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Abstract. In this paper, we analyze the asymptotic behavior of Palais-Smale sequences
associated to fractional Yamabe type equations on an asymptotically hyperbolic Riemannian
manifold. We prove that Palais-Smale sequences can be decomposed into the solution of the
limit equation plus a finite number of bubbles, which are the rescaling of the fundamental
solution for the fractional Yamabe equation on Euclidean space. We also verify the non-
interfering fact for multi-bubbles.
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1. Introduction and statement of results

Let Ω be a smooth bounded domain in Rn, n ≥ 3. Fix a constant λ, and consider the
Dirichlet boundary value problem of the elliptic PDE

(1.1)

{
−∆u− λu = u|u|

4
n−2 in Ω,

u = 0 on ∂Ω.

The associated variational functional of the equation (1.1) in the Sobolev space W 1,2
0 (Ω) is

E(u) =
1

2

∫
Ω

(|∇u|2 − λu2) dx− n− 2

2n

∫
Ω

|u|
2n
n−2 dx.

Suppose that the sequence {uα}α∈N ⊂W 1,2
0 (Ω) satisfies the Palais-Smale condition, i.e.

{E(uα)}α∈N is uniformly bounded and DE(uα)→ 0, strongly in (W 1,2
0 (Ω))′,

as α → +∞, where (W 1,2
0 (Ω))′ is the dual space of W 1,2

0 (Ω). In an elegant paper [16], M.

Struwe considered the asymptotic behavior of {uα}α∈N. In fact, in the W 1,2
0 (Ω) norm, uα can

be approximated by the solution to (1.1) plus a finite number of bubbles, which are the rescaling
of the non-trivial entire solution of

−∆u = u|u|
4

n−2 in Rn and u(x)→ 0 as |x| → +∞.
One may pose the analogous problem on a manifold. Let (Mn, g) be a smooth compact

Riemannian manifold without boundary. Consider a sequence of elliptic PDEs like

(Eα) −∆gu+ hαu = u
n+2
n−2 ,

where α ∈ N and ∆g denotes the Laplace-Beltrami operator of the metric g. Assume that hα
satisfies that there exists C > 0 with |hα(x)| ≤ C for any α and any x ∈ M ; also hα → h∞ in
L2(M) as α→ +∞. The limit equation is denoted by

(E∞) −∆gu+ h∞u = u
n+2
n−2 .
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The related variational functional for (Eα) is

Eαg (u) =
1

2

∫
M

|∇u|2gdvg +
1

2

∫
M

hαu
2dvg −

n− 2

2n

∫
M

|u|
2n
n−2 dvg.

Suppose that {uα ≥ 0}α∈N ⊂ W 1,2(M) also satisfies the Palais-Smale condition. O. Druet,
E. Hebey and F. Robert [5] proved that, in the W 1,2(M)-sense, uα can be decomposed into
the solution of (E∞) plus a finite number of bubbles, which are the rescaling of the non-trivial
solution of

−∆u = u
n+2
n−2 in Rn.

Next, let (Mn, g) be a compact Riemannian manifold with boundary ∂M . Recently, S.
Almaraz [1] considered the following sequence of equations with nonlinear boundary value
condition

(1.2)

{ −∆gu = 0 in M,

− ∂
∂ηg

u+ hαu = u
n
n−2 on ∂M,

where α ∈ N and ηg is the inward unit normal vector to ∂M . The associated energy functional
for equation (1.2) is

Ēαg (u) =
1

2

∫
M

|∇u|2gdvg +
1

2

∫
∂M

hαu
2dσg −

n− 2

2(n− 1)

∫
∂M

|u|
2(n−1)
n−2 dσg,

for u ∈ H1(M) := {u|∇u ∈ L2(M), u ∈ L2(∂M)}. Here dvg and dσg are the volume forms of
M and ∂M , respectively. He also showed that a nonnegative Palais-Smale sequence {uα}α∈N
of {Ēαg }α∈N converges, in the H1(M)-sense, to a solution of the limit equation (the equation
replacing hα by h∞ in (1.2)) plus a finite number of bubbles.

Motivated by these facts and the original study of the fractional Yamabe problem by M.d.M.
González and J. Qing [8], in this paper we shall be interested in the asymptotic behavior of
nonnegative Palais-Smale sequences associated with the fractional Yamabe equation on an
asymptotically hyperbolic Riemannian manifold.

Let (Xn+1, g+), n ≥ 3, be a smooth Riemannian manifold with smooth boundary ∂Xn+1 =
Mn. A function ρ∗ is called a defining function of the boundary Mn in Xn+1 if it satisfies

ρ∗ > 0 in Xn+1, ρ∗ = 0 on Mn, dρ∗ 6= 0 on Mn.

We say that a metric g+ is conformally compact if there exists a defining function ρ∗ such that

(Xn+1, g∗) is compact for g∗ = ρ2
∗g

+. This induces a conformal class of metrics ĥ = g∗|Mn

when defining functions vary. The conformal manifold (Mn, [ĥ]) is called the conformal infinity
of (Xn+1, g+). A metric g+ is said to be asymptotically hyperbolic if it is conformally compact
and the sectional curvature approaches −1 at infinity. It is easy to check then that |dρ∗|2g∗ = 1
on Mn.

Using the meromorphic family of scattering operators S(s) introduced by C.R. Graham
and M. Zworski [10], we will define the so-called fractional order scalar curvature. Given

an asymptotically hyperbolic Riemannian manifold (Xn+1, g+) and a representative ĥ of the

conformal infinity (Mn, [ĥ]), there is a unique geodesic defining function ρ∗ such that, in Mn×
(0, δ) in Xn+1, for small δ, g+ has the normal form

g+ = ρ−2
∗ (dρ2

∗ + hρ∗)

where hρ∗ is a one parameter family of metric on Mn such that

hρ∗ = ĥ+ h(1)ρ∗ +O(ρ2
∗).



3

It is well-known [10] that, given f ∈ C∞(Mn), and s ∈ C, Re(s) > n/2 and s(n− s) is not an
L2 eigenvalue for −∆g+ , then the generalized eigenvalue problem

(1.3) −∆g+ ũ− s(n− s)ũ = 0 in Xn+1

has a solution of the form

ũ = F (ρ∗)
n−s +G(ρ∗)

s, F,G ∈ C∞(Xn+1), F |ρ∗=0 = f.

The scattering operator on Mn is then defined as

S(s)f = G|Mn .

Now we consider the normalized scattering operators

Pγ [g+, ĥ] = dγS
(n

2
+ γ
)
, dγ = 22γ Γ(γ)

Γ(−γ)
.

Note Pγ [g+, ĥ] is a pseudo-differential operator whose principal symbol is equal to the one of

(−∆ĥ)γ . Moreover, Pγ [g+, ĥ] is conformally covariant, i.e. for any ϕ,w ∈ C∞(Xn+1) and
w > 0, it holds

(1.4) Pγ [g+, w
4

n−2γ ĥ](ϕ) = w−
n+2γ
n−2γ Pγ [g+, ĥ](wϕ).

Thus we shall call Pγ [g+, ĥ] the conformal fractional Laplacian for any γ ∈ (0, n/2) such that
n2/4− γ2 is not an L2 eigenvalue for −∆g+ .

The fractional scalar curvature associated to the operator Pγ [g+, ĥ] is defined as

Qĥγ = Pγ [g+, ĥ](1).

The scattering operator has a pole at the integer values γ. However, in such cases the residue
may be calculated and, in particular, when g+ is Poincaré-Einstein metric, for γ = 1 we have

P1[g+, ĥ] = −∆ĥ +
n− 2

4(n− 1)
Rĥ

is exactly the so-called conformal Laplacian, and

Qĥ1 =
n− 2

4(n− 1)
Rĥ.

Here Rĥ is the scalar curvature of the metric ĥ.

For γ = 2, P2[g+, ĥ] is precisely the Paneitz operator and its associated curvature is known

as Q-curvature [15]. In general, Pk[g+, ĥ] for k ∈ N are precisely the conformal powers of the
Laplacian studied in [9].

We consider the conformal change ĥw = w
4

n−2γ ĥ for some w > 0, then by (1.4), we have

Pγ [g+, ĥ](w) = Qĥwγ w
n+2γ
n−2γ in (Mn, ĥ).

If for this conformal change Qĥwγ is a constant Cγ on Mn, this problem reduces to

(1.5) Pγ [g+, ĥ](w) = Cγw
n+2γ
n−2γ in (Mn, ĥ),

which is the so-called the fractional Yamabe equation or the γ-Yamabe equation studied in [8].
From now on, we always suppose that γ ∈ (0, 1) throughout the paper, and such that

n2/4− γ2 is not an L2 eigenvalue for −∆g+ .
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It is well known that the above fractional Yamabe equation may be rewritten as a degenerate
elliptic Dirichlet-to-Neumann boundary problem. For that, we first recall some results obtained
by S.A. Chang and M.d.M. González in [3]. Suppose that u∗ solves

(1.6)

−∆g+u∗ − s(n− s)u∗ = 0 in Xn+1,

lim
ρ∗→0

ρs−n∗ u∗ = 1 on Mn.

Proposition 1.1. [3, 8] Let f ∈ C∞(M). Assume that ũ, u∗ are solutions to (1.3) and (1.6),
respectively. Then ρ = (u∗)1/(n−s) is a geodesic defining function. Moreover, u = ũ/u∗ = ρs−nũ
solves

(1.7)

{
−div(ρ1−2γ∇u) = 0 in Xn+1,

u = f on Mn,

with respect to the metric g = ρ2g+ and u is the unique minimizer of the energy functional

I(v) =

∫
Xn+1

ρ1−2γ |∇v|2gdvg

among all the extensions v ∈ W 1,2(Xn+1, ρ1−2γ) (see Definition 2.1) satisfying v|Mn = f .
Moreover,

ρ = ρ∗

(
1 +

Qĥγ
(n− s)dγ

ρ2γ
∗ +O(ρ2

∗)

)
near the conformal infinity and

Pγ [g+, ĥ](f) = −d∗γ lim
ρ→0

ρ1−2γ∂ρu+Qĥγf, d∗γ = −dγ
2γ

> 0,

provided that Trĥ h
(1) = 0 when γ ∈ (1/2, 1). Here g|Mn = ĥ, and has asymptotic expansion

g = dρ2[1 +O(ρ2γ)] + ĥ[1 +O(ρ2γ)].

We fix γ ∈ (0, 1). By Proposition 1.1, one can rewrite the Yamabe equation (1.5) into the
following problem:

(1.8)


−div(ρ1−2γ∇u) = 0 in (Xn+1, g),

u = w on (Mn, ĥ),

−d∗γ lim
ρ→0

ρ1−2γ∂ρu+Qĥγw = Cγw
n+2γ
n−2γ on (Mn, ĥ).

In this paper we consider the positive curvature case Cγ > 0. Without loss of generality, we
assume Cγ = d∗γ .

In the particular case γ = 1/2, one may check that (1.8) reduces to (1.2), which was consid-
ered in [1]. The main difficulty we encounter here is the presence of the weight that makes the
extension equation only degenerate elliptic.

Next, we introduce the so-called γ-Yamabe constant (c.f. [8]). For the defining function ρ
mentioned above, we set

Iγ [u, g] =
d∗γ
∫
X
ρ1−2γ |∇u|2g dvg +

∫
M
Qĥγu

2 dσĥ(∫
M
|u|2∗ dσĥ

) 2
2∗

,
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then the γ-Yamabe constant is defined as

(1.9) Λγ(M, [ĥ]) = inf{Iγ [u, g] : u ∈W 1,2(X, ρ1−2γ)}.

It was shown in [8] that in the positive curvature case Cγ > 0 we must have Λγ(M, [ĥ]) > 0.

Now we take a perturbation of the linear term Qĥγw to a general −d∗γQγαw, where Qγα ∈
C∞(Mn), α ∈ N. Suppose that for any α ∈ N and any x ∈ Mn, there exists a constant C > 0

such that |Qγα(x)| ≤ C. And we also assume that Qγα → Qγ∞ in L2(Mn, ĥ) as α → +∞. We
will consider a family of equations

(1.10)


− div(ρ1−2γ∇u) = 0 in (Xn+1, g),

u = w on (Mn, ĥ),

− lim
ρ→0

ρ1−2γ∂ρu+Qγαw = w
n+2γ
n−2γ on (Mn, ĥ).

The associated variational functional to (1.10) is

(1.11) Iγ,αg (u) =
1

2

∫
Xn+1

ρ1−2γ |∇u|2g dvg +
1

2

∫
Mn

Qγαu
2 dσĥ −

n− 2γ

2n

∫
Mn

|u|
2n

n−2γ dσĥ.

Hyperbolic space (Hn+1, gH) is the first example of a conformally compact Einstein manifold.
As (Hn+1, gH) can be characterized as the upper half-space Rn+1

+ endowed with metric g+ =
y−2(|dx|2 + dy2), where x ∈ Rn, y ∈ R+, then the Dirichlet-to-Neumann problem (1.8) reduces
to

(1.12)


− div(y1−2γ∇u) = 0 in (Rn+1

+ , |dx|2 + dy2),

u = w on (Rn, |dx|2),

− lim
y→0

y1−2γ∂yu = w
n+2γ
n−2γ on (Rn, |dx|2).

And the variational functional to (1.12) is defined as

Ẽ(u) =
1

2

∫
Rn+1

+

y1−2γ |∇u(x, y)|2dxdy − n− 2γ

2n

∫
Rn
|u(x, 0)|

2n
n−2γ dx.

Up to multiplicative constants, the only solution to problem (1.12) is given by the standard

w(x) = wλa (x) =

(
λ

|x− a|2 + λ2

)n−2γ
2

for some a ∈ Rn and λ > 0 (c.f. [8],[11]). By L. Caffarelli and L. Silvestre’s Poisson formula
[2], the corresponding extension can be expressed as

Uλa (x, y) =

∫
Rn

y2γ

(|x− ξ|2 + y2)(n+2γ)/2
wλa (ξ) dξ.(1.13)

Here Uλa is called a “bubble”. Note that all of them have constant energy. Indeed:

Remark 1.2. For any a ∈ Rn and λ > 0, we have

Ẽ(Uλa ) = Ẽ(U1
0 ) =

γ

n

∫
Rn
|U1

0 (x, 0)|
2n
n−γ dx.
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Now we give some notations which will be used in the following. In the half space Rn+1
+ =

{(x, y) = (x1, · · · , xn, y) ∈ Rn+1 : y > 0} we define, for r > 0,

B+
r (z0) = {z ∈ Rn+1

+ : |z − z0| < r, z0 ∈ Rn+1
+ },

Dr(x0) = {x ∈ Rn : |x− x0| < r, x0 ∈ Rn},
∂′B+

r (z0) = B+
r (z0) ∩ Rn, ∂+B+

r (z0) = ∂B+
r (z0) ∩ Rn+1

+ .

Fix γ ∈ (0, 1). Suppose that (X, g+) is an asymptotically hyperbolic manifold with boundary
M satisfying, in addition, Trĥ h

(1) = 0 when γ ∈ (1/2, 1). Let ρ be the special defining function

given in Proposition 1.1 and set g = ρ2g+, ĥ = g|M . We also define

B+
r (z0) = {z ∈ X : dg(z, z0) < r, z0 ∈ X},

Dr(x0) = {x ∈M : dĥ(x, x0) < r, x0 ∈M},

Now, modulo the definitions of the weighted Sobolev space W 1,2(X, ρ1−2γ) and of a Palais-
Smale sequence (see section 2), the main result of this paper is the following fractional type
blow up analysis theorem:

Theorem 1.3. Let {uα ≥ 0}α∈N ⊂W 1,2(X, ρ1−2γ) be a Palais-Smale sequence for {Iγ,αg }α∈N.

Then there exist an integer m ≥ 1, sequences {µjα > 0}α∈N and {xjα}α∈N ⊂M for j = 1, · · · ,m,
also a nonnegative solution u0 ∈ W 1,2(X, ρ1−2γ) to equation (2.4) and nontrivial nonnegative

functions U
λj
aj ∈W 1,2(Rn+1

+ , y1−2γ) for some λj > 0 and aj ∈ Rn as given in (1.13), satisfying,
up to a subsequence,

(1) µjα → 0 as α→ +∞, for j = 1, · · · ,m;
(2) {xjα}α∈N converges on M as α→ +∞, for j = 1, · · · ,m;
(3) As α→ +∞,

‖uα − u0 −
m∑
j=1

ηjαu
j
α‖W 1,2(X,ρ1−2γ) → 0,

where

ujα(z) = (µjα)−
n−2γ

2 Uλjaj ((µjα)−1ϕ−1

xjα
(z))

for z ∈ ϕxjα(B+
r0(0)), and ϕxjα are Fermi coordinates centered at xjα ∈ M with r0 > 0

small, and ηjα are cutoff functions such that

ηjα ≡ 1 in ϕxjα(B+
r0(0)) and ηjα ≡ 0 in M \ ϕxjα(B+

2r0
(0));

(4) The energies

Iγ,αg (uα)− I∞g (u0)−mẼ(Uλjaj )→ 0

as α→ +∞;
(5) For any 1 ≤ i, j ≤ m, i 6= j,

µiα

µjα
+
µjα
µiα

+
dĥ(xiα, x

j
α)2

µiαµ
j
α

→ +∞, as α→ +∞.

Remark 1.4. (i) We call ηjαu
j
α a bubble for j = 1, · · · ,m.

(ii) If uα → u0 strongly in W 1,2(X, ρ1−2γ) as α→ +∞, then we must have m = 0 here.

Although the local case γ = 1 is well known ([5, 16]), the most interesting point in the
fractional case is the fact that one still has an energy decomposition into bubbles, and that
these bubbles are non-interfering, which is surprising since our operator is non-local.
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This paper is organized as follows: In section 2, we will first recall the definition of weighted
Sobolev spaces and Palais-Smale sequences. Then we shall derive a criterion for the strong
convergence of a given Palais-Smale sequence. At last, ε-regularity estimates will be established.
In section 3, we shall extract the first bubble from the Palais-Smale sequence which is not
strongly convergent. In section 4, we will give the proof of Theorem 1.3. Finally, some regularity
estimates of the degenerate elliptic PDE are given as Appendix in Section 5.

2. Preliminary Results

Most of the arguments in this section are analogous to the results in [5] (Chapter 3). For
the convenience of reader, we also prove these lemmas with the necessary modifications.

From now on we use 2∗ = 2n/(n − 2γ), γ ∈ (0, 1) for simplicity and always assume that
Palais-Smale sequences are all nonnegative. Moreover, the notation o(1) will be taken with
respect to to the limit α→ +∞.

Definition 2.1. The weighted Sobolev space W 1,2(X, ρ1−2γ) is defined as the closure of C∞(X)
with norm

‖u‖W 1,2(X,ρ1−2γ) =

(∫
X

ρ1−2γ |∇u|2g dvg +

∫
M

u2dσĥ

) 1
2

(2.1)

where dvg is the volume form of the asymptotically hyperbolic Riemannian manifold (X, g) and

dσĥ is the volume form of the conformal infinity (M, [ĥ]).

Proposition 2.2. The norm defined above is equivalent to the following traditional norm

‖u‖∗W 1,2(X,ρ1−2γ) =

(∫
X

ρ1−2γ(|∇u|2g + u2) dvg

) 1
2

.(2.2)

On one hand, ‖ · ‖ can be controlled by ‖ · ‖∗. This is a easy consequence of the following
two propositions. The first one is a trace Sobolev embedding on Euclidean space.

Proposition 2.3. [12] For any u ∈ C∞0 (Rn+1
+ ) we have(∫

Rn
|u(x, 0)|2

∗
dx

) 2
2∗

≤ S(n, γ)

∫
Rn+1

+

y1−2γ |∇u(x, y)|2dxdy

where

S(n, γ) =
1

2πγ
Γ(γ)

Γ(1− γ)

Γ(n−2γ
2 )

Γ(n+2γ
2 )

(
Γ(n)

Γ(n/2)

) 2γ
n

.

Using a standard partition of unity argument one obtains a weighted trace Sobolev inequality
on an asymptotically hyperbolic manifold:

Proposition 2.4. [12] For any ε > 0, there exists a constant Cε > 0 such that(∫
M

|u|2
∗
dσĥ

) 2
2∗

≤ (S(n, γ) + ε)

∫
X

ρ1−2γ |∇u|2g dvg + Cε

∫
X

ρ1−2γu2 dvg.

On the other hand, ‖ · ‖∗ can be controlled by ‖ · ‖, which is implied by the following
proposition.

Proposition 2.5. For any u ∈W 1,2(X, ρ1−2γ), there exists a constant C > 0 such that∫
X

ρ1−2γu2 dvg ≤ C
(∫

X

ρ1−2γ |∇u|2g dvg +

∫
M

u2 dσĥ

)
.
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Proof. We use a contradiction argument. Thus, assume that for any α ≥ 1 there exists uα
satisfying ∫

X

ρ1−2γu2
α dvg ≥ α

(∫
X

ρ1−2γ |∇uα|2g dvg +

∫
M

u2
α dσĥ

)
.

Without loss of generality, we can assume that
∫
X
ρ1−2γu2

α dvg = 1. Then we have∫
X

ρ1−2γ(|∇uα|2g + u2
α) dvg ≤ 1 +

1

α
.

Then there exists a weakly convergent subsequence, also denoted by {uα}, such that uα ⇀ u0

in W 1,2(X, ρ1−2γ , ‖ · ‖∗).
Since

lim
α→∞

∫
X

ρ1−2γ |∇uα|2gdvg = 0 and lim
α→∞

∫
M

u2
αdσĥ = 0,

then we get that u0 ≡ 0. On the other hand, via the following Proposition 2.6, the embeddig
W 1,2(X, ρ1−2γ , ‖ · ‖∗) ↪→ L2(X, ρ1−2γ) is compact. So we have∫

X

ρ1−2γu2
0 dvg = 1,

which contradicts the fact that u0 ≡ 0. Then the proof is completed. �

Proposition 2.6. [12, 13, 4] Let 1 ≤ p ≤ q <∞ with 1
n+1 >

1
p −

1
q .

(i) Suppose 2−2γ ≤ p. Then W 1,p(X, ρ1−2γ , ‖ ·‖∗) is compactly embedded in Lq(X, ρ1−2γ)
if

2− 2γ

p(n+ 2− 2γ)
>

1

p
− 1

q
;

(ii) Suppose 2−2γ > p. Then W 1,p(X, ρ1−2γ , ‖ ·‖∗) is compactly embedded in Lq(X, ρ1−2γ)
if and only if

1

(n+ 2− 2γ)
>

1

p
− 1

q
.

We will always use the norm in W 1,2(X, ρ1−2γ) in the following unless otherwise stated.

Definition 2.7. W
1,2

(X, ρ1−2γ) is the closure of C∞0 (X) in W 1,2(X, ρ1−2γ) with the norm

‖u‖
W

1,2
(X,ρ1−2γ)

=

(∫
X

ρ1−2γ |∇u|2g dvg
) 1

2

.

Now we define Palais-Smale sequences for the functional (1.11) precisely.

Definition 2.8. {uα}α∈N ⊂ W 1,2(X, ρ1−2γ) is called a Palais-Smale sequence for {Iγ,αg }α∈N
if:

(i) {Iγ,αg (uα)}α∈N is uniformly bounded; and
(ii) as α→ +∞,

DIγ,αg (uα)→ 0 strongly in W 1,2(X, ρ1−2γ)′,

where we have defined W 1,2(X, ρ1−2γ)′ as the dual space of W 1,2(X, ρ2γ−1), i.e. for
any φ ∈W 1,2(X, ρ1−2γ), then

DIγ,αg (uα) · φ =

∫
X

ρ1−2γ〈∇uα,∇φ〉g dvg +

∫
M

Qγαuαφdσĥ

−
∫
M

u2∗−1
α φdσĥ

= o(‖φ‖W 1,2(X,ρ1−2γ)) as α→ +∞.

(2.3)



9

The main properties of Palais-Smale sequences are contained in the next several lemmas:

Lemma 2.9. Let {uα}α∈N ⊂ W 1,2(X, ρ1−2γ) be a Palais-Smale sequence for the functionals
{Iγ,αg }α∈N, then {uα}α∈N is uniformly bounded in W 1,2(X, ρ1−2γ).

Proof. We can take φ = uα ∈ W 1,2(X, ρ1−2γ) as a test function in (ii) of Definition 2.8, then
we get ∫

X

ρ1−2γ |∇uα|2g dvg +

∫
M

Qγαu
2
α dσĥ =

∫
M

u2∗

α dσĥ + o(‖uα‖W 1,2(X,ρ1−2γ)),

which yields that

Iγ,αg (uα) =
1

2

∫
X

ρ1−2γ |∇uα|2g dvg +
1

2

∫
M

Qγαu
2
α dσĥ −

1

2∗

∫
M

u2∗

α dσĥ

=
γ

n

∫
M

u2∗

α dσĥ + o(‖uα‖W 1,2(X,ρ1−2γ)).

Since {Iγ,αg (uα)}α∈N is uniformly bounded by (i) of Definition 2.8, there exists a constant C > 0
such that ∫

M

u2∗

α dσĥ ≤ C + o(‖uα‖W 1,2(X,ρ1−2γ)),

which by Hölder’s inequality yields∫
M

u2
α dσĥ ≤ C

(∫
M

u2∗

α dσĥ

)2/2∗

≤ C + o(‖uα‖2/2
∗

W 1,2(X,ρ1−2γ)).

Note that since |Qγα| ≤ C for some constant C > 0, we can choose sufficiently large C1 > 0
such that C1 +Qγα ≥ 1 on M . It follows

‖uα‖2W 1,2(X,ρ1−2γ) =

∫
X

ρ1−2γ |∇uα|2g dvg +

∫
M

u2
α dσĥ

≤
∫
X

ρ1−2γ |∇uα|2g dvg +

∫
M

Qγαu
2
α dσĥ + C1

∫
M

u2
α dσĥ

≤
∫
M

u2∗

α dσĥ + o(‖uα‖W 1,2(X,ρ1−2γ)) + C + o(‖uα‖2/2
∗

W 1,2(X,ρ1−2γ))

≤ C + o(‖uα‖W 1,2(X,ρ1−2γ)) + o(‖uα‖2/2
∗

W 1,2(X,ρ1−2γ)).

which concludes that {uα}α∈N is uniformly bounded in W 1,2(X, ρ1−2γ) since 2/2∗ < 1. The
proof is finished. �

Remark 2.10. From Lemma 2.9, it is easy to see that there exists a function u0 in W 1,2(X, ρ1−2γ)
such that uα ⇀ u0 weakly in W 1,2(X, ρ1−2γ) as α→ +∞.

Proposition 2.11. u0 ≥ 0 in X.

Proof. Using Proposition 2.4, we can easily get that uα → u0 in L2(M, ĥ) as α → +∞, so
furthermore we have uα → u0 almost everywhere on M . Noting that uα ≥ 0 on M , then we
obtain that u0 ≥ 0 on M . On the other hand, by Proposition 2.6, and the equivalence of the
norms ‖ · ‖ and ‖ · ‖∗, we have uα → u0 in L2(X, ρ1−2γ) as α→ +∞. For any z ∈ X, take dz <
dist(z,M), then we also have uα → u0 in L2(B+

dz
(z), ρ1−2γ). Since ρ1−2γ is bounded below by

a positive constant in B+
dz

(z), we get uα → u0 almost everywhere in B+
dz

(z) up to passing to a

subsequence. Noting that uα ≥ 0 in X, we obtain u0 ≥ 0 in B+
dz

(z). Since z is arbitrary in X,

then u0 ≥ 0 in X. Combining the above arguments, we conclude that u ≥ 0 in X. �
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Next we define the two limit functionals

Iγg (u) =
1

2

∫
X

ρ1−2γ |∇u|2g dvg −
1

2∗

∫
M

|u|2
∗
dσĥ

and

Iγ,∞g (u) =
1

2

∫
X

ρ1−2γ |∇u|2g dvg +
1

2

∫
M

Qγ∞u
2 dσĥ −

1

2∗

∫
M

|u|2
∗
dσĥ.

We have the following lemma:

Lemma 2.12. Let {uα}α∈N ⊂ W 1,2(X, ρ1−2γ) be a Palais-Smale sequence for {Iγ,αg }α∈N,

and uα ⇀ u0 weakly in W 1,2(X, ρ1−2γ) as α → +∞. We also denote ûα = uα − u0 ∈
W 1,2(X, ρ1−2γ). Then

(i) u0 is a nonnegative weak solution to the limit equation

(2.4)

 −div(ρ1−2γ∇u) = 0 in X,

− lim
ρ→0

ρ1−2γ∂ρu+Qγ∞u = u2∗−1 on M ;

(ii) Iγ,αg (uα) = Iγg (ûα) + Iγ,∞g (u0) + o(1) as α→ +∞;
(iii) {ûα}α∈N is a Palais-Smale sequence for Iγg .

Proof. (i) As C∞(X) is dense in W 1,2(X, ρ1−2γ), we only consider the proof in C∞(X). Let

φ ∈ C∞(X). Since Qγα → Qγ∞ in L2(M, ĥ) as α→ +∞ and uα ⇀ u0 weakly in W 1,2(X, ρ1−2γ)
as α→ +∞, then ∫

M

Qγαuαφdσĥ =

∫
M

Qγ∞u
0φdσĥ + o(1).

Passing to the limit in (2.3), we get easily that∫
X

ρ1−2γ〈∇u0,∇φ〉g dvg +

∫
M

Qγ∞u
0φdσĥ =

∫
M

(u0)2∗−1φdσĥ,

i.e. u0 is a weak solution to the limit equation (2.4).

For the proof of (ii), recall that∫
M

Qγαu
2
α dσĥ =

∫
M

Qγ∞(u0)2 dσĥ + o(1),

and

Iγ,αg (uα) =
1

2

∫
X

ρ1−2γ |∇uα|2g dvg +
1

2

∫
M

Qγαu
2
α dσĥ −

1

2∗

∫
M

u2∗

α dσĥ,

Iγ,∞g (u0) =
1

2

∫
X

ρ1−2γ |∇u0|2g dvg +
1

2

∫
M

Qγ∞(u0)2 dσĥ −
1

2∗

∫
M

(u0)2∗ dσĥ,

Iγg (ûα) =
1

2

∫
X

ρ1−2γ |∇ûα|2g dvg −
1

2∗

∫
M

|ûα|2
∗
dσĥ,

where ûα = uα − u0. Then

Iγ,αg (uα)− Iγ,∞g (u0)− Iγg (ûα)

=

∫
X

ρ1−2γ〈∇u0,∇ûα〉g dvg −
1

2∗

∫
M

Φα dσĥ + o(1),
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where Φα = |ûα + u0|2∗ − |ûα|2
∗ − |u0|2∗ . Note that ûα ⇀ 0 weakly in W 1,2(X, ρ1−2γ) as

α→ +∞, thus ∫
X

ρ1−2γ〈∇u0,∇ûα〉g dvg → 0, as α→∞.

On the other hand, it is easy to check that there exists a constant C > 0, independent of α,
such that ∣∣∣|ûα + u0|2

∗
− |ûα|2

∗
− |u0|2

∗
∣∣∣ ≤ C (|ûα|2∗−1|u0|+ |u0|2

∗−1|ûα|
)
.

As a consequence, since ûα ⇀ 0 weakly in L2∗(M, ĥ) by Proposition 2.4, we have∫
M

|Φα| dσĥ → 0, as α→ +∞.

The proof of (ii) is completed.

(iii) For any φ ∈ C∞(X), by (i) we have

DIγ,∞g (u0) · φ = 0.

Since, in addition, ∫
M

Qγαuαφdσĥ =

∫
M

Qγ∞u
0φdσĥ + o(‖φ‖W 1,2(X,ρ1−2γ)),

then

(2.5) DIγ,αg (uα) · φ = DIγg (ûα) · φ−
∫
M

Ψαφdσĥ + o(‖φ‖W 1,2(X,ρ1−2γ)),

where Ψα = |ûα+u0|2∗−2(ûα+u0)−|ûα|2
∗−2ûα−|u0|2∗−2u0, and it is easy to check that there

exits a constant C > 0 independent of α such that

|Ψα| ≤ C
(
|ûα|2

∗−2|u0|+ |ûα‖u0|2
∗−2
)
.

By Hölder’s inequality and the fact ûα ⇀ 0 weakly in W 1,2(X, ρ1−2γ) as α→ +∞, we have∫
M

Ψαφdσĥ

≤
(∥∥|ûα|2∗−2|u0|

∥∥
L2∗/(2∗−1)(M)

+
∥∥|ûα‖u0|2

∗−2
∥∥
L2∗/(2∗−1)(M)

)
‖φ‖L2∗ (M)

= o(1)‖φ‖L2∗ (M).

Thus from (2.5),

DIγ,αg (uα) · φ = DIγg (ûα) · φ+ o(1)‖φ‖L2∗ (M),

which implies that DIγg (ûα) → 0 in W 1,2(X, ρ1−2γ)′ as α → +∞, since {uα}α∈N is a Palais-
Smale sequence for {Iγ,αg }α∈N.

Finally, from (ii), we know that {ûα}α∈N is a Palais-Smale sequence for Iγg . This completes
the proof of the lemma. �

Now we give a criterion for strong convergence of Palais-Smale sequences. First,

Lemma 2.13. Let {ûα}α∈N be a Palais-Smale sequence for Iγg and such that ûα ⇀ 0 weakly

in W 1,2(X, ρ1−2γ) as α→ +∞. If Iγg (ûα)→ β and

(2.6) β < β0 =
γ

n
(d∗γ)−

n
2γ Λγ(M, [ĥ])

n
2γ ,
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then ûα → 0 in W 1,2(X, ρ1−2γ) as α→ +∞.

Proof. By Lemma 2.9 (hereQγα ≡ 0), there exists a constant C > 0 such that ‖ûα‖W 1,2(X,ρ1−2γ) ≤
C for all α ∈ N, so

DIγg (ûα) · ûα =

∫
X

ρ1−2γ |∇ûα|2g dvg −
∫
M

|ûα|2
∗
dσĥ

= o(‖ûα‖W 1,2(X,ρ1−2γ)) = o(1).

Then note that Iγg (ûα)→ β as α→ +∞, we have

β + o(1) = Iγg (ûα)

=
1

2

∫
X

ρ1−2γ |∇ûα|2g dvg −
1

2∗

∫
M

|ûα|2
∗
dσĥ

=
γ

n

∫
X

ρ1−2γ |∇ûα|2g dvg + o(1)

=
γ

n

∫
M

|ûα|2
∗
dσĥ + o(1).

(2.7)

On the other hand, it was shown in [8] that in the positive curvature case, then the γ-Yamabe

constant (1.9) must be positive: Λγ(M, [ĥ]) > 0. Moreover, by definition,

(2.8) Λγ(M, [ĥ])

(∫
M

|ûα|2
∗
dσĥ

) 2
2∗

≤ d∗γ
∫
X

ρ1−2γ |∇ûα|2g dvg +

∫
M

Qĥγ û
2
α dσĥ.

where d∗γ > 0. We also know that |Qĥγ | ≤ C on Mn. Note that ûα ⇀ 0 in L2∗(M, ĥ) as α→ +∞
by Proposition 2.4, then

∫
M
û2
α dσĥ → 0 as α→ +∞ since the embedding L2∗(M, ĥ) ⊂ L2(M, ĥ)

is compact. So we get from (2.7) and (2.8) that(
n

γ
β + o(1)

) 2
2∗

≤ d∗γΛγ(M, [ĥ])−1n

γ
β + o(1).

Taking α → +∞, we must have β = 0 because of our initial condition (2.6). The Lemma is
proved. �

Note that the Palais-Smale condition (ii) is the weak form of a Dirichlet-to-Neumann problem
for a degenerate elliptic PDE. In fact, as DIγg (ûα)→ 0 in W 1,2(X, ρ1−2γ)′, it follows that, for

any ψ ∈W 1,2(X, ρ1−2γ),

(2.9)

∫
X

ρ1−2γ〈∇ûα,∇ψ〉g dvg −
∫
M

|ûα|2
∗−2ûαψ dσĥ = o(1)‖ψ‖W 1,2(X,ρ1−2γ).

In particular, for any ψ̄ ∈W 1,2
(X, ρ1−2γ), then∫

X

ρ1−2γ〈∇ûα,∇ψ̄〉g dvg = o(1)‖ψ̄‖
W

1,2
(X,ρ1−2γ)

,

which is is precisely the weak formulation for the asymptotic equation

(2.10) −div(ρ1−2γ∇ûα) = o(1) in X.

Multiplying both sides of (2.10) by ψ ∈ W 1,2(X, ρ1−2γ) and integrating by parts, we obtain
that ∫

M

lim
ρ→0

ρ1−2γ∂ρûαψ dσĥ +

∫
X

ρ1−2γ〈∇ûα,∇ψ〉g dvg = o(1)‖ψ‖W 1,2(X,ρ1−2γ),
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which combined with (2.9) yields that∫
M

lim
ρ→0

ρ1−2γ∂ρûαψ dσĥ +

∫
M

|ûα|2
∗−2ûαψ dσĥ = o(1)‖ψ‖W 1,2(X,ρ1−2γ),

and this is precisely the boundary equation in the weak sense

(2.11) − lim
ρ→0

ρ1−2γ∂ρûα = |ûα|2
∗−2ûα + o(1) on M.

For the above equations (2.10) and (2.11) for {ûα}α∈N, we have the following energy estimate,
which will plays an important role in the proof of the strong convergence in the next section.
We use the notation B+

r instead of B+
r (0) for convenience.

Lemma 2.14. (ε-regularity estimates) Suppose that {vα}α∈N satisfies the following asymptotic
boundary value problem

(2.12)

 −div(ρ1−2γ∇vα) = o(1) in X,

− lim
ρ→0

ρ1−2γ∂ρvα = |vα|2
∗−2vα + o(1) on M.

If there exists small ε > 0 depending on n, γ such that
∫
∂′B+

2r
|vα|2

∗
dσĥ ≤ ε uniformly in α for

some small r > 0, then∫
B+
r

ρ1−2γ |∇vα|2g dvg ≤
C

r2

∫
B+

2r

ρ1−2γv2
α dvg + C

∫
∂′B+

2r

v2
α dσĥ + o(1)

∫
B+

2r

|vα| dvg,

where C = C(n, ε, γ) independent of α.

Proof. Let η be a smooth cutoff function in X such that 0 ≤ η ≤ 1, η ≡ 1 in B+
r (0) and η ≡ 0

in X \B+
2r(0). Multiplying both sides of the first equation in (2.12) by η2vα, integrating by

parts and substituting the second equation in (2.12), we get∫
B+

2r

ρ1−2γ〈∇vα,∇(η2vα)〉g dvg

= −
∫
∂′B+

2r

lim
ρ→0

ρ1−2γ(∂ρvα)η2vα dσĥ + o(1)

∫
B+

2r

η2vα dvg

=

∫
∂′B+

2r

η2|vα|2
∗
dσĥ + o(1)

∫
B+

2r

η2vα dvg,

so we have∫
B+

2r

ρ1−2γη2|∇vα|2g dvg =−
∫
B+

2r

ρ1−2γ2ηvα〈∇vα,∇η〉g dvg

+

∫
∂′B+

2r

η2|vα|2
∗
dσĥ + o(1)

∫
B+

2r

η2|vα| dvg

≤ 1

2

∫
B+

2r

η2ρ1−2γ |∇vα|2g dvg + 2

∫
B+

2r

ρ1−2γ |∇η|2g v2
α dvg

+

∫
∂′B+

2r

η2|vα|2
∗
dσĥ + o(1)

∫
B+

2r

η2|vα| dvg,
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which implies that∫
B+

2r

ρ1−2γη2|∇vα|2g dvg ≤4

∫
B+

2r

ρ1−2γ |∇η|2gv2
α dvg + 2

∫
∂′B+

2r

η2|vα|2
∗
dσĥ

+ o(1)

∫
B+

2r

η2|vα| dvg

≤C
r2

∫
B+

2r

ρ1−2γv2
α dvg + 2

∫
∂′B+

2r

(ηvα)2|vα|2
∗−2 dσĥ

+ o(1)

∫
B+

2r

η2|vα| dvg.

By Hölder’s inequality and our initial hypothesis we have

∫
∂′B+

2r

(ηvα)2|vα|2
∗−2 dσĥ ≤

(∫
∂′B+

2r

|ηvα|2
∗
dσĥ

) 2
2∗
(∫

∂′B+
2r

|vα|2
∗
dσĥ

) 2∗−2
2∗

≤ ε
2∗−2

2∗

(∫
∂′B+

2r

|ηvα|2
∗
dσĥ

) 2
2∗

.

Then it follows from above that∫
B+

2r

ρ1−2γ |∇(ηvα)|2g dvg ≤2

∫
B+

2r

ρ1−2γ(|∇η|2g v2
α + η2|∇vα|2g) dvg

≤C
r2

∫
B+

2r

ρ1−2γv2
α dvg + Cε

2∗−2
2∗

(∫
∂′B+

2r

|ηvα|2
∗
dσĥ

) 2
2∗

+ o(1)

∫
B+

2r

η2vα dvg.

The trace Sobolev inequality on our manifold setting (Proposition 2.4) gives that(∫
∂′B+

2r

|ηvα|2
∗
dσĥ

) 2
2∗

≤ C
∫
B+

2r

ρ1−2γ |∇(ηvα)|2g dvg + C

∫
∂′B+

2r

(ηvα)2 dσĥ.

Therefore we obtain∫
B+

2r

ρ1−2γ |∇(ηvα)|2g dvg ≤
C

r2

∫
B+

2r

ρ1−2γv2
α dvg + Cε

2∗−2
2∗

∫
B+

2r

ρ1−2γ |∇(ηvα)|2g dvg

+ Cε
2∗−2

2∗

∫
∂′B+

2r

(ηvα)2 dσĥ + o(1)

∫
B+

2r

η2|vα| dvg.

Now we fix r > 0 small such that ε small enough satisfying Cε
2∗−2

2∗ ≤ 1/2. Then we get∫
B+
r

ρ1−2γ |∇vα|2g dvg ≤
C

r2

∫
B+

2r

ρ1−2γv2
α dvg + C

∫
∂′B+

2r

v2
α dσĥ + o(1)

∫
B+

2r

|vα| dvg.

This completes the proof of the lemma. �
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3. The First Bubble Argument

In this section, we focus on the blow up analysis of a Palais-Smale sequence which is not
strongly convergent. In particular, using the ε-regularity estimates (Lemma 2.14), we can figure
out the first bubble. We will also show that the Palais-Smale sequence obtained by subtracting
a bubble is also Palais-Smale sequence and that the energy is splitting.

Lemma 3.1. Let {ûα}α∈N be a Palais-Smale sequence for Iγg such that ûα ⇀ 0 weakly in

W 1,2(X, ρ1−2γ), but not strongly as α → +∞. Then there exist a sequence of real numbers
{µα > 0}α∈N, µα → 0 as α → +∞, a converging sequence of points {xα}α∈N ⊂ M and a
nontrivial solution u to the equation

(3.1)

 −div(y1−2γ∇u) = 0 in Rn+1
+ ,

− lim
y→0

y1−2γ∂yu = |u|2
∗−2u on Rn,

such that, up to a subsequence, if we take

v̂α(z) = ûα(z)− ηα(z)µ
−n−2γ

2
α u(µ−1

α ϕ−1
xα (z)), z ∈ ϕxα(B+

2r0
(0))

where r0, ηα(z) and ϕxα(z) are as same as in the Theorem 1.3, then we have the following
three conclusions

(i) v̂α ⇀ 0 weakly in W 1,2(X, ρ1−2γ) as α→ +∞;
(ii) {v̂α}α∈N is also a Palais-Smale sequence for Iγg ;

(iii) Iγg (v̂α) = Iγg (ûα)− Ẽ(u) + o(1) as α→ +∞.

Proof. Without loss of generality, we assume that ûα ∈ C∞(X). By the proof of Lemma 2.13,

Iγg (ûα) =
γ

n

∫
X

ρ1−2γ |∇ûα|2g dvg + o(1) =
γ

n

∫
M

|ûα|2
∗
dσĥ + o(1).

Note that {ûα}α∈N is uniformly bounded in W 1,2(X, ρ1−2γ) by Lemma 2.9, so there exist a
subsequence, also denoted by {ûα}α∈N and a nonnegative constant β, such that

Iγg (ûα) = β + o(1), as α→ +∞.

Since ûα ⇀ 0 weakly in W 1,2(X, ρ1−2γ) but not strongly as α → +∞, by Lemma 2.13 again
we get

lim
α→+∞

∫
M

|ûα|2
∗
dσĥ =

n

γ
β ≥ n

γ
β0.

We will decompose the rest of the proof into several steps:

Step 1. Pick up the likely blow up points. First we show the following claim.

Claim 1. For any t0 > 0 small, there exist x0 ∈M and ε0 > 0 such that, up to a subsequence∫
Dt0

(x0)

|ûα|2
∗
dσĥ ≥ ε0.

Proof. If the Claim is not true, there exists t > 0 small, such that for any x ∈M it holds∫
Dt(x)

|ûα|2
∗
dσĥ → 0, α→ +∞.
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On the other hand, since (M, ĥ) is compact and M ⊂ ∪x∈MDt(x), there exists an integer
N(≥ 1) such that M ⊂ ∪Ni=1Dt(xi). Thus∫

M

|ûα|2
∗
dσĥ ≤

N∑
i=1

∫
Dt(xi)

|ûα|2
∗
dσĥ → 0, α→ +∞,

which is a contradiction. �

For t > 0, we set

ωα(t) = max
x∈M

∫
Dt(x)

|ûα|2
∗
dσĥ.

Then by Claim 1, there exists xα ∈M such that

ωα(t0) =

∫
Dt0

(xα)

|ûα|2
∗
dσĥ ≥ ε0.

Note that ∫
Dt(xα)

|ûα|2
∗
dσĥ → 0, as t→ 0.

Hence for any ε ∈ (0, ε0), there exists tα ∈ (0, t0) such that

(3.2) ε =

∫
Dtα (xα)

|ûα|2
∗
dσĥ.

Step 2. At each likely blow up point, we will establish weak convergence of a Palais-Smale
sequence after properly rescaling.

For r0 > 0 small, consider the Fermi coordinates at the likely blow up point xα ∈ M ,
ϕxα : B+

2r0
(0) → X. Here we restrict r0 to r0 ≤ ig(X)/2, where ig(X) is the injectivity radius

of X. Then for any 0 < µα ≤ 1, we define

ũα(z) = µ
n−2γ

2
α ûα(ϕxα(µαz)), g̃α(z) = (ϕ∗xαg)(µαz), h̃α(x) = (ϕ∗xα ĥ)(µαx),

if z ∈ B+

µ−1
α r0

(0) and x ∈ ∂′B+

µ−1
α r0

(0).

Given z0 ∈ Rn+1
+ and r > 0 such that |z0|+ r < µ−1

α r0, we have∫
B+
r (z0)

ρ̃1−2γ
α |∇ũα|2g̃α dvg̃α =

∫
ϕxα (µαB

+
r (z0))

ρ1−2γ |∇ûα|2g dvg

where

ρ̃α(z) = µ−1
α ρ(ϕxα(µαz))

and |dρ̃α|g̃α = 1 on ∂′B+
r (z0) since |dρ|g = 1 on M .

On the other hand, if z0 ∈ Rn, and |z0|+ r < µ−1
α r0, then∫

Dr(z0)

|ũα|2
∗
dσh̃α =

∫
ϕxα (µαDr(z0))

|ûα|2
∗
dσĥ

≤
∫
D2µαr(ϕxα (µαz0))

|ûα|2
∗
dσĥ.

Here we have used that ϕxα(µαDr(z0)) = ϕxα(Dµαr(µαz0)), and that for |x| < r0, |y| < r0,
x, y ∈ Rn, we have 1/2|x− y| ≤ dg(ϕxα(x), ϕxα(y)) ≤ 2|x− y|.
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Next, take r ∈ (0, r0) and choose t0 in Claim 1 such that 0 < t0 ≤ 2r. For any ε ∈ (0, ε0),
ε to be determined later, and tα ∈ (0, t0), let 0 < µα = 1

2r
−1tα ≤ 1

2r
−1t0 ≤ 1, then by the

definition of ε from (3.2), if |z0|+ r < µ−1
α r0, we have∫

∂′B+
r (z0)

|ũα|2
∗
dσh̃α ≤ ε.(3.3)

Note that ϕxα(∂′B+
2rµα

(0)) = Dtα(xα), we have

ε =

∫
Dtα (xα)

|ûα|2
∗
dσĥ =

∫
ϕxα (∂′B+

2rµα
(0))

|ûα|2
∗
dσĥ

=

∫
ϕxα (µα∂′B

+
2r(0))

|ûα|2
∗
dσĥ =

∫
∂′B+

2r(0)

|ũα|2
∗
dσh̃α .

This r0 > 0 can be chosen smaller again, such that for any 0 < µ ≤ 1 and any x0 ∈ M , we
can assume that

1

2

∫
Rn+1

+

y1−2γ |∇u|2 dxdy ≤
∫
Rn+1

+

ρ̃1−2γ
x0,µ |∇u|

2
g̃x0,µ

dvg̃x0,µ

≤2

∫
Rn+1

+

y1−2γ |∇u|2 dxdy,
(3.4)

where u ∈W 1,2
(Rn+1

+ , ρ̃1−2γ
x0,µ ), supp(u) ⊂ B+

2µ−1r0
(0), ρ̃x0,µ(z) = µ−1ρ(ϕx0

(µz)) and g̃x0,µ(z) =

(ϕ∗x0
g)(µz). And for u ∈ L1(Rn) such that supp(u) ⊂ ∂′B+

2µ−1r0
(0), we can also assume that

1

2

∫
Rn
|u| dx ≤

∫
Rn
|u| dσh̃x0,µ

≤ 2

∫
Rn
|u| dx,

where h̃x0,µ(x) = (ϕ∗x0
ĥ)(µx).

Let η̃ ∈ C∞0 (Rn+1
+ ) be a cutoff function satisfying 0 ≤ η̃ ≤ 1, η̃ ≡ 1 in B+

1/4(0) and η̃ ≡ 0 in

Rn+1
+ \B+

3/4(0), and we set η̃α(z) = η̃(r−1
0 µαz).

Claim 2. {η̃αũα}α∈N is uniformly bounded in W 1,2(Rn+1
+ , y1−2γ).

Proof. Note that∫
Rn+1

+

ρ̃1−2γ
α |∇(η̃αũα)|2g̃α dvg̃α +

∫
Rn+1

+

ρ̃1−2γ
α (η̃αũα)2 dvg̃α

≤
∫
Rn+1

+

ρ̃1−2γ
α (2|∇η̃α|2g̃α + η̃2

α)ũ2
α dvg̃α + 2

∫
Rn+1

+

ρ̃1−2γ
α η̃2

α|∇ũα|2g̃α dvg̃α

≤C
∫
X

ρ1−2γ û2
α dvg + C

∫
X

ρ1−2γ |∇ûα|2g dvg ≤ C,

since {ûα}α∈N is uniformly bounded in W 1,2(X, ρ1−2γ). Combining this with (3.4), we obtain
that {η̃αũα}α∈N is uniformly bounded in W 1,2(Rn+1

+ , y1−2γ), as desired. �

Due to the weak compactness ofW 1,2(Rn+1
+ , y1−2γ), there exists some u inW 1,2(Rn+1

+ , y1−2γ)

such that η̃αũα ⇀ u in W 1,2(Rn+1
+ , y1−2γ) as α→ +∞.

Step 3. The weak convergence is in fact strong via ε-regularity estimates.

Claim 3. Let r1 = r0/8, then there exists ε1 = ε1(γ, n) such that for any 0 < r < r1,
0 < ε < min{ε0, ε1}, we have η̃αũα → u in W 1,2(B+

2r(0), y1−2γ) as α→ +∞.
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Proof. Given r sufficiently small, to be determined later, for any z0 ∈ Rn+1
+ , let ψ ∈ C∞0 (B+

r (z0))∩
W 1,2(Rn+1

+ , y1−2γ). Let ψ̂α(z) = µ
−n−2γ

2
α ψ(µ−1

α ϕ−1
xα (z)) for z ∈ ϕxα(B+

r (z0)). Since {ûα} satis-
fies the asymptotic equation (2.10), then we have

o(1)‖ψ‖
W

1,2
(Rn+1

+ ,y1−2γ)
= o(1)‖ψ̂α‖W 1,2

(X,ρ1−2γ)

=

∫
ϕxα (µαB

+
r (z0))

ρ1−2γ〈∇ûα,∇ψ̂α〉g dvg

=

∫
B+
r (z0)

(µ−1
α ρ)1−2γ〈∇(η̃αũα),∇ψ〉g̃α dvg̃α ,

since η̃ is supported in B+
3/4(0) and η̃ ≡ 1 in B+

1/4(0). Also note that η̃α(z) = η̃(µαr
−1
0 z), so

η̃α ≡ 1 in B+

1/4µ−1
α r0

, and thus we need |z0|+ r < 1/4µ−1
α r0.

It is easy to check that µ−1
α ρ → y as α → +∞ since |d(µ−1

α ρ)|g̃α = 1 on Rn and g̃α →
(|dx|2 + dy2). Then we have the asymptotic equation

(3.5) −div(y1−2γ∇(η̃αũα)) = o(1) in B+
r (z0).

Since η̃αũα ⇀ u weakly in W 1,2(Rn+1
+ , y1−2γ), we simultaneously get that

(3.6) −div(y1−2γ∇u) = 0 in B+
r (z0).

Now let ψ ∈ W 1,2(B+
r (z0), y1−2γ). Then multiplying both sides of equation (3.5) by ψ and

integrating by parts, we get

o(1)‖ψ‖W 1,2(B+
r (z0),y1−2γ) =

∫
∂′B+

r (z0)

lim
y→0

y1−2γ∂y(η̃αũα)ψ dσh̃α

+

∫
B+
r (z0)

y1−2γ〈∇(η̃αũα),∇ψ〉g̃α dvg̃α .
(3.7)

On the other hand, using (2.10) and (2.11), and the definition of ψ̂α, we have∫
B+
r (z0)

y1−2γ〈∇(η̃αũα),∇ψ〉g̃α dvg̃α

=

∫
ϕxα (µαB

+
r (z0))

ρ1−2γ〈∇ûα,∇ψ̂α〉g dvg

=−
∫
M

lim
ρ→0

ρ1−2γ(∂ρûα)ψα dσĥ + o(1)‖ψ̂α‖W 1,2(X,ρ1−2γ)

=

∫
M

|ûα|2
∗−2ûαψ̂α dσĥ + o(1)‖ψ̂α‖W 1,2(X,ρ1−2γ)

=

∫
∂′B+

r (z0)

|η̃αũα|2
∗−2(η̃αũα)ψ dσh̃α + o(1)‖ψ̂α‖W 1,2(X,ρ1−2γ).

(3.8)

Since ‖ψ‖W 1,2(B+
r (z0),y1−2γ) = ‖ψ̂α‖W 1,2(X,ρ1−2γ), combining expressions (3.7) and (3.8) then we

have

o(1)‖ψ‖W 1,2(B+
r (z0),y1−2γ) =

∫
∂′B+

r (z0)

lim
y→0

y1−2γ∂y(η̃αũα)ψ dσh̃α

+

∫
∂′B+

r (z0)

|η̃αũα|2
∗−2(η̃αũα)ψ dσh̃α ,
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i.e.

− lim
y→0

y1−2γ∂y(η̃αũα) = |η̃αũα|2
∗−2(η̃αũα) + o(1) on ∂′B+

r (z0).

Meanwhile, since η̃αũα ⇀ u weakly in W 1,2(Rn+1
+ , y1−2γ), the same argument as above gives

that

− lim
y→0

y1−2γ∂yu = |u|2
∗−2u on ∂′B+

r (z0).

If we denote by

Γα := |η̃αũα|2
∗−2(η̃αũα)− |u|2

∗−2u− |η̃αũα − u|2
∗−2(η̃αũα − u),

then

(3.9)

 −div(y1−2γ∇(η̃αũα − u)) = o(1) in B+
r (z0),

− lim
y→0

y1−2γ∂y(η̃αũα − u) = |η̃αũα − u|2
∗−2(η̃αũα − u) + Γα + o(1) on ∂′B+

r (z0).

We have proved in (3.3) that for any r > 0 and ε1 > 0, there exists a sequence {µα}α∈N such
that, if |z0|+ r ≤ r0 ≤ µ−1

α r0, it holds that∫
∂′B+

r (z0)

|ũα|2
∗
dx ≤ ε1.

Therefore we can also choose r small enough such that, if |z0|+ 3r < r0,∫
∂′B+

r (z0)

|η̃αũα − u|2
∗
dx ≤ ε1.

We claim that Γα = o(1) in the sense that for any φ ∈W 1,2(Rn+1
+ , y1−2γ)′, we have∫

∂′B+
r (z0)

|Γαφ|dσĥ = o(1)||φ||L2∗ (∂′B+
r (z0)) as α→ +∞.

We can use the same arguments as in the proof of Lemma 2.12 to show this claim.
Then by the ε-regularity estimates and the compact embedding of the weighted Sobolev

space, we can prove that η̃αũα → u in W 1,2(B+
r (z0), y1−2γ), then by the finite covering we can

prove that η̃αũα → u in W 1,2(B+
2r(0), y1−2γ).

�

Applying Claim 3, noting that η̃αũα → u in W 1,2(B+
2r(0), y1−2γ), and that η̃α ≡ 1 in

∂′B+

1/4µ−1
α r0

, since 0 < µα ≤ 1 and 2r < r0/4, we have

ε =

∫
∂′B+

2r(0)

|ũα|2
∗
dσh̃α =

∫
∂′B+

2r(0)

|η̃αũα|2
∗
dσh̃α

≤ 2

∫
∂′B+

2r(0)

|u|2
∗
dx+ o(1),

where we used η̃αũα → u in L2∗(∂′B+
2r(0), |dx|2) as α→ +∞ by Proposition 2.4. So u 6= 0.

Claim 4. limα→+∞ µα = 0.

In fact, if µα → µ0 > 0, then η̃αũα ⇀ 0 inW 1,2(B+
2r(0), y1−2γ) since ûα ⇀ 0 inW 1,2(X, ρ1−2γ).

But u 6= 0, which is a contradiction.

Claim 5. For any 0 < µ0 ≤ 1, ũα → u strongly in W 1,2(B+

µ−1
0

(0), y1−2γ) as α → +∞, and u

is a weak solution of equation (3.1).
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Proof. Let 0 < µ0 ≤ 1, by Claim 4, we know 0 < µα ≤ µ0 for α large. Then (3.3) holds for
|z0|+ r < µ−1

0 r0. By the same arguments, it is easy to check that

η̃αũα → u in W 1,2(B+

2rµ−1
0

(0), y1−2γ).

For α large, we have η̃α ≡ 1 in B+

2rµ−1
0

(0), so we have

ũα → u in W 1,2(B+

2rµ−1
0

(0), y1−2γ)

strongly as α→ +∞.

We finally claim that u solves the following boundary problem.

(3.10)

 −div(y1−2γ∇u) = 0 in Rn+1
+ ,

− lim
y→0

y1−2γ∂yu = |u|2
∗−2u on Rn.

Since 0 < µ0 ≤ 1 is arbitrary, we have ũα → u strongly in W 1,2(B+
R(0), y1−2γ) for any large

R > 0. Without loss of generality, let ψ ∈ C∞0 (Rn+1
+ ) and suppψ ⊂ B+

0 (R0) for some R0 > 0.
Set

ψα(z) = µ
−n−2γ

2
α ψ(µ−1

α ϕ−1
xα (z)).

For α large enough, we have∫
X

ρ1−2γ〈∇ûα,∇ψα〉gdvg =

∫
Rn+1

+

ρ̃1−2γ
α 〈∇(η̃αũα),∇ψ〉g̃αdvg̃α ,

and ∫
M

|ûα|2
∗−2ûαψαdvg =

∫
Rn
|η̃αũα|2

∗−2(η̃αũα)ψ dvg̃α .

Note that g̃α → |dx|2 + dy2 in C1(B+
R(0)) as α→ +∞, {ûα} is a Palais-Smale sequence for Iγg

and η̃αũα → u in W 1,2(B+
R(0)) for any R > 0. Then we have∫

Rn+1
+

y1−2γ〈∇u,∇ψ〉 dxdy −
∫
Rn
|u|2

∗−2uψ dxdy = 0,

which yields our desired result.
�

Step 4. The Palais-Smale sequence subtracted by a bubble is still a Palais-Smale sequence.
Define

(3.11)

{
ŵα(z) = η̂α(z)µ

−(n−2γ)/2
α u(µ−1

α ϕ−1
xα (z)), z ∈ ϕxα(B+

2r0
(0)),

ŵα(z) = 0, otherwise,

where η̂α is a cut-off function satisfying η̂α = 1 in ϕxα(B+
r0(0)) and η̂α = 0 in M \ϕxα(B+

2r0
(0)).

Here we have B+
2r0

(xα) = ϕxα(B+
2r0

(0)). Let v̂α = ûα − ŵα. We claim:

(i) v̂α ⇀ 0 in W 1,2(X, ρ1−2γ) as α→ +∞;
(ii) DIγg (v̂α)→ 0 in W 1,2(X, ρ1−2γ)′ as α→ +∞;

(iii) Iγg (v̂α) = Iγg (ûα)− Ẽ(u) + o(1) as α→ +∞;
(iv) {v̂α}α∈N is also a Palais-Smale sequence for Iγg .
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The proof of these claims follows from: (i) Since ûα ⇀ 0 in W 1,2(X, ρ1−2γ) as α → +∞, it
suffices to prove ŵα ⇀ 0 inW 1,2(X, ρ1−2γ) as α→ +∞. First, we prove that

∫
M
ŵαψdσĥ = o(1)

as α→ +∞ for any ψ ∈ C∞(X). Given R > 0, then

(3.12)

∫
M

ŵαψ dσĥ =

∫
DµαR(xα)

ŵαψ dσĥ +

∫
M\DµαR(xα)

ŵαψ dσĥ.

Note that h̃α(x) = (ϕ∗xα ĥ)(µαx). Using (3.11) we have

∫
DµαR(xα)

ŵαψ dσĥ =

∫
DµαR(xα)

η̂α(x)µ
−n−2γ

2
α u(µ−1

α ϕ−1
xα (x))ψ(x) dσĥ

= µ
n+2γ

2
α

∫
DR(0)

η̂α(ϕxα(µαx))u(x)ψ(ϕxα(µαx)) dσh̃α

≤ C‖ψ‖L∞(M)µ
n+2γ

2
α

∫
DR(0)

|u(x)| dx.

Similarly, we can deal with the second term in the right hand side of (3.12):

∫
M\DµαR(xα)

ŵαψ dσĥ =

∫
D2r0

(xα)\DµαR(xα)

ŵαψ dσĥ

≤ C‖ψ‖L∞(M)µ
n+2γ

2
α

∫
D

2r0µ
−1
α

(0)\DR(0)

|u(x)| dx

≤ C‖ψ‖L∞(M)µ
n+2γ

2
α

(∫
D

2r0µ
−1
α

(0)\DR(0)

|u(x)|2
∗
dx

) 1
2∗
(∫

D
2r0µ

−1
α

(0)\DR(0)

dx

)n+2γ
2n

≤ C‖ψ‖L∞(M)

(∫
D

2r0µ
−1
α

(0)\DR(0)

|u(x)|2
∗
dx

) 1
2∗

.

Since u ∈ L2∗(Rn, |dx|2) and µα → 0 as α→ +∞, taking R large enough we get
∫
M
ŵαψdσĥ =

o(1) as α→ +∞.

Next, we will show that
∫
X
ρ1−2γ〈∇ŵα,∇ψ〉gdvg = o(1) as α → +∞ for any ψ ∈ C∞(X).

Let η̃α(z) = η̂α(ϕxα(µαz)), ρ̃α(z) = µ−1
α ρ(ϕxα(µαz)). Noting that ŵα ≡ 0 in X \ B+

2r0
(xα),

then for any R > 0 and α large, we have

∫
X

ρ1−2γ〈∇ŵα,∇ψ〉g dvg =

∫
B+

2r0
(xα)

ρ1−2γ〈∇ŵα,∇ψ〉g dvg

=

∫
B+

2r0
(xα)\B+

Rµα
(xα)

ρ1−2γ〈∇ŵα,∇ψ〉g dvg +

∫
B+
Rµα

(xα)

ρ1−2γ〈∇ŵα,∇ψ〉g dvg

= : I1 + I2.

(3.13)
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By Hölder’s inequality and that u ∈W 1,2(Rn+1
+ , y1−2γ), we have

I1 ≤

(∫
B+

2r0
(xα)\B+

Rµα
(xα)

ρ1−2γ |∇ŵα|2g dvg

) 1
2
(∫

B+
2r0

(xα)\B+
Rµα

(xα)

ρ1−2γ |∇ψ|2g dvg

) 1
2

=

∫
B+

2r0µ
−1
α

(0)\B+
R(0)

ρ̃1−2γ
α |∇(η̃αu)|2g̃α dvg̃α

 1
2 (∫

B+
2r0

(xα)\B+
Rµα

(xα)

ρ1−2γ |∇ψ|2g dvg

) 1
2

=: β(R),

where

(3.14) lim
R→+∞

lim
α→+∞

supβ(R) = 0.

The previous limit is estimated because u ∈W 1,2(Rn+1
+ , y1−2γ), so we have for any α,R∫

B+

2r0µ
−1
α

(0)\B+
R(0)

ρ̃1−2γ
α |∇(η̃αu)|2g̃α dvg̃α

 1
2

≤ C||u||W 1,2(Rn+1
+ ,y1−2γ),

and for any ε > 0 and any α large, there exists R0 > 0 such that for R > R0, we have(∫
B+

2r0
(xα)\B+

Rµα
(xα)

ρ1−2γ |∇ψ|2g dvg

) 1
2

≤ ε.

Meanwhile we have

I2 ≤

(∫
B+
Rµα

(xα)

ρ1−2γ |∇ŵα|2g dvg

) 1
2
(∫

B+
Rµα

(xα)

ρ1−2γ |∇ψ|2g dvg

) 1
2

=

(∫
B+
R(0)

ρ̃1−2γ
α |∇(η̃αu)|2g̃α dvg̃α

) 1
2
(∫

B+
Rµα

(xα)

ρ1−2γ |∇ψ|2g dvg

) 1
2

= o(1),

uniformly in R as α→ +∞. To see this, for any R > 0,(∫
B+
R(0)

ρ̃1−2γ
α |∇(η̃αu)|2g̃α dvg̃α

) 1
2

≤ C||u||W 1,2(Rn+1
+ ,y1−2γ),

also in Claim 4 we have proved that

lim
α→+∞

µα = 0

and note that ψ ∈W 1,2(X, ρ1−2γ). Since R > 0 is arbitrary, (3.13) implies that∫
X

ρ1−2γ〈∇ŵα,∇ψ〉g dvg = o(1)

as α→ +∞.

(ii) For any ψ ∈W 1,2(X, ρ1−2γ), the proof of (i), and Propositions 2.4 and 2.6 imply that

DIγg (ŵα) · ψ =

∫
X

ρ1−2γ〈∇ŵα,∇ψ〉g dvg −
∫
M

|ŵα|2
∗−2ŵαψ dσĥ → 0, as α→ +∞.
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On the other hand, we have

DIγg (v̂α) · ψ =

∫
X

ρ1−2γ〈∇v̂α,∇ψ〉g dvg −
∫
M

|v̂α|2
∗−2v̂αψ dσĥ

= DIγg (ûα) · ψ −DIγg (ŵα) · ψ −
∫
M

Φαψ dσĥ,

where

Φα = |ûα − ŵα|2
∗−2(ûα − ŵα) + |ŵα|2

∗−2ŵα − |ûα|2
∗−2ûα.

Following the same argument of [5] (pp. 39-40), we can prove that∫
M

Φαψ dσĥ → 0 as α→ +∞.

Then we get that DIγg (v̂α)→ 0 in W 1,2(X, ρ1−2γ)′ as α→ +∞, since {ûα}α∈N is a Palais-Smale
sequence for Iγg .

(iii) Note that v̂α = ûα− ŵα and ŵα ≡ 0 in X \B+
2r0

(xα). Given R > 0, for α large, we have∫
X

ρ1−2γ |∇v̂α|2g dvg

=

∫
B+

2r0
(xα)

ρ1−2γ |∇v̂α|2g dvg +

∫
X\B+

2r0
(xα)

ρ1−2γ |∇ûα|2g dvg

=

∫
B+
µαR

(xα)

ρ1−2γ |∇v̂α|2g dvg +

∫
B+

2r0
(xα)\B+

µαR
(xα)

ρ1−2γ |∇v̂α|2g dvg

+

∫
X\B+

2r0
(xα)

ρ1−2γ |∇ûα|2g dvg

= : I1 + I2 +

∫
X\B+

2r0
(xα)

ρ1−2γ |∇ûα|2g dvg.

(3.15)

Since η̃αũα → u in W 1,2(Rn+1
+ , y1−2γ) as α→ +∞ because of Claim 5, then

I1 =

∫
B+
µαR

(xα)

ρ1−2γ |∇(ûα − ŵα)|2g dvg =

∫
B+
R(0)

ρ̃1−2γ
α |∇(ũα − u)|2g̃α dvg̃α

≤ 2

∫
B+
R(0)

y1−2γ |∇(ũα − u)|2 dxdy = o(1), as α→ +∞,

where we have used that η̃α ≡ 1 in B+
R(0) for α large.

On the other hand, direct computations give that∫
B+

2r0
(xα)\B+

µαR
(xα)

ρ1−2γ |∇ŵα|2g dvg =

∫
B+

2r0µ
−1
α

(0)\B+
R(0)

ρ̃1−2γ
α |∇u|2g̃α dvg̃α

≤2

∫
B+

2r0µ
−1
α

(0)\B+
R(0)

y1−2γ |∇u|2 dxdy = β(R),
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since u ∈ W 1,2(Rn+1
+ , y1−2γ) and µα → 0 as α → +∞, where β(R) is defined as in (3.14).

Hence we get that

I2 =

∫
B+

2r0
(xα)\B+

µαR
(xα)

ρ1−2γ(|∇ûα|2g + |∇ŵα|2g − 2〈∇ûα,∇ŵα〉g) dvg

=

∫
B+

2r0
(xα)\B+

µαR
(xα)

ρ1−2γ |∇ûα|2g dvg + β(R).

Here we have used Hölder’s inequality and the fact that {ûα} is uniformly in W 1,2(X, ρ1−2γ)
to get ∫

B+
2r0

(xα)\B+
µαR

(xα)

ρ1−2γ〈∇ûα,∇ŵα〉g dvg = β(R).

Therefore, noting that ũα → u in W 1,2(Rn+1
+ , y1−2γ) as α→ +∞, we have from (3.15) that∫

X

ρ1−2γ |∇v̂α|2g dvg

=

∫
X

ρ1−2γ |∇ûα|2g dvg −
∫
B+
µαR

(xα)

ρ1−2γ |∇ûα|2g dvg + β(R) + o(1)

=

∫
X

ρ1−2γ |∇ûα|2g dvg −
∫
B+
R(0)

ρ̃1−2γ
α |∇ũα|2g̃α dvg̃α + β(R) + o(1)

=

∫
X

ρ1−2γ |∇ûα|2g dvg −
∫
B+
R(0)

y1−2γ |∇u|2 dxdy + β(R) + o(1)

=

∫
X

ρ1−2γ |∇ûα|2g dvg −
∫
Rn+1

+

y1−2γ |∇u|2 dxdy + β(R) + o(1).

In a similar way, we can get that∫
M

|v̂α|2
∗
dσĥ =

∫
M

|ûα|2
∗
dσĥ −

∫
Rn
|u|2

∗
dx+ β(R) + o(1).

These imply that

Iγg (v̂α) = Iγg (ûα)− Ẽ(u) + β(R) + o(1).

Since R > 0 is arbitrary, we get conclusion (iii).

(iv) It is a direct consequence of (ii) and (iii).
�

4. Proof of the main Results

Proof of Theorem 1.3. From Remark 2.10, we have uα ⇀ u0 in W 1,2(X, ρ1−2γ) as
α → +∞. And uα → u0 a.e. on M as α → +∞. Then u0 ≥ 0 on M since uα ≥ 0. Also
ûα = uα − u0 satisfies the Palais-Smale condition and

Iγg (ûα) = Iγ,αg (uα)− Iγ,∞g (u0) + o(1).

If ûα → 0 in W 1,2(X, ρ1−2γ) as α → +∞, then the theorem is proved. If ûα ⇀ 0 but not
strongly in W 1,2(X, ρ1−2γ) as α → +∞, using Lemma 3.1, we can obtain a new Palais-Smale
sequence {û1

α}α∈N satisfying

Iγg (û1
α) = Iγg (ûα)− Ẽ(u) + o(1).
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Now again, either û1
α → 0 in W 1,2(X, ρ1−2γ) as α→ +∞, in which case the theorem holds, or

û1
α ⇀ 0 but not strongly in W 1,2(X, ρ1−2γ) as α→ +∞, in which case we again use Lemma 3.1.

Since {Iγ,αg (uα)}α∈N is uniformly bounded, after a finite number of induction steps, we get the
last Palais-Smale sequence {ûmα }α∈N (m > 1) with Iγg (ûmα ) → β < β0. Then by Lemma 2.13,

we can get that ûmα → 0 in W 1,2(X, ρ2γ−1) as α → +∞. Applying Lemma 3.1 in the process,
we can get {uj}mj=1 are solutions to (3.1). We will prove the positivity of uj , j = 1, · · · ,m, in
Lemma 4.2, and the relation (5) of Theorem 1.3 in Lemma 4.1.

For the regularity of uj we can use Lemma 5.2 in the Appendix. Then the proof of the
theorem is finished.

Lemma 4.1. For any integer k in [1,m], and any integer l in [0, k − 1], there exist an integer
s and sequences {yjα}α∈N ⊂ M and {λjα > 0}α∈N, j = 1, · · · , s, such that dĥ(xkα, y

j
α)/µkα is

bounded and λjα/µ
k
α → 0 as α→ +∞, and for any R,R′ > 0,

∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ûα −
l∑
i=1

uiα − ukα|2
∗
dσĥ = o(1) + ε(R′),(4.1)

where

lim
R′→+∞

lim
α→+∞

sup ε(R′) = 0,

and {uiα} is derived from the rescaling of ui we obtained in the above proof of Theorem 1.3, and
{xiα} is the i-th likely blow up points sequence.

Proof. We prove this lemma by iteration on l. For any integer k (1 ≤ k ≤ m), if l = k − 1,
combining the above proof of Theorem 1.3 with Lemma 3.1 and Proposition 2.4, we have

∫
D
Rµkα

(xkα)

|ûα −
k−1∑
i=1

uiα − ukα|2
∗
dσĥ = o(1),

so (4.1) holds for s = 0.

Suppose that (4.1) holds for some l, 1 ≤ l ≤ k−1, we need to show that (4.1) holds for l−1.

Case 1 dĥ(xlα, x
k
α) 9 0 as α→ +∞. Then for any R̄ > 0, up to a subsequence, DR̄µlα

(xlα) ∩
DRµkα

(xkα) = ∅, so we have∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ulα|2
∗
dσĥ ≤

∫
M\D

R̄µlα
(xlα)

|ulα|2
∗
dσĥ

≤ C
∫
Rn\DR̄(0)

|ul|2
∗
dσh̃α ≤ C

∫
Rn\DR̄(0)

|ul|2
∗
dx.

Since R̄ > 0 is arbitrary and ul ∈ L2∗(Rn), we get

(4.2)

∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ulα|2
∗
dσĥ = o(1), as α→ +∞.
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So by the induction hypothesis for l and (4.2) we obtain∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ûα −
l−1∑
i=1

uiα − ukα|2
∗
dσĥ

≤ 22∗−1

∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ûα −
l∑
i=1

uiα − ukα|2
∗
dσĥ

+ 22∗−1

∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ulα|2
∗
dσĥ

= o(1) + ε(R′).

Thus we have proven that (4.1) holds for l − 1.

Case 2 dĥ(xlα, x
k
α) → 0 as α → +∞. Let r0 be sufficiently small such that for any P ∈ M ,

x, y ∈ Rn and |x|, |y| ≤ r0,

1/2|x− y| ≤ dĥ(ϕP (x), ϕP (y)) ≤ 2|x− y|.

Let x̃lα = (µkα)−1ϕ−1
xkα

(xlα), ỹjα = (µkα)−1ϕ−1
xkα

(yjα), then

D
R
2

µlα
µkα

(
x̃lα
)
⊂ (µkα)−1ϕ−1

xkα
(DRµlα

(xlα)) ⊂ D
2R

µlα
µkα

(
x̃lα
)
,

D
R
2
λ
j
α
µkα

(
ỹjα
)
⊂ (µkα)−1ϕ−1

xkα
(DRλjα

(yjα)) ⊂ D
2R

λ
j
α
µkα

(
ỹjα
)
.

(4.3)

Given R̃ > 0, from Lemma 3.1, Proposition 2.4 and proof of Theorem 1.3 we have

(4.4)

∫
D
R̃µlα

(xlα)

|ûα −
l∑
i=1

uiα|2
∗
dσĥ = o(1).

By the assumption for 1 ≤ l ≤ k − 1, i.e.∫
D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ûα −
l∑
i=1

uiα − ukα|2
∗
dσĥ = o(1) + ε(R′),

combined with (4.4) then we get that∫
[D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)]∩D

R̃µlα
(xlα)

|ukα|2
∗
dσĥ = o(1) + ε(R′),

so using (4.3) we arrive at∫
[DR(0)\∪sj=1D2R′λjα/µkα

(ỹjα)]∩D
1/2R̃µlα/µ

k
α

(x̃lα)

|uk|2
∗
dσh̃α = o(1) + ε(R′).(4.5)

Next, we consider two scenarios: first, assume dĥ(xlα, x
k
α)/µkα → +∞ as α→ +∞. We claim

that dĥ(xlα, x
k
α)/µlα → +∞ as α → +∞. If not, then (4.5) with R̃ large enough yields that

µlα/µ
k
α → 0 as α→ +∞. Moreover,

dĥ(xlα, x
k
α)

µlα
=
dĥ(xlα, x

k
α)

µkα

µkα
µlα
,

so we can choose R̃ > 0 such that DR̃µkα
(xkα) ∩DR̃µlα

(xlα) = ∅, which reduces to the previous

case 1 and, as a consequence, (4.1) holds for l − 1.
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Second, if dĥ(xlα, x
k
α)/µkα 9 +∞ as α → +∞, then up to a subsequence, dĥ(xlα, x

k
α)/µkα

converges. Then (4.5) implies that µlα/µ
k
α → +∞. Set ys+1

α = xlα and λs+1
α = µlα, then∫

D
Rµkα

(xkα)\∪s+1
j=1DR′λjα

(yjα)

|ûα −
l∑
i=1

uiα − ukα|2
∗
dσĥ = o(1) + ε(R′)

and ∫
D
Rµkα

(xkα)\∪s+1
j=1DR′λjα

(yjα)

|ulα|2
∗
dσĥ ≤

∫
M\D

R′µlα
(xlα)

|ulα|2
∗
dσĥ

≤ C
∫
Rn\DR′ (0)

|ul|2
∗
dx ≤ ε(R′),

which yield that∫
D
Rµkα

(xkα)\∪s+1
j=1DR′λjα

(yjα)

|ûα −
l−1∑
i=1

uiα − ukα|2
∗
dσĥ = o(1) + ε(R′).

In particular, 4.1 holds for l − 1, as desired. The iteration process is thus completed.
Moreover, we have also shown that for any i 6= j

µiα

µjα
+
µjα
µiα

+
dĥ(xiα, x

j
α)2

µiαµ
j
α

→ +∞

as α → +∞ (c.f. [1],[5],[16]). Note that this convergence contains two kinds of bubbles: one
case is that when µiα = O(µjα) when α→ +∞, then the two blow up points are far away from
each other. The other case is that µiα = o(µjα) or µjα = o(µiα) when α→ +∞, then the distance
of the two blow up point cannot be determined. Also we get that λjα/µ

k
α → 0 as α→ +∞. �

Lemma 4.2. The ui (i = 0, 1, · · · ,m) we get in the Theorem 1.3 are all nonnegative.

Proof. First of all, note that u0 ≥ 0 in X by Proposition 2.11. So we just need to prove the
positivity of ui for i ≥ 1. For any k ∈ [1,m], taking l = 0 in Lemma 4.1, we have∫

D
Rµkα

(xkα)\∪sj=1DR′λjα
(yjα)

|ûα − Ukα|2
∗
dσĥ = o(1) + ε(R′)(4.6)

where

Ukα(x) = (µkα)−
n−2γ

2 uk((µkα)−1ϕ−1
xkα

(x)), for x ∈ DRµkα
(xkα)

is called a bubble. Since uα = ûα + u0, then for x ∈ Dr0/µkα
(0) ⊂ Rn, where the r0 is the same

as the one mentioned in Theorem1.3, we have

ukα(x) = ũkα(x) + ũ0,k
α (x),

where

ukα(x) = (µkα)
n−2γ

2 uα(ϕxkα(µkαx)),

ũkα(x) = (µkα)
n−2γ

2 ûα(ϕxkα(µkαx)),

ũ0,k
α (x) = (µkα)

n−2γ
2 u0(ϕxkα(µkαx)).

Then (4.6) implies that∫
DR(0)\∪sj=1D2R′λjα/µkα

(ỹjα)

|ũkα − uk|2
∗
dx = o(1) + ε(R′),(4.7)
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where ỹjα = (µkα)−1ϕ−1
xkα

(yjα). Noting that {dĥ(xkα, y
j
α)/µkα}α∈N is uniformly bounded by Lemma

4.1, therefore {ỹjα}α∈N is bounded and there exists a subsequence, also denoted by {ỹjα}, such
that ỹjα → ỹj as α → +∞ for j = 1, . . . , s. Combining (4.7) with λjα/µ

k
α → 0 as α → +∞, we

get

ũkα → uk, in L2∗

loc(DR(0) \ Y )

as α→ +∞ for Y = {ỹj}sj=1, so

ũkα → uk a.e. in Rn,

since R > 0 is arbitrary.
Also note that ∫

D
Rµkα

(xkα)

|u0|2
∗
dσĥ =

∫
DR(0)

|ũ0,k
α |2

∗
dσh̃kα

,

where h̃kα(x) = (ϕ∗xkα
ĥ)(µkαx). Then µkα → 0 as α→ +∞ and u0 ∈ L2∗(M, ĥ) yield that

ũ0,k
α → 0, in L2∗(DR(0), |dx|2)

as α→ +∞, so

ũ0,k
α → 0 a.e. in Rn

since R > 0 is arbitrary.
In particular, we have shown that ukα → uk almost everywhere on Rn as α → +∞. Note

that uα is nonnegative by definition, so ukα ≥ 0 on Rn. We conclude that uk ≥ 0 on Rn. �

5. Appendix

We would prove the C∞ estimates from the L∞ estimates by Harnack inequality. The two
important lemmas are given here.

Lemma 5.1. [8] Let R > 0 and u be a weak solution of

(5.1)

 − div(y1−2γ∇u) = 0 in B+
2R(0),

− lim
y→0

y1−2γ∂yu = f(x)u+ g(x)|u|2
∗−2u on D2R(0).

Here f and g are smooth functions on D2R(0). Assume that λ =
∫
D2R(0)

|u|2∗dx < ∞. Then

for any p > 1, there exists a constant Cp = C(p, λ) such that

sup
B+
R(0)

|u|+ sup
DR(0)

|u| ≤ Cp
{
R−

n+2−2γ
p ‖u‖Lp(B+

2R(0)) +R−
n
p ‖u‖Lp(D2R(0))

}
.

Lemma 5.2. [11] Let a(x), b(x) ∈ Cα(D2(0)) for some 0 < α /∈ N and u ∈ W 1,2(∂′B+
2 , y

1−2γ)
be a weak solution of

(5.2)

 −div(y1−2γ∇u) = 0 in B+
2 (0),

− lim
y→0

y1−2γ∂yu = a(x)u+ b(x) on D2(0).

If 2γ + α /∈ N, then u(·, 0) is of C2γ+α(D1(0)), and

‖u(·, 0)‖C2γ+α(D1(0)) ≤ C(‖u‖L∞(B+
2 (0)) + ‖b‖Cα(D2(0)))

where C > 0 depends only on n, γ, α and ‖a‖Cα(D2(0)).
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