
A GLUING CONSTRUCTION OF SINGULAR
SOLUTIONS FOR A FULLY NON-LINEAR EQUATION

IN CONFORMAL GEOMETRY

MARIA FERNANDA ESPINAL AND MARÍA DEL MAR GONZÁLEZ

Abstract. In this paper we produce families of complete, non-
compact Riemannian metrics with positive constant σ2–curvature
on the sphere Sn, n > 4, with a prescribed singular set Λ given
by a disjoint union of closed submanifolds whose dimension is pos-
itive and strictly less than (n −

√
n − 2)/2. The σ2–curvature in

conformal geometry is defined as the second elementary symmetric
polynomial of the eigenvalues of the Schouten tensor, which yields
a fully non-linear PDE for the conformal factor. We show that
the classical gluing method of Mazzeo-Pacard (JDG 1996) for the
scalar curvature still works in the fully non-linear setting. This is a
consequence of the conformal properties of the σ2 equation, which
imply that the linearized operator has good mapping properties in
weighted spaces. Our method could be potentially generalized to
any σk, 2 ≤ k < n/2, nevertheless, the numerology becomes too
involved.
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1. Notations and preliminaries

Let (M, g) be a compact smooth n–dimensional Riemannian mani-
fold without boundary and let 2 ≤ 2k < n. Taking advantage of this
second assumption, we introduce the following formalism for a confor-
mal change of metric

(1.1) gu := u
4k

n−2k g,

where the conformal factor u > 0 is a smooth positive function. In this
context g will be referred as the background metric.

Let Ricg, Rg be the Ricci tensor and scalar curvature of g, respec-
tively. The Schouten tensor with respect to the metric g is given by

Ag =
1

n−2

(
Ricg − 1

2(n−1)
Rgg

)
.
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For the conformal metric (1.1), the Schouten tensor of gu is related to
the one of g by the conformal transformation law

Agu = Ag − 2k
n−2k

u−1D2u+ 2kn
(n−2k)2

u−2du⊗ du− 2k2

(n−2k)2
u−2|du|2g,

(1.2)

where D2 and | · | are computed with respect to the background metric
g.

We define the σk–curvature as the k-th elementary symmetric func-
tion of the eigenvalues of the (1, 1)-tensor g−1Ag

σk(g
−1Ag) =

∑
i1<...<ik

λi1 . . . λik ,

and the positive cone as set of metrics

Γ+
k = {g : σ1(g

−1Ag), . . . , σk(g
−1Ag) > 0}.

Fixed a background metric, the σk–Yamabe problem consists in finding
a conformal metric in the positive cone Γ+

k of constant σk–curvature.
This is a fully non-linear equation for the conformal factor u,

(1.3) σk
(
g−1
u Agu

)
= 2−k

(
n
k

)
.

The objective of this paper is, given Λ a smooth, compact, closed p-
dimensional submanifold of Sn, to construct complete metrics on Sn\Λ
of positive constant σ2–curvature (and in the positive Γ+

2 cone) that are
conformal to the canonical metric on Sn and become singular exactly
on Λ. It is known that a restriction on the dimension p needs to be
imposed - see the discussion below. In the proof we follow the classical
gluing method of Mazzeo-Pacard [33] for the scalar curvature, which is
a semilinear problem. Our main contribution here is to show that their
scheme can be adapted to the fully non-linear equation (1.8) thanks to
the conformal properties of the problem.

We remark that, even though this method could work for any 2 ≤
k < n/2, we have some computational difficulties that restrict our main
Theorem to k = 2; however, we conjecture that it is true for other
values of k. In any case, we will try to state the results as generally as
possible.
The semilinear case, that is, for k = 1, is already well known in

the literature. In addition to the aforementioned reference [33], we
underline the classical result of Schoen-Yau [42], where they show that
the Hausdorff dimension of the singular set Λ must satisfy dimH(Λ) ≤
n−2
2
. We cite also Mazzeo-Smale [35], where they consider singular

sets on the sphere that sufficiently close to an equatorial subsphere,
Fakhi [15] when the singular set Λ is a submanifold with boundary,
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and Chan-González-Mazzeo [9] for singular sets that allow corners or
edges.

For a general k > 1, a necessary condition for the existence of com-
plete metrics on Sn \Λ conformal to the standard one was given by one
of the authors in [17]. More precisely, if

σ1(Bgu) ≥ C0 > 0 and σ2(Bgu), . . . , σk(Bgu) ≥ 0

for some integer 1 ≤ k < n/2, then

dimH(Λ) ≤
n− 2k

2
.

The most representative example of such solutions is Sn \ Sp with
its canonical metric, which is conformal to the product Sn−p−1 ×Hp+1

with its standard metric (a picture can be found in [3, Figure 1]). Its
Schouten tensor is diagonal and, modulo a multiplicative factor of 1/2,
its eigenvalues are 1 and −1, with multiplicities n − p − 1 and p + 1,
respectively. Then we can compute
(1.4)

2kσk(Hp+1 × Sn−p−1) =
k∑

i=0

(
n− p− 1

i

)(
p+ 1

k − i

)
(−1)k−i =: cn,p,k.

For point singularities (p = 0) there is a rich geometry of Delaunay-
type solutions (Chang-Han-Yang [12], Li-Han [27]). In this paper we
will restrict to higher dimensional singularities, that is, p > 0. We set
(1.5)
pk := sup

{
p ≥ 0 : σ1(Hp+1 × Sn−p−1), . . . , σk(Hp+1 × Sn−p−1) > 0

}
.

Exact formulas can be given for k = 2, 3. Indeed,

p2 =
n−

√
n− 2

2
, p3 =

n− 2−
√
3n− 2

2
.

It was also shown in [17] that, for fixed k > 1, we have the asymptotic
bound

n

2
− C1(k)

√
n ≤ pk <

n

2
− 2 +

√
n

2
as n→ ∞

for some constant C1(k).
We conjecture that a necessary condition for the existence of solu-

tions to the σk–Yamabe problem in the positive cone with singular set
a p–dimensional, compact, closed submanifold is

0 < p < pk.

Our main result states that this is indeed sufficient in the particular
case k = 2:
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Theorem 1.1. Let Λ be a subset of Sn which is a closed submanifold
of dimension p, such that 0 < p < p2. Then there exists a complete
metric g on Sn \ Λ, conformal to the canonical metric gc on Sn, with
constant σ2–curvature (and in the positive Γ+

2 cone), that is singular
exactly on Λ.

Remark 1.2. Since our proof is local, the same conclusion is true if Λ
is a finite union of disjoint submanifolds with the specified restrictions.

Remark 1.3. Note that, for k = 2, the restriction of being in the Γ+
2

cone is easily satisfied since

σ2 ≤
n− 1

2n
σ2
1,

no matter what the sign of σ1 is (see [48] for a proof of this classical
inequality).

Let us make some comments on related bibliography. In the paper
Mazzieri-Ndiaye [37] they construct constant σk metrics with isolated
singularities by gluing Delaunay-type metrics. In the publication Silva-
Santos [46], the authors use asymptotic matching to find solutions to
the σ2–Yamabe problem with isolated singularities. Another relevant
paper is Guan-Lin-Wang [20], which showcases a gluing construction of
manifolds of positive σk–curvature by connected sums of compact man-
ifolds. A more recent paper is by Duncan-Wang [14], which contains
complementary existence results.

Finally, we remark that our gluing method is very versatile and can
be applied in many other settings, for instance, in non-local problems
[1, 8].

1.1. Scheme of the proof. As we have mentioned, our starting point
is to use the gluing method of Mazzeo-Pacard [33] in order to construct
positive solutions to (1.3).

First of all, note that by stereographic projection, it is equivalent to
consider the problem in Sn \Λ or Rn \Λ with the canonical metrics gSn
or gRn , respectively.

For technical reasons, once a background metric g has been fixed, it
is convenient to denote

(1.6) Bgu := n−2k
2k

u
2n

n−2k g−1
u Agu

so that

(1.7) Bgu = u2Bg + g−1
[
−uD2u+ n

n−2k
du⊗ du− k

n−2k
|du|2g g

]
,
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where all derivatives are taken with respect to the background metric
g. We can also write the positive cone as

Γ+
k = {u > 0 : σ1(Bgu), . . . , σk(Bgu) > 0}.

Now we reformulate the σk–equation (1.3) as

(1.8) N (u, g) := u−2k+1σk (Bgu)− cuq−2k+1 = 0,

where we have set

q :=
2kn

n− 2k
, c :=

(
n

k

)(
n− 2k

4k

)k

.

Remark that our arguments rely on the good conformal proper-
ties of the equation. Indeed, if two metrics g1 and g are related by

u
4k/(n−2k)
1 g1 = u4k/(n−2k)g, then the non-linear operator from (1.8) en-

joys the following conformal equivariance property

(1.9) N (u1, g1) = (u/u1)
− 2kn

n−2k
+2k−1N (u, g).

The linearized operator of N ( · , g) about u is defined as

(1.10) L(u, g) [φ] :=
d

ds

∣∣∣∣
s=0

N (u+ sφ, g).

As a direct consequence of the property (1.9), we have the following
conformal equivariance property for the linearized operator

(1.11) L(u1, g1)[φ] = (u/u1)
− 2kn

n−2k
+2k−1 L(u, g) [(u/u1)φ] .

The normalization we have chosen for N may seem arbitrary at first
sight. However, it is the one that makes this linearized operator resem-
ble the Laplacian (see formula (4.4) in Section 4), thus recovering the
original setting of [33].

The main idea in the proof of Theorem 1.1 to obtain a solution to
(1.8) is, first to construct an approximate metric, written in the form

ḡϵ := ū4k/(n−2k)
ε g,

with the right asymptotic behavior near the singularity, and then find
a perturbation φ such that

(1.12) N (ūϵ + φ, g) = 0.

For simplicity, once ūϵ and g have been fixed we will simply write

Lϵ[φ] := L(ūϵ, g)[φ].
Then, equation (1.12) is equivalent to

(1.13) Lϵ[φ] + fϵ +Qϵ[φ] = 0,
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where we have defined

fϵ := N (ūϵ, g),(1.14)

Qϵ[φ] := N (ūϵ + φ, g)−N (ūϵ, g)− Lϵ[φ].(1.15)

Most of the analysis in this paper is concerned with the study of the
mapping properties of the linearized operator in weighted spaces. More
precisely, if Lϵ has a right inverse, we can write (1.13) as

φ = −L−1
ϵ (Qϵ[u] + fϵ).

A fixed point argument will show the existence of a solution φ.

Our reasoning will involve a delicate choice of parameters µ and ν.
For future reference, we summarize our choices in Figure 1.1 below.

p
2 − n−4

4χ
(0)
1,− χ

(0)
0,+ χ

(0)
1,+χ

(0)
0,−

µ = δ + p
2 − n−4

4
ν ≈ −δ + p

2 − n−4
4

−n−4
4

Figure 1. Our choice of parameters µ and ν.

We conclude the Introduction with some notation remarks. Denote
the codimension of Λ by

N = n− p.

For one-variable functions φ1,φ2, we will write

φ1 ∼ φ2 iff 0 < c1 ≤ lim
φ1

φ2

≤ c2

and

φ1 ≍ φ2 iff lim
φ1

φ2

= 1.

The notation φ = O(rβ) means, not only an estimate for the function
φ, but also for its derivatives (with the corresponding order).

Acknowledgements. The authors would like to thank Rafe Mazzeo,
Lorenzo Mazzieri, Frank Pacard and Mariel Sáez for their useful advice.
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2. The model Rn \ Rp in cylindrical coordinates

In this Section we consider the model Rn \ Rp, that is the building
block in our construction. First note that Rn \ Rp is diffeomorphic to
Rt × SN−1

θ × Rp
z, so we may write the Euclidean metric in polar-Fermi

coordinates

(2.1) gE := dr2 + r2gθ + δαβ dz
α ⊗ dzβ,

where α, β = 1, . . . , p will refer to coordinates z ∈ Rp, and gθ is the
canonical metric on the sphere SN−1. Subindexes i, j will refer to co-
ordinates θ ∈ SN−1.

We describe now the spherical harmonic decomposition of SN−1. Let
{λj}∞j=1 be the eigenvalues for −∆θ repeated according to multiplicity,
with eigenfunctions {ej(θ)}, that is,

(2.2) −∆θej = λjej, j = 0, 1, . . .

In particular,

λ0 = 0, λj = N − 1 for j = 1, . . . , N, and so on.

2.1. Cylindrical coordinates. Our first observation is that it is more
convenient to use a (conformal) cylinder-type metric as background.
For this, we set

gcyl = dt2 + gθ + e2tδαβ dz
α ⊗ dzβ.

Then, denoting the radial coordinate by r = e−t, we see that gE and
gcyl are conformally related by

gE = e−2t
(
dt2 + gθ

)
+ δαβ dz

α ⊗ dzβ = e−2tgcyl.(2.3)

We also change the notation for the conformal factor from u to v where

(2.4) u(r, θ, z) = r−
n−2k
2k v(− log r, θ, z).

Thus we can record any conformal change by

(2.5) gu = u
4k

n−2k gE = v
4k

n−2k gcyl.

With some abuse of notation, we will denote this conformal metric as

(2.6) gv := v
4k

n−2k gcyl

for a conformal factor v > 0.
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Cylindrical coordinates provide a convenient framework for calcula-
tions. The Schouten tensor for gcyl is diagonal and(

g−1
cylAgcyl

)t
t
= −1

2
,(

g−1
cylAgcyl

)i
j
= +1

2
δij,(

g−1
cylAgcyl

)α
β
= −1

2
δαβ .

Define

Bgv = n−2k
2k

v
2n

n−2k g−1
v Agv .

Then, since

Agv = Acyl− 2k
n−2k

v−1D2v+ 2kn
(n−2k)2

v−2∇v⊗∇v− 2k2

(n−2k)2
v−2 |∇v|2gcylgcyl,

where all the derivatives and norms are calculated with respect to the
background metric gcyl, we have

Bgv = g−1
cyl

[
n−2k
2k

v2Bcyl − vD2v + n
n−2k

∇v ⊗∇v − k
n−2k

|∇v|2gcylgcyl
]
,

and thus(
Bgv

)t
t
= −n−2k

4k
v2 − v∂ttv +

n
n−2k

(∂tv)
2 − k

n−2k
|∇v|2gcyl ,(

Bgv

)i
j
= n−2k

4k
v2 δij − k

n−2k
|∇v|2gcyl δ

i
j,(

Bgv

)α
β
=

[
−n−2k

4k
v2 − v ∂tv − k

n−2k
|∇v|2gcyl

]
δαβ

+
[
−v ∂αβv + n

n−2k
∂αv ∂βv

]
e−2t.

Notice that, for a function v = v(t), the matrix Bgv is diagonal and(
Bgv

)t
t
= −n−2k

4k
v2 − vv̈ + n−k

n−2k
v̇2 =: κ1,(

Bgv

)i
j
=

[
n−2k
4k

v2 − k
n−2k

v̇2
]
δij =: κ2 δ

i
j,(

Bgv

)α
β
=

[
− n−2k

4k
v2 − v v̇ − k

n−2k
v̇2
]
δαβ =: κ3 δ

α
β .

(2.7)

Its eigenvalues are κ1, κ2, κ3 with multiplicities 1, N−1, p, respectively.

Now, the covariance property (1.9) implies that

(2.8) N (u, gE) = rϱN (v, gcyl),

where we have defined

(2.9) ϱ := −n−2k
2k

(
− 2kn

n−2k
+ 2k − 1

)
.

Thus we can rewrite original equation (1.3) in this notation as

(2.10) σk(Bgv) = cvq.
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Assume that we have an approximate solution Uϵ(r) and define

Uϵ(r) = r−
n−2k
2k vϵ(− log r).

Then, the covariance property (1.11) yields

Lϵφ := L(Uϵ, gE)[φ] = rϱ L(vϵ, gcyl)[r
n−2k
2k φ].(2.11)

We observe that Lϵ resembles the Laplacian operator in polar coordi-
nates, indeed, a more explicit formula will be given in equation (4.4)
below. Nevertheless, the operator L(vϵ, gcyl) has better mapping prop-
erties in weighted Sobolev spaces that we will explain in Section 6.

2.2. The fast-decay ODE solution. In the paper [19] the authors
construct a very particular solution U1 = U1(r) for our problem (1.8)
on Rn \Rp that yields a complete metric near the singular set {r = 0}
and has fast decay as r → ∞. Here is the first place where we encounter
the restriction k = 2. More precisely:

Proposition 2.1. [19] For each 0 < p < p2, there exists a positive
solution U1 = U1(r) for the equation

(2.12) σ2 (Bgu) = cuq in Rn \ Rp

satisfying:

• When r → 0, the solution has the precise asymptotic behavior

U1(r) ≍ v∞r
−n−4

4

where

(2.13) (v∞)
16

n−4 = cn,p,2

(
n

2

)−1

> 0.

and the constant cn,p,2 is defined in (1.4).
• When r → +∞,

U1(t) ∼ r−α0−n−4
4

for some α0 ∈
(
0, n−4

4

)
.

• r n−4
4 U1 is uniformly bounded for all r > 0.

• The metric gU1 := (U1)
8

n−4 gE belongs to the positive cone Γ+
2 .

Sketch of the proof. Although we will not give the full proof of this
result, which is contained in [19], the key idea is to use the framework
in cylindrical coordinates we have just presented and to find a solution
v1 to (2.10) that only depends on the radial variable t.

From the formulas in (2.7) one is able to write σ2(Bgv) in a reason-
ably simple form. Standard phase-plane analysis for the ODE (2.10)
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completes the proof. Now we recover U1 by setting, in the notation
(2.4),

U1(r) = r−
n−4
4 v1(− log r).

□

Corollary 2.2. For ϵ > 0 we rescale

(2.14) Uϵ(r) = ϵ−
n−4
4 U1

(r
ϵ

)
.

Then Uϵ is a solution of (1.8) in Rn\Rp that only depends on the radial
variable. Moreover,

(2.15) Uϵ(r) ≍ v∞ r−
n−4
4 , when r << ϵ

and

(2.16) Uϵ(r) ∼ ϵα0r−α0−n−4
4 when r >> ϵ.

In the following, we will set

α1 := α0 +
n−4
4
,

Uϵ(r) = r−
n−4
4 vϵ(− log r),

and

(2.17) gvϵ = v
8

n−4
ϵ gcyl.

3. The approximate solution

Although in this Section we fix k = 2, we will try to state our results
for any k < n/2 when possible. Indeed, this restriction is only necessary
in Section 3.3.

Let Λ be a smooth, closed submanifold in Sn of dimension p, such
that 0 < p < pk. Here we construct an approximate solution ūϵ to
problem (1.8) on Sn \ Λ which is singular exactly at Λ with a precise
blowup rate and, in addition, remains in the positive cone Γ+

k . For
this, we first need to look at the model case RN \ {0} (this is, p = 0,
n = N), which already contains the main ideas.

3.1. Matching asymptotics - an isolated singularity RN \ {0}.
Let r = |x| be the radial variable in RN , θ = x

r
the angular variable.

In the classical gluing paper of [33], the global approximate solution
ūϵ is constructed from the model solution Uϵ given in (2.14), extended
to zero with the introduction of a cutoff in a ball of radius r0 >> ϵ.
This does not work for general σk since such approximate solution may
not be in the positive cone Γ+

k . Instead, we need to make a more refined
choice of this cutoff based on Lemma 7 from [22], where the authors
are able to transplant an isolated singularity with given asymptotics to
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any conformally flat metric, while still remaining Γ+
k cone. We remark

that this Lemma is the key ingredient in the construction from [20]
of manifolds of positive σk–curvature by connected sums of compact
manifolds. It is also the basic idea in the proof of our Proposition
3.2 below for matching asymptotics in the case of higher dimensional
singularities, so we reproduce its proof in detail.

Lemma 3.1. [22] Let B1 be the unit disk in RN with the Euclidean
metric |dx|2. Let

g0 = u
4k

N−2k

0 |dx|2

be a smooth metric on B1 satisfying g0 ∈ Γ+
k for k < N/2. Then, for

any 0 < α1 <
N−2k

k
, there exists a conformal metric

g = u
4k

N−2k |dx|2 on B1 \ {0}
in the positive Γ+

k cone, satisfying the following:

• u(x) = u0(x) for |x| ∈ (r0, 1],
• u(x) = |x|−α1 for |x| ∈ (0, r3],

for some 0 < r3 < r0 < 1.

Proof. To follow the proof in [22], we change again the notation for the
conformal factor, writing

(3.1) g = e−2ωg0 = e−2(ω+ω0)|dx|2 = u
2k

N−2k |dx|2,
where we have set ω0 = − 2k

N−2k
log u0. The transformation law for the

Schouten tensor is

(3.2) Ag = D2ω +∇ω ⊗∇ω − 1
2
|∇u|2g0g0 + Ag0 .

In this particular case, using |dx|2 as the background metric,

Ag = D2(ω + ω0) +∇(ω + ω0)⊗∇(ω + ω0)− 1
2
|∇(ω + ω0)|2I

= D2ω +∇ω ⊗∇ω +∇ω ⊗∇ω0 +∇ω0 ⊗∇ω
−

(
1
2
|∇ω|2 + ⟨∇ω,∇ω0⟩

)
I + Ag0 .

where all the derivatives are taken with respect to the Euclidean metric
on RN .

The idea is to transplant an isolated singularity at the origin, staying
inside the positive cone Γ+

k , by doing a careful study of the transition
region. Thus we seek ω so that

ω = 0 near r = 1,

ω = α2 log r − ω0 near r = 0,

and such that Ag remains in the positive cone Γ+
k . Here we have defined

α2 =
2k

N−2k
α1 ∈ (0, 2).
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As a first approximation, we impose

ω′(r) =
ϕ(r)

r

for some suitable transition function ϕ(r) satisfying

ϕ(r) = 0 near r = 1,

ϕ(r) = α2 near r = 0.

We calculate

Ag =
2ϕ− ϕ2

2r2
IN×N +

(
ϕ′

r
+
ϕ2 − 2ϕ

r2

)
θ ⊗ θ + Ag0 +O(|∇ω0|)

ϕ

r
.

With some abuse of notation, we have

σk(g
−1Ag) = e−2k(ω+ω0)σk(Ag),

where the Ag in the right hand side is understood as a (1, 1)-tensor, i.e.,
a matrix (this will not create confusion since the background metric is
Euclidean).

We will take ϕ as follows: first, let C0 = max |∇ω0|, fix τ ∈ (0, 1/2)
to be specified later, and choose

(3.3) r0 = min{1
2
, C0τ}.

Let ϕ(r) = 0 for r ∈ [r0, 1), so that g = g0. With this choice we make
sure that it is enough to look at the asymptotic behavior when r → 0.

Next, since Ag0 is in the positive cone, which is open, we can take
r1 ∈ (0, r0) and ϕ : [r1, r0) → [0, α2) non-increasing such that Ag also
belongs to the positive cone and ϕ(r1) > 0.
Let us figure out what conditions we need to impose in order to

extend ϕ to the whole interval (0, r1). From our previous calculations
we can estimate

Ag ≥
2ϕ− ϕ2

2r2
IN×N +

(
ϕ′

r
+
ϕ2 − 2ϕ

r2

)
θ ⊗ θ − τ

ϕ

r2
+Ag0 =: Jτ +Ag0 .

Consider first the unperturbed matrix

Ĵ :=
2ϕ− ϕ2

2r2
IN×N +

(
ϕ′

r
+
ϕ2 − 2ϕ

r2

)
θ ⊗ θ.

It has eigenvalues

ϑ1 =
−2ϕ+ ϕ2

2r2
+
ϕ′

r
, of multiplicity 1,

ϑ2 =
2ϕ− ϕ2

2r2
, of multiplicity N − 1,
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so one easily sees that

σk(Ĵ) =
(N − 1)!

k!(N − k)!

(
2ϕ− ϕ2

2r2

)k [
N − 2k + 2k

rϕ′

2ϕ− ϕ2

]
.

We find ϕ a solution of the ODE

2k
rϕ′

2ϕ− ϕ2
= −1

2
,

with initial condition given by the above value for ϕ(r1). This ODE is
easily integrated, yielding

ϕ(r) =
2δ

δ + r
1
2k

,

for some small constant δ > 0. Actually, it can be taken such that

δ << r
1
2k
1 . With such a choice,

ϑ1 = −2k + 1

4k

2ϕ− ϕ2

r2
, ϑ2 =

2ϕ− ϕ2

2r2
,

which means that the perturbation τ ϕ
r
is small compared to the value

of the eigenvalues of Ĵ , for some τ small enough depending only on
k,N . We conclude that Jτ belongs to the positive cone in the region
(0, r1). By the convexity of σk, also Ag = Jτ + Ag0 ∈ Γ+

k .
Then choose r2 ∈ (0, r1) such that ϕ(r2) = α2, which is possible

because 0 < α2 < 2 by hypothesis. Define ϕ(r) = α2 on [0, r2]. The
statement of the Lemma follows by smoothing out the conformal metric
g, which is already C1,1.

□

3.2. Matching asymptotics - higher dimensional singularities
Rn \ Rp. Now we refine Lemma 3.1 in order to account for higher
dimensional singularities. Most of the proof works for any value of
k < n/2. However, we need to restrict to the value k = 2 in order to
avoid heavy numerology.

Assume that we are in the model case

Rn\Rp = R+
r × SN−1

θ × Rp
z.

with the Euclidean metric in polar-Fermi coordinates gE, given by (2.1).
We write coordinates y = (x, z), where z ∈ Rp and x the normal
coordinate in RN \ {0}. Set r = |x|, θ = x

r
. For fixed ρ > 0, let

Tρ := {r < ρ} be a tubular neighborhood of Rp in Rn.
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Proposition 3.2. Set k = 2, n ≥ 5 and 0 < p < pk. Let g0 = u
4k

n−2k

0 gE
be a smooth metric on T1 satisfying g0 ∈ Γ+

k . Then, for any 0 < α1 <
n−2k

k
, there exists a conformal metric

g = u
4k

n−2k gE on T1\{r = 0}
in the Γ+

k cone, satisfying the following:

• u = u0(r, θ, z) for in T1\Tr1,
• u(r, θ, z) = r−α1 in Tr3\{r = 0},

for some 0 < r3 < r0 < 1.

Proof. As above, we change the notation for the conformal factor, tak-
ing the same conventions as in (3.1).

We seek ω so that

ω = 0 near r = 1,

ω = α2 log r − ω0 near r = 0,

and such that Ag remains in the positive cone Γ+
k . Here we also take

α2 =
2k

n−2k
α1. As a first approximation, we impose ω to be of the form

ω′(r) =
ϕ(r)

r
,

for some transition function ϕ(r).
We will choose r0 > 0 small enough, and set ϕ(r) = 0 for r0 ≤ r <

1. Next, since Ag0 ∈ Γ+
k , an open set, we can take r1 ∈ (0, r0) and

ϕ : [r1, r0) → [0, α1) non-increasing such that Ag also belongs to the
positive cone and ϕ(r1) > 0 (but very small).
Now,

σk(g
−1Ag) = e−2k(ω+ω0)σk(g

−1
E Ag).

By straightforward calculation from (3.2) we have that

(3.4) Ag = Ag0 + Ĵ + E(ϕ),

where

Ĵ =

[
Ĵ0 0

0 Ĵ1

]
for

Ĵ0 =
2ϕ− ϕ2

2r2
IN×N +

(
ϕ′

r
+
ϕ2 − 2ϕ

r2

)
θ ⊗ θ and Ĵ1 = − ϕ2

2r2
Ip×p,

and E is the perturbation term. We take ϕ exactly as above, i.e.,

ϕ(r) =
2δ

δ + r
1
2k

,
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for some small constant δ > 0 determined by the given ϕ(r1). With

such a choice, the eigenvalues of the matrix Ĵ are

(3.5) ϑ1 = −2k + 1

4k

2ϕ− ϕ2

r2
, ϑ2 =

2ϕ− ϕ2

2r2
, ϑ3 = − ϕ2

2r2
,

with multiplicities 1, N − 1 and p, respectively. At this point we con-
centrate in the case k = 2. After some tedious but straightforward
calculation, one has that for such ϕ, both

σ2(Ĵ) = (N − 1)ϑ1ϑ2 + pϑ1ϑ3 +

(
N − 1

2

)
ϑ2
2 +

(
p

2

)
ϑ2
3

+ p(N − 1)ϑ2ϑ3 > 0,

σ1(Ĵ) = ϑ1 + (N − 1)ϑ2 + pϑ3 > 0,

which means that Ĵ is in the positive cone.
Moreover, the error term E(ϕ) can be estimated as above by

(3.6) |E(ϕ)| ≤ τ
ϕ

r2

for some τ small enough but depending only on n, p, ω0, which is only a
small perturbation of the eigenvalues (3.5). Since the matrix Ĵ belongs
to the positive cone, also does Ag in the region 0 < r < r1. Then choose
r2 ∈ (0, r1) such that ϕ(r2) = α2, which is possible because 0 < α2 < 2
by hypothesis and define ϕ(r) = α2 on [0, r2]. The statement of the
Proposition follows by smoothing out the conformal metric g, which is
already C1,1 by construction. □

3.3. Fermi coordinates. Now we consider a general singular set Λ,
which is taken to be a smooth compact, connected, closed, submanifold
in Rn of dimension p.

Let Tρ be the tubular neighbourhood of radius ρ around Λ. It is well
known that Tρ is a disk bundle over Λ; more precisely, it is diffeomor-
phic to the bundle of radius ρ in the normal bundle NΛ. The Fermi
coordinates will be constructed as coordinates in the normal bundle
transferred to Tρ via such diffeomorphism. More precisely, let r be the
distance to Λ, which is well defined and smooth away from Λ for small
ρ. Let also z be a local coordinate system on Λ and θ the angular
variable on the sphere in each normal space NzΛ. We denote by Bρ the
ball of radius ρ in NΛ at a point z ∈ Λ. Finally we let x denote the
rectangular coordinate in these normal spaces, so that r = |x|, θ = x

|x| .

Thus we can identify Tρ with Bρ × Λ, parameterized with coordinates
y = (x, z), x ∈ Bρ, z ∈ Λ. Moreover, any metric g on Tρ can be
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compared to the canonical metric gE from (2.1). Indeed,

(3.7) g =

 1 0 O(r)
0 r2gθ +O(r4) O(r2)

O(r) O(r2) gΛ +O(r)

 ,

where gΛ is the metric on Λ. This expansion is classical, see, for in-
stance, [16].

We can redo the arguments in Proposition 3.2 using Fermi coordi-
nates near Λ (say, in a neighborhood T1), to obtain the following gluing
result:

Proposition 3.3. Set k = 2, n > 5, 0 < p < pk, N = n − p. Let

g0 = u
4k

n−2k

0 gRn be a smooth metric on a tubular neighborhood T1 of Λ
in Rn satisfying g0 ∈ Γ+

k . Fix any 0 < α1 <
n−2k

k
. Then there exists a

conformal metric

g = u
4k

n−2k gRn on T1 \ {r = 0}
that belongs to the positive cone Γ+

k and satisfies the following:

u(r, θ, z) = u0(r, θ, z) in T1\Tr1 ,(3.8)

u(r, θ, z) = r−α1 in Tr3\{r = 0},(3.9)

for some 0 < r3 < r0 < 1.

Proof. As mentioned, we follow the proof of Proposition 3.2; the only
difference is to keep track of the extra perturbation terms. More pre-
cisely, the Euclidean metric gRn in Fermi coordinates (given in the
formula (3.7)) near the singular set differs from the model metric (2.1)
in two ways:

• Perturbation terms of order (at least) O(r) as r → 0.
• In the z direction the flat metric |dz|2 is replaced by gΛ.

Similarly to the above, equation (3.4) is rewritten as

Ag̃ = Ag0 + Ĵ + E(ϕ)

where

Ĵ =

[
Ĵ0 0

0 Ĵ1

]
for

Ĵ0 =
2ϕ− ϕ2

2r2
IN×N +

(
ϕ′

r
+
ϕ2 − 2ϕ

r2

)
θ ⊗ θ and Ĵ1 = − ϕ2

2r2
gΛ,

and E is the perturbation term.
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To handle the block Ĵ1 we work in small enough neighborhoods of
z ∈ Λ and write gΛ in normal coordinates. Now, for the term E(ϕ) we
claim that we still have that |E(ϕ)| ≤ τ ϕ

r2
for some small enough τ as

in Proposition 3.2. To see this, one needs to control the O(r) terms in
the expansion of the metric gRn in Fermi coordinates from (3.7). For
instance, for the inverse of the metric we have

(gRn)−1 =

1 +O(r) O(r) O(r)
O(r) r−2gθ +O(r−1) O(1)
O(r) O(1) g−1

Λ +O(r)

 ,

the Christoffel symbols of gRn

Γr
rr = O(r), Γr

rθ = O(r2), Γr
rz = O(r),

Γr
θθ = rgθ +O(r2), Γr

θz = O(r), Γr
zz = O(1),

and the Hessian of a function ω = ω(r)

(3.10) D2ω =

∂rrω +O(r)∂rω O(r2)∂rω O(r)∂rω
O(r2)∂rω −[rgθ +O(r2)]∂rω O(r)∂rω
O(r)∂rω O(r)∂rω O(1)∂rω

 .

Therefore, the perturbation terms do not change the eigenvalues as
r → 0. The rest of the proof follows similarly as in Proposition 3.2. □

3.4. Construction of ūϵ. From the discussion in the previous Sub-
sections we can build our approximate solution ūϵ.

First we take any non-degenerate smooth, conformally flat metric
on Rn that belongs to the positive cone Γ+

k and decays fast enough at
infinity, denoted by

g† = u
4k

n−2k

† gRn .

Remark 3.4. In order to avoid complications at infinity, we will take the
metric g0 to be a compact metric on Rn ∪ {∞}. For instance, a metric
coming from a perturbation of the canonical metric on the sphere after
stereographic projection. This is equivalent to working on a domain
bounded Ω \ Λ with boundary conditions as in the original setting of
Mazzeo-Pacard [33].

Proposition 3.3 allows to construct a globally defined metric

g∗ = u
4k

n−2k
∗ gRn on Rn \ Λ

that belongs to the positive cone Γ+
k and such that u1 ∼ r−α1 as r → 0.

Observe that the quantities r0, r3 do not depend on ϵ, but they can be
taken small enough when needed while keeping r0, r3 >> ϵ.
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Now we would like to glue this metric to the model singularity com-
ing from considering the conformal factor Uϵ(r) from (2.14) near the
singular set. For this, we restrict to k = 2 and rescale

(3.11) gε = [ϵα0u∗]
4k

n−2k gRn .

Looking at the asymptotic behavior from (2.16), it is clear that we can
patch both functions ϵα0u1 and Uϵ in a tubular neighborhood Tρ \ Tρ′

with ρ > ρ′ >> ϵ in order to construct a globally defined metric

(3.12) ḡε = ū
4k

n−2k
ϵ gRn on Rn\Λ

in the positive cone Γ+
k with the required asymptotics. Indeed, the

behavior of our approximate solution ūϵ near the singular set is given
by

ūϵ = Uϵ ≍ v∞r
−n−2k

2k when r << ϵ,

which yields a complete metric near the singular set.

3.5. Estimates. In the following Lemma we check that, indeed, ūϵ is
a good approximate solution. For this, it is better to switch to the v-
notation in cylindrical coordinates. Thus, with some abuse of notation,
we set gRn,cyl to be the Euclidean metric on Rn but using cylindrical
Fermi coordinates Λ. The approximate ūϵ in this new setting will be
denoted by v̄ϵ, and the new metric by (3.12) by

ḡϵ,cyl = v̄
4k

n−2k
ϵ gRn,cyl on Rn\Λ.

Proposition 3.5. Set k = 2. There exists β0 > 0 such that, for each

(3.13) ν̄ < β0

we have the estimate

(3.14) r−ν̄N (v̄ϵ, gRn,cyl) = O(ϵβ1)

in a tubular neighborhood Tρ, for some β1 = β1(ν̄, α0) > 0.

Proof. First of all, away from the singular set, this is, r >> ϵ, v̄ϵ is
essentially a factor ϵα0 , thus by keeping track of this rescaling in our
definition of the nonlinear operator (1.8) we have

N (ϵα0 , gRn,cyl) = O(max{ϵα0 , ϵα0(q−2k+1)}),
from where (3.14) follows.

The dangerous region is a tubular neighborhood Taϵ = {r < aϵ} for
some constant a > 0. Here recall that ūϵ ≍ U1, and a similar relation
holds also for all derivatives. Similarly, v̄ϵ ≍ v1. In order to calculate
N (v1, gRn,cyl) in this region we need to compare background metric gRn
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in Fermi coordinates given (3.7) to the model gE from (2.1) as we did
in the proof of Proposition 3.3.

To do so, we define the metrics

gU1 = U
4k

n−2k

1 gRn and ĝU1 = U
4k

n−2k

1 gE, for U1 = U1(r).

We will show that the eigenvalues of the perturbed matrix BgU1
are

very close to those of the unperturbed matrix BĝU1
. For this, recall

the definition of the tensor B from (1.7) for a conformal change gu =

u
4k

n−2k g. The calculations in the proof of Proposition 3.3 imply that
BgRn and BgE are close as r → 0 (one can also refer to the arguments
in the proof of Proposition 2.19 of [35]). From the formula (3.10) for
the Hessian D2U1, we also obtain some perturbation terms of order
o(1) as r → 0.

Similar arguments hold for the v-notation in cylindrical coordinates.
Indeed, in this small neighborhood one has that

N (v1, gcyl) = O(rβ)

for some β > 0. This completes the proof of the Proposition.
□

4. The linearized operator

We fix ūϵ the approximate solution from Section 3.2 above. Even
though we need to restrict to k = 2, the results in this Section could
potentially work for any k. We let Lϵ := L(ūϵ, gRn) be the linearized
operator around ūϵ, as defined in (1.10), and take a conformal pertur-
bation of the metric (3.12), i.e, we set for s ∈ R,

s 7→ gs := (ūϵ + sφ)
4k

n−2k gRn .

Let Bs be the symmetric (1, 1)-tensor given by

(4.1) Bs :=
n−2k
2k

(ūϵ + sφ)
2n

n−2k g−1
s Ags .

Recalling the definition (1.10), we have

Lϵ[φ] : =
{
(−2k + 1)ū−2k

ϵ σk(B0)− c(q − 2k + 1)ūq−2k
ϵ

}
φ

+ ū−2k+1
ϵ

d

ds

∣∣∣∣
s=0

σk(Bs).
(4.2)

We use a well known formula (see [48]) for the linearization of σk

(4.3)
d

ds
σk(Bs) = tr

(
T k−1(Bs)

dBs

ds

)
,
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where, for any integer 0 ≤ m ≤ k, the m-th Newton tensor for a
(1,1)-tensor B is defined as

Tm(B) := σmI − σm−1B+ . . .+ (−1)mBm.

Note that, for a metric in the positive cone Γ+
k , its Newton tensor is

positive definite for m = 0, . . . , k − 1. In particular, this implies that
Lϵ is elliptic.

Remark 4.1. The fundamental observations about linearized operator
Lϵ are the following:

• Away from the singularity, we have a usual uniformly elliptic
operator. Note that we have carefully chosen the normalization
in (1.8), so that, as ϵ → 0, Lϵ converges to Lg† := L(u†, gRn)

with the potential −c(q− 2k+ 1)uq−2k removed (this term had
a higher order in ϵ, thus vanishes at the limit). Here g†, u† are
given by our choice of background metric in Section 3.3.

• Near the singularity set, one can check that Lϵ is in the class
of elliptic edge operators from [31]. More explicit formulas will
be given below.

4.1. The model linearization. We first consider the linearized oper-
ator around the model solution Uϵ on Rn \ Rp. For the convenience of
the reader, we summarize here some results on the linear theory and
postpone the proofs (which are mostly technical) until Section 5.

Proposition 4.2. The operator Lϵ has the following expression:
(4.4)

Lϵ[φ] = Aϵ
0(r)φ+

Aϵ
1(r)

r
∂rφ+Aϵ

2(r)∂rrφ+
Aϵ

3(r)

r2
∆θφ+Aϵ

4(r)∆zφ,

for some smooth, bounded coefficients Aϵ
ℓ(r), ℓ = 0, 1, 2, 3, 4, satisfying

Aϵ
2,Aϵ

3,Aϵ
4 > 0.

In addition, the following limits exist: for ℓ = 0, 1, 2, 3, 4,

lim
r→0

Aϵ
ℓ(r) = β

(0)
ℓ ,

lim
r→∞

Aϵ
ℓ(r) = β

(∞)
ℓ .

Note that these limit values are independent of ϵ. This allows to
define the limit operators

(4.5) L(0)[φ] := β
(0)
0 φ+

β
(0)
1

r
∂rφ+ β

(0)
2 ∂rrφ+

β
(0)
3

r2
∆θφ+ β

(0)
4 ∆zφ,
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as r → 0, and

(4.6) L(∞)[φ] := β
(∞)
0 φ+

β
(∞)
1

r
∂rφ+β

(∞)
2 ∂rrφ+

β
(∞)
3

r2
∆θφ+β

(∞)
4 ∆zφ,

as r → ∞.
The crucial observation here is that, since coefficients β

(0)
ℓ , β

(∞)
ℓ , ℓ =

0, 1, 2, 3, 4, do not depend on ϵ, neither do the indicial roots for Lϵ.
Indeed, we may characterize all indicial roots as follows:

Proposition 4.3. Assume k = 2 and fix 0 < p < p2. For each j =

0, 1, . . ., there exist two indicial roots χ
(0)
j,± for the operator Lϵ as r → 0.

These satisfy:

• χ(0)
0,± can be real or complex. In the former case,

−n−4
4
< χ

(0)
0,− <

p
2
− n−4

4
< χ

(0)
0,+,

while in the latter, Re(γ±0 ) =
p
2
− n−4

4
.

• For j ≥ 1, χ
(0)
j,± are real numbers. In addition, we have the

monotonicity

. . . ≤ χ
(0)
2,− ≤ χ

(0)
1,− < Re(χ

(0)
0,−) ≤

p
2
− n−4

4

≤ Re(χ
(0)
0,+) < χ

(0)
1,+ ≤ χ

(0)
2,+ ≤ . . .

(4.7)

• It holds χ
(0)
1,− = −1− n−4

4
.

As r → ∞, the picture is similar and, for each j = 0, 1, . . ., there

exist two indicial roots χ
(∞)
j,± for Lϵ which satisfy:

• For all j, χ
(∞)
j,± are real numbers. In addition, we have the mono-

tonicity

. . . ≤ χ
(∞)
2,− ≤ χ

(∞)
1,− < χ

(∞)
0,− ≤ −n−4

4
+ p(n−3)

2(n−1)

≤ χ
(∞)
0,+ < χ

(∞)
1,+ ≤ χ

(∞)
2,+ ≤ . . .

(4.8)

• It holds

(4.9) −n−4
4

+ p
2
> χ

(∞)
0,− = −n−4

4
+ p(n−3)

2(n−1)
−

√
4p+5p2−5pn+pn2−p2n

2(n−1)
.

• For j = 1,

(4.10) χ
(∞)
1,− = −1− α0 − n−4

4

and

(4.11) χ
(∞)
1,+ > 0.
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Next, we give a “divergence-form” version for Lϵ with the introduc-
tion of an integrating factor. Indeed, let

Hϵ
1(r) = exp

� r Aϵ
1(s)

sAϵ
2(s)

ds and (Hϵ)−1(r) =
Aϵ

2(r)

Hϵ
1(r)

.

Note that both functions are strictly positive. It holds
(4.12)

Lϵφ = (Hϵ)−1(r)∂r {Hϵ
1(r)∂rφ}+Aϵ

0(r)φ+
Aϵ

3(r)

r2
∆θφ+Aϵ

4(r)∆zφ,

which shows that a natural space to work is L2(Rn \ Rp) with the
(weighted) scalar product

(4.13) ⟨φ1, φ2⟩ =
� ∞

0

�
SN−1

�
Rp

Hϵ(r)φ1φ2 dzdθdr,

for which Lϵ is self-adjoint.

4.2. A closer look at Lϵ. Let us go back to the general case Rn \
Λ. Recall that Lϵ = L(ūϵ, gRn) is the linearized operator around the
approximate solution ūϵ. Note that, in a tubular neighborhood Tρ(Λ)
around the singular set the background metric is written as (3.7), which
can be compared to the model (2.1). More precisely:

Proposition 4.4. For functions supported in Tρ(Λ) that do not depend
on the z variable, we have that

(4.14) Lϵ = Lϵ +D,

where D is a second order differential operator (at most) that satisfies,
for functions of the form φ = O(ra) as r → 0,

Dφ = O(ra−2+σ),

for some σ > 0.

Remark 4.5. To handle the dependence on the variable z, we just need
to recall that our arguments rely on localization and rescaling near a
fixed point Λ, around which we use normal coordinates.

Proof of Proposition 4.4. As in [33, Section 4.2], in the neighborhood
Tρ(Λ), the difference between Lϵ and Lϵ comes from the extra terms
of the metric in Rn \ Λ from (3.7) with respect to the model metric in
Rn\Rp from (2.1) as we did in the proof of Proposition 3.3. Controlling
the error terms in the metric yields the desired result. □
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5. Explicit calculations in the model case

In this Section we work with the model case Rn \ Rp and give the
proof of the statements in Section 4.1. Note that, even if we need to
restrict to k = 2, many of our arguments are valid for any k once a
model solution U1 is available.

We will use the v-notation, using the metric gvϵ given in (2.17), which
is more convenient in the following calculations. Take now a conformal
perturbation of the metric gvϵ on Rn\Rp, i.e, for s ∈ R, set

s 7→ gs := (vϵ + sw)
4k

n−2k

[
dt2 + gθ + e2t δαβ dz

α ⊗ dzβ
]
,

and consider Bs the symmetric (1, 1)-tensor given by

(5.1) Bs :=
n−2k
2k

(vϵ + sw)
2n

n−2k g−1
s Ags .

Now let Lϵ := L(vϵ, gcyl) be the linearized operator in this setting, that
is,

Lϵ[w] : =
d

ds

∣∣∣∣
s=0

N (vϵ + sw, gcyl)

= v−2k+1
ϵ

{
d

ds

∣∣∣∣
s=0

σk(Bs)− cq(vϵ)
q−1w

}
,

(5.2)

where we have used that vϵ is an exact solution of (2.10).
Proposition 4.2 in Section 4.1 follows from the following Lemma:

Lemma 5.1. The linearized operator for the model in cylindrical co-
ordinates is given by

(5.3) Lϵ[w] = aϵ0w + aϵ1∂tw + aϵ2∂ttw + aϵ3∆θw + aϵ4e
−2t∆zw,

where the coefficient functions aϵℓ = aϵℓ(t) are given in (5.6). Moreover,
aϵ2, a

ϵ
3, a

ϵ
4 have a sign, so this is an elliptic operator.

Proof. We follow the calculations in [37] for the RN\{0} case. First
recall from (2.7), for B0(:= Bgvϵ ), that(

B0

)t
t
= −n−2k

4k
(vϵ)

2 − vϵv̈ϵ +
n−k
n−2k

v̇ϵ
2 =: κ1,(

B0

)i
j
=

[
n−2k
4k

(vϵ)
2 − k

n−2k
v̇ϵ

2
]
δji =: κ2 δ

j
i ,(

B0

)α
β
= −n−2k

4k

(
vϵ +

2k
n−2k

v̇ϵ
)2
δαβ =: κ3 δ

α
β ,

(5.4)
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and the rest of the entries of the matrix vanish. Moreover, for the
diagonal matrix B0,

[T k−1(B0)]
t
t =

k−1∑
m=0

(−1)k−1−mσm(B0)κ
k−1−m
1 =: S1,

[T k−1(B0)]
i
j =

[
k−1∑
m=0

(−1)k−1−mσm(B0)κ
k−1−m
2

]
δij := S2 δ

j
i ,

[T k−1(B0)]
α
β =

[
k−1∑
m=0

(−1)k−1−mσm(B0)κ
k−1−m
3

]
δαβ =: S3 δ

α
β .

(5.5)

Note that, since gvϵ belongs to the positive cone Γ+
k , then its (k − 1)-

Newton tensor T k−1 is positive definite, so the quantities S1, S2, S3 are
strictly positive. We recall from (5.1) that

Bs =
n−2k
2k

(vϵ + sw)2g−1
cyl Agcyl − (vϵ + sw)g−1

cyl D
2(vϵ + sw)

+ n
n−2k

g−1
cyl d(vϵ + sw)⊗ d(vϵ + sw)− k

n−2k
|d(vϵ + sw)|2gcylI,

from where it is easy to calculate its variation:

d
(
Bs

)t
t

ds

∣∣∣
s=0

= −vϵ ∂ttw + 2(n−k)
n−2k

v̇ϵ (∂tw)−
(
n−2k
2k

vϵ + v̈ϵ
)
w,

d
(
Bs

)i
j

ds

∣∣∣
s=0

= −vϵ gilθ (D2
θw)lj − 2k

n−2k
v̇ϵ δ

i
j ∂tw + n−2k

2k
vϵ δ

i
j w,

d
(
Bs

)α
β

ds

∣∣∣
s=0

= −vϵ e−2t∂αβw +
[
− 2k

n−2k
v̇ϵ − vϵ

]
δαβ ∂tw

+
[
−n−2k

2k
vϵ + v̇ϵ

]
wδαβ .

Substituting (5.4) above one arrives at

d
(
Bs

)t
t

ds

∣∣∣
s=0

= (vϵ)
−1 (B0)

t
tw − n−k

n−2k
(vϵ)

−1(v̇ϵ)
2w − vϵ ∂ttw

+ 2(n−k)
n−2k

v̇ϵ∂tw − n−2k
4k

vϵw,

d
(
Bs

)i
j

ds

∣∣∣
s=0

= (vϵ)
−1w (B0)

i
j +

k
n−2k

(vϵ)
−1(v̇ϵ)

2 δij w + n−2k
4k

vϵδ
i
jw

− vϵ(gθ)
il(D2

θw)lj − 2k
n−2k

δij v̇ϵ ∂tw,

d
(
Bs

)α
β

ds

∣∣∣
s=0

= (vϵ)
−1w (B0)

α
β + k

n−2k
(vϵ)

−1(v̇ϵ)
2δαβ w − n−2k

4k
vϵδ

α
βw

+
[
−vϵ − 2k

n−2k
v̇ϵ
]
δαβ ∂tw − vϵ e

−2t ∂αβw.
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Now, we can use the formula

kσk(B0) = tr
(
T k−1(B0) ·B0

)
to write

d

ds

∣∣∣
s=0

σk(Bs) = kσk(B0) (vϵ)
−1w

+ S1

[
− n−k

n−2k
(vϵ)

−1(v̇ϵ)
2w − n−2k

4k
vϵw − vϵ ∂ttw + 2(n−k)

n−2k
v̇ϵ∂tw

]
+ S2

[
k

n−2k
(N − 1)(vϵ)

−1(v̇ϵ)
2w + (N − 1)n−2k

4k
vϵw − vϵ∆θw

− 2k
n−2k

(N − 1)v̇ϵ∂tw
]

+ S3

[
k

n−2k
p(vϵ)

−1(v̇ϵ)
2w − pn−2k

4k
vϵw + p

(
−vϵ − 2k

n−2k
v̇ϵ
)
∂tw

−vϵe−2t∆zw
]
.

Thus, using that vϵ is an exact solution to (2.10), we obtain that

Lϵ[w] = a0w + a1∂tw + a2∂ttw + a3∆θw + a4e
−2t∆zw

for

a0 = v−2k+1
ϵ

{
(k − q)cvq−1

ϵ − n−k
n−2k

S1v
−1
ϵ v̇2ϵ +

k
n−2k

(N − 1)S2v
−1
ϵ v̇2ϵ

+ k
n−2k

pS3v
−1
ϵ v̇2ϵ − n−2k

4k
S1vϵ + (N − 1)n−2k

4k
S2vϵ − pn−2k

4k
S3vϵ

}
,

a1 = v−2k+1
ϵ

{
2(n−k)
n−2k

v̇ϵS1 − 2k
n−2k

(N − 1)v̇ϵS2 + p
(
−vϵ − 2k

n−2k
v̇ϵ
)
S3

}
,

a2 = −v−2k+2
ϵ S1,

a3 = −v−2k+2
ϵ S2,

a4 = −v−2k+2
ϵ S3.

(5.6)

This completes the proof of the Lemma. □

Now we consider the proof of Proposition 4.3. Remark that the
change of notation from u to v in (2.4) (and from φ to w) changes the
indicial roots; nevertheless, their general structure ramians the same.
For instance, compare the indicial roots for Lϵ from (4.7) to those of
Lϵ from (5.9).

5.1. Indicial roots as r → 0. For this section we restrict to the case
k = 2. Unfortunately the calculations become extremely messy, even
if elementary, for larger values of k.

To study the behavior of Lϵ as r → 0, i.e., t→ +∞, we define

bℓ = lim
t→+∞

aϵℓ(t), ℓ = 0, 1, 2, 3, 4.
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We will give a precise formula for these coefficients below (in particular,
they do not depend on ϵ).

Note that from (2.15) we have that vϵ → v∞ as t → +∞. Using
(5.4) we can show that the matrix B0(t) converges to B∞ for

(B∞)tt = −n−2k
4k

(v∞)2,

(B∞)ij =
n−2k
4k

(v∞)2δji ,

(B∞)αβ = −n−2k
4k

(v∞)2δαβ .

Then from (5.5) we have

S∞
1 := [T 1(B∞)]tt =

n−4
8
v2∞(n− 2p− 1),

S∞
2 := [T 1(B∞)]ij =

n−4
8
v2∞(n− 2p− 3),

S∞
3 := [T 1(B∞)]αβ = n−4

8
v2∞(n− 2p− 1),

which yields

b0 =
[
(2− q)c(v∞)q−4 −

(
n−4
8

)2
(n− 2p− 1)

+ (N − 1)
(
n−4
8

)2
(n− 2p− 3)− p

(
n−4
8

)2
(n− 2p− 1)

]
,

b1 = −pn−4
8
(n− 2p− 1),

b2 = −n−4
8
(n− 2p− 1),

b3 = −n−4
8
(n− 2p− 3),

b4 = −n−4
8
(n− 2p− 1).

Recalling (2.13), we simplify b0 to

b0 =
(
n−4
8

)2
[(2− q)cn,p,2 − (p+ 1)(n− 2p− 1) + (N − 1)(n− 2p− 3)]

= −
(
n−4
8

)
(4p2 + 8p− 4np− 5n+ 4 + n2).

The behavior of Lϵ when t → +∞, that is, r → 0, is given by the
normal operator

(5.7) L(0)[w] = b0w + b1∂tw + b2∂ttw + b3∆θw + b4e
−2t∆zw,

and the indicial operator

(5.8) L
(0)
♮ [w] = b0w + b1∂tw + b2∂ttw + b3∆θw,

We consider now the spherical harmonic decomposition of SN−1 and
project the operators (4.6) and (5.8) over each eigenspace. For this, we
set

L
(0)
j [w] = b0w + b1∂tw + b2∂ttw − b3λjw + b4e

−2t∆zw

and
L
(0)
♮j [w] = b0w + b1∂tw + b2∂ttw − b3λjw.
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We look for solutions of L
(0)
♮j [w] = 0 of the form w(t) = e−αt. Such α

must satisfy the quadratic equation

fj(α) := b0 − b3λj − b1α + b2α
2 = 0.

An elementary analysis of these parabolas yields that, for each j =
0, 1, . . ., there exist two indicial roots γ±j solution of fj(α) = 0 satisfy-
ing:

• γ±0 can be real or complex. In the former case,

0 < γ−0 < p
2
< γ+0 ,

while in the latter, Re γ±0 = p
2
> 0.

• For j ≥ 1, γ±j are real numbers. In addition, we have the
monotonicity

(5.9) . . . ≤ γ−2 ≤ γ−1 < Re γ−0 ≤ p
2
≤ Re γ+0 < γ+1 ≤ γ+2 ≤ . . .

• It holds γ−1 = −1.

Indeed, the vertex of every parabola is located at α = − b1
2b2

= p
2
.

For the first statement, just note that f0(0) < 0 under the hypothesis
0 < p < p2 (and this is sharp). For the second statement, note that
fj(α) is non-decreasing in j. In addition, for j = 1, the polynomial
f1(α) has roots exactly at α = −1 and α = p + 1, which shows our
claim.

Observe that, similarly to the calculation in (4.12), it is possible to

give a self-adjoint version of Lϵ, denoted by L̃ϵ,

(5.10) L̃ϵ[w] = ãϵ0w̃ + ãϵ2∂ttw̃ + ãϵ3∆θw̃ + ãϵ4e
−2t∆zw̃,

for some coefficients ãl which can be calculated from the original aℓ as
in the proof of (4.12). We will not need its precise expression, only the
limit operator as r → 0: more precisely, the conjugate operator to L(0)

is defined by

(5.11) L̃(0)[w̃] = e−
p
2
tL(0)[e

p
2
tw̃] = b̃0w̃+ b2∂ttw̃+ b3∆θw̃+ b4e

−2t∆zw̃,

and similarly, for L
(0)
♮ ,

L̃
(0)
♮ [w̃] = e−

p
2
tL

(0)
♮ [e

p
2
tw̃] = b̄0w̃ + b2∂ttw̃ + b3∆θw̃,

where we have defined

b̃0 = b0 −
b21
4b2

.
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Remark 5.2. The advantage of the conjugate operator L̃ϵ is that it is
self-adjoint and the indicial roots as r → 0 (which will be denoted
by δ±j ) are centered at the origin, fact that makes the Hilbert space
analysis more clear.

5.2. Indicial roots as r → ∞. We now calculate the indicial roots of
Lϵ as r → ∞, i.e., t→ −∞. For this, we define

dℓ = lim
t→+∞

aϵℓ(t), ℓ = 0, 1, 2, 3, 4.

In this limit, vϵ behaves as ϵα0eα0t. We have that B0(t) converges to
B−∞ as t→ −∞, where

(B−∞)tt = v2ϵ
(
−n−2k

4k
+ k

n−2k
α2
0

)
,

(B−∞)ij = v2ϵ
(
n−2k
4k

− k
n−2k

α2
0

)
δji ,

(B−∞)αβ = v2ϵ
(
−n−2k

4k

) (
1 + 2k

n−2k
α0

)2
δαβ ,

from where

S−∞
1 = v2ϵ

(
n−4
8
(n− 2p− 1)− α0p+ α2

02
−n+1
n−4

)
=: v2ϵ s1,

S−∞
2 = v2ϵ

(
n−4
8
(n− 2p− 3)− α0p+ α2

02
−n+3
n−4

)
=: v2ϵ s2

S−∞
3 = v2ϵ

(
n−4
8
(n− 2p− 1)− α0(p− 1) + α2

02
−n+3
n−4

)
=: v2ϵ s3.

Then, the expressions in (5.6) imply

d0 =
{
−n−2

n−4
s1α

2
0 +

2
n−4

(n− p− 1)s2α
2
0

+ 2
n−4

ps3α
2
0 − n−4

8
s1 + (n− p− 1)n−4

8
s2 − pn−4

8
s3
}
,

d1 =
{

2(n−2)
n−4

α0s1 − 4
n−4

(n− p− 1)α0s2 + p
(
−1− 4

n−4
α0

)
s3

}
,

d2 = −
(
n−4
8
(n− 2p− 1)− α0p+ α2

02
−n+1
n−4

)
,

d3 = −
(
n−4
8
(n− 2p− 3)− α0p+ α2

02
−n+3
n−4

)
,

d4 = −
(
n−4
8
(n− 2p− 1)− α0(p− 1) + α2

02
−n+3
n−4

)
.

(5.12)

Indicial roots are calculated as the roots the quadratic polynomial

d0 − d3λj − d1α + d2α
2 = 0, j = 0, 1, . . .

Even though we could proceed as in Subsection 5.1, the expressions of
the coefficients from (5.12) are so involved that we prefer to take a dif-
ferent path. In any case, for each j = 0, 1, . . ., there exist two indicial
roots ϑ±

j , with similar monotonicity.

To prove the remaining statements for in Proposition 4.3 on the
behavior of the indicial roots at infinity we need to switch back to the
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u-notation. Full details of the proof will be postponed until Section 8,
however, let us give here the main ideas:

We start with the j = 0 mode, that corresponds to the radially
symmetric solutions. The fundamental observation is that knowing an
exact solution for the non-linear ODE (2.12), one can produce radially
symmetric solutions of its linearized equation using dilation invariance,
as explained in Remark 8.4. But we know precisely the behavior as r →
∞ of the fast-decaying solution U1 for (2.12); indeed, in Proposition

2.1 we showed such solutions must satisfy U ∼ r−α±
0 . The precise value

of α±
0 was calculated in the paper [19] and it is given by

(5.13) α±
0 =

n− 4

4
− p(n− 3)

2(n− 1)
±

√
4p+ 5p2 − 5pn+ pn2 − p2n

2(n− 1)
.

(we denote α0 = α−
0 ). From here we conclude that −α±

0 are the two
indicial roots for j = 0.

Note also that the expression inside the square root in formula (5.13)
is always positive in our range of p. This implies that, for all j, all the
indicial roots are real numbers. Summarizing our discussion, we have
(4.8).

We can also give explicit formulas for j = 1. Using rotational invari-
ance from Remark 8.6 one can find solutions in the kernel for j = 1,
and this yields (4.10). Finally, to show (4.11), one just needs to check
that

−n−4
4

+ pn−3
n−1

+ 1 + α0 > 0,

which follows from simple algebra for n ≥ 5.

6. Function spaces

The objective of this section is to set up the functional analytic
framework on Rn \ Λ.

Remark 6.1. In general, it would be necessary to control the asymptotic
behavior of a function both near the singular set and at infinity. Thus
one should work with weighted spaces on Rn \ Λ with two parameters
(one near Λ, another one at infinity). However, thanks to Remark
3.4 we are only considering metrics with a very precise behavior at
infinity that comes an initial compact manifold and it is not necessary
to introduce a weight at infinity, which is equivalent working on a
domain Ω\Λ with zero Dirichlet condition (compare the statements of
Theorems 2 and 3 in [33]).

In order to simplify our presentation, we will write the function do-
main as Ω \ Λ with this understanding and only introduce a weight
near the singular set Λ.
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6.1. Weighted Hölder spaces. We now define the weighted Hölder
spaces C2,α

µ (Ω \Λ), following the notations and definitions in Section 3
of [33]. Intuitively, these spaces consist of functions which are products
of powers of the distance to Λ with functions whose Hölder norms are
invariant under homothetic transformations centered at an arbitrary
point on Λ.

Let u be a function in a tubular neighbourhood T := Tρ of Λ and
define

∥u∥T0,α,0 = sup
y∈T

|u|+ sup
y,y′∈T

(r + r̃)α|u(y)− u(y′)|
|r − r′|α + |z − z′|α + (r + r′)α|θ − θ′|α

,

where y, y′ are two points in T and (r, θ, z), (r′, θ′, z′) their Fermi coor-
dinates.

Definition 6.2. The space Cl,α
0 (Ω \ Λ) is defined to be the set of all

u ∈ Cl,α(Ω \ Λ) for which the norm

∥u∥Cl,α
0

= ∥u∥Cl,α(Ω\Tρ/2) +
l∑

j=0

∥∇ju∥C0,α(Tρ)

is finite.
Now we consider a function d behaving as the Fermi coordinate r in

a tubular neighborhood Tρ of Λ and a positive constant (say, identically
1) away from the singular set. Then a function u belongs to Cl,α

µ (Ω\Λ)
if and only if

u = dµû for some û ∈ Cl,α(Ω \ Λ).

This space is endowed with the natural norm

∥u∥Cl,α
µ

:= ∥d−µu∥Cl,α
0
.

Basic properties of these norms can be found in [33, Section 3].

In the particular setting of Rn \Rp it will be necessary to introduce
weighted Hölder spaces with respect to the r variable for functions
having different behaviors near r = 0 and r = ∞.

First, in the case of an isolated singularity, this is, RN \ {0}, given
any µ1, µ2 ∈ R, for R > 0 fixed we set

Cl,α
µ1
(BR \ {0}) = {u = rµ1ϕ : ϕ ∈ Cl,α

0 (BR \ {0})},
Cl,α
µ2
(RN \BR) = {u = rµ2ϕ : ϕ ∈ Cl,α

0 (RN \BR)},

and thus we can define:
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Definition 6.3. The space Cl,α
µ1,µ2

(RN \ {0}) consists of all functions u
for which the norm

∥u∥Cl,α
µ1,µ2

= sup
BR\{0}

∥r−µ1u∥l,α,0 + sup
RN\BR

∥r−µ2u∥l,α,0

is finite. The spaces Cl,α
µ,ν(Rn \Rp) are defined similarly, in terms of the

(global) Fermi coordinates (r, θ, z) and the weights rµ1 , rµ2 .

6.2. Weighted Sobolev spaces. As we have discussed, Lϵ is second
order linear, elliptic operator, uniformly elliptic away from the singular
set Λ where it has the structure of an edge operator from [31]. Here we
try to make a an effort to present Mazzeo’s theory of edge operators in
a more transparent way.

A possibility is to work with the “self-djoint” version of Lϵ, which
near the singular set is essentially (4.12). Another approach is to pass to
the Fermi variable t = − log r and introduce the “conjugate” operator

L̃ϵ which, near the singular set, is written as (5.10). This operator is
fully characterized both near Λ and near infinity (and it is independent
of ϵ at both places).
Moreover, since the weight in the function space is not relevant unless

we are near the singular set (recall that we are ignoring the contribution
from infinity, as explained in Remark 6.1), for our purposes it is enough
to consider, for δ ∈ R, the norm

(6.1) ∥φ∥2L2
δ(Ω\Λ) =

�
Ω\Tρ

φ2 dy +

� ρ

0

�
SN−1

�
Λ

φ2r
n−4
2

−p−2δ−1 dzdθdr.

The last term in the expression (6.1) above has a more user friendly
expression in the variable t = − log r. Indeed, using the same notation
as in (5.11), if we set

(6.2) φ = d−
n−4
4 w = d−

n−4
4

+ p
2 w̃

then, taking into account that d = r on near the singular set, it sim-
plifies to � +∞

− log ρ

�
SN−1

�
Λ

w̃2e2δt dzdθdt.

Finally, weighted Sobolev spaces W k,2
δ are defined similarly.

6.3. Duality. We will consider the spaces L2
δ(Ω \ Λ) and L2

−δ(Ω \ Λ)
to be dual with respect to the natural pairing

(6.3) L2
δ × L2

−δ ∋ (w̃1, w̃2) 7→
�
Ω\Λ

w̃1w̃2.
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Fixed δ ∈ R, the dual of

L̃(0) : L2
δ(Rn \ Rp) → L2

δ(Rn \ Rp)

is given by

(6.4) (L̃(0))∗ = r−2δL̃(0)r2δ : L2
−δ(Rn \ Rp) → L2

−δ(Rn \ Rp).

We do not claim that Lϵ is self-adjoint. Nevertheless, relative to the
pairing (6.3), the adjoint of

L̃ϵ : L
2
δ(Ω \ Λ) → L2

δ(Ω \ Λ)

is still a second order elliptic operator with the same structure acting
on

(L̃ϵ)
∗ : L2

−δ(Ω \ Λ) → L2
−δ(Ω \ Λ).

We will show in Proposition 7.1 that L̃ϵ (and thus, the original Lϵ)
is semi-Fredholm when δ > 0 not an indicial root. This implies that

(6.5) ker((L̃ϵ)
∗)⊥ = Rg(L̃ϵ).

Thus an easy way to prove that such L̃ϵ is surjective is to check that
its adjoint is injective.

7. A priori estimates and L2 semi-Fredholm properties

Let Lϵ be the linearized operator around ūϵ in Rn \ Λ, that is,
L(ūϵ, gRn). Fredholm properties for this type of operators were shown
in Mazzeo [31] in great generality (using the theory of edge operators)
and we refer to this paper for the complete proofs. Here, instead, we
consider a simple PDE approach for the L2 theory which was presented
in the lecture notes [39].

For the sake of clarity, as mentioned in Remark 6.1, we will work
with functions that are supported in a domain Ω in order to avoid the
complications as r → ∞.

Fixed ϵ > 0, the operator L̃ϵ : L
2
δ(Ω \ Λ) → L2

δ(Ω \ Λ) is linear and
unbounded, densely defined and has closed graph. Our main result in
this Section proves (semi)-Fredholm properties, encoded in the a-priori
estimate from Proposition 7.1 for solutions of the equation

(7.1) L̃ϵw̃ = h̃ in Ω \ Λ.

Using the notation in Remark 5.2, we will denote by δ±j the indicial

roots of L̃ϵ as r → 0 (recall that they do not depend on ϵ).
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Proposition 7.1. Let δ ̸= δ±j , δ > 0 and take w̃ ∈ L2
δ, h̃ ∈ L2

δ

satisfying (7.1). Then

(7.2) ∥w̃∥L2
δ(Ω\Λ) ≤ C

(
∥h̃∥L2

δ(Ω\Λ) + ∥w̃∥L2(V )

)
for V any compact set in Ω\Λ, and some constant C(V ) not depending
on w̃.

Note that there is no dependence on ϵ in the conclusion of the Propo-
sition. The proof follows from a series of Lemmas:

Lemma 7.2. (Localization) It is sufficient to prove the Proposition for
functions in L2

δ supported in Tρ(Λ) for some small ρ.

Proof. Introduce a cutoff χ identically one on Tρ/2(Λ), vanishing outside
Tρ(Λ). Then

h̃1 := L̃ϵ(w̃χ) = χL̃ϵw̃ + [L̃ϵ, χ]w̃.

Thus if inequality (7.2) is true for w̃χ, it is also true for w̃ by adding a
compactly supported term. □

Lemma 7.3. (Reduction to the model case) For functions supported
on Tρ(Λ) for some small ρ, it is enough to prove (7.2) for the model

operator L̃(0) instead of L̃ϵ.

Proof. First recall Proposition 4.4 (and Remark 4.5) to reduce the prob-

lem to study the model operator Lϵ (or its conjugate L̃ϵ). Next, because
of the ODE study from Proposition 2.1, we have for some σ > 0, in a
small enough neighborhood {r < aϵ} for some a > 0,∥∥Dℓ (vϵ − v∞)

∥∥
L∞(Tρ(Λ))

≤ Cℓ e
−σt, ℓ = 0, 1, . . .

Thus it is clear that

L̃ϵ = L̃(0)(1 +O(e−σ′t)).

Now, for points a bit further away from Λ, say, for r >> ϵ, the operator

L̃ϵ does not depend on ϵ (at least, up to lower order terms), and it
is a regular uniformly elliptic operator so standard Sobolev estimates
hold. □

Now we give the proof of Proposition 7.1 for the model L̃(0). Assume,
for now, that δj := δ+j > 0 for all j. Recall the definition of the (conju-
gate) operator from (5.11); after projection over spherical harmonics,
it becomes

L̃
(0)
j w̃ = (b̃0 − b3λj)w̃ + b2∂ttw̃ + b4e

−2t∆zw̃, b2, b4 < 0.
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Take the Fourier transform in the variable z, and set

Kjω := b̃0,jω + b2∂ttω − b4e
−2t|ζ|2ω,

where we have defined b̃0,j := b̃0−b3λj, ζ the Fourier variable and ω the
Fourier transform of w̃. Now we make the change b4|ζ|2e−2t = b2e

−2τ

and work in the variable τ . This operator reduces (up to a negative
multiplicative constant) to

(7.3) Kjω = ∂ττω − δ2jω − e−2τω, for ω = ω(τ).

Define the space L2
δ(dτ) the weighted space with respect to the variable

τ and weight e2δτ , and let us study the mapping properties of Kj in
L2
δ(dτ).
Note that for functions supported on τ ∈ (τ0,∞) for τ0 big enough,

the term −e−2τ is just a perturbation and can be ignored. Thus, for
each fixed j, we consider the equation

(7.4) Kjω = ψ for Kjω := ∂ττω − δ2jω.

For simplicity, we take τ0 = 0 in the next Lemma. The dependence
on τ0 will be retaken in Lemma 7.5, in order be able to go back to the
variable t.

Such Kj is a totally characteristic operator and has good Fredholm
properties.

Lemma 7.4. If δ not an indicial root, for every solution ω(τ) of (7.4)
supported on (0,∞) we have

(7.5) ∥ω∥L2
δ(dτ)

≤ C∥ψ∥L2
δ(dτ)

.

Proof. First we show that the estimate is true if −δj < δ < δj. Multiply
equation (7.4) by e2δτω:

(7.6) −
� ∞

0

ω(∂ττω)e
2δτ dτ + δ2j

� ∞

0

ω2e2δτ dτ = −
� ∞

0

ψωe2δτ dτ.

Integration by parts, noting that the boundary terms vanish, yields
(7.7)

−
� ∞

0

ω(∂ττω)e
2δτ dτ =

� ∞

0

(∂τω)
2e2δτ dτ + 2δ

� ∞

0

ω(∂τω)e
2δτ dτ.

For the last term in (7.7),
(7.8)

2δ

� ∞

0

ω(∂τω)e
2δτ dτ = δ

� ∞

0

∂τ (ω
2)e2δτ dτ = −2δ2

� ∞

0

ω2e2δτ dτ.
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Substitute the two expressions above into (7.6) to obtain� ∞

0

(∂τω)
2e2δτ dτ + (δ2j − 2δ2)

� ∞

0

ω2e2δτ dτ = −
� ∞

0

ψωe2δτ dτ

≤
(� ∞

0

ψ2e2δτ dτ

) 1
2
(� ∞

0

ω2e2δτ dτ

) 1
2

.

(7.9)

On the other hand, Holder estimates in (7.8) above will give

δ

� ∞

0

ω2e2δτ dτ ≤
(� ∞

0

ω2e2δτ dτ

) 1
2
(� ∞

0

(∂τω)
2e2δτ dτ

) 1
2

and thus,

(7.10) δ2
� ∞

0

ω2e2δτ ≤
� ∞

0

(∂τω)
2e2δτ dτ.

Substituting (7.10) into (7.9) implies

(δ2j − δ2)

� ∞

0

ω2e2δτ dτ ≤
(� ∞

0

ψ2e2δτ dτ

) 1
2
(� ∞

0

ω2e2δτ dτ

) 1
2

.

To finish, just note that δ2j − δ2 > 0 because of our hypothesis, so that� ∞

0

ω2e2δτ dτ ≤ 1

(δ2j − δ2)2

� ∞

0

ψ2e2δτ dτ,

as desired.

Now we prove estimate (7.5) if δ > δj (the remaining case δ < −δj is
very similar). First remark that problem (7.4) is an ODE, which has a
unique solution. Using the variation of constants formula, it is written
as

ω =
1

W

(
B+

� +∞

τ

B−ψ −B−
� +∞

τ

B+ψ

)
:=

1

W
(ω1 + ω2),

where B+ = eδjτ and B− = e−δjτ and W the Wronskian. We proceed
as follows: first, for the term ω2 := B− �

B+ψ, use integration by parts

∥ω1∥2L2
δ(dτ)

=

� ∞

0

e−2δjτ

(� ∞

τ

eδjτψ

)2

e2τδ dτ

=

� ∞

0

∂τ

(
1

2δ − 2δj
e−2δjτ+2δτ

)(� ∞

τ

eδjτψ

)2

dτ

=
1

δ − δj

� ∞

0

ψω1e
2δτ dτ.
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To finish, just use Holder inequality:

∥ω1∥2L2
δ(dτ)

≲

(� ∞

0

f 2e2δτdτ

) 1
2

∥ω1∥L2
δ(dτ)

.

For the first term of ω1 the inequality is proved similarly. □

Now we go back to the problem

(7.11) Kjω = ψ for Kjω = ∂ττω − δ2jω − e−2τω,

in order to understand the dependence on τ0. While estimate (7.5)
should still be true, the constant C would depend on τ0. This is not
enough to go back to the variable t (recall that we are working in
general with functions supported on Tρ(Λ). The strongest assumption
δ > 0 will provide this extra control, as we will show in the following
Lemma:

Lemma 7.5. Fix δ > 0 not an indicial root. Let ω(τ) be a solution of
(7.11) supported on τ ∈ (τ0,∞), τ0 ∈ R. Then

(7.12) ∥ω∥L2
δ(dτ)

≤ C∥ψ∥L2
δ(dτ)

,

for a constant C independent of ω and τ0.

Proof. The proof goes similarly to that of Lemma 7.4. First, in the
case 0 < δ < δj, one can repeat the proof line by line, noting that the
additional term −

�
ω2e2τe2δτ has the right sign and can be dropped

while keeping the inequality.
The case δ > δj is more delicate, since involves Bessel functions. We

can still write the solution to problem (7.4) as

ω =
1

W

(
B+

� +∞

τ

B−ψ −B−
� +∞

τ

B+ψ

)
=:

1

W
(ω1 + ω2),

where

B+(τ) := Kδj(e
−τ ), B−(τ) := Iδj(e

−τ ),

where Iδj , Kδj are the modified Bessel functions of the second kind.
Their asymptotic behavior is well known and, indeed, when τ → +∞,
B+(τ) ∼ eδjτ and B−(τ) ∼ e−δjτ . The Wronskian W is well known
and has constant value (see [50], Chapter III, formula (80)).



GLUING FOR A FULLY-NON-LINEAR EQUATIONS 37

We will give the proof for the term ω1 := B+

�∞
τ
B−ψ. An analogous

argument yields the estimate for ω2. First use integration by parts

∥ω1∥2L2
δ(dτ)

=

� ∞

τ0

B+(τ)
2

(� ∞

τ

B−(σ)ψ(σ) dσ

)2

e2τδ dτ

=

� ∞

τ0

∂τ

(
1

2δ + 2δj
e2δτ+2δjτ

)
e−2δjτB+(τ)

2

(� ∞

τ

B−(σ)ψ(σ) dσ

)2

dτ

=: J1 + J2,

where

J1 =
1

δ + δj

� ∞

τ0

e2δτB+(τ)
2B−(τ)ψ(τ)

� ∞

τ

B−(σ)ψ(σ) dσ dτ

=
1

δ + δj

� ∞

τ0

e2δτB+(τ)B−(τ)ψ(τ)ω1(τ) dτ

just nothing that B+(τ)B−(τ) is a uniformly bounded positive function.
Finally, Hölder’s inequality yields

J1 ≤
C

δ + δj

(� ∞

τ0

ψ(τ)2e2δτ dτ

)1/2(� ∞

τ0

ω1(τ)
2e2δτ dτ

)1/2

=
C

δ + δj
∥ψ∥L2

δ(dτ)
∥ω1∥L2

δ(dτ)

On the other hand,

J2 = − 1

2δ + 2δj

� ∞

τ0

e2δτ+2δjτ∂τ
(
e−2δjτB+(τ)

2
) � ∞

τ

B−(σ)ψ(σ) dσ dτ

= − 1

2δ + 2δj

� ∞

τ0

e2δτ∂τ log
(
e−2δjτB+(τ)

2
)
ω1(τ)

2 dτ.

Calculate, for s = e−τ ,

∂τ log
(
e−2δjτB+(τ)

2
)
= 2

[
−δj +

∂τB+(τ)

B+(τ)

]
= 2

[
−δj −

s∂sKδj(s)

Kδj(s)

]
= −2

s1−δj∂s(s
δjKδj(s))

Kδj(s)
≥ 0,

using Property 3.71 in [50] which implies ∂s(s
δjKδj(s)) ≤ 0. By the

crucial hypothesis δ > 0, the term J2 has a sign and can be dropped.
From the estimate for J1 we have that

∥ω1∥2L2
δ(dτ)

≤ C∥ψ∥2L2
δ(dτ)

,
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for functions supported in (τ0,+∞) but now this constant C is inde-
pendent of τ0, as desired.

□

Finally, taking Fourier transform back will complete the proof of
Proposition 7.1. If Re δ0 = 0, then one needs to consider Bessel func-
tions with complex argument. Nevertheless, modifications are minimal.

8. Injectivity of the model operator

Let µ be a weight satisfying

(8.1) p
2
− n−4

4
≤ Re(χ

(0)
0,+) < µ < χ

(0)
1,+.

We let L1 to be the variable coefficient operator which is given by (4.4)
evaluated at ϵ = 1, that is,
(8.2)

L1[φ] = A1
0(r)φ+

A1
1(r)

r
∂rφ+ A1

2(r)∂rrφ+
A1

3(r)

r2
∆θφ+A1

4(r)∆zφ.

The aim of this Section is to prove:

Proposition 8.1. The only solution φ ∈ C2,α
µ,0 (Rn \ Rp) of

(8.3) L1φ = 0 in Rn \ Rp

is φ ≡ 0.

8.1. The normal operators L(0) and L(∞). We study first the con-
stant coefficient operators L(0) and L(∞) on Rn \ Rp; precise formulas
are given in (4.5) and (4.6).

Proposition 8.2. Any solution φ ∈ C2,α
µ,0 (Rn \ Rp) of L(0)φ = 0 must

vanish identically.

Proof. First remark that it is enough to study injectivity of the pro-
jected operators

L(0)
j [φ] = β

(0)
0 φ+

β
(0)
1

r
∂rφ+ β

(0)
2 ∂ttφ− λj

β
(0)
3

r2
φ+ β

(0)
4 ∆zφ = 0.

Recalling the discussion in Section 7, this can be reduced to proving
injectivity for each equation

(8.4) ∂ττω− δ2jω− e−2τω = 0, for ω = ω(τ), τ ∈ R, j = 0, 1, . . .

under the assumption that ω has the behavior

ω(r) =

{
O(rδ) as r → 0,

O(r−
p
2
+n−4

4 ) as r → ∞.
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Here we have defined

δ := µ− p
2
+ n−4

4
> 0.

Let us look then at equation (8.4). For any j, this is a Bessel ODE
which has two linearly independent solutions, given by the modified
Bessel functions of second kindKδj(r) and Iδj(r) in the variable r = e−t.
Since the asymptotic behavior of the Bessel functions is well known,
any solution with such behavior as r → 0 cannot be bounded as r → ∞,
which is not possible because the choice of function space. □

Proposition 8.3. Similarly, any solution φ ∈ C2,α
µ,0 (Rn \ Rp) of

L(∞)φ = 0

must vanish identically.

Proof. It is the same proof as in Proposition 8.2, using the asymptotics
of the Bessel functions, but with the new indicial roots. First, for each
j, there are two solutions. However, the one that is not exponentially
growing as r → ∞ is not in the kernel thanks to condition (4.9). □

8.2. Beginning of the proof of Proposition 8.1. The first observa-
tion is that, since Uϵ only depends on the radial variable, the coefficients
A1

ℓ , ℓ = 0, 1, 2, 3, 4 only depend on r as well, so one can project over
spherical harmonics and show injectivity for each operator

L1,jφ = 0 φ = φ(r, z), r > 0, z ∈ Rp,

for j = 0, 1, . . .. Here

(8.5) L1,jφ = A1
0(r)φ+

A1
1(r)

r
∂rφ+A

1
2(r)∂ttφ−λj

A1
3(r)

r2
φ+A1

4(r)∆zφ.

Next, as we did in Section 7, Fourier transform in the variable z
reduces to the problem to study the operator

Jjω := A1
0(r)ω +

A1
1(r)

r
∂rω + A1

2(r)∂rrω − λj
A1

3(r)

r2
−A1

4(r)|ζ|2ω = 0.

This is an ODE in the variable r ∈ R for each fixed ζ. Indicial roots
for this problem were given in Proposition 4.3. We will consider the
different values of j in the following paragraphs.

The first observation is that, for j = 0, our choice of weight µ >

Re(χ
(0)
0,+) prevents having any solution in the kernel with behavior O(rµ)

as r → 0.

Next, in Sections 8.3 and 8.4 we try to understand the effect of
symmetries of the equation. It will be useful to consider the reduced
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operator (when p = 0 so there is no variable z) and ϵ = 1, which is
given by

L1φ = A1
0(r)φ+

A1
1(r)

r
∂rφ+A1

2(r)∂rrφ+
A1

3(r)

r2
∆θφ,

and its spherical harmonic projection

L1,jφ = A1
0(r)φ+

A1
1(r)

r
∂rφ+A1

2(r)∂rrφ− λj
A1

3(r)

r2
φ.

8.3. Non-degeneracy in the radial direction. Even if it is not
needed in our discussion, let us take a detour to characterize the kernel
of the operator L1,0 (that is, for j = 0), given by

L1,0[φ] = A1
0(r)φ+

A1
1(r)

r
∂rφ+A1

2(r)∂rrφ, φ = φ(r),

and prove that it is non-degenerate. We start with an immediate ob-
servation:

Remark 8.4. The σk-equation is dilation invariant. This implies that
the function

φ♯ := r∂rU1 +
n−4
4
U1

is a solution to the linear problem L1,0φ♯ = 0.

We will show in the next Lemma that this is actually the only pos-
sible solution. For this, it is better to go back to the tilde-notation

consider the conjugate operator L̃1,0 and the corresponding solution
w̃♯.

Lemma 8.5. Any other solution to

(8.6) L1,0w̃ = 0

that decays to zero as t→ ∞ must be a multiple of w̃♯.

Proof. Let w̃1, w̃2 be two solutions of (8.6) that decay to zero as t±∞,
that is, of the form w̃i = αi(1 + oi(1))e

ςit, i = 1, 2, as t→ +∞, αi ̸= 0.
Define its Wronskian W (t) := ω′

1ω2 − ω1ω
′
2

W (t) = w̃′
1w̃2 − w̃1w̃

′
2 = α1α2(ς1 − ς2 + o(1))e(ς1+ς2)t.

Since the Wronskian is constant, then we must have ς1 = ς2. Let
us assume, by rescaling, that α1 = α2 = 1. Now look at the next

order. For this, we write ωi = eςit + α1
i (1 + oi(1))e

ς
(1)
i t, i = 1, 2, as

t → +∞, α
(1)
i ̸= 0. The same argument will yield that ς

(1)
1 = ς

(1)
2 .

Inductively, we will be able to conclude that ω1 ≡ ω2, since we have
analytic continuation for the solutions of this ODE. □
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8.4. Rotational invariance implies non-degeneracy. Now we use
rotational invariance to show injectivity for the first non-zero mode,
this is, for λ1 = . . . = λN = N − 1 (recall the notation in (2.2)).
Assume that p = 0 for now and study L1,j for j = 1, . . . , N .

Remark 8.6. Notice first that rotational invariance yields that

L1(∂jU1) = 0, j = 1, . . . , N.

Since ∂j = ej∂r, then φ⋄ := ∂rU1 belongs to the kernel of L1,j for each
j = 1, . . . , N .

Recall that, in addition,

φ⋄(r) ≍ r−
n−4
4

−1 as r → 0,

and

φ⋄(r) ∼ r−α0−n−4
4

−1 as r → ∞.

By contradiction, assume that φj is a solution to L1,jφj = 0 in the

space C2,α
µ,0 . Looking at (4.11), one knows that it behaves like

φj(r) ∼ r−α0−n−4
4

−1 as r → ∞.

We also have, by our choice of µ in (8.1), that

φj ≍ rχ
(0)
j+ as r → 0.

Then there is a (non-trivial) linear combination of φ⋄ and φj that de-

cays faster than r−α0−n−4
4

−1 as r → ∞. Looking at the different behav-
iors as r → 0, we see that this combination is non-vanishing. Looking

at the indicial roots χ
(∞)
j± , this is a contradiction since no (non-trivial)

solutions can decay faster at r → ∞.

Now, to pass from L1,j to L1,j, j = 1, . . . , N we need to take Fourier
transform in z and use the same continuity argument as in [33, Propo-
sition 4], considering the Fourier variable |ζ|2 as a parameter.

8.5. The higher modes. To complete the proof of Proposition 8.1 it
remains to study the case j > N .

We consider first the eigenvalue problem for L1,0φ = ηφ. Although
we know that 0 is an eigenvalue, we have no information on its Morse
index. Let η0 be the first eigenvalue. It is well known (thanks to
self-adjointness with respect to the scalar product (4.13)), that its cor-
responding eigenfunction φ0 is strictly positive.
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Now, let φj be a solution to L1,jφj = 0, for j > N , which can be
written as L1,0φj = λjφj after we have taken Fourier transform in the
variable z. Combining this equation with L1,0φ0 = η0φ0 we arrive to

(λj − η0)φjφ0 = φ0L1,0φj − φjL1,0φ0.

Integrate this expression in the set where {φj > 0} with respect to
the weighted L2 space from (4.13), and use the divergence theorem to
obtain that

(λj − η0)

�
{φj>0}

φjφ0H1 dr =

�
{φj=0}

H1 {φ0∂ν⃗φj − φj∂ν⃗φ0} ds.

Here ν⃗ is the exterior normal to the integration set. It is easy to check
that ∂ν⃗φj < 0. Then, from the above formula we reach a contradiction
unless �

{φj>0}
φjφ0H1 dr = 0.

In particular, this implies that φj ≡ 0, as desired.

9. Injectivity of Lϵ

Let µ be a weight as in (8.1). We rely on the results of the previous
Section to show injectivity in weighted Hölder spaces for small ϵ.

Looking back at (2.11) and Proposition 4.4, we know that

Lϵ : C2,α
µ (Ω \ Λ) → C0,α

µ−2(Ω \ Λ).

Proposition 9.1. There exists ϵ0 such that for all 0 < ϵ < ϵ0, the
operator Lϵ is injective in C2,α

µ (Ω \ Λ).

The idea is to use a contradiction argument as ϵ → 0 which, after
rescaling, reduces the problem to the model operator L1. This is a
rather standard argument by now (see [33] or [15, Proposiion 3.1] for
the scalar curvature case). Thus, assume that there exists a sequence
{ϵl}, ϵl → 0 such that Ll := Lϵl is not injective, i.e., there exists
φl ∈ C2,α

µ with Llφl = 0. Rescaling, we can always assume that

∥φl∥C0
µ
= 1.

Then there exists yl ∈ Ω \ Λ such that

(9.1) 1 ≥ d−µ
l φl(yl) >

1
2
,

where dl := d(yl) and d is the function defined in Definition 6.2. Now,
since Ω is taken to be a compact manifold, up to a subsequence we can
find y0 ∈ Ω such that yl → y0.

We will need a preliminary convergence Lemma:
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Lemma 9.2. Consider µ > p
2
− n−4

4
not an indicial root. Given a

sequence {φl} in C2,α
µ , if ∥φl∥C2,α

µ
≤ C, then it has a convergent subse-

quence. This is still true if we only have ∥φl∥Cα
µ
≤ C but each φl is a

solution of the homogeneous equation Llφ = 0.

Proof. We use elliptic estimates and Ascoli’s theorem in compact sets.
Note that, if we have convergence of a subsequence in a compact set,
the estimate (7.2) will convergence in weighted L2-spaces. Elliptic es-
timates again will yield the desired conclusion. □

There are several possibilities according to the position of y0:

Case 1: we first assume that y0 ̸∈ Λ. Note that y0 could be the
point at infinity. However, this point is not distinguished in Ω as we
have pointed out in Remarks 3.4 and 6.1.

For ϵl small enough, the operator Lϵ coincides with the operator Lg†

from Remark 4.1. By Lemma 9.2, the sequence {φl} converges (up to
passing to a subsequence) to some φ0 in Ω \ Λ satisfying

(9.2) Lg†φ0 = 0 in Ω \ Λ.
Then, since Λ has Hausdorff dimension p < n − 2 and u = O(dµ),
we can apply classical removability of singularity results for quasilinear
equations (see, for instance, Chapter 3.1.3 in [30], or the original [44])
to conclude that φ0 can be extended to a weak solution of Lg†φ0 = 0
in the whole Ω. Then we must have φ0 ≡ 0 by our non-degeneracy
hypothesis on g1. This yields a contradiction with (9.1).

Case 2: Assume now that y0 ∈ Λ. Let rl = dist(xl,Λ) to be the
radial Fermi coordinate, and rescale

φ̂l(y) = ϵ−µ
l φl(yl + ϵly).

Then Lemma 9.2 implies that, up to a subsequence, φ̂l converges to
φ̂0 ∈ C0

µ,0(Rn\Rp), a solution of Lφ̂0 = 0 in Rn\Rp for some linear
operator L.

There are three possibilities for L according to the behavior of ϵl/rl,
since the approximate solution ūϵ has a different behavior in each
regime (recall Corollary 2.2):

First, if ϵl/rl → +∞, then we are in the situation (2.15), and L
reduces to be the operator L(0) from (4.5) in Rn \ Rp. Because of
Proposition 8.2, φ̂0 must be identically zero. Contradiction again with
(9.1).

Second, assume ϵl/rl → C ̸= 0. Without loss of generality, we can
take C = 1, otherwise rescale. Then, taking into account the scaling
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(2.14), L coincides with the operator L1 in expression (8.2). We can
use Proposition 8.1 to reach a contradiction as above.

Finally, if ϵl/rl → 0, the operator L is L(∞) from (4.6) defined in
Rn \ Rp, and we argue as in the previous cases, using Proposition 8.3
to conclude. This completes the proof of Proposition 9.1.

□

Remark 9.3. Proposition 9.1 could be rewritten line by line with the op-

erator L̃ϵ replaced by (L̃ϵ)
∗. Indeed, the main ingredient is the relation

(6.4) and the characterization of Lϵ in terms of Lϵ from Proposition
4.4.

For injectivity in Lebesgue spaces, first set

(9.3) δ = µ− p
2
+ n−4

4
.

Then:

Corollary 9.4. For every ϵ ∈ (0, ϵ0), (L̃ϵ)
∗ is injective in L2

δ(Ω \ Λ),

and thus, L̃ϵ is surjective in L2
−δ(Ω \ Λ).

Proof. First use Remark 9.3 to obtain injectivity in Hölder spaces.
Then, classical regularity estimates allow to pass from Lebesgue spaces
to Hölder spaces. This implies, in particular, that injectivity holds in
weighted L2

δ spaces if we choose a parameter by (9.3).
For the second assertion, simply recall the relation (6.5). □

Finally, we will prove an auxiliary result that will be needed in the
next Section:

Lemma 9.5. Assume µ satisfies (8.1). There exists ϵ0 > 0 and C > 0
such that, for every ϵ ∈ (0, ϵ0), if ψ ∈ C2,α

µ (Ω \ Λ) is a solution to

(Lϵ)
∗ψ = h

for h ∈ C0,α
µ−2(Ω \ Λ), then

(9.4) ∥ψ∥C2,α
µ

≤ C∥h∥C0,α
µ−2
.

Proof. This a contradiction argument very similar to the proof of Propo-
sition 9.1(see also Remark 9.3) and thus, we omit it. □

10. Uniform surjectivity of Lϵ

We have just shown that for each fixed ϵ, the operator

L̃ϵ : L
2
−δ(Ω \ Λ) → L2

−δ(Ω \ Λ)
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is surjective. Now we would like to construct a right inverse for Lϵ. For
that we set

L̃ϵ := L̃ϵ ◦ d2δ ◦ L̃∗
ϵ : L

2
−δ(Ω \ Λ) → L2

−δ(Ω \ Λ).

This L̃ϵ is an isomorphism (with suitable boundary conditions (or
growth at infinity) and thus, it has a bounded two-sided inverse

G̃ϵ : L
2
−δ(Ω \ Λ) → L2

−δ(Ω \ Λ).

In particular, L̃ϵ ◦ G̃ϵ = I, which means that

(10.1) G̃ϵ := d−2δ(L̃ϵ)
∗d2δG̃ϵ : L

2
−δ(Ω \ Λ) → L2

−δ(Ω \ Λ)

is a bounded right inverse for L̃ϵ that maps into the range of d−2δ(L̃ϵ)
∗.

In particular, an analogous result is true for Gϵ with the usual shift
of indexes. Now we choose

(10.2) ν < p
2
− n−4

4
slightly larger than ν ′ := −δ + p

2
− n−4

4

and restrict this inverse to the smaller set C0,α
ν−2(Ω \ Λ). Then

Gϵ : C0,α
ν−2(Ω \ Λ) → L2

ν′(Ω \ Λ).

Let us improve the regularity of this inverse:

Proposition 10.1. If φ ∈ L2
ν′(Ω \ Λ) is a solution of Lϵφ = h for

h ∈ C0,α
ν−2(Ω \ Λ), then we have that φ ∈ C2,α

ν (Ω \ Λ) for ν close enough
to ν ′, ν ′ < ν.

Proof. Rescaled Schauder estimates immediately imply that the solu-
tion φ ∈ C2,α

ν′ (Ω \Λ). However, the main statement in this Proposition
is an improvement of weight from ν ′ to ν. This fact follows from the
work of Mazzeo [31, Theorem 7.14], where they show that a change in
the asymptotics of φ is created only by the crossing of an indicial root,
and this cannot happen if ν and ν ′ are close enough. □

In summary, there exists a (bounded) right inverse for

Lϵ : C2,α
ν (Ω \ Λ) → C0,α

ν−2(Ω \ Λ),

given by

Gϵ : C0,α
ν−2(Ω \ Λ) → C2,α

ν (Ω \ Λ).
The main result in this Section is the following:

Proposition 10.2. There exists ϵ0 > 0 such that, for all ϵ ∈ (0, ϵ0),
the norm of Gϵ does not depend on ϵ.
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Proof. The proof is very similar to [33, Theorem 6] and [15, Proposition
4.4]. As in the proof of Proposition 9.1, we argue by contradiction.
Assume that there exist sequences {ϵl}, {hl}, {φl} satisfying φl = Gϵlhl
and

sup
Ω\Λ

{d−ν |hl|} = 1 but sup
Ω\Λ

{d−ν |φl|} =: ml → ∞

as ϵl → 0.
We denote Ll := Lϵl ,Gl := Gϵl and recall that, by the duality relation

(10.1), φl = d2ν(Lϵ)
∗ψl for ψl ∈ C2,α

µ′ with µ′ very close to µ. Now rescale

φ̂l :=
φl

ml

, ĥl :=
hl
ml

, ψ̂l :=
ψl

ml

.

Choose a point yl ∈ Ω \ Λ where

1
2
≤ d(yl)

−νφ̂l(yl) ≤ 1.

By compactness, we can show that, up to a subsequence, yl → y0 for
some y0 ∈ Ω. There are two cases depending on the location of y0:

Case 1: Suppose that y0 ∈ Ω \Λ. Arguing as in Case 1 in the proof
of Proposition 9.1 we reach a contradiction using non-degeneracy.

Case 2: Now assume that y0 ∈ Λ, and let rl := dist(yl,Λ) to be the
radial Fermi coordinate, and rescale

φ̌l(y) := r−ν
l φ̂l(yl + rly),

and similarly with the other functions. Since ∥φ̌l∥C2,α
ν

≤ C, we can find
a convergent subsequence to a function φ̌0 satisfying

(10.3) Lφ̌0 = 0 in Rn \ Rp

for some operator L that we will study below. One may also check
that ψ̌l converges to a function ψ̌0, thanks to the bounds in Lemma
9.5. Moreover, this limit satisfies

(10.4) φ̌0 = L∗(ψ̌0),

Take Fourier transform of equations (10.3) and (10.4) in the variable
z, denoting the Fourier variable by ζ, and the transformed operator by
Kζ . Then the both equations reduce to

Kζω0 = 0,

ω0 = K∗
ζϖ0 in Rn \ Rp.
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Hence 0 = Kζ(ω0) = KζK
∗
ζ (ϖ0). Multiply this equation by ϖ0 and

integrate by parts to obtain, for each fixed ζ,�
|K∗

ζϖ0|2r2 dr = 0.

This implies that ϖ0 ≡ 0, which yields a contradiction.
The linear operator L (and its Fourier version K) will depend on

the behavior of the quotient ϵl/rl. First, if ϵl/rl → ∞, we have that
L = L(0) because of (2.15). Second, assume that ϵl/rl → 1; then
L = L1 defined in Rn\Rp. Finally, if ϵl/rl → 0, it holds that L = L(∞).
But in all these cases the above argument works. □

Remark 10.3. In addition to (10.2), we will impose further restrictions
on ν. Indeed, we need to ask that ν also satisfies

(10.5) −n−4
4
< ν < min{−n−4

4
+ 1,−Re(χ

(0)
0,−)}.

Recalling the values of µ and δ in (8.1) and (9.3), respectively, it is
clear that these are compatible choices. A summary can be found in
Figure 1.

11. Nonlinear analysis

Now we go back to our original equation (1.13). We restrict to k = 2
and set ūϵ to be the approximate solution constructed in Section 3.3.

For this part, it is better to switch back again to the v-notation in
cylindrical coordinates and consider the equation

(11.1) N (v, gRn,cyl) := v−2k+1σk (Bgv)− cvq−2k+1 = 0,

which is equivalent to

L̄ϵ[φ] + f̄ϵ + Q̄ϵ[φ] = 0,

where we have defined

f̄ϵ := N (v̄ϵ, gRn,cyl),

Q̄ϵ[w] := N (v̄ϵ + w, gRn,cyl)−N (v̄ϵ, gRn,cyl)− L̄ϵ[w].

We fix

ν̄ = ν + n−4
4
.

From the discussion in the previous Section we have that the operator

L̄ϵ : C2,α
ν̄ (Ω \ Λ) → C0,α

ν̄ (Ω \ Λ),

has a right inverse

Ḡϵ : C0,α
ν̄ (Ω \ Λ) → C2,α

ν̄ (Ω \ Λ)
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with norm independent of ϵ (see Proposition 10.2). Now we can define
the operator

(11.2) T̄ϵ(w) := −Ḡϵ(Q̄ϵ[w] + f̄ϵ).

A fixed point of T̄ϵ will yield a solution to equation (11.1).

Our first claim is that, for the error term f̄ϵ there exists a uniform
constant C such that for all ϵ ∈ (0, ϵ0) it holds

∥f̄ϵ∥C0,α
ν̄

≤ Cϵβ1

as long as ν̄ < β0. This follows from Proposition 3.5, since a Cα esti-
mate follows from a (weighted) L∞ bound of f̄ϵ. Note that this imposes
a further restriction ν < β0− n−4

4
, which is still compatible with (10.5).

Now we give an estimate for the quadratic term. Let m be the
uniform bound for ∥Ḡϵ∥. Then

∥Ḡϵf̄ϵ∥C2,α
ν̄

≤ mCϵβ1

0 .

Define the set

B(ϵ0, σ) := {w ∈ C2,α
ν̄ (Ω \ Λ) : ∥w∥C2,α

ν̄
≤ σϵβ1

0 },

and choose σ large enough so that Ḡϵf̄ϵ ∈ B(ϵ0, σ/2).

Lemma 11.1. For ϵ0 small enough, we have

∥Q̄(w2)− Q̄(w1)∥C0,α
ν̄

≤ 1

2m
∥w2 − w1∥C2,α

ν̄

for all w1, w2 ∈ B(ϵ0, σ), ϵ ∈ (0, ϵ0).

Proof. This is just Lemma 5.2 in [15] or Lemma 9 in [33]. □

Recalling the definition of the operator T̄ϵ from (11.2), we have just
seen that is a contraction on B(ϵ0, σ) for ϵ0 small enough. This yields
a solution w to (11.1), as desired.

Now we can go back to the u-notation. We have just produced a
solution ūϵ + φ that yields a complete metric near Λ. Indeed, one the
one hand, ūϵ behaves like v∞r

−n−4
4 as r → 0 (see (2.15)). On the other

hand, thanks to the choice ν > −n−4
4

from (10.5), φ = O(rν) has a less
singular behavior which is not seen near Λ.

In order to complete the proof of Theorem 1.1, we need to prove
that ūϵ + φ is positive. First, looking at its asymptotic behavior near
Λ, this is the case for points near singular set. Away from Λ we have
a uniformly elliptic semi-linear equation (recall that our initial metric
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g† was already in the positive cone). Then, positivity holds from the
application of the maximum principle in the positive cone ([29]).
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