complete metrics of the
form g = u

4
n−2 g with constant scalar curvature. This corresponds to solving

the partial differential equation

∆gu+
n− 2

4(n− 1)
Rgu =

n− 2
4(n− 1)

Rg u
n+2
n−2 , u > 0, (1.1)

where Rg is constant and with a ‘boundary condition’ that u → ∞ suffi-
ciently quickly at Λ so that g is complete. (Note that in our convention, ∆g

is an operator with nonnegative spectrum.) It is known that solutions with
Rg < 0 exist quite generally if Λ is large in a capacitary sense [17], whereas
for Rg > 0 existence is only known when Λ is a smooth submanifold (possibly
with boundary) of dimension k < (n− 2)/2, see [19], [8].

There are both analytic and geometric motivations for studying this
problem. For example, in the positive case (Rg > 0), solutions to this
problem are actually weak solutions across the singular set, so these results
fit into the broader investigation of possible singular sets of weak solutions of
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semilinear elliptic equations. On the geometric side is a well-known theorem
by Schoen and Yau [25] stating that if (M,h) is a compact manifold with
a locally conformally flat metric h of positive scalar curvature, then the
developing map D from the universal cover M̃ to Sn, which by definition
is conformal, is injective, and moreover, Λ := Sn \ D(M̃) has Hausdorff
dimension less than or equal to (n−2)/2. Regarding the lifted metric h̃ on M̃
as a metric on Ω, this provides an interesting class of solutions of the singular
Yamabe problem which are periodic with respect to a Kleinian group, and
for which the singular set Λ is typically nonrectifiable. More generally, that
paper also shows that if g is the standard round metric on the sphere and if
g = u

4
n−2 g is a complete metric with positive scalar curvature and bounded

Ricci curvature on a domain Ω = Sn \ Λ, then dim Λ ≤ (n− 2)/2.
In the past two decades it has been realized that the conformal Lapla-

cian, which is the operator appearing as the linear part of (1.1), fits into a
holomorphic family of conformally covariant elliptic pseudodifferential op-
erators. The operators in this family of positive even integer order are the
GJMS operators, and these have a central role in conformal geometry. Just
as the Yamabe problem is naturally associated to the conformal Laplacian,
so too are there higher order Yamabe-type problems associated to the other
GJMS operators, or more generally, also to these other conformally covari-
ant operators with noninteger order. The higher (integer) order Yamabe
problems have proved to be analytically challenging and provide insight
into the GJMS operators themselves. Hence it is reasonable to hope that
these fractional order (singular) Yamabe problems will have a similarly rich
development and will bring out interesting features of these conformally co-
variant pseudodifferential operators. From a purely analytic perspective,
little is known about regularity of solutions of semilinear pseudodifferential
equations like these, and this family of geometric problems is a natural place
to start. In fact, as we explain below, fractional powers of the Laplacian
have also appeared recently in the work of Caffarelli and his collaborators as
generalized Dirichlet to Neumann operators for certain singular divergence
form elliptic equations, which further indicates the worth of studying such
operators.

The present paper begins an investigation into these questions. Our
goals here are limited: beyond presenting this set of problems as an in-
teresting area of investigation, we prove a few results which indicate how
certain properties of the fractional singular Yamabe problem extend some
well-known results for the standard Yamabe equation.

To describe this more carefully, we first define the family of fractional
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conformal powers of the Laplacian. As we have already indicated, the linear
operator which appears as the first two terms on the left in (1.1) is known
as the conformal Laplacian associated to the metric g, and denoted P g1 . It
is conformally covariant in the sense that if f is any (smooth) function and
g = u

4
n−2 g for some u > 0, then

P g1 (uf) = u
n+2
n−2P g1 (f). (1.2)

Setting f ≡ 1 in (1.2) yields the familiar relationship (1.1) between the
scalar curvatures Rg and Rg. P1 is the first in a sequence of conformally
covariant elliptic operators, Pk, which exist for all k ∈ N if n is odd, but only
for k ∈ {1, . . . , n/2} if k is even. The first construction of these operators,
by Graham-Jenne-Mason-Sparling [13] (for which reason they are known as
the GJMS operators), proceeded by trying to find lower order geometric
correction terms to ∆k in order to obtain nice transformation properties
under conformal changes of metric. Beyond the case k = 1 which we have
already discussed, the operator

P2 = ∆2 + δ (anRg + bnRic) d+ n−4
2 Q2,

called the Paneitz operator (here Q2 is the standard Q-curvature), had also
been discovered much earlier than the operators Pk with k > 2.

This leads naturally to the question whether there exist any conformally
covariant pseudodifferential operators of noninteger order. A partial result
in this direction was given by Peterson [20], who showed that for any γ, the
conformal covariance condition determines the full Riemannian symbol of a
pseudodifferential operator with principal symbol |ξ|2γ . Hence Pγ is deter-
mined modulo smoothing operators, but it is by no means clear that one can
choose smoothing operators to make the conformal covariance relationships
hold exactly. The breakthrough result, by Graham and Zworski [14], was
that if (M, [g]) is a smooth compact manifold endowed with a conformal
structure, then the operators Pk can be realized as residues at the values
γ = k of the meromorphic family S(n/2 + γ) of scattering operators associ-
ated to the Laplacian on any Poincaré-Einstein manifold (X,G) for which
(M, [g]) is the conformal infinity. These are the ‘trivial’ poles of the scatter-
ing operator, so-called because their location is independent of the interior
geometry; S(s) typically has infinitely many other poles, which are called
resonances, the location and asymptotic distribution of which is a matter
of considerable interest and ongoing study. Multiplying this scattering fam-
ily by some Γ factors to regularize these poles, one obtains a holomorphic
family of elliptic pseudodifferential operators P gγ (which patently depends
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on the filling (X,G)). An alternate construction of these operators has been
obtained by Juhl, and his monograph [15] describes an intriguing general
framework for studying conformally covariant operators, see also [16].

This realization of the GJMS operators has led to important new under-
standing of them, including for example the basic fact that P gγ is symmetric
with respect to dVg, (something not obvious from the previous fundamen-
tally algebraic construction). Hence even though the family P ḡγ is not en-
tirely canonically associated to (M, [g]) (as we explain in some detail below),
its study can still illuminate the truly canonical operators which occur as
special values at positive integers, i.e. the GJMS operators.

For various technical reasons, we focus here only on the operators Pγ
when γ ∈ R, |γ| ≤ n/2. These have the following properties: first, P0 = Id,
and more generally, Pk is the kth GJMS operator, k = 1, . . . , n/2; next, Pγ
is a classical elliptic pseudodifferential operator of order 2γ with principal
symbol σ2γ(P gγ ) = |ξ|2γg , hence (since M is compact), Pγ is Fredholm on L2

when γ > 0; if Pγ is invertible, then P−γ = P−1
γ ; finally,

if g = u
4

n−2γ g, then P gγ (uf) = u
n+2γ
n−2γP gγ (f) (1.3)

for any smooth function f . Generalizing the formulæ for scalar curvature
(γ = 1) and the Paneitz-Branson Q-curvature (γ = 2), we make the defini-
tion that for any 0 < γ ≤ n/2, Qgγ , the Q-curvature of order γ associated to
a metric g, is given by

Qgγ = P gγ (1). (1.4)

Let us comment further on the choices involved in these definitions.
First, Poincaré-Einstein fillings (X,G) of (M, [g]) (which are defined at the
beginning of §2), may not always exist, and when they exist, they may not
be unique. The existence issue is not serious: the construction of [14] only
uses that the metric G satisfy the Einstein equation to sufficiently high or-
der, and one can even take X = M × [0, 1] with the conformal structure [g]
at M × {0} and with the other boundary M × {1} a regular (incomplete)
boundary for G. However, these comments indicate that the issue of lack of
uniqueness is far worse, since there are always infinite dimensional families
of asymptotically Poincaré-Einstein fillings. Any choice of one of these fixes
a family of operators P gγ , and for each such choice Pγ satisfies all the proper-
ties listed above. As already noted, the complete Riemannian symbol of P gγ
is determined by the metric g and the conformal covariance; the choice of
filling provides a consistent selection of smoothing terms in these pseudod-
ifferential operators for which the same covariance properties hold. Hence
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the Q-curvatures Qgγ for noninteger values of γ are similarly ill-defined. In
particular, except in certain special cases where there are canonical choices
of fillings (e.g. the sphere), it is not clear that the existence of a metric g in a
conformal class such that Qgγ > 0 depends only on that conformal class. We
leave open these significant problems, and in what follows, always make the
tacit assumption that for any given (M, [g]), we have fixed an approximately
Poincaré-Einstein filling (X,G) and used this to define the family P gγ . In
other words, it is perhaps more sensible to think of Pγ and Qγ as quantities
determined by the pair ((M, [g]), (X,G)).

In any case, generalizing (1.1), consider the “fractional Yamabe prob-
lem”: given a metric g on a compact manifold M , find u > 0 so that if
g = u4/(n−2γ)g, then Qgγ is constant. This amounts to solving

P gγ u = Qgγu
n+2γ
n−2γ , u > 0, (1.5)

for Qgγ = const. More generally, we can simply seek metrics g which are
conformally related to g and such that Qgγ ≥ 0 or Qgγ < 0 everywhere.

This fractional Yamabe problem has now been solved in many cases
where the positive mass theorem is not needed [12], and further work on
this is in progress.

As described earlier, it is is also interesting to construct complete metrics
of constant (positive) Qγ curvature on open subdomains Ω = M \ Λ, or in
other words, to find metrics g = u4/(n−2γ)g which are complete on Ω and
such that u satisfies (1.5) with Qgγ a constant. This is the fractional singular
Yamabe problem. In the first few integer cases it is known that the positivity
of the curvature places restrictions on dim Λ (see [25], [19] for the case γ = 1,
[4] for γ = 2, and [11] for the analogous problem for the closely related σk
curvature).

Although it is not at all clear how to define P gγ and Qgγ on a general com-
plete open manifold, we can give a reasonable definition when Ω is an open
dense set in a compact manifold M and the metric g is conformally related
to a smooth metric g on M . Namely, we can define them by demanding that
the relationship (1.3) holds. Note, however, that this too is not as simple
as it first appears since, because of the nonlocal character of P gγ , we must
extend u as a distribution on all of M . We discuss this further below.

The purpose of this note is to clarify some basic features of this fractional
singular Yamabe problem and to establish a few preliminary results about
it. Our first result generalizes the Schoen-Yau theorem.

Theorem 1.1. Suppose that (Mn, g) is compact and g = u
4

n−2γ g is a com-
plete metric on Ω = M \Λ, where Λ is a smooth k-dimensional submanifold.
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Assume furthermore that u is polyhomogeneous along Λ with leading expo-
nent −n/2 + γ. If 0 < γ ≤ n

2 , and if Qgγ > 0 everywhere for any choice
of asymptotically Poincaré-Einstein extension (X,G) which defines P gγ and
hence Qgγ, then n, k and γ are restricted by the inequality

Γ
(
n

4
− k

2
+
γ

2

)/
Γ
(
n

4
− k

2
− γ

2

)
> 0, (1.6)

where Γ is the ordinary Gamma function. This inequality holds in particular
when k < (n− 2γ)/2, and in this case then there is a unique distributional
extension of u on all of M which is still a solution of (1.5).

Remark 1. Recall that u is said to be polyhomogeneous along Λ if in terms
of any cylindrical coordinate system (r, θ, y) in a tubular neighborhood of Λ,
where r and θ are polar coordinates in disks in the normal bundle and y is
a local coordinate along Λ, u admits an asymptotic expansion

u ∼
∑

ajk(y, θ)rµj (log r)k

where µj is a sequence of complex numbers with real part tending to infinity,
for each j, ajk is nonzero for only finitely many nonnegative integers k, and
such that every coefficient ajk ∈ C∞. The number µ0 is called the leading
exponent if <(µj) > <(µ0) for all j 6= 0. We refer to [18] for a more
thorough account of polyhomogeneity.

Remark 2. As we have noted, inequality (1.6) is satisfied whenever k <
(n− 2γ)/2, and in fact is equivalent to this simpler inequality when γ = 1.
When γ = 2, i.e. for the standard Q−curvature, this result is already known:
it is shown in [4] that complete metrics with Q2 > 0 and positive scalar
curvature must have singular set with dimension less than (n− 4)/2, which
again agrees with (1.6).

We also present a few special existence results. First, the following re-
mark exhibits solutions coming from Kleinian group theory where Λ is non-
rectifiable.

Remark 3. Suppose that γ ∈ [1, n/2). Let Γ be a convex cocompact subgroup
of SO(n + 1, 1) with Poincaré exponent δ(Γ) ∈ [1, (n − 2γ)/2). Let Λ ⊂ Sn

be the limit set of Γ. Then Ω = Sn\Λ admits a complete metric g conformal
to the round metric and with Qgγ > 0.

As we explain below, this follows directly from the work of Qing and
Raske [22].

Finally, one can also obtain existence of solutions when γ is sufficiently
near 1 and Λ is smooth by perturbation theory.
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Theorem 1.2. Let (Mn, [g]) be compact with nonnegative Yamabe constant
and Λ a k-dimensional submanifold with k < 1

2(n−2). Then there exists an
ε > 0 such that if γ ∈ (1− ε, 1 + ε), there exists a solution to the fractional
singular Yamabe problem (1.5) with Qγ > 0 which is complete on M \ Λ.

Our final result is a growth estimate for weak solutions that are singular
on Sn\Ω. Our result is not very strong in the sense that we do need to
require that u is a weak solution in the whole Sn. However, it provides the
first insight into a general theory of weak solutions on subdomains of Sn.

Proposition 1.3. Let gc be the standard round metric on Sn, and (Bn+1, G)
the Poincaré ball model of hyperbolic space, which has (Sn, [gc]) as its con-
formal infinity. Let g = u

4
n−2γ gc be a complete metric on a dense subdomain

of the sphere, Ω = Sn \ Λ, with Qgγ equal to a positive constant, and such
that u is a distributional solution to

P gcγ u = u
n+2γ
n−2γ (1.7)

on Sn (with u finite only on Ω). Then, for all z ∈ Ω,

u(z) ≤ C

dgc(z,Λ)
n−2γ

2

,

where C depends only on n and γ.

There are many interesting questions not addressed here. For example,
we point out again that there is not yet a good definition of the family P gγ
on an arbitrary complete manifold (Ω, g). Provided one is able to make this
definition, it would then be useful to compute the L2-spectrum of P gγ , even
for some specific examples such as Hn or Hk+1 × Sn−k−1. Finally, it would
also be important to obtain the correct generalization of the Schoen-Yau
theorem for the operators Pγ . We hope to address these and other problems
elsewhere.

2 Fractional conformal Laplacians

We now provide a more careful description of the construction of the family
of conformally covariant operators Pγ , and also give two alternate definitions
of these operators in the flat case to provide some perspective.

As we have described in the introduction, Graham and Zworski [14] dis-
covered a beautiful connection between the scattering theory of the Lapla-
cian on an asymptotically hyperbolic Einstein manifold and the GJMS op-
erators on its conformal infinity. Let (M, g) be a compact n-dimensional
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Riemannian manifold. Suppose that X is a smooth compact manifold with
boundary, with ∂X = M , and denote by x a defining function for the bound-
ary, i.e. x ≥ 0 on X, x = 0 precisely on ∂X and dx 6= 0 there. A metric G
on the interior of X is called conformally compact if x2G = G extends as a
smooth nondegenerate metric on the closed manifold with boundary. It is
not hard to check that G is complete and, provided that |dx|G = 1 at ∂X,
the sectional curvatures of G all tend to −1 at ‘infinity’. The metric G is
called Poincaré-Einstein if it is conformally compact and also satisfies the
Einstein equation RicG = −nG. As we have explained, it is only necessary
to consider asymptotically Poincaré-Einstein metrics; by definition, these
are conformally compact metrics which satisfy RicG = −nG + O(xN ) for
some suitably large N (typically, N > n is sufficient).

The conformal infinity of G is the conformal class of G
∣∣
T∂X

; only the
conformal class is well defined since the defining function x is defined up to
a positive smooth multiple. If g is any representative of this conformal class,
then there is a unique defining function x for M such that G = x−2(dx2 +
g(x)) where g(x) is a family of metrics on M (or rather, the level sets of x),
with g(0) the given initial metric.

We now define the scattering operator S(s) for (X,G). Fix any f0 ∈
C∞(M); then for all but a discrete set of values s ∈ C, there exists a unique
generalized eigenfunction u of the Laplace operator on X with eigenvalue
s(n− s). In other words, u satisfies{

(∆G − s(n− s))u = 0

u = fxn−s + f̃xs, for some f, f̃ ∈ C∞(X) with f |x=0 = f0.
(2.8)

By definition, S(s)f0 = f̃ |x=0. This is an elliptic pseudodifferential operator
of order 2s− n which depends meromorphically on s; it is known to always
have simple poles at the values s = n/2, n/2+1, n/2+2, . . .. These locations
are independent of (X,G), hence are called the trivial poles of the scattering
operator. S(s) has infinitely many other poles which are of great interest in
other investigations, but do not concern us here. Letting s = n/2 + γ, we
now define

P gγ = 22γ Γ(γ)
Γ(−γ)

S
(n

2
+ γ
)

; (2.9)

because of these prefactors, one has that the principal symbol is

σ2γ(P gγ ) = |η|2γg . (2.10)

The scattering operator satisfies a functional equation, S(s)S(n − s) = Id,
which implies that

Pγ ◦ P−γ = Id. (2.11)
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Finally, it is proved in [14] that the operators P gγ satisfy the conformal
covariance equation (1.3).

This definition of the operators Pγ depends crucially on the choice of the
Poincaré-Einstein filling (X,G). Graham and Zworski point out that it is
only necessary that the metric G satisfy the Einstein equation to sufficiently
high order as x → 0 in order that the properties of the Pγ listed above be
true (for γ in a finite range which depends on the order to which G satisfies
the Einstein equation). As we have discussed in the introduction, it is always
possible to find such metrics, and we suppose that one has been fixed.

Let us now address the issue of how to define P gγ and Qgγ when Ω is a
dense open set in a compact manifold M and g is complete and conformal
to a metric g which extends to all of M . (As usual, we assume that (M, g)
has an asymptotically Poincaré-Einstein filling). There is no difficulty in
using the relationship (1.3) to define P gγ f when f ∈ C∞0 (Ω) . From here one
can use an abstract functional analytic argument to extend P gγ to act on
any f ∈ L2(Ω, dVg). Indeed, it is straightforward to check that the operator
P gγ defined in this way is essentially self-adjoint on L2(Ω, dVg) when γ is
real. However, observe that Pγ = ∆γ

g +K, where K is a pseudo-differential
operator of order 2γ − 1. Furthermore, ∆γ is self-adjoint by the functional
calculus, so we can appeal to a classical theorem, see [23], which states that
a lower order symmetric perturbation of a self-adjoint operator is essentially
self-adjoint.

A separate, but also very interesting issue, is whether Qgγ is a positive
constant implies that the conformal factor u is a weak solution of (1.5) on
all of M . This is true (with some additional hypotheses) when γ = 1, cf.
[25].

We conclude this section with two alternate definitions of the operators
P gγ in the special case where (M, [g]) = Rn with its standard flat conformal
class.

The canonical Poincaré-Einstein filling in this case is the hyperbolic space
X = Rn+1

+ = R+
x × Rn

y with metric G = x−2(dx2 + |dy|2).
Since g is flat, we have P gγ = ∆γ

g , and this can be written in either of the
two equivalent forms:

∆γf(y) = (2π)−n
∫

Rn
eiyη|η|2γ f̂(η) dη or

= P.V.
∫

Rn

f(y)− f(ỹ)
|y − ỹ|n+2γ

dỹ.

Both formulæ can be regularized so as to hold for any given γ.
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One other way that ∆γ arises is as a generalized Dirichlet to Neumann
map; this definition is essentially the same as the one above involving the
scattering operator (indeed, the point of view in geometric scattering theory
is that the scattering operator is simply the Dirichlet to Neumann operator
at infinity), but as recently rediscovered by Chang-Gonzalez [3] in relation to
the work on (Euclidean) fractional Laplacians by Caffarelli and Silvestre [2],
it is sometimes helpful to consider the equation in a slightly different form. In
the following result, let (X,G) be an asymptotically Poincaré-Einstein filling
of the compact manifold (Mn, [ḡ]). Fix a representative ḡ of the conformal
class on the boundary and let x be the boundary defining function on X
such that g = x−2(dx2 + ḡx) with ḡ0 = ḡ. Also, write Ḡ = x2G; this is an
incomplete metric on X which is smooth (or at least polyhomogeneous) up
to the boundary.

Proposition 2.1. ([3]) Let U = x
n
2
−γu and

E := ∆Ḡ

(
x

1−2γ
2

)
x

1−2γ
2 +

(
γ2 − 1

4

)
x−1−2γ + n−1

4n RḠx
1−2γ .

Then, for any f0 ∈ C∞(M), the eigenvalue problem (2.8) is equivalent to{
−div

(
x1−2γ∇U

)
+ EU = 0 on (X, Ḡ),
U |x=0 = f0 on M,

(2.12)

where the divergence and gradient are taken with respect to Ḡ. Moreover,

P ḡγ (f0) = dγ lim
x→0

x1−2γ∂xU

for some nonzero constant dγ depending only on γ and n.

The Euclidean version of this result (where (X,G) is the hyperbolic up-
per half-space) was the one studied by Caffarelli and Silvestre. The main
advantage in this reformulation is that certain estimates are more transpar-
ent from this point of view.

3 Proofs

We now turn to the proofs of Theorems 1.1 and 1.2, and Remark 3.
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3.1 Dimensional restrictions on singular sets

The idea for the proof of Theorem 1.1 is straightforward: let u be a polyho-
mogeneous distribution on M with singular set along the smooth submani-
fold Λ. Suppose that the leading term in the expansion of u is a(y)r−n/2+γ .
Then by a standard result in microlocal analysis [6], the function P gγ u is
again polyhomogeneous and has leading term b(y)r−(2γ+n)/2, where b(y) =
λa(y) for some constant λ. Now, if u is a conformal factor for which
g = u4/(n−2γ)g has Qgγ > 0, then P gγ u > 0, which implies that λ > 0.
So we must compute λ to obtain (1.6).

This microlocal argument states that if u is polyhomogeneous, then the
leading term of P gγ u can be computed using the symbol calculus (for pseu-
dodifferential operators and for polyhomogeneous distributions), and more
specifically, that the principal symbol of P gγ u is equal to the product of the
principal symbols of P gγ and that of u. (Note that the principal symbol of
a distribution conormal to a submanifold Λ is computed in terms of the
Fourier transform in the fibres of NΛ.) In the present setting, this implies
that the constant λ is the same as for the model case when M = Sn and Λ
is an equatorial Sk, so we now focus on this special case.

Transform Sn to Rn by stereographic projection, so that Λ is mapped to
a linear subspace Rk and g is the flat Euclidean metric (which we henceforth
omit from the notation). Write Rn 3 y = (y′, y′′) ∈ Rk × Rn−k, so that (in
this model case) u(y) = |y′′|−n/2+γ for the singular metric u

4
n−2γ ḡ; then

Pγu(y) = ∆γu(y) = (2π)−n
∫

Rn×Rn
ei(y−ỹ)·η|η|2γ |y′′|−n/2+γ dỹdη

= (2π)k−n
∫

Rn−k×Rn−k
ei(y

′′−ỹ′′)·η′′ |ỹ′′|−n/2+γ dỹ′′dη′′.

Now recall a well-known formula for the Fourier transform of homoge-
neous distributions in RN :∫

RN
e−iz·ζ |z|−N+α dz = c(N,α)|ζ|−α,

where
c(N,α) = πα−N/2

Γ(α/2)
Γ((N − α)/2)

.

Applying this formula with N = n− k (and replacing y′′ by y and η′′ by η,
for simplicity) yields first that∫

RN
e−iy·η|y|−n/2+γ dy = c

(
n− k, n

2
− k + γ

)
|η|−

n
2

+k−γ ,
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then, multiplying by |η|2γ and taking inverse Fourier transform we obtain

1
(2π)n−k

c
(
n− k, n

2
− k + γ

)
c
(
n− k, n

2
+ γ
)
|y|−

n
2
−γ .

Altogether then, the multiplicative factor λ is equal to

2k−nπk−n+2γ Γ
(

1
2(n2 − k + γ)

)
Γ(1

2

(
n
2 − γ)

) Γ
(

1
2(n2 + γ)

)
Γ
(

1
2(n2 − k − γ)

) .
Discarding the factors which are always positive (which includes Γ(n/4−γ/2)
since γ < n/2), we obtain (1.6).

It is unfortunately slightly messy to write down the entire set of values
of k and γ for which (1.6) holds. However, if k < (n − 2γ)/2, then both
n
2 − k ±

1
2γ > 0. Furthermore, if γ = 1 and A := n

2 − k <
1
2 , then the Γ

function always takes on values with different signs at A+γ/2 and A−γ/2.
More generally, if we fix n and k and let γ increase from 0 to n/2, then
Γ(A+γ/2)/Γ(A−γ/2) = 1 when γ = 0; Γ(A−γ/2) changes sign every time
γ increases by 2, whereas Γ(A+ γ/2) also changes similarly, but only for γ
in the range (0,−2A), where A < 0.

To prove the final statement of the theorem, note that if −γ − n/2, the
leading exponent of P gγ u, is greater than k − n, the codimension of Λ, then
P ḡγ u cannot have any mass supported on Λ, which means that u is a weak
solution of P gγ u = Qgγu(n+2γ)/(n−2γ) on all of M .

3.2 Kleinian groups

We now turn to a special case where this problem has a direct relationship to
hyperbolic geometry. Let Γ be a convex cocompact group of motions acting
on Hn+1. Thus Γ acts discretely and properly discontinuously on hyperbolic
space, is geometrically finite and contains no parabolic elements. Its domain
of discontinuity is the maximal open set Ω ⊂ Sn on which the action of Γ
extends to a discrete and properly discontinuous action; by definition of
convex cocompactness, the quotient Ω/Γ = Y is a compact manifold with a
locally conformally flat structure. The complement Sn \ Ω = Λ is the limit
set of Γ. Furthermore, the manifold X = Hn+1/Γ with its hyperbolic metric
is Poincaré-Einstein with conformal infinity Y with the conformal structure
induced from Sn. We use these canonical fillings to define Pγ and Qγ .

In [22], Qing and Raske attack the problem of finding metrics of constant
Qk curvature (with k < n/2 an integer). Their method involves finding met-
rics of constant Qγ curvature for all 1 ≤ γ ≤ k. They rephrase the problem
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Pγu = Qγu
(n+2γ)/(n−2γ) in the equivalent form u = P−γ(Qγu(n+2γ)/(n−2γ)).

The advantage of this modification is that P−γ is a pseudodifferential oper-
ator of negative order, and its Schwartz kernel can be obtained by summing
the translates of the Schwartz kernel of P−γ on Sn over the group Γ. This
sum converges provided the Poincaré exponent of Γ is less than n−2γ

2 , and
because this is a convergent sum one directly obtains explicit control and
positivity of this operator. Fixing 1 ≤ γ < n/2 and restricting to convex
cocompact groups Γ with Poincaré exponent in this range, they are able to
prove that if Y = Ω/Γ has positive Yamabe type, then it admits a metric of
constant positive Qγ curvature.

The proof of Remark 3 follows directly from this by lifting the conformal
factor and solution metric to Ω ⊂ Sn. Namely, by the theorem of Schoen
and Yau, the developing map of Y is injective from the universal cover Ỹ
to Ω, and the solution metric g on Y lifts to a complete metric g̃ on Ω of
the form u(n+2γ)/(n−2γ)g, where g is the standard round metric. Using the
bound on the Poincaré exponent and the compactness of Y , standard lattice
point counting arguments show that u(p) ≤ cdistg (p,Λ)(2γ−n)/2. This shows
that not only is u a solution of the modified integral equation, but is also
a weak solution of (1.5) on all of Sn and that Qgγ is constant. Finally, by
Patterson-Sullivan theory, the dimension of the limit set Λ is precisely the
Poincaré exponent δ(Γ). In other words, we have produced a solution to the
fractional singular Yamabe problem with exponent γ ∈ [1, n/2) and with
singular set of dimension less than n/2− γ.

The Qing-Raske theorem is not stated for the remaining cases γ ∈ (0, 1);
it is plausible that their proof may be adapted to work then, and hence the
lifted solution would also give a solution to our problem also for γ in this
range, but we do not claim this. Note, however, the results in §4 below
concerning growth estimates for solutions of this equation for this range of
γ.

3.3 Perturbation methods

We come at last to the perturbation result. We deduce existence of solutions
for the fractional singular Yamabe problem for values of γ near 1 from the the
general existence result in [19] for the singular Yamabe problem with γ = 1.
Let (M, g) and Λ be a submanifold of dimension k as in the statement of the
theorem. (Slightly more generally, we could let the different components of Λ
have different dimensions, but for simplicity we assume that Λ is connected.)
Then there is a function u on M \Λ such that g = u4/(n−2)g is complete and
its scalar curvature Qg1 is a positive constant. Moreover, it is known that the
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linearization of the equation (1.1) at any one of the solutions u constructed
in [19] is surjective on appropriate weighted Hölder spaces.

In the following we phrase this rigorously and parlay this surjectivity
into an existence theorem for γ near 1 using the implicit function theorem.
Let T σΛ denote the tube of radius σ (with respect to g) around Λ; this
is canonically diffeomorphic to the neighourhood of radius σ in the normal
bundle NΛ for σ sufficiently small, and we use this to transfer cylindrical
coordinates (r, y, θ) ∈ [0, σ)×Uy × Sn−k−1 in a local trivialization of NΛ to
Fermi coordinates in T σΛ.

We use these coordinates to define weighted Hölder spaces with a certain
dilation covariance property. For w ∈ C0(T σΛ), let

‖w‖e,0,α,0 = sup
z∈T σΛ

|w|+ sup
z,z̃∈T σΛ

(r + r̃)α|w(z)− w(z̃)|
|r − r̃|α + |y − ỹ|α + (r + r̃)α|θ − θ̃|α

.

and denote by C0,α
e (M\Λ) the space of all functions w ∈ C0(T σΛ) such that

this norm is finite. The initial subscript e in the norm signifies that these are
‘edge’ Hölder spaces. Next, Ck,αe (M\Λ) denotes the subspace of Ck(M\Λ)
on which the norm

‖w‖k,α,0 = ‖w‖k,α,Mσ/2
+

k∑
j=0

‖∇jw‖T σΛ
e,0,α

is finite, where Mσ/2 = M\T Λ
σ/2. Finally, for ν ∈ R, let

Ck,αν (M\Λ) =
{
w = rνw : w ∈ Ck,αe (M\Λ)

}
,

with corresponding norm || · ||e,k,α,ν .
Fixing Qgγ = 1, the linearization of u 7→ P gγ u − u(n+2γ)/(n−2γ) is the

operator

v 7→ Lγv := P gγ v −
n+ 2γ
n− 2γ

u
4γ

n−2γ v.

Let u be one of the solutions to the singular Yamabe problem (γ = 1) on
M \ Λ constructed in [19]. It is proved there that the solution u has the
form u = c1r

1−n/2(1 + v), where v ∈ C2,α
ν for any 0 < ν < k/2 and c1 > 0

depends only on the dimensions k and n; furthermore, the mapping

L1 : C2,α
ν (M \ Λ) −→ C0,α

ν−2(M \ Λ)

is surjective for ν in this same range.
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We claim that for γ sufficiently close to 1, and for ν ∈ (η, k/2−η), where
η > 0 is some small fixed number, the mapping

Lγ : C2,α
ν (M \ Λ) −→ C0,α+2(1−γ)

ν−2γ (M \ Λ)

is also bounded and surjective. The boundedness follows by an interpolation
argument. Indeed, the spaces Ck,α0 have interpolation properties which are
identical to those for the ordinary Hölder spaces since they are just the stan-
dard Hölder spaces for the complete metric g̃ = g/r2; a minor adjustment
shows that the addition of the weight factor behaves as expected. The as-
sertion about the boundedness of Lγ is clearly true for γ = 0, 1, 2, and hence
by interpolation is true for all γ close to 1. (It is true for the full range of
γ ∈ (0, 2) if one makes the standard change, replacing the Hölder space by a
Zygmund space, when α+2(1−γ) is an integer.) This also follows from [18]
because r2γLγ is a pseudodifferential edge operator of order 2γ. Similarly,
surjectivity follows from the construction of a parametrix for Lγ in the edge
calculus, from [18] again. This proves that Lγ is Fredholm, and since it is
surjective at γ = 1, it must remain surjective for values of γ which are close
to 1. We write its right inverse as Gγ .

Now consider the mapping

(γ, c, v) 7−→ N(γ, c, v) := Gγ(P gγ cr
γ−n/2(1 + v)− (crγ−n/2(1 + v))

n+2γ
n−2γ ).

If u1 = c1r
1−n/2(1+v1) is the solution to the singular Yamabe problem from

[19], then N(1, c1, v1) = 0. Let c ∈ (c1 − ε, c1 + ε), and similarly, v − v1 lie
in a ball of radius ε about 0 in C2,α

ν . Clearly DvN |(1,c1,v1) = G1L1 = Id.
The implicit function theorem now applies to show that for every (γ, c) near
to (1, c1), there exists a unique vγ ∈ C2,α

ν with norm less than ε such that
uγ = crγ−n/2(1+vγ) is a solution of the fractional singular Yamabe problem
with singular set Λ.

4 Growth estimates for weak solutions on Sn

In this final section we furnish the proof of Proposition 1.3: if γ ∈ (0, 1) and
Ω ⊂ Sn is dense, then any weak solution of the fractional singular Yamabe
problem

P gcγ (u) = u
n+2γ
n−2γ in Sn, u > 0, u singular along Sn\Ω (4.13)

satisfies a general growth estimate. This is a direct adaptation of Schoen’s
proof (which is written out in full in [21]) for the case γ = 1.
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We first comment on the local regularity for solutions of (1.7). There are
several ways to deduce the necessary estimates. The path we follow uses the
equivalence, as described in 2.1, of (1.7) with the extension problem (2.12):{

−div
(
x1−2γ∇U

)
+ E(x)U = 0, in (X, Ḡ),

−y1−2γ∂xU = cn,γU
n+2γ
n−2γ , on x = 0;

(4.14)

here U = x
n
2
−γu, Ḡ = x2G.

From this point of view, we can use the linear regularity theorem [18,
Theorem 7.14] to prove that U is smooth up to x = 0 away from Λ. This can
also be deduced using standard elliptic estimates for the pseudodifferential
operator P gcγ , but we refer also to more classical sources from which this can
also be deduced, in particular the paper by [7]; we also refer to more recent
references [1] (where many properties of the solution are written down), and
[12] (which holds for more general ambient metrics). In particular, from
these last papers, one has that Schauder and local Lp → L∞ estimates hold,
and the equation also satisfies the standard maximum principles.

Fix z0 6∈ Λ and choose σ < distgc(z0,Λ). For simplicity, write ρ(z) :=
distgc(z, z0). Now define

f(z) := (σ − ρ(z))
n−2γ

2 u(z);

note that f = 0 on ∂Bσ(x0).
It suffices to show that f(z) ≤ c for some c > 0 and for all z ∈ Bσ(z0)

since if we choose σ = dist(z0,Λ)/2, then f(z0) = σ
n−2γ

2 u(z0), and hence

u(z0) ≤ c

d(z0,Λ)
n−2γ

2

,

which would finish the proof.
We prove this claim by contradiction. Assume that no such c exists.

Then there exists a sequence {um,Λm, σm, z0,m, zm} such that for all m, fm
attains its maximum in Bσm(z0,m) at zm, and

f(zm) := (σm − dist(zm, z0,m))
n−2γ

2 um(zm) > m.

Since (σm − dist(zm, z0,m))
n−2γ

2 ≤ σ
n−2γ

2
m ≤ C for all m, we see that neces-

sarily um(zm)→∞.
Let z be a system of Riemann normal coordinates centered at zm, so that

the corresponding metric coefficients satisfy (gc)ij = δij + O(|z|2). (As m
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varies, these coordinate systems also vary, but there is no reason to include
this in the notation.) Set λm = (um(zm))

2
n−2γ ; we consider the dilated

coordinate system ζ = λmz, the corresponding sequence of metrics ĝm,
where

gc = λ−2
m

n∑
i,j=1

(gc)ij(ζ/λm)dζidζj := λ−2
m ĝm,

and finally the dilated family of solutions

vm(ζ) := λ
−n−2γ

2
m um

(
ζ

λm

)
.

By construction, vm(0) = 1 for all m, and

gm := u
4

n−2γ
m gc = v

4
n−2γ
m ĝm.

We show below that ĝm and vm are defined on an expanding sequence of
balls on Rn, and it is then clear that ĝm converges to the Euclidean metric
uniformly in C∞ on any compact subset.

Let rm = 1
2(σm − ρ(zm)), or equivalently, ρm(zm) + 2rm = σm. Then

σm − ρ(zm) ≥ σm − ρm(zm)− rm = rm

on the ball distgc(z, zm) < rm, and hence on this same ball,

um(z) ≤
(
σm − ρm(zm)
σm − ρm(z)

)n+2γ
n−2γ

um(zm) ≤ c um(zm), c = 2
n−2γ

2 .

The corresponding ball in rescaled coordinates contains {ζ : |ζ| < m
2

n−2γ },
hence has radius tending to infinity. By construction, vm(z) ≤ c on this
entire ball, and vm(0) ≡ 1. Since these functions are uniformly bounded
and satisfy the converging set of elliptic pseudodifferential equations

P ĝmγ vm = v
n+2γ
n−2γ
m , (4.15)

we conclude using the local regularity theory (which is straightforward since
vm is bounded) that vm is bounded in C2,α of every compact set, and hence
we can extract a convergent subsequence. We thus obtain a smooth solution
v to the ‘flat’ equation

−(∆Rn)γv = v
n+2γ
n−2γ in Rn. (4.16)
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Since each vm > 0, we see that v ≥ 0, but v 6≡ 0 since v(0) = 1. There is a
maximum principle for this equation [12, Corollary 3.6] when 0 < γ ≤ 1, so
we conclude that v > 0 on all of Rn.

There is a complete characterization of positive solutions of (4.16), [12,
§5]). They are the extremal functions for the embeddingHγ(Rn) ↪→ L

2n
n−2γ (Rn),

and are necessarily of the form

v(z) = C

(
µ

|z − z0|2 + µ2

)n−2γ
2

,

for some µ, c > 0 and z0 ∈ Rn (these are well known “bubbles”).
The argument is completed using Theorem 4.1 below, which states that

a small ball in Ωm = Sn \Λm must have a concave boundary with respect to
to gm for m sufficiently large. This is a contradiction to the already known
limiting form of the vm. The proof of Proposition 1.3 is thus completed.

Note that the previous arguments do not require that u is a weak solution
in the whole Sn. The only place where this strong hypothesis is required is
in the following convexity claim:

Theorem 4.1. In the same hypothesis as in Proposition 1.3, any open ball
B (with respect to gc) with B̄ ⊂ Ω, has boundary ∂B which is geodesically
convex with respect to g.

This result was proved in [24] for constant scalar curvature metrics, and
also in the case γ ∈ (1, n/2) for locally conformally flat manifolds satisfy-
ing some extra conditions by [22]. The crucial step is the application of the
Alexandroff moving plane method. As we show here, the same ideas work in
the fractional case. The moving plane method has been successfully applied
to fractional order operators in [22] and [5], at least when the equation is
rewritten as an integral equation. However, the proof in the present set-
ing is simpler because of the equivalent formulation (4.14) and the precise
asymptotics (4.19), so we include the details for the reader’s convenience.
Our proof follows the classical arguments for the Laplacian by Gidas-Ni-
Nirenberg in [10], [9].

For simplicity, we denote Pγ := P
|dx|2
γ . Let v be a distributional solution

of
Pγv = v

n+2γ
n−2γ in Rn. (4.17)
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We will apply the Alexandroff reflection with respect to the planes Sλ :=
{x ∈ Rn : xn = λ}. Let Σλ := {x ∈ Rn : xn > λ} be the hyperplane lying
above Sλ. Given x = (x1, . . . , xn) ∈ Σλ, define xλ to be the reflection of x
with respect to the hyperplane Sλ, i.e., xλ := (x1, . . . , xn−1, 2λ − xn). We
also define vλ(x) := v(xλ) and

wλ(x) := vλ(x)− v(x).

Note that the equation satisfied by vλ is the same as the satisfied by v.
Although this fact is not clear for non-local operators, it is easily seen to be
true in the Caffarelli-Silvestre extension (4.14). Then, by linearity,

Pγwλ = v
n+2γ
n−2γ

λ − v
n+2γ
n−2γ , weakly. (4.18)

We will need a couple of preliminary results:

Lemma 4.2. Let v be any function with asymptotics

v(x) = |x|2γ−n
(
a+

n∑
i=1

bix
i

|x|2
+O

(
|x|2
))

when |x| → ∞, (4.19)

for some a > 0. Then there exists λ0 > 0 such that for all λ ≥ λ0,

wλ(x) > 0 for all x ∈ Σλ.

Proof. This is just Lemma 2.2. in [10], and it does not use (4.17).

Lemma 4.3. Let v a weak solution of (4.17). If for some λ < λ0 we have
that wλ(x) ≥ 0 but wλ 6≡ 0 in Σλ, then

wλ(x) > 0 in Σλ and ∂nv(x) < 0 on Sλ. (4.20)

Proof. When v solves the constant scalar curvature equation, this is just
Lemma 2.2. and Lemma 4.3 in [9]. In our case, we need a strong maximum
principle and Hopf’s lemma for the operator Pγ (see [12], [1]). We know from
(4.18) that Pγwλ ≥ 0. Since wλ ≥ 0 in Σλ (and is not identically zero), and
since wλ vanishes on the boundary Sλ, the strong maximum principle gives
that wλ > 0 in all of Σλ. On the other hand, Hopf’s lemma implies that
∂nwλ > 0 on Sλ. Then, ∂nwλ = ∂nvλ − ∂nv = −2∂nv, so we immediately
have ∂nv < 0 along Sλ.
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Proof of Theorem 4.1: Let g be a complete metric of constant positive
scalar Qγ curvature on Ω ⊂ Sn of the form g = u

4
n−2γ gc, and B an open

ball in Ω. Let S = ∂B be the boundary sphere. Fix any point p ∈ S.
Use stereographic projection to map Ω into Ω̃ ⊂ Rn so that p is mapped to
infinity. Then S is transformed to a hyperplane S̃, and the projected ∂Ω̃
lies on one side of S̃, say below. Use linear coordinates (x1, . . . , xn) ∈ Rn

with S̃ = {xn = 0}.
By stereographic projection, the metric g transforms to a conformally

flat metric on Rn, gv = v
4

n−2γ |dx|2. Since the scalar curvature equation is
conformally covariant, we also have

∆γv = v
n+2γ
n−2γ ,

on Ω̃ ⊂ Rn. Note that v is a weak solution of this equation on all of Rn.
Since the function u is smooth and strictly positive at p, the function

v is regular at infinity, i.e. has the asymptotics (4.19) for some a > 0 as
|x| → ∞.

Step 1. Starting the reflection: Thanks to Lemma 4.2, we can initiate
the reflection argument when λ is sufficiently large. Note that the equation
satisfied by v is not needed here since we have the precise behavior (4.19).

Step 2. Continuation: We now move the plane Sλ, so long as it does not
touch the singular set. Suppose that at some λ1 > 0 we have wλ1(x) > 0 for
all x ∈ Σλ1 , but wλ1 6≡ 0 in Σλ1 . Then the plane can be moved further; more
precisely, there exists some ε > 0 not depending on λ1 such that wλ ≥ 0 in
Σλ for all λ ∈ [λ1 − ε, λ1].

We observe first that because of Lemma 4.3 we must have

∂nv < 0 on Σλ1 . (4.21)

Next, the proof of our claim follows as in Lemma 2.3. in [10] by contra-
diction. Thus, assume that there is a sequence λj → λ1 and a sequence of
points {xj}, xj ∈ Σλj such that

wλj (xj) ≤ 0. (4.22)

Either a subsequence, which we again call {xj}, converges to x∞ ∈ Σλ1 or
else xj →∞. In the first case, because of (4.22) we must have ∂nv(x∞) ≤ 0,
thus contradicting (4.21). So xj →∞. But in this second case may use the
asymptotics for v from (4.19), that imply

|xj |n

λj − xnj
wλj (x)→ −(n− 2γ)a < 0.
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This is a contradiction to (4.22).
Finally, note that in this process we never have wλ ≡ 0 since the existence

of the singularity of v implies that it has no plane of symmetry. Hence the
moving plane can be moved all the way to λ = 0.

Step 3. Conclusions: We have shown that Σλ can be moved to λ = 0,
and then wλ(x) > 0 for all x ∈ Σ0 and

∂nv(x) < 0 for all x ∈ Σ0.

Since g = v
4

n−2γ |dx|2, the second fundamental form of any plane Sλ, λ ≥ 0,
with respect to g is given by(

− 4
n− 2γ

v−1 ∂v

∂xn
I

)
.

The sign of ∂nv therefore implies that Sλ is locally geodesically convex for all
λ ≥ 0. When transferred back to the sphere, this shows that any round ball
contained in Ω has locally geodesically convex boundary, as claimed.
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[12] M. d. M. González and J. Qing. Fractional conformal Laplacians and
fractional Yamabe problems. Preprint arXiv:1012.0579.

[13] C. R. Graham, R. Jenne, L. J. Mason, and G. A. J. Sparling. Confor-
mally invariant powers of the Laplacian. I. Existence. J. London Math.
Soc. (2), 46(3):557–565, 1992.

[14] C. R. Graham and M. Zworski. Scattering matrix in conformal geom-
etry. Invent. Math., 152(1):89–118, 2003.

[15] A. Juhl. Families of conformally covariant differential operators, Q-
curvature and holography, volume 275 of Progress in Mathematics.
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