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Abstract

We prove some interior regularity results for potential functions of optimal transportation
problems with power costs. The main point is that our problem is equivalent to a new
optimal transportation problem whose cost function is a sufficiently small perturbation
of the quadratic cost, but it does not satisfy the well known condition (A.3) guaranteeing
regularity. The proof consists in a perturbation argument from the standard Monge-
Ampère equation in order to obtain, first, interior C1,1 estimates for the potential and,
second, interior Hölder estimates for second derivatives. In particular, we take a close look
at the geometry of optimal transportation when the cost function is close to quadratic in
order to understand how the equation degenerates near the boundary.

1 Introduction

Let Ω,Ω′ be two bounded domains in Rn, n ≥ 1. Let f , g be nonnegative mass distributions
in Ω and Ω′, respectively, that satisfy the compatibility condition∫

Ω
f =

∫
Ω′
g.

Consider the optimal transport problem between Ω and Ω′: given a continuous cost function
c : Rn → [0,∞), find an admissible transport map Θ : Ω→ Ω′ that minimizes the total cost
functional ∫

Ω
c(x−Θ(x))f(x) dx.

We say that a Borel map Θ : Ω → Ω′ is admissible if it is measure preserving, that is,
Θ#fdx = gdy. This is equivalent to∫

Ω
h(Θ(x))f(x) dx =

∫
Ω′
h(y)g(y) dy

for every continuous function h. It is well known (c.f. [9], [24]) that the solution of the
transport problem exists for any strictly convex cost, and it is given in terms of a potential
function u ∈ C(Ω), that satisfies a Monge-Ampère type equation{

g(x−∇c∗(−∇u)) det
(
I +D2c∗(−∇u)D2u

)
= f(x),

∂cu(Ω) = Ω′,
(1.1)
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where I is the n× n identity matrix, ∂cu(Ω) := ∪x∈Ω∂cu(x) and the c-subdifferential ∂cu(x)
is defined by (2.3).

In this paper we concentrate on the convex cost c(z) = 1
p |z|

p (p > 1) and investigate
the regularity of its corresponding optimal map. First we study the asymptotic behavior of
the equation when the two domains Ω and Ω′ are sufficiently far away. Second, we consider
the perturbation problem p > 2, p → 2 for any given Ω and Ω′. In both cases, our aim
is to prove interior C2,α estimates for the potential u. This is achieved by showing that
both problems are equivalent to an optimal transportation problem whose cost function is
close to the quadratic cost. We then perform a perturbation argument around the standard
Monge-Ampère equation to derive regularity for u.

Before stating our results precisely, we recall that a bounded domain U ⊂ Rn is called
strongly convex if U has a C2 defining function ρ satisfying 〈D2ρ(x)ξ, ξ〉 > 0 for all x ∈ ∂U
and all vectors ξ in the tangent space to ∂U at x. It is also known that if U is strongly convex
then there exist a constant C > 0 and a defining function ρ̃ for U such that

〈D2ρ̃(x)w,w〉 ≥ C|w|2, ∀x ∈ ∂U and ∀w ∈ Rn. (1.2)

For any δ > 0, denote
Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} .

Theorem 1.1. Suppose Ω and Ω′ are two strongly convex bounded domains in Rn. Assume
that f ∈ Cαloc(Ω) and g ∈ Cαloc(Ω′) are two nonnegative mass distributions satisfying∫

Ω
f(x) dx =

∫
Ω′
g(y) dy, Λ1 ≤ f(x) ≤ Λ2 in Ω and Λ1 ≤ g(y) ≤ Λ2 in Ω′, (1.3)

where Λ1 < Λ2 are positive constants. Let u ∈ C(Ω) be the potential from the optimal transport
problem (1.1) between Ω and Ω′ with cost c(z) = 1

p |z|
p, p > 1. Given any δ0 > 0, we have:

• There exists λ0 > 0 depending on δ0, n, p, α, Λ1, Λ2, Ω and Ω′ such that if dist(Ω,Ω′) ≥
λ0, then u ∈ C1,1(Ωδ0).

• There exists p0 > 2 depending on δ0, n, α, Λ1, Λ2, Ω and Ω′ such that for all 2 < p ≤ p0,
if dist(Ω,Ω′) > C1 for some constant C1 > 0, we also have that u ∈ C1,1(Ωδ0).

The C1,1 norm depends on δ0, n, Λ1, Λ2, α, Ω, Ω′, ‖f‖Cα(Ωδ1 ), ‖g‖Cα(Ω′δ1
), C1. Here δ1

depends only on δ0 and universal constants.

Given the C1,1 estimate in Theorem 1.1, we could use Evans-Krylov theory for fully
nonlinear, uniformly elliptic equations to obtain C2,α estimates for u. However, in our setting
we are able to give an alternative and more geometric proof of this higher regularity result.
A nice feature of our arguments is that the C2,α estimate is derived independently from the
result in Theorem 1.1 and under a very weak assumption for u, namely, the local and global
subdifferentials of u agree (in particular u ∈ C1 is enough). We hope that this proof would
be useful for other related problems. The precise statement is as follows:

Theorem 1.2. Under the same assumptions as in the previous theorem and if, in addition,

the potential u satisfies ∂loc
c u(x) = ∂cu(x) for all x ∈ Ωcδθ0

, then u is C2,α′(Ωδ0) for some

0 < α′ < α, and the C2,α′ norm depends only on the same quantities as in Theorem 1.1. Here

c, θ are universal positive constants; the c-subdifferentials ∂cu(x) and ∂loc
c u(x) are defined

respectively by (2.3) and (2.4).
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Determining the optimal regularity for the optimal transport map is a tricky question
that has received a lot of attention. In the quadratic case, for the optimal transport with
cost cq(z) = 1

2 |z|
2, showing C1 regularity for u is equivalent to proving strict convexity

(see Caffarelli [7]). Then, second derivative Hölder estimates were obtained by Caffarelli in
[5], where, more generally, he showed W 2,p estimates; also the Park City notes [11] contain a
sketch of the C1,1 estimates. The recent note by Gutiérrez, Huang and Nguyen [27] thoroughly
explores the ideas in Caffarelli’s work to give a C2,α estimate directly.

For a general convex cost, Ma-Trudinger-Wang [35] have introduced condition (A.3) that
is sufficient for regularity. The example by Loeper [33] shows that the weak form of (A.3) is
also necessary in the general case. Note that (A.3) and its weak form are conditions on the
cost that involve fourth order derivatives. More precisely, (A.3) is written as∑

i,j,k,l,p,q,r,s

(cp,qcij,pcq,rs − cij,rs) cr,kcs,lξiξjηkηl ≥ c0|ξ|2|η|2 (1.4)

for all ξ, η ∈ Rn satisfying ξ ⊥ η, where ci,j(x, y) = ∂2

∂xi∂yj
c(x, y), (ci,j) is the inverse matrix

of (ci,j) and c0 is a positive constant. Weak-(A.3) condition allows c0 to be zero. Further
references can be found in Caffarelli-Gutierrez-Huang [13], Figalli-Kim-McCann [17], Figalli-
Loeper [19], Kim-McCann [29], Liu [31], Liu-Trudinger-Wang [32] and Trudinger-Wang [37,
38, 39].

Note that the power cost c(z) = 1
p |z|

p does not satisfy weak-(A.3) in general. This is

still the case even if the two domains Ω and Ω′ are far away (see the computation after
Proposition 2.1).

Thus the purpose of this paper is to treat (1.1) as a perturbation of the usual Monge-
Ampère equation

g(x+∇w) det
(
I +D2w

)
= f(x). (1.5)

Both equations are close when the distance λ between Ω and Ω′ is very big, or when p→ 2.
These perturbation techniques already appeared in Caffarelli’s work [4] in the setting of fully
nonlinear uniformly elliptic equations, (see also the book [12]). The underlying idea is that
the quadratic case has such a strong geometry that is preserved under perturbation. In
particular, we explore the notion of “almost” convexity in depth in order to obtain more
refined information of the possible degeneracies. By comparing with the optimal transport
problem for the quadratic cost, we are able to show that a priori loss of information can only
happen in a very small region near the boundary.

We also need to quantify the closeness between solutions of (1.1) and solutions of the
standard Monge-Ampère equation (1.5). Many times estimates are usually given in terms
of good Dirichlet boundary data. To handle this, we localize the problem and work with
sections. We prove a comparison principle that allows to control the sections of u since they
are close to sections for w, that have good shapes and hence their eccentricity is controlled.

Next, our estimates deteriorate at the boundary of the sections; this deterioration will be
compensated with the fact that the sections become more and more round, but this geometric
decay needs to be quantified explicitly.

We end the introduction by noting that the assumptions f, g ∈ Cαloc are crucial for the
conclusion in Theorem 1.1. When f and g are merely continuous, it is not clear how to prove

that ∂loc
c u(x) = ∂cu(x). As a consequence, in order to employ a perturbation method similar

to our proof of Theorem 1.2 one has to deal with a difficult situation where, a priori, the
restricted potential u might not be a weak Alexandroff solution to the same Monge-Ampère
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type equation in a smaller subregion of Ω. We hope to return to this problem and to inves-
tigate interior W 2,p estimates for the function u elsewhere.

Some related works that have recently appeared are the following: regularity of opti-
mal transport maps on manifolds (Delanoë [15], Delanöe-Ge [16], Figalli-Kim-McCann [18],
Figalli-Rifford [20], Figalli-Rifford-Villani [21, 22], Kim-McCann [30], Loeper [34]), regularity
for Gaussian-to-Gaussian maps with near Euclidean cost (Warren [42]). In particular, some
of the ideas in Theorem 1.2 have appeared independently in De Philippis-Figalli [14].

The paper is structured as follows: Section 2 is the basic set up for our problem, together
with a quick review on optimal transportation for convex costs, while Section 3 contains some
geometrical properties of our special cost that will be needed at a later time. Section 4 is
the starting point in the proof of the Theorem 1.1: a comparison to the optimal transport
problem with quadratic cost to obtain a good initial control of the sections of u; Section 5
contains the main ingredient in proof of our first theorem. Next, Section 6 deals with a
comparison principle for Dirichlet solutions, that allows to show that the potential u is close
to a quadratic polynomial locally. Finally, in the last Section 7 we put together all these
results in order to complete the proof of Theorem 1.2.

Acknowledgements. The authors would like to thank the anonymous referee for valu-
able comments and suggestions which improved the presentation of the paper. M. d. M.
González and T. Nguyen gratefully acknowledge the support provided by the Mathematical
Sciences Research Institute at Berkeley and the Institute for Advanced Study at Princeton
where parts of this work were carried out. T. Nguyen also would like to thank Neil Trudinger
for fruitful discussions on regularity of optimal maps.

2 Set up

2.1 A review of convex costs

Here we review some standard background for equation (1.1) when the cost function c :
Rn → [0,∞) is strictly convex. The basic references for optimal transportation are the books
by Ambrosio-Gigli-Savaré [1] and Villani ([40], or its most recent book [41]). In this case,
it is well known that the optimal transport map exists and is unique. This was studied
independently by Caffarelli [9] and Gangbo-McCann [23] following the ideas introduced by
Brenier in [2] for the quadratic cost c(z) = 1

2 |z|
2. To prove the existence of such map, they

considered the dual functional of Kantorovich

I(φ, ψ) = −
∫

Ω
f(x)φ(x)dx−

∫
Ω′
g(y)ψ(y)dy (2.1)

for pairs (φ, ψ) of Lipschitz functions in the set

K :=
{

(φ, ψ) : −φ(x)− ψ(y) ≤ c(x− y) for all x ∈ Ω, y ∈ Ω′
}
.

Now, it is possible to show that a maximizing pair (u, v) for the Kantorovich functional exists
and is unique up to a constant. Furthermore if we let

Θu(x) := x−∇c∗(−∇u),
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then this is the solution of the transport problem, where we have defined c∗, the Legendre
transform of c, as

c∗(y) = sup
x∈Rn

{〈x, y〉 − c(x)} .

The function u : Ω → R is known as the potential, and from the proof we obtain a
representation of the form

u(x) = sup
y∈Ω′
{−c(x− y)− v(y)} .

This potential u is locally Lipschitz and satisfies a second order fully non-linear PDE of
Monge-Ampère type:

M [u] = f in Ω, (2.2)

where
M [u] := g(x−∇c∗(−∇u)) det

(
I +D2c∗(−∇u)D2u

)
.

Equation (2.2) can be understood in the a.e. sense (where the gradient is an L∞ func-
tion), in the sense of Alexandroff, or in the viscosity setting. The book of Gutiérrez [26] gives
a good introduction to these concepts in the quadratic case. Let us give here the necessary
definitions for general strictly convex cost function (cf. Gutiérrez-Nguyen [28]).

Let u be a function on Ω. We define the (global) c-subdifferential of u at x0 by

∂cu(x0) := {y ∈ Rn : u(x) ≥ u(x0)− c(x− y) + c(x0 − y) for all x ∈ Ω} (2.3)

and the (local) c-subdifferential of u at x0 as

∂loc
c u(x0) := {p ∈ Rn : u(x) ≥ u(x0)− c(x− p) + c(x0 − p) in some neighborhood of x0} .

(2.4)
For each u ∈ C(Ω) satisfying ∂cu(Ω) ⊂ Ω′, the generalized Monge-Ampère measure of u
associated to the cost function c and the weight g is the Borel measure defined by

wc(g, u)(E) =

∫
∂cu(E)

g(y)dy for all Borel sets E ⊂ Ω.

If, in addition u ∈ C2(Ω) and c∗ ∈ C2(Rn), then we can give an alternate representation

wc(g, u)(E) =

∫
E∩Γu

g(x−∇c∗(−∇u)) det
(
I +D2c∗(−∇u)D2u

)
dx (2.5)

for Γu = {x ∈ Ω : ∂cu(x) 6= ∅}.

On the other hand, a function u : Ω → R ∪ {+∞} is called c-convex in Ω if there exists
A ⊂ Rn × R such that

u(x) = sup
(y,a)∈A

{−c(x− y) + a}

for all x ∈ Ω.

With these two ingredients in mind, we say that a c-convex function u ∈ C(Ω) is a solution
of equation (2.2) in the sense of Alexandroff if ∂cu(Ω) ⊂ Ω′ and wc(g, u)(E) =

∫
E f for every

Borel set E ⊂ Ω. It can be shown that a c-convex function u with ∂cu(Ω) ⊂ Ω′ is a solution
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in the sense of Alexandroff if and only if it satisfies (2.2) a.e. in Ω and wc(g, u) is absolutely
continuous with respect to the Lebesgue measure.

However, one of the main difficulties in this problem is that the restriction to a subdomain
of an Alexandroff solution may not be an Alexandroff solution any longer which makes it
extremely difficult to study regularity of such solutions. This is so because the global c-
subdifferential (2.3) may not agree with the local one (2.4).

We need one more concept (see Ma-Trudinger-Wang [35]): a set E′ ⊂ Rn is c∗-convex
relative to a set E ⊂ Rn if for each x ∈ E, the image {∇xc(x− y) : y ∈ E′} is convex. They
proved that if u is a generalized solution of (2.2) in the L∞ sense, f > 0 in Ω, and Ω′ is
c∗-convex relative to Ω, then u is also a solution in the sense of Alexandroff.

2.2 “Almost” quadratic costs

In the following, we set up the proof for the first statement of Theorem 1.1. Let Ω be a
bounded domain. We will assume that Ω′ = λa + Ω∗ with Ω∗ is a bounded domain and a is
a unit vector. Thus, Ω′ is nothing but Ω∗ translated by a distance λ > 0 in the direction of
the vector a. We will rewrite the transport equation when λ ≥ λ0 for λ0 big enough in the
following proposition, which plays a key role in our approach. Before stating and proving the
result, we need to introduce some notations. As the matrix I+ (p−2)a⊗a is symmetric and
positive definite, there is an invertible matrix A such that I + (p − 2)a ⊗ a = ATA. Also if
E is a subset in Rn, we shall use A(E) to denote the set {Ax : x ∈ E}.

Proposition 2.1. There exists λ0 > 0 depending only on diam(Ω ∪ Ω∗) such that for all
λ ≥ λ0, we have: T (x) is the optimal map for the transport problem between (Ω, f) and
(λa + Ω∗, g) with cost c(z) = 1

p |z|
p if and only if T̃ (x) := A[T (A−1x) − λa] is the optimal

map for the transport problem between (A(Ω), f̃) and (A(Ω∗), g̃) for the convex cost

cλ(z) = 1
2 |z|

2 +
1

λ
E(z), (2.6)

where the term E is a smooth function satisfying the following

E(z) = O
(
|z|3
)
, ∇E(z) = O

(
|z|2
)
, D2E(z) = O (|z|) ,

E(Ax−Ay) = λ3
{

1
p |a−

x−y
λ |

p − 1
p + 〈a, x−yλ 〉 −

1
2 |
Ax−Ay

λ |2
}
∀x ∈ Ω, ∀y ∈ Ω∗.

(2.7)

Here we have set f̃(x) = f(A−1x) and g̃(y) = g(λa +A−1y).

Proof. We first observe that a Borel map y : Ω −→ λa+Ω∗ satisfies y#fdx = gdx if and only
if ỹ : A(Ω) −→ A(Ω∗) satisfies ỹ#f̃dx = g̃dx, where ỹ(x) := A[y(A−1x)− λa]. Moreover, by
the definition of f̃ , we have∫

Ω

1

p
|x− y(x)|p f(x)dx =

∫
Ω

1

p

∣∣x− λa−A−1ỹ(Ax)
∣∣p f̃(Ax)dx

=
λp−2

detA

∫
A(Ω)

λ2

p

∣∣∣∣a− A−1(x− ỹ(x))

λ

∣∣∣∣p f̃(x)dx. (2.8)

We now want to expand the integrand in the above integral. Note that
∣∣A−1(x− ỹ(x))

∣∣ ≤
c := diam(Ω ∪ Ω∗) and hence

∣∣∣A−1(x−ỹ(x))
λ

∣∣∣ ≤ c
λ << 1 for λ big enough. Let w = A−1(x−ỹ(x))

λ
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and consider the Taylor expansion of

h(w) =
1

p
|a− w|p

around the origin:

h(w) = 1
p − 〈a, w〉+ 1

2〈[I + (p− 2)a⊗ a]w,w〉+ F (w) = 1
p − 〈a, w〉+ 1

2〈A
TAw,w〉+ F (w),

where F (w) = O(|w|3). Define

cλ(z) := 1
2 |z|

2 + 1
λE(z)

with E(z) = λ3F (A
−1z
λ ). Then it follows from the above expansion that

λ2

p

∣∣∣∣a− A−1(x− ỹ(x))

λ

∣∣∣∣p = λ2h

(
A−1(x− ỹ(x))

λ

)
= λ2

p − λ〈a, A
−1x〉+ λ〈a, A−1ỹ(x)〉

+ 1
2 |x− ỹ(x)|2 + λ2F

(
A−1(x− ỹ(x))

λ

)
= λ2

p − λ〈a, A
−1x〉+ λ〈a, A−1ỹ(x)〉+ cλ(x− ỹ(x)).

Plug this into (2.8) and by using the fact ỹ#f̃dx = g̃dx, we obtain∫
Ω

1

p
|x− y(x)|p f(x)dx =

λp−2

detA

{∫
A(Ω)

(
λ2

p − λ〈a, A
−1x〉

)
f̃(x)dx

+λ

∫
A(Ω)
〈a, A−1ỹ(x)〉f̃(x)dx+

∫
A(Ω)

cλ(x− ỹ(x))f̃(x)dx

}

= λp−1

{∫
Ω

(
λ
p − 〈a, x〉

)
f(x)dx−

∫
λa+Ω∗

(λ− 〈a, y〉) g(y)dy

}
+
λp−2

detA

{∫
A(Ω)

cλ(x− ỹ(x))f̃(x)dx

}
.

Since the first term in the last expression is independent of y(x) and ỹ(x), the proposition is
proved. Notice that the last identity in (2.7) follows from the above definition of E and the
fact that F (w) = h(w)− 1

p + 〈a, w〉 − 1
2 |Aw|

2.

By Proposition 2.1, it is enough to prove regularity for the potential u in the optimal
transportation problem between A(Ω) and A(Ω∗) with respect to the convex cost function
c(z) := cλ(z) = 1

2 |z|
2 + 1

λE(z), where E is given by (2.7). Notice that c can be rewritten as

c(z) =
λ2

p
|A
−1z

λ
− a|p − λ2

p
+ 〈a, A

−1z

λ
〉.

Let us check the weak-(A.3) condition for this cost in dimension n = 2. For simplicity,

consider a = e1 = (1, 0). In that case, the matrix A is given by A =

(√
p− 1 0
0 1

)
. Then by

a straightforward but tedious calculation, we have∑
k,l,s,t

ckl(z)c11k(z)cstl(z)c
s2(z)ct2(z)−

∑
s,t

c11st(z) c
s2(z)ct2(z)

=
(p− 2)λp−2

(p− 1)3
(
Θ2 + z2

2

) p+6
2

{
(p− 1)2Θ6 + z6

2 − (p− 1)(p+ 3)z2
2Θ4 − (2p2 − 3)z4

2Θ2
}
,
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where Θ = Θ(z) := z1√
p−1
− λ. Thus for 1 < p < 2,∑
k,l,s,t

cklc11kcstlc
s2ct2 −

∑
s,t

c11st c
s2ct2 6≥ 0.

That is, the weak-(A.3) condition is not satisfied when 1 < p < 2 no matter how big λ is.
The above computation also shows that in dimension n = 2, if λ = dist(Ω,Ω′) is sufficiently
large, then the cost does satisfy weak-(A.3) when p > 2, but not (A.3). We stress that our
results are not restricted to the power costs 1

p |z|
p with p > 1. Indeed:

Remark 2.2. Theorems 1.1 and 1.2 are true for any convex cost that can be written as

c(z) =
1

2
|z|2

(
1 +

F (z)

λ

)
for some C2 function F and some constant λ big enough. Looking at expression (1.4), since the
quadratic cost is sharp for condition weak-(A.3), unless the perturbation term has a particular
structure (involving fourth derivatives of F ), this cost will not be weak-(A.3) in general.

Lemma 2.3. Let λ0 be as in Proposition 2.1. Then for all λ ≥ λ0 we have: Ω′ is c∗-convex
with respect to Ω if and only if A(Ω∗) is c∗λ-convex with respect to A(Ω).

Proof. Let x ∈ Ω, and consider the set

Ex := {∇xc(x− y) : y ∈ Ω′} = {∇xc(x− λa− y) : y ∈ Ω∗}.

From the proof of Proposition 2.1, we know that

c(x− λa− y) = λp

p − λ
p−1〈a, x− y〉+ λp−2

2 〈A
TA(x− y), x− y〉+ λpF

(x−y
λ

)
.

Therefore we obtain

Ex = −λp−1a + λp−2AT
({
A(x− y) + λ(AT )−1∇F (x−yλ ) : y ∈ Ω∗

})
.

On the other hand, if we let z = Ax and consider the set

KAx = Kz := {∇zcλ(z − w) : w ∈ A(Ω∗)},

then since cλ(z) = 1
2 |z|

2 + λ2F (A
−1z
λ ), we have

KAx =

{
z − w + λ(A−1)T∇F

(
A−1(z − w)

λ

)
: w ∈ A(Ω∗)

}
=
{
A(x− y) + λ(AT )−1∇F

(x−y
λ

)
: y ∈ Ω∗

}
.

It follows that
Ex = −λp−1a + λp−2AT (KAx) ,

and hence the set Ex is convex if and only if the set KAx is convex.

We will also need:
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Lemma 2.4. The potential u in the optimal transportation problem of Theorem 1.1 is a weak
solution in the Alexandroff sense, for λ big enough depending on the convexity of Ω′ and p.

Moreover, ∂loc
c u(Ω) ⊂ Ω′.

Proof. Since Ω′ is strongly convex by the assumption, so is Ω∗. Let ρ̃ be a C2 defining function
for Ω∗ such that (1.2) holds. Then ρ(x) := ρ̃(A−1x) is a defining function for A(Ω∗) satisfying

〈D2ρ(x)ξ, ξ〉 = 〈D2ρ̃(A−1x)A−1ξ, A−1ξ〉
≥ C〈A−1ξ, A−1ξ〉 = C〈(A−1)tA−1ξ, ξ〉 ≥ cp|ξ|2

for all x ∈ ∂A(Ω∗) and all ξ ∈ Rn. Thus A(Ω∗) is also a strongly convex domain. Next
we claim that A(Ω∗) is c∗λ-convex with respect to A(Ω) for λ big enough (depending on
the convexity of Ω′ and p). Indeed, ∇cλ(x − y) = x − y + 1

λO(|x− y|2) so the image

{∇xcλ(x− y) : y ∈ A(Ω∗)} is the same as x−Ux with Ux := {y− 1
λO(|x− y|2) : y ∈ A(Ω∗)}.

Let F (z) be the inverse of the map y 7−→ y− 1
λO(|x− y|2). Then ρ̄(z) := ρ(F (z)) is a defining

function for Ux. Since F (z) = z+ 1
λO(|x− z|2), DF (z) = I + 1

λO(|x− z|), D2Fk(z) = 1
λO(1)

and

〈D2ρ̄(z)ξ, ξ〉 = 〈D2ρ(F (z))DF (z)ξ,DF (z)ξ〉+
n∑
k=1

∂ρ

∂yk
(F (z))〈D2Fk(z)ξ, ξ〉,

we infer that for all λ > 0 sufficiently large

〈D2ρ̄(z)ξ, ξ〉 ≥ cp〈DF (z)tDF (z)ξ, ξ〉 − C

λ
|ξ|2 ≥

(
cp
2
− C

λ

)
|ξ|2 ≥ 0 ∀z ∈ ∂Ux, ∀ξ ∈ Rn.

Therefore the connected set Ux is convex and the claim is proved. Consequently, Ω′ is c∗-

convex with respect to Ω by Lemma 2.3. It then follows from [35] that ∂loc
c u(Ω) ⊂ Ω′ and u

is an Alexandroff solution.

Let us summarize our problem: u ∈ C(Ω̄) is a weak solution in the sense of Alexandroff
of the equation{

g(x−∇c∗(−∇u)) det
(
I +D2c∗(−∇u)D2u

)
= f in Ω,

∂cu(Ω) = Ω′,
(2.9)

for the cost c = cλ, when λ is big enough. This PDE has a very precise structure. Indeed,
consider the operator

Mλ[u] = g(x−∇c∗(−∇u)) det
(
I +D2c∗(−∇u)D2u

)
.

Because of the expression for the cost (2.6), it can be rewritten as

Mλ[u] = g(x+∇u+G(∇u)) det
(
I +D2u+H(∇u)(D2u)

)
, (2.10)

where G and H in particular satisfy

‖H(∇u)‖L∞ ≤
C

λ
‖∇u‖L∞(Ω) , ‖G(∇u)‖L∞ ≤

C

λ
‖∇u‖2L∞(Ω) . (2.11)

We will need one more important concept for a c-convex function u ∈ C(Ω): the notion
of sections. Let y0 ∈ ∂cu(Ω). Define ū(x) := u(x) + c(x− y0) and let x0 ∈ Ω be a minimum
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point of ū in Ω. We note that this choice of x0 is equivalent to assuming that y0 ∈ ∂cu(x0)
since

u(x) + c(x− y0) ≥ u(x0) + c(x0 − y0) for all x ∈ Ω.

In particular, if u is differentiable at x0 then y0 := x0−∇c∗(−∇u(x0)). For any µ > 0 define
the µ-section of u at x0 as

Sµ(u, x0, y0) := {x ∈ Ω : u(x) ≤ u(x0)− c(x− y0) + c(x0 − y0) + µ} . (2.12)

In order to simplify the notation, we simply write Sµ(u, x0) for the section, while the depen-
dence on y0 is made implicitly. With some abuse of notation, this section can be rewritten
as

Sµ(ū, x0) = {x ∈ Ω : ū(x) ≤ ū(x0) + µ} . (2.13)

We would like to study its geometrical properties when µ→ 0.

In our last remark here, we provide the main idea for the proof of the second statement of
Theorem 1.1. When p > 2, p→ 2, we have the following estimates for the cost c(z) = 1

p |z|
p.

For simplicity, assume that 1 < dist(Ω,Ω′) < C. Then

1
p |z|

2 ≤ c(z) ≤ 1
p |z|

2
[
1 + (p− 2) (log |z|)p−1

]
,

2
pzi ≤ ∇ic(z) ≤

2
pzi

[
1 + (p− 2) (log |z|)p−1

]
and

2
pδij + (p− 2)

[
|z|p−4 zizj

]
≤ D2

ijc(z) ≤ 2
pδij + (p− 2)

[
δij (log |z|)p−1 + |z|p−4 zizj

]
.

In particular, there exists p0 > 2, close to 2, and depending only on the distance between Ω
and Ω′, such that we are in the same situation as in the first statement of Theorem 1.1.

3 On the geometry of the equation

In this section we summarize some miscellaneous geometric properties that will be needed for
the proof of the main theorems, in particular, a precise understanding of the almost convexity
of the cost.

3.1 Geometric interpretation of the cost cλ - almost convexity

Let u ∈ C(Ω) be a c-convex function in Ω. Fix x0 ∈ Ω and y0 ∈ ∂cu(x0). Then

u(x) ≥ −c(x− y0) + c(x0 − y0) + u(x0) for all x ∈ Ω. (3.1)

If c = cq is precisely the quadratic cost, then (3.1) reduces to

u(x) ≥ −1
2 |x|

2 + 〈x− x0, y0〉+ 1
2 |x0|2 + u(x0) for all x ∈ Ω, (3.2)

i.e, ū(x) := u(x) + 1
2 |x|

2 is a convex function. If c = cλ as defined in (2.6), then (3.1) reads

u(x) ≥ −1

2
|x|2 + 〈x− x0, p0〉 −

1

2λ
〈D2E(ζ − y0)(x− x0), x− x0〉+

1

2
|x0|2 + u(x0), (3.3)

10



where ζ belongs to the segment [x, x0] and p0 := y0− 1
λ∇E(x0− y0). Essentially, it is almost

quadratic as in (3.2) plus a small perturbation that goes to zero as λ→∞.

Next, we fix x0 ∈ Ω, y0 ∈ ∂cu(x0). Take any other pair x̃ ∈ Ω, ỹ ∈ ∂cu(x̃). Then there is
a supporting cost that touches u from below at x̃, and it is written as

z = u(x̃)− c(x− ỹ) + c(x̃− ỹ).

Now we let
ū(x) := u(x) + c(x− y0). (3.4)

The supporting cost at x̃ for ū is given by

z = ū(x̃)− c(x− ỹ) + c(x̃− ỹ)− c(x̃− y0) + c(x− y0)

= ū(x̃) + 〈p̃, x− x̃〉+ 〈Q̃(x− x̃), x− x̃〉
(3.5)

where p̃ := ∇c(x̃−y0)−∇c(x̃− ỹ) and Q̃ = 1
2

[
D2c(ξ − y0)−D2c(ξ − ỹ)

]
for some ξ ∈ [x, x̃].

Since our cost is of the form c(z) = 1
2 |z|

2 + 1
λE(z), an estimate for Q̃ is

‖Q̃‖ =
1

2λ

∥∥D2E(ξ − y0)−D2E(ξ − ỹ)
∥∥ ≤ C

λ
|ỹ − y0| . (3.6)

On the other hand, by its construction

p̃ = ∇c(x̃− y0)−∇c(x̃− ỹ) = ỹ − y0 +
1

λ
[∇E(x̃− y0)−∇E(x̃− ỹ)] ,

i.e.,
p̃ = (ỹ − y0)

(
1 +O

(
C
λ

))
, (3.7)

where the constants in both (3.6) and (3.7) depend on C = C(y0, ỹ).
If the cost is quadratic, then Q ≡ 0, and the supporting cost for ū is just a hyperplane;

this is the standard construction for convex functions. We have proved that:

Lemma 3.1. Let u ∈ C(Ω) be c-convex and y0 ∈ ∂cu(x0) for some x0 ∈ Ω. Then the function
ū defined by (3.4) is almost a convex function, precisely, at any point x̃ ∈ Ω, there exists (at
least) one supporting almost-hyperplane of the form

z = ū(x̃) + 〈p̃, x− x̃〉+ 〈Q̃(x− x̃), x− x̃〉,

where p̃ and Q̃ are given by (3.7) and (3.6), respectively.

In the light of the previous arguments, it is expected that a section S of u, as defined in
(2.12), is not going to be too far from its convex hull. For the rest of the paper, we will be
using the notation [A] to denote the convex hull of the set A.

Proposition 3.2. Fix the cost c = cλ. Suppose that u ∈ C(Ω) is c-convex satisfying ∂cu(Ω) ⊂
Ω′. Let x1 ∈ Ω, y1 ∈ ∂cu(x1), µ > 0, and consider the section S := Sµ(u, x1, y1) as defined
in (2.12). Assume that S b Ω. Then there exists a constant C > 0 such that

dist (x, ∂[S]) ≤ C

λ
for all x ∈ ∂S. (3.8)

The constant C depends on Ω and ∂cu(Ω), but not on λ.
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Proof. Let x0 ∈ ∂S ⊂ Ω, and y0 ∈ ∂cu(x0). Then we have for all x in Ω,

u(x) ≥ u(x0)− c(x− y0) + c(x0 − y0)

= u(x1)− c(x0 − y1) + c(x1 − y1) + µ− c(x− y0) + c(x0 − y0).

Thus it follows from the definition of S that for all x ∈ S,

0 ≥ c(x− y1)− c(x0 − y1) + c(x0 − y0)− c(x− y0)

= 〈∇c(x0 − y1)−∇c(x0 − y0), x− x0〉+ 1
2〈[D

2c(ζ − y1)−D2c(ζ − y0)](x− x0), x− x0〉

for some ζ in the segment joining x to x0. Or

0 ≥ 〈p, x− x0〉+ 1
2〈Q(x− x0), x− x0〉 for all x ∈ S,

where p = ∇c(x0 − y1)−∇c(x0 − y0) and Q = D2c(ζ − y1)−D2c(ζ − y0). Since our cost is
of the form c(z) = 1

2 |z|
2 + 1

λE(z), an estimate for Q is

‖Q‖ =
1

λ

∥∥D2E(ζ − y1)−D2E(ζ − y0)
∥∥ ≤ C

λ
|y0 − y1| .

Therefore, S is the intersection of almost-halfplanes,

0 ≥ 〈p, x− x0〉+ 1
2〈Q(x− x0), x− x0〉.

The section S would be convex if Q ≡ 0 for all x0 ∈ ∂S. In our case, these supporting func-
tions are planes plus a small quadratic perturbation; we would like to measure the distance
of how far is S from [S]. If S is not convex, for x0 ∈ ∂S, we can find x ∈ S such that x is
outside the half plane

Hx0 : 0 ≥ 〈 p
|p|
, x− x0〉.

Then if we let d = dist(x,Hx0) then d = 〈 p|p| , x− x0〉 > 0. We also have

〈p, x− x0〉 ≤ −1
2〈Q(x− x0), x− x0〉.

Hence by using the estimate of Q,

d ≤ C

λ

|y0 − y1|
|p|

|x− x0|2 ≤
C

λ

|y0 − y1|
|p|

.

On the other hand, by its construction

p = ∇c(x0 − y1)−∇c(x0 − y0) = y0 − y1 +
1

λ
[∇E(x0 − y1)−∇E(x0 − y0)] .

Thus, (1 − C
λ ) |y0 − y1| ≤ |p| ≤ (1 + C

λ ) |y0 − y1| and by combining with the above estimate
we obtain d ≤ C

λ . We have in fact shown for each x0 ∈ ∂S,

dist(x,Hx0) ≤ C

λ
for all x ∈ S.

It follows immediately from this that

dist (x0, ∂[S]) ≤ C

λ
.
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3.2 On the local c-subdifferential

In Lemma 3.1 we have given a characterization of the global c-subdifferentials of u. It is well
known that this concept may be different from the local c-subdifferential, and this is one of
the main difficulties in the study of the regularity for optimal transportation. More precisely,
the restriction of an Alexandroff solution of the transport problem to a smaller domain may
not be an Alexandroff solution any longer because extra mass may appear (global6=local). We
give here the first attempt to understand the behavior of the subdifferential under restriction
to a smaller domain. In particular, we show that the characterization of Lemma 3.1 on
“almost”-convexity is still true for (local) c-subgradients.

We have defined in Section 2 the (global) c-subdifferential of u at x̃ by

∂cu(x̃) := {ỹ ∈ Rn : u(x) ≥ u(x̃)− c(x− ỹ) + c(x̃− ỹ) for all x ∈ Ω}

and the (local) c-subdifferential of u at x̃ as

∂loc
c u(x̃) := {p ∈ Rn : u(x) ≥ u(x̃)− c(x− p) + c(x̃− p) in some neighborhood of x̃} .

More generally for an open set V ⊂ Ω and x̃ ∈ V , we write

∂c(u, V )(x̃) := {q ∈ Rn : u(x) ≥ u(x̃)− c(x− q) + c(x̃− q) for all x ∈ V } .

It is clear that ∂loc
c u(x̃) ⊃ ∂cu(x̃), but in general they are not equal.

We will also need to work with the following set of subgradients and c-subgradients. For
x̃ ∈ Ω, define

∂−u(x̃) := {p ∈ Rn : u(x) ≥ u(x̃) + 〈p, x− x̃〉+ o(|x− x̃|) for x near x̃} ,
∂−c u(x̃) := {ỹ ∈ Rn : u(x) ≥ u(x̃)− c(x− ỹ) + c(x̃− ỹ) + o(|x− x̃|) for x near x̃} .

It follows that
∂−u(x̃) = −∇c

(
x̃− ∂−c u(x̃)

)
. (3.9)

The above mappings can be extended to boundary points as follows. Let x̃ ∈ ∂Ω, we denote
∂−u(x̃) := {p ∈ Rn : p = limk→∞ pk}, where pk ∈ ∂−u(xk) and {xk} is a sequence of interior
points of Ω converging to x̃, and let ∂−c u(x̃) be given by (3.9).

First we present two well known lemmas that relate the c-subdifferentials of two functions:

Lemma 3.3. Let u, v ∈ C(Ω) and E ⊂ Ω be an open set such that{
u = v on ∂E,

u ≥ v in E.

Then ∂c(u,E)(E) ⊂ ∂c(v,E)(E). Consequently, ∂cu(E) ⊂ ∂loc
c v(E).

Proof. This result can be found in [28, Lemma 5.1] but we include the proof here for conve-
nience. Let p ∈ ∂c(u,E)(E). Then there exists x0 ∈ E such that u(x) ≥ u(x0) − c(x − p) +
c(x0 − p) for all x ∈ E. Let

a := sup
x∈E
{u(x0)− c(x− p) + c(x0 − p)− v(x)} .
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Since u(x0) ≥ v(x0), we get a ≥ 0. Also there is x1 ∈ Ē such that a = u(x0) − c(x1 − p) +
c(x0 − p)− v(x1). Thus v(x) ≥ v(x1)− c(x− p) + c(x1 − p) for all x ∈ E. Then two things
can happen:

If a > 0, then since u(x1) ≥ a+v(x1) we must have x1 6∈ ∂E and hence, p ∈ ∂c(v,E)(x1) ⊂
∂c(v,E)(E). On the other hand if a = 0, then we already have that v(x) ≥ v(x0) − c(x −
p) + c(x0 − p) in E which in turn gives p ∈ ∂c(v,E)(x0) ⊂ ∂c(v,E)(E).

For the rest of the paper, Nν(E) will denote the ν-neighborhood of the set E, i.e.,

Nν(E) := {x ∈ Rn : dist(x,E) ≤ ν}.

Lemma 3.4. Let u, v ∈ C(BR(x̄)) and suppose that u is cλ-convex and v is cq-convex. There
exists a universal constant C > 0 such that if ‖u− v‖L∞(BR(x̄)) ≤ ε, then

∂cu(BR− ε
δ
(x̄)) ⊂ N(

4δ+C
λ

) {∂cqv(BR(x̄))
}

for all δ >
ε

R
. (3.10)

Consequently,

∂loc
c u(BR− ε

δ
(x̄)) ⊂ N(

4δ+C
λ

) {[∂cqv(BR(x̄))]
}
, (3.11)

where [∂cqv(BR(x̄))] is the convex hull of ∂cqv(BR(x̄)).

Proof. We note that a version of this result for quadratic cost appears in [11] (Lemma 2 of
part 4). Let p ∈ ∂cu(BR− ε

δ
(x̄)), then there exists x0 ∈ BR− ε

δ
(x̄) such that

u(x) ≥ u(x0)− c(x− p) + c(x0 − p) for all x ∈ BR := BR(x̄).

Consider v∗(x) := v(x) + ε+ 2δ
R (|x− x̄|2 −R2), then v∗|∂BR ≥ u and v∗|BR− ε

δ
(x̄) ≤ u. Define

a := sup
x∈B̄R

{u(x0)− c(x− p) + c(x0 − p)− v∗(x)} .

Since u(x0) ≥ v∗(x0), we get a ≥ 0. On the other hand, there exists x1 ∈ BR such that
a = u(x0)−c(x1−p)+c(x0−p)−v∗(x1), and thus v∗(x) ≥ v∗(x1)−c(x−p)+c(x1−p) for all
x ∈ BR. Moreover, u(x1) ≥ u(x0)−c(x1−p)+c(x0−p) = v∗(x1)+a. Therefore, if a > 0, then
x1 does not belong to the boundary of BR, and we conclude p ∈ ∂cv∗(x1) ⊂ ∂cv∗(BR). If, on
the contrary, a = 0, then v∗(x) ≥ v∗(x0)−c(x−p)+c(x0−p) for all x ∈ BR, so automatically
p ∈ ∂cv∗(x0) ⊂ ∂cv∗(BR). Thus we have shown that ∂cu(BR− ε

δ
(x̄)) ⊂ ∂cv∗(BR).

Next suppose y∗ ∈ ∂cv∗(x0), x0 ∈ BR. Then by (3.9), y∗ = x0−∇c∗(x0−p∗) for some p∗ ∈
∂−v∗(x0). Define p := p∗− 4δ

R (x0− x̄) and we claim that x0 +p ∈ ∂v̄(x0), where v̄ := v+ 1
2 |x|

2

is a convex function and ∂v̄(x0) := {q : v̄(x) ≥ v̄(x0) + 〈q, x− x0〉 ∀x ∈ BR}. To see this, let
us write p∗ =

∑N
i=1 tip

∗
i where p∗i are extremal points of ∂−v∗(x0) and 0 ≤ ti ≤ 1 satisfying∑N

i=1 ti = 1. For each i, by a result in [7] we can find a sequence {xk} of differentiable
points of v such that xk → x0 and p∗i = limk→∞∇v∗(xk) = limk→∞∇v(xk) + 4δ

R (x0 − x̄).

This yields x0 + p∗i − 4δ
R (x0 − x̄) = limk→∞∇v̄(xk) ∈ ∂v̄(x0) for each i. We then obtain the

claim since x0 + p =
∑N

i=1 ti
[
x0 + p∗i − 4δ

R (x0 − x̄)
]

and ∂v̄(x0) is a convex set. Observe that
y∗ = x0 + p∗+ 1

λ∇E(x0− y∗) by the definitions of p∗ and cλ. The relation (3.10) now follows
from the claim, the fact ∂v̄(x0) = ∂cqv(x0) and

|y∗ − [x0 + p]| =
∣∣∣x0 + p∗ +

1

λ
∇E(x0 − y∗)−

[
x0 + p∗ − 4δ

R
(x0 − x̄)

]∣∣∣ ≤ 4δ +
C

λ
.

14



Too see (3.11), let y ∈ ∂loc
c u(x) for x ∈ BR− ε

δ
(x̄). Then there exists p ∈ ∂−u(x) such that

y = x−∇c∗(−p). We write p =
∑N

i=1 tipi as a finite convex combination of extremal points
pi of ∂−u(x0). Since u is c-convex, yi := x−∇c∗(−pi) ∈ ∂cu(x) for all i which implies that

N∑
i=1

tiyi ∈ N(4δ+C
λ

) {[∂cqv(BR(x̄))]
}

by (3.10). This yields (3.11) because

∣∣y − N∑
i=1

tiyi
∣∣ =

∣∣∣x+ p+
1

λ
∇E(x− y)−

N∑
i=1

ti
[
x+ pi +

1

λ
∇E(x− yi)

]∣∣∣ ≤ C

λ
.

Next, we present a characterization of subgradients. Although the so called “double
mountain above sliding mountain” lemma is not true anymore without assuming the (A.3w)
condition, we still have a useful characterization using the asymptotic behavior of the cost
c := cλ, that generalizes Lemma 3.1.

Proposition 3.5. Suppose that u ∈ C(Ω) is a c-convex function in Ω. Then for x̃ ∈ Ω,
p̃ ∈ ∂−u(x̃), we have

u(x) + 1
2 |x|

2 ≥ u(x̃) + 1
2 |x̃|

2 + 〈p̃+ x̃,−x̃〉+
1

λ
O(|x− x̃|2) for all x ∈ Ω.

Consequently if ỹ ∈ ∂−c u(x̃) with x̃ ∈ Ω̄, then

u(x) ≥ u(x̃)− c(x− ỹ) + c(x̃− ỹ) +
1

λ
O(|x− x̃|2) for all x ∈ Ω.

Proof. First assume that x̃ ∈ Ω. By construction, ∂−u(x̃) is a closed convex set and hence we
can write p̃ as a convex combination of finite extremal points, that is, p̃ =

∑N
i=1 tiqi, where

ti ≥ 0,
∑N

i=1 ti = 1 and qi are extremal points in ∂−u(x̃).
For each i, let ȳi ∈ Rn be such that qi = −∇c(x̃− ȳi). Since qi = limm→∞∇u(zm) for a

sequence zm → x̃ which are points of differentiability of u, it follows that ȳi ∈ ∂cu(x̃). Then,
for each ȳi, using the fact c(z) = 1

2 |z|
2 + 1

λE(z) given by (2.6), we have that

u(x) + 1
2 |x|

2 ≥ u(x̃) + 1
2 |x̃|

2 + 〈ȳi, x− x̃〉+
1

λ
[E(x̃− ȳi)− E(x− ȳi)] for all x ∈ Ω,

and consequently, as ȳi = qi + x̃+ 1
λ∇E(x̃− ȳi) by our choice of ȳi,

u(x) + 1
2 |x|

2

≥ u(x̃) + 1
2 |x̃|

2 + 〈qi + x̃, x− x̃〉 − 1

λ

[
E(x− ȳi)− E(x̃− ȳi)− 〈∇E(x̃− ȳi), x− x̃〉

]
= u(x̃) + 1

2 |x̃|
2 + 〈qi + x̃, x− x̃〉+

1

λ
O(|x− x̃|2) for all x ∈ Ω.

Therefore if we take the convex combination with respect to i, we obtain

u(x) + 1
2 |x|

2 ≥ u(x̃) + 1
2 |x̃|

2 + 〈p̃+ x̃, x− x̃〉+
1

λ
O(|x− x̃|2) for all x ∈ Ω. (3.12)
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Now assume that x̃ ∈ ∂Ω. Then by the definition of subdifferential at boundary points,
we have p̃ = limk→∞ pk where pk ∈ ∂−u(xk) and {xk} is a sequence of interior points of Ω
converging to x̃. The above proof shows that (3.12) holds if x̃ and p̃ are replaced by xk and
pk, and therefore by letting k tend to infinity we see that (3.12) is still true when x̃ ∈ ∂Ω.
Thus the first statement of the lemma follows.

To prove the second statement, let p̃ := −∇c(x̃ − ỹ). Then we obtain (3.12) since p̃ ∈
∂−u(x̃) by the assumption ỹ ∈ ∂−c u(x̃). It follows from (3.12) and by a similar argument to
the one used above that

u(x) ≥ u(x̃)− c(x− ỹ) + c(x̃− ỹ) +
1

λ
O(|x− x̃|2) for all x ∈ Ω.

4 Initial step

This is the first ingredient in the proof of Theorem 1.1. Let u ∈ C(Ω) be a solution of the
optimal transport problem between Ω and Ω′, i.e.,{

Mλ[u] = f in Ω,
∂cλu(Ω) = Ω′,

(4.1)

where Mλ is defined in (2.10) and satisfies (2.11), with the hypothesis stated in Theorem 1.1.
The main idea is to compare the solution u of the optimal transport equation (2.9) to w,

where w is the solution of the optimal transport problem between Ω and Ω′ with quadratic
cost cq(z) = 1

2 |z|
2, and Ω′ convex. Note that w is unique up to an additive constant, strictly

convex and smooth (see the article by Caffarelli [7], further regularity is contained in [8],
[10]). The equation satisfied by w is the following{

g (x+∇w) det
(
I +D2w

)
= f in Ω,

∂cqw(Ω) = Ω′.
(4.2)

4.1 An approximation result

We prove a comparison result between the solution u of (4.1) to the solution w of (4.2):

Proposition 4.1. For any ε0 > 0, there exists λ0 > 0 depending only on ε0, n, Λ1, Λ2,
Ω and Ω′ such that if λ ≥ λ0, f and g satisfy (1.3), w ∈ C(Ω) is a solution of (4.2) and
u ∈ C(Ω) is a solution of the transport equation (4.1) with u(x0) = w(x0) for some x0 ∈ Ω,
then we have

‖u− w‖L∞(Ω) ≤ ε0.

The proof of this proposition is a simple consequence of the following strengthened result
in which the constant λ0 is independent of the domains Ω and Ω′, as long as they lie between
two universal balls.

Proposition 4.2. Let Ω and Ω′ be two closed subsets of Rn satisfying B1(0) ⊂ Ω ⊂ Bn(0)
and B1(0) ⊂ Ω′ ⊂ Bn(0). Let f and g satisfy (1.3).

For any ε0 > 0, there exists λ0 > 0 depending only on ε0, n, Λ1 and Λ2 such that if
λ ≥ λ0, w ∈ C(Ω) is a solution of (4.2) and u ∈ C(Ω) is a solution of the transport equation
(4.1) with u(x0) = w(x0) for some x0 ∈ Ω, then we have

‖u− w‖L∞(B1(0)) ≤ ε0. (4.3)
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Proof. By contradiction, assume that there exist some ε0, {λk} ⊂ R, {Ωk}, {Ω′k}, {fk},
{gk}, {wk}, {uk} and {xk} with xk ∈ Ωk such that λk → ∞, B1(0) ⊂ Ωk ⊂ Bn(0) closed,
B1(0) ⊂ Ω′k ⊂ Bn(0) closed, fk and gk satisfy (1.3) on its domains Ωk and Ω′k, wk ∈ C(Ωk) is
a solution of {

gk (x+∇wk) det
(
I +D2wk

)
= fk in Ωk,

∂cqwk(Ωk) = Ω′k,

and uk ∈ C(Ωk) is a solution of{
gk (x−∇c∗(−∇uk)) det

(
I +D2c∗k(−∇uk)D2uk

)
= fk in Ωk,

∂ckuk(Ωk) = Ω′k,

where ck = cλk , uk(xk) = wk(xk) and

‖uk − wk‖L∞(B1(0)) ≥ ε0 for all k ≥ 1. (4.4)

By selecting a subsequence, we know from [36, Theorem 1.8.4] that {Ωk} converges to Ω
and {Ω′k} converges to Ω′ in the Hausdorff distance topology. Moreover, Ω and Ω′ are closed
sets satisfying B1(0) ⊂ Ω ⊂ Bn(0) and B1(0) ⊂ Ω′ ⊂ Bn(0). It also follows that xk → x̄ for
some x̄ ∈ Ω.

Note that ‖uk − wk‖L∞(B1(0)) = ‖[uk − uk(xk)]− [wk − wk(xk)]‖L∞(B1(0)). By replacing
uk and wk by uk − uk(xk) and wk − wk(xk) respectively, we can assume in addition that
uk(xk) = wk(xk) = 0. Next for convenience, we extend uk as a ck-convex function on Bn(0).
Let us describe precisely this natural extension. Define the Kantorovich functional as in (2.1),

Ik(φ, ψ) := −
∫

Ωk

fk(x)φ(x)dx−
∫

Ω′k

gk(y)ψ(y)dy,

on the set

Kck :=
{

(φ, ψ) ∈ Lip(Ωk)× Lip(Ω′k) : −φ(x)− ψ(y) ≤ ck(x− y) for all x ∈ Ωk, y ∈ Ω′k
}
.

Let vk be the ck-transform of uk, that is,

vk(y) := sup
x∈Ωk

{−ck(x− y)− uk(x)} for y ∈ Rn. (4.5)

We know that (uk, vk) is a maximizer of the functional Ik(φ, ψ) over Kck , and furthermore

uk(x) = sup
y∈Ω′k

{−ck(x− y)− vk(y)} for all x ∈ Ωk.

Now let us extend uk by defining

u∗k(x) := sup
y∈Bn(0)

{−ck(x− y)− vk(y)} for x ∈ Bn(0) ⊃ Ωk. (4.6)

Since Ω′k ⊂ Bn(0), it is clear that u∗k(x) ≥ uk(x) for all x ∈ Ωk. On the other hand,
supy∈Bn(0) {−ck(x− y)− vk(y)} ≤ uk(x) for x ∈ Ωk by (4.5). Thus, u∗k|Ωk ≡ uk. In particu-
lar, we have

sup
x∈Bn(0)

{−ck(x− y)− u∗k(x)} ≥ sup
x∈Ωk

{−ck(x− y)− u∗k(x)}

= sup
x∈Ωk

{−ck(x− y)− uk(x)} = vk(y).
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Also, for y ∈ Bn(0), it follows from the definition of u∗k in (4.6) that u∗k(x) ≥ −ck(x−y)−vk(y)
for all x ∈ Bn(0) giving vk(y) ≥ supx∈Bn(0) {−ck(x− y)− u∗k(x)}. Hence we obtain

vk(y) = sup
x∈Bn(0)

{−ck(x− y)− u∗k(x)} ∀y ∈ Bn(0).

From now on, we identify uk with its extension u∗k given by (4.6). Likewise, we also identify
the function wk with its extension on Bn(0). Let us check that {uk} is equicontinuous on
Bn(0): fix x1, x2 ∈ Bn(0). By the extension of uk, there exists yk ∈ ∂ckuk(x2) such that
yk ∈ Bn(0). Then by definition,

uk(x)− uk(y) ≥ −ck(x− yk) + ck(y − yk).

Because ‖yk‖ ≤ n, we get

|ck(x1 − yk)− ck(x2 − yk)| ≤ C |x1 − x2|

for some constant C independent of k. Thus uk(x1)− uk(x2) ≥ −C|x1 − x2|. It then follows
by interchanging x1 and x2 that

|uk(x1)− uk(x2)| ≤ C |x1 − x2| ,

and we have proved that {uk} is equicontinuous on Bn(0). Moreover {uk} is uniformly
bounded, because we have just seen that |uk(x)| = |uk(x)−uk(xk)| ≤ C|x−xk| ≤ C. There-
fore by Arzela-Ascoli theorem, we have that a subsequence, still denoted by uk, converges
uniformly on Bn(0) to some u∞ ∈ C(Bn(0)). Similarly, there exists a subsequence {wk}
converging uniformly on Bn(0) to some w∞ ∈ C(Bn(0)). These yield u∞(x̄) = w∞(x̄) for
some x̄ as a consequence.

Notice that fk and gk can be viewed as functions defined on Bn(0) by extending them
to be zero outside Ωk and Ω′k respectively. Then by extracting subsequences, we can assume

that fk
∗
⇀ f weakly∗ in L∞(Bn(0)) and gk

∗
⇀ g weakly∗ in L∞(Bn(0)). Let µk := fk(x)dx,

µ := f(x)dx, νk := gk(y)dy and ν := g(y)dy.

Claim 1: B1(0) ⊂ suppµ ⊂ Ω and B1(0) ⊂ supp ν ⊂ Ω′. Indeed since fk
∗
⇀ f weakly∗

in L∞(Bn(0)), we get {µk} converges weakly* to µ as measures, i.e.,

lim
k→∞

∫
Bn(0)

ϕ(x) dµk =

∫
Bn(0)

ϕ(x) dµ for all ϕ ∈ Cc(Bn(0)).

Now let x ∈ suppµ. Then by following the proof of [1, Proposition 5.1.8] where probability
measures are considered, we see that there exists xk ∈ suppµk = Ωk such that xk → x.
But then we must have x ∈ Ω since {Ωk} converges to Ω in the Hausdorff topology. Thus
suppµ ⊂ Ω. Next if x0 ∈ B1(0), then Λ1 ≤ 1

|B(x0,r)|
∫
B(x0,r)

f dx ≤ Λ2 for all r > 0 sufficiently

small because Λ1 ≤ 1
|B(x0,r)|

∫
B(x0,r)

fk dx ≤ Λ2 and

1

|B(x0, r)|

∫
B(x0,r)

fk dx −→
1

|B(x0, r)|

∫
B(x0,r)

f dx as k →∞.

Hence by letting r → 0+, we obtain Λ1 ≤ f(x0) ≤ Λ2 for a.e. x0 ∈ B1(0). This implies
B̄1(0) ⊂ suppµ and we have shown that B1(0) ⊂ suppµ ⊂ Ω. Thus Claim 1 is proved since
the case for ν is completely similar.
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We would like to show next that u∞ and w∞ are both solutions of (4.2). Let us prove
this only for u∞ as the case of w∞ is much simpler and follows in a similar way. Recall that
vk(y) = supx∈Bn(0) {−ck(x− y)− uk(x)} for all y ∈ Bn(0), and let

v∞(y) := sup
x∈Bn(0)

{−cq(x− y)− u∞(x)} for y ∈ Bn(0),

where cq denotes the quadratic cost. Then since ck(z) = cq(z) + Ek(z)
λk

, it is easy to see that

‖vk − v∞‖L∞(Bn(0)) ≤ ‖uk − u∞‖L∞(Bn(0)) +
C

λk

yielding vk → v∞ uniformly in Bn(0).
Claim 2: We have

lim
k→∞

∫
Ωk

fkuk =

∫
Ω
fu∞, lim

k→∞

∫
Ω′k

gkvk =

∫
Ω′
gv∞ and

∫
Ω
f =

∫
Ω′
g.

To see this, observe that
∫

Ω u∞f =
∫

suppµ u∞f =
∫
Bn(0) u∞f since suppµ ⊂ Ω by Claim 1.

Therefore,∫
Ωk

fkuk −
∫

Ω
fu∞ =

∫
Ωk

fk
(
uk − u∞

)
+
[ ∫

Ωk

fku∞ −
∫

Ω
fu∞

]
=

∫
Ωk

fk
(
uk − u∞

)
+
[ ∫

Bn(0)
fku∞ −

∫
Bn(0)

fu∞

]
−→ 0

giving limk→∞
∫

Ωk
fkuk =

∫
Ω fu∞ as desired. Similarly, limk→∞

∫
Ω′k
gkvk =

∫
Ω′ gv∞. Also∫

Ω
f =

∫
Bn(0)

f = lim
k→∞

∫
Bn(0)

fk = lim
k→∞

∫
Bn(0)

gk =

∫
Bn(0)

g =

∫
Ω′
g,

and the claim follows.
We are ready to show that u∞ is a solution of (4.2). Let I(φ, ψ) be the Kantorovich

functional given by (2.1), and define

Kcq :=
{

(φ, ψ) ∈ Lip(Ω)× Lip(Ω′) : −φ(x)− ψ(y) ≤ cq(x− y) for all x ∈ Ω, y ∈ Ω′
}
.

Let (φ0, ψ0) ∈ Kcq be a maximizer of the functional I(φ, ψ) over Kcq and recall that (uk, vk)
is a maximizer of the functional Ik(φ, ψ) over Kck . As done for (uk, vk), we can extend φ0

and ψ0 as Lipschitz functions on Bn(0) satisfying ψ0(y) = supx∈Bn(0) {−cq(x− y)− φ0(x)}
for all y ∈ Bn(0). Using the facts (uk + C

λk
, vk) ∈ Kcq and (φ0 + C

λk
, ψ0) ∈ Kck , we obtain

Ik(φ0 + C
λk
, ψ0)− I(φ0, ψ0) ≤ Ik(uk, vk)− I(φ0, ψ0) ≤ Ik(uk, vk)− I(uk + C

λk
, vk) giving

− C

λk

∫
Ωk

fk +

∫
Ω
fφ0 −

∫
Ωk

fkφ0 +

∫
Ω
gψ0 −

∫
Ω′k

gkψ0

≤ Ik(uk, vk)− I(φ0, ψ0) ≤ C

λk

∫
Ω
f +

∫
Ω
fuk −

∫
Ωk

fkuk +

∫
Ω′
gvk −

∫
Ω′k

gkvk for all k.
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Hence it follows from Claim 2 that limk→∞ Ik(uk, vk) = I(φ0, ψ0). Consequently,

I(u∞, v∞) = −
∫

Ω
f(x)u∞(x)dx−

∫
Ω′
g(y)v∞(y)dy

= lim
k→∞

{
−
∫

Ωk

fk(x)uk(x)dx−
∫

Ω′k

gk(y)vk(y)dy
}

= lim
k→∞

Ik(uk, vk) = I(φ0, ψ0) = sup
(φ,ψ)∈Kcq

I(φ, ψ),

where we have again used Claim 2 to obtain the second equality. Since
∫

Ω f =
∫

Ω′ g, we infer
that u∞ is a solution of (4.2) as desired. Similarly, w∞ is also a solution of (4.2). Thus
u∞ ≡ w∞ on suppµ as u∞(x̄) = w∞(x̄) and (4.2) has a unique solution modulo additive
constants on the support of µ = f(x)dx. This together with the fact B1(0) ⊂ suppµ yields
limk→∞ ‖uk − wk‖L∞(B1(0)) = ‖u∞ − w∞‖L∞(B1(0)) = 0, a contradiction to (4.4).

Remark 4.3. If we assume in addition that Ω is convex in Proposition 4.2, then the con-
clusion (4.3) can be strengthened by ‖u− w‖L∞(Ω) ≤ ε0. The reason is that in this case we
actually have suppµ = Ω instead of suppµ ⊂ Ω. Indeed, let x ∈ Int(Ω) and B(x, r) ⊂ Ω.
Then B(x, r) ⊂ B r

4
(Ωk) := ∪y∈ΩkB(y, r4) for all k sufficiently large because Ω ⊂ B r

4
(Ωk) from

the definition of the Hausdorff distance. Since Ωk are convex, it is clear that dist(x, ∂Ωk) =
dist(x, ∂B r

4
(Ωk))− r

4 ≥ dist(x, ∂Ω)− r
4 ≥ r − r

4 = 3r
4 yielding in particular B(x, r2) ⊂ Ωk for

all k sufficiently large. Consequently,

µ(B(x, r)) = lim
k→∞

µk(B(x, r)) ≥ Λ1 lim
k→∞

|B(x, r) ∩ Ωk| = Λ1|B(x, r)|

implying x ∈ suppµ, i.e., Int(Ω) ⊂ suppµ. This and the Claim 1 above give suppµ = Ω.

4.2 Some initial estimates

With the information given by Proposition 4.1, we can start localizing the problem. Indeed,
we will show that points far from the boundary of Ω are mapped (uniformly) to points far
from the boundary of Ω′. We remind the reader that we are using the notation

Ωδ0 = {x ∈ Ω : dist(x, ∂Ω) > δ0}.

Proposition 4.4. Given any δ0 > 0, there exists λ0 > 0 depending only on δ0, n, Λ1, Λ2, Ω
and Ω′ such that for all λ ≥ λ0 and u ∈ C(Ω) is a solution of (4.1), we have

dist
(
∂cu(Ωδ0), ∂Ω′

)
≥ Cδγ0 −

C

λ
, (4.7)

for some universal constants C, γ > 0. Consequently,

dist (∂cu(Ωδ0), ∂cu(∂Ω)) ≥ Cδγ0 −
C

λ
. (4.8)

Proof. For any ε > 0, Proposition 4.1 gives that ‖u− [w + u(x0)− w(x0)]‖L∞(Ω) < ε for all

λ ≥ λ0 = λ0(ε, n,Λ1,Λ2,Ω,Ω
′), where x0 ∈ Ω and w ∈ C(Ω) is a solution of (4.2). By working

with w̃ := w + u(x0) − w(x0) if necessary, we can assume that ‖u− w‖L∞(Ω) < ε. Let φ be
the smooth convex function satisfying{

detD2φ = 1 in Ω δ0
2

,

φ = 0 on ∂Ω δ0
2

.
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It is known that −C1(n,Ω δ0
2

) ≤ minΩδ0
φ ≤ −C2(n,Ω δ0

2

) (see [26, Proposition 3.2.3]). Hence

by using [26, Lemma 5.1.6] we obtain

Ωδ0 ⊂
{
x ∈ Ω δ0

2

: φ(x) ≤ −c δ0

}
, (4.9)

where c > 0 depending on n and Ω δ0
2

. In fact, we can choose c to be a constant which depends

only on n and Ω for all δ0 > 0 sufficiently small. Next, we construct the function

w∗(x) = w(x) + ε+ 2ε(cδ0)−1φ(x).

Then we have that w∗(x) > u(x) for x ∈ ∂Ω δ0
2

. We take V to be the set

V :=
{
x ∈ Ω δ0

2

: w∗(x) < u(x)
}
.

It is clear from (4.9) that Ωδ0 ⊂ V b Ω δ0
2

. Therefore, Lemma 3.3 assures that

∂cu(Ωδ0) ⊂ ∂cu(V ) ⊂ ∂c(w∗, V )(V ) = ∂cw
∗(V ). (4.10)

On the other hand, by straightforward computation and using that our cost cλ is just a
C/λ-perturbation of the quadratic cost cq, then

∂cw
∗(V ) ⊂ N 2ε

cδ0
‖∇φ‖L∞(Ωδ0/2

)+
C
λ

{
∂cqw(V )

}
= N 2ε

cδ0
‖∇φ‖L∞(Ωδ0/2

)+
C
λ
{∇ŵ(V )} , (4.11)

where ŵ = w + |x|2
2 and we note that ‖∇φ‖L∞(Ω δ0

2

) ≤ C (see [25, Theorem 17.21]).

Next, for the solution of the optimal transportation problem ŵ with quadratic cost,
Caffarelli [8] has proved that

1. ∇ŵ(Ω) = Ω′.

2. ∇ŵ(∂Ω) ⊂ ∂Ω′.

3. |∇ŵ(x)−∇ŵ(y)| ≥ C |x− y|γ for all x, y ∈ Ω, where γ > 0 is a universal constant.

As a consequence, ∇ŵ(∂Ω) = ∂Ω′ and

dist
(
∇ŵ(V ), ∂Ω′

)
≥ dist

(
∇ŵ(Ω δ0

2

), ∂Ω′
)
≥ Cδγ0 . (4.12)

Combining (4.10), (4.11) and (4.12) we get

dist
(
∂cu(Ωδ0), ∂Ω′

)
≥ Cδγ0 −

[ 2ε

cδ0
‖∇φ‖L∞(Ωδ0/2) +

C

λ

]
.

Choosing suitable ε, we obtain the estimate (4.7) of the lemma. On the other hand, (4.8)
follows from (4.7) and the fact that

∂cu(∂Ω) ⊂ ∂Ω′,

which was proven by Figalli-Kim-McCann [17].
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Using the above two propositions, one has a very good control of the sections of u: they
are very near the sections of w, and as a consequence, they stay away from the boundary
∂Ω. Let x0 ∈ Ωδ0 and y0 ∈ ∂cu(x0). The µ-section of u at x0 is defined in (2.12), or for
ū(x) := u(x) + c(x − y0) as in (2.13). One can also define the (quadratic) t-sections for w.
Let x̄ be the minimum point of the function w̄(x) := w(x) + 1

2 |x− y0|2. We define

Tt(w, x̄) = {x ∈ [Ω] : w(x) ≤ w(x̄)− cq(x− ȳ) + cq(x̄− ȳ) + t} , (4.13)

with
∂cqw(x̄) = {ȳ := x̄+∇w(x̄)}.

By using the function w̄ we can write

Tt(w̄, x̄) = {x ∈ [Ω] : w(x) ≤ w(x̄) + 〈∇w̄(x̄), x− x̄〉+ t} , (4.14)

that is a convex set.

Proposition 4.5. Given δ0 > 0, there exists µ1 = µ1

(
δ0, n,Λ1,Λ2,Ω,Ω

′) > 0 satisfying that,
for all h, ε > 0 with h + ε ≤ µ1, we can find λ0 = λ0

(
ε, δ0, n,Λ1,Λ2,Ω,Ω

′) > 0 such that if
λ ≥ λ0 and u is a solution of (4.1), then

Th−ε(w, x̄) ⊂ Sh(u, x0, y0) ⊂ Th+ε(w, x̄) ⊂ Ωcδθ0
(4.15)

for all x0 ∈ Ωδ0 and y0 ∈ ∂cu(x0), where w is a solution of the quadratic transport problem
(4.2) and x̄ is the minimum point of w̄ := w+ 1

2 |x− y0|2. Here c and θ are positive constants
depending only on n, Λ1, Λ2, Ω and Ω′.

Proof. Let x0 ∈ Ωδ0 and y0 ∈ ∂cu(x0). It follows from Proposition 4.4 that y0 ∈ Ω′C
2
δγ0

for all

λ ≥ λ0 = λ0

(
δ0, n,Λ1,Λ2,Ω,Ω

′). Define ū := u+ c(x− y0) and ŵ := w + 1
2 |x|

2. Notice that
x0 is a minimum point for ū in Ω. By definition,

Tt(w, x̄) = {x ∈ Ω : w̄(x) ≤ w̄(x̄) + 〈∇w̄(x̄), x− x̄〉+ t}
= {x ∈ Ω : ŵ(x) ≤ ŵ(x̄) + 〈∇ŵ(x̄), x− x̄〉+ t} ,

a convex set. As ∇w̄(x̄) = 0, we obtain ∇ŵ(x̄) = ∇w(x̄) + x̄ = y0 ∈ Ω′C
2
δγ0

. On the

other hand, we know from [8] (see the discussion before (4.12)) that ∇ŵ(∂Ω) = ∂Ω′ and

|∇ŵ(x)−∇ŵ(y)| ≤ C|x− y|γ for all x, y ∈ Ω̄. Therefore we conclude dist(x̄, ∂Ω) ≥ cδγ
2

0 > 0.
But since ŵ is a strictly convex function (c.f. [7]), there exists µ1 > 0 depending on δ0, n,
Λ1, Λ2, Ω and Ω′ such that

Tµ1(w, x̄) ⊂ Ω c
2
δγ

2

0

, (4.16)

which gives the last inclusion in (4.15) whenever h+ ε ≤ µ1.
Next for any ε > 0, by Proposition 4.1 there exists λ0 depending only on ε, n, Λ1, Λ2, Ω

and Ω′ such that for all λ ≥ λ0 we have ‖u− [w+ u(x0)−w(x0)]‖L∞(Ω) ≤ ε/4 (of course, we
are abusing the notation, just take λ0 to be the smallest of all the choices). Since the sections
of w are the same as the corresponding sections of w + u(x0) − w(x0), we can assume that
‖u− w‖L∞(Ω) ≤ ε/4. This implies that

‖ū− w̄‖L∞(Ω) ≤
ε

4
+
C

λ
≤ ε

2
for all λ ≥ λ0. (4.17)
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Now it is easy to see that the first two inclusions in (4.15) hold true. Indeed if x ∈ Th−ε(w, x̄) =
{x ∈ Ω : w̄(x) ≤ w̄(x̄) + h− ε}, then

ū(x) ≤ w̄(x) +
ε

2
≤ w̄(x̄) + h− ε

2
≤ w̄(x0) + h− ε

2
≤ ū(x0) + h.

On the other hand, if x ∈ Sh(u, x0, y0) = {x ∈ Ω : ū(x) ≤ ū(x0) + h} then

w̄(x) ≤ ū(x) +
ε

2
≤ ū(x0) + h+

ε

2
≤ ū(x̄) + h+

ε

2
≤ w̄(x̄) + h+ ε.

These yield Th−ε(w, x̄) ⊂ Sh(u, x0, y0) ⊂ Th+ε(w, x̄) as desired.

Corollary 4.6. Given δ0 > 0, let µ1 > 0 be the corresponding constant given by Proposi-
tion 4.5. Then for all h ≤ µ1

2 , there exists λ0 = λ0

(
h, δ0, n,Λ1,Λ2,Ω,Ω

′) > 0 such that if
λ ≥ λ0 and u is a solution of (4.1), we have the following: for all x0 ∈ Ωδ0 and y0 ∈ ∂cu(x0),

(i) Sh(u, x0, y0) ⊂ Ωcδθ0
;

(ii) There is an affine transformation Tx = Ax+ b with C1 ≤ |detA|
2
n h ≤ C2 and ‖A‖ ≤

Ch−1 such that
BK(0) ⊂ Ω̃ := TSh(u, x0, y0) ⊂ Bn(0).

Here all the constants are universal (depending on n, Λ1 and Λ2). As a consequence,

dist(x, ∂[Ω̃]) ≤ Ch−1

λ
∀x ∈ ∂Ω̃.

Proof. Applying Proposition 4.5 for ε = h/2, we obtain

Th
2
(w, x̄) ⊂ Sh(u, x0, y0) ⊂ T 3h

2
(w, x̄) ⊂ Ωcδθ0

,

where w is the solution of the quadratic transport problem (4.2). Let Tx = Ax + b be
an affine transformation normalizing T3h/2(w, x̄), i.e., B1 ⊂ T

(
T3h/2(w, x̄)

)
⊂ Bn. Then as

|T3h/2(w, x̄)| ≈ h
n
2 (see [26, Corollary 3.2.4]), it is clear that C1 ≤ |detA|

2
n h ≤ C2. Also it

follows from Theorem 3.3.8 in [26] that BK ⊂ T
(
Th/2(w, x̄)

)
with K > 0 a universal constant.

Thus BK ⊂ TSh(u, x0, y0) ⊂ Bn. Note that as BCh(x̄) ⊂ T3h/2(w, x̄), we get T (BCh(x̄)) ⊂ Bn
implying that ‖A‖ ≤ Ch−1. This together with Proposition 3.2 yields the last estimate.

In the above corollary, f and g are only required to satisfy the condition (1.3). However
if in addition f ∈ Cαloc(Ω) and g ∈ Cαloc(Ω′) as assumed in Theorem 1.1, then we in fact have
the following better estimates

Sh(u, x0, y0) ⊂ BC√h(x0), ‖A‖ ≤ Ch
−1
2 ,

∥∥A−1
∥∥ ≤ Ch 1

2 (4.18)

and

dist(x, ∂[Ω̃]) ≤ Ch
−1
2

λ
∀x ∈ ∂Ω̃. (4.19)

Indeed the regularity of w in [7] gives CI ≤ D2w̄ ≤ C ′I in Ωcδθ0
which in turn implies that

BC1

√
h(x̄) ⊂ T3h/2(w, x̄) ⊂ BC2

√
h(x̄). (4.20)
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Then (4.18) and (4.19) follow from this, the fact T−1(BK(0)) ⊂ Sh(u, x0, y0) ⊂ T3h/2(w, x̄)
and the arguments used in the proof of Corollary 4.6.

Another consequence of our construction is a gradient bound for points in the section
Sh := Sh(u, x0, y0). We denote

ũ(x) :=
1

h

[
u(T−1x)−u(x0)−c(x0−y0)−h

]
, Ω̃ := TSh(u, x0, y0) and c̃(x) :=

1

h
c(T−1x),

(4.21)
where T is the transformation from the previous corollary. Then:

Corollary 4.7. Under the same assumptions as in Corollary 4.6, assume further that f ∈
Cαloc(Ω) and g ∈ Cαloc(Ω′), then we have that

∂loc
c u(Sh) ⊂ BC(

√
h+ 1

λ
)(y0)

and
∂loc
c̃ ũ(Ω̃) ⊂ BC(1+ 1

λ
√
h

)(Ty0).

Proof. As in the proof of Corollary 4.6, we choose ε = h/2 and have ‖u− w‖L∞(Ω) ≤ ε/4.
Also it follows from (4.20) that Sh ⊂ T3h/2(w, x̄) ⊂ BC2

√
h(x̄). Now applying Lemma 3.4 with

δ := C
√
h, we then obtain ∂loc

c u(Sh) ⊂ N(
C
√
h+C

λ

) {[∇ŵ(BC
√
h(x̄))]

}
, where ŵ := w+ 1

2 |x|
2.

Since w is the solution of optimal transport with quadratic cost from Ω to Ω′ and BC
√
h(x̄)

is away from the boundary of Ω, we get ‖D2w‖L∞(BC
√
h(x̄)) ≤ C and hence

|∇ŵ(x)− y0| = |∇ŵ(x)−∇ŵ(x̄)| ≤ C|x− x̄| ≤ C
√
h ∀x ∈ BC√h(x̄).

Therefore, we conclude that ∂loc
c u(Sh) ⊂ BC(

√
h+ 1

λ
)(y0). The last conclusion follows from

the fact ∂loc
c̃ ũ(TSh) = T∂loc

c u(Sh) and the estimate (4.18) for ‖A‖.

5 Interior C1,1 estimates

In this section we present the proof of Theorem 1.1, which is a direct consequence of the
following result:

Theorem 5.1. Assume that f ∈ Cαloc(Ω), g ∈ Cαloc(Ω′) and (1.3) holds. Given δ0 > 0, there
exist µ0 = µ0

(
δ0, n,Λ1,Λ2,Ω,Ω

′) > 0 and λ0 = λ0

(
δ0, n,Λ1,Λ2,Ω,Ω

′) > 0 such that if λ ≥ λ0

and u is a solution of (4.1), then

BC−1√ρ(x0) ⊂ Sρ(u, x0, y0) ⊂ BC√ρ(x0) (5.1)

for all x0 ∈ Ωδ0, y0 ∈ ∂cu(x0) and 0 < ρ ≤ µ0, where C > 0 depends only on n, Λ1, Λ2,
‖f‖Cα(Ωδ1 ) and ‖g‖Cα(Ω′δ1

) with δ1 = δ1(δ0, n,Λ1,Λ2).

Remark 5.2. This immediately implies that u is C1,1.
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Proof of Theorem 5.1. Let µ0 := µ2, with µ := µ1/2 and µ1 > 0 is the constant given by
Proposition 4.5. By applying Proposition 4.1 with ε0 := µ3 we obtain

‖u− w‖L∞(Ω) ≤ ε0,

where w is an optimal transport solution for the quadratic cost between Ω and Ω′, and with
densities f and g, respectively.

Step 1: Since x0 ∈ Ωδ0 and µ+ ε0 ≤ µ1, Proposition 4.5 gives

Tµ−ε0(w, x̄) ⊂ Sµ(u, x0) := Sµ(u, x0, y0) ⊂ Tµ+ε0(w, x̄) ⊂ Ωδ1 ,

where x̄ is the minimum point of w̄ := w + 1
2 |x− y0|2. Moreover as Ω′ is convex and

f, g are Hölder continuous we know from Caffarelli’s C2,α estimate in [7] that w is regular
in the interior. It then follows by a similar argument yielding (4.20) that BC1

√
µ−ε0(x̄) ⊂

Tµ−ε0(w, x̄) and Tµ+ε0(w, x̄) ⊂ BC2
√
µ+ε0(x̄). Thus BC1

√
µ−ε0(x̄) ⊂ Sµ(u, x0) ⊂ BC2

√
µ+ε0(x̄).

This together with the facts |x̄ − x0| ≤ C
√
ε0 (see (6.30) for a proof of this fact) and ε0 is

very small compared to µ gives

BC
√
µ−ε0(x0) ⊂ Sµ(u, x0) ⊂ BC′√µ+ε0(x0).

For simplicity and without loss of generality we assume that x0 = 0. Therefore, B1(0) ⊂
µ
−1
2 Sµ(u, x0) ⊂ Bn(0). Let Θ(x) := x−∇c∗(−∇u(x)) be the optimal map corresponding to

u and let Θ∗(y) := y − ∇c∗(−∇u∗(y)) be the dual optimal map which is known to be the
inverse of Θ. Then since w is regular, we know from Lemma 3.4 and the proof of Corollary 4.7
that

ΘBR(x0) ⊂ B
C
(
R+ 1

λ
+
ε0
R

)(y0) ∀R ≤ C√µ. (5.2)

Likewise as ‖u∗ − w∗‖L∞(Ω′) ≤ ε0 + C
λ and the dual potential w∗ for the quadratic cost is

regular thanks to the convexity of Ω, we also have

Θ∗BR(y0) ⊂ B
C
(
R+ 1

λ
+
ε0
R

)(x0) or BR(y0) ⊂ ΘB
C
(
R+ 1

λ
+
ε0
R

)(x0) ∀R ≤ C√µ. (5.3)

Let Ω1 := µ
−1
2 Θ∗[Θ

(
Sµ(u, x0)

)
], Ω′1 := µ

−1
2 [Θ

(
Sµ(u, x0)

)
] and

u1(x) :=
1

µ
u
(
µ

1
2x
)
, x ∈ µ

−1
2 Ω ⊃ Ω1. (5.4)

Here we are using the notation [A] for the convex hull of the set A. The advantage of this
choice of domains lies in the fact that Ω′1 is convex. On the other hand, by Lemma 5.3,

u1|Ω1 is the optimal transport solution between Ω1 and Ω′1 with densities f1(x) := f
(
µ

1
2x
)
,

g1(y) := g
(
µ

1
2 y
)

and with cost

c1(x) :=
1

µ
c
(
µ

1
2x
)

=
1

2
|x|2 +

1

λ1
E1(x) with

1

λ1
:=

µ1/2

λ
.

Note that all the dilations of regions or variables in Ω are with respect to x0 = 0 and in Ω′

are always with respect to y0. Moreover by using (5.2) and (5.3) we obtain

B1(0) ⊂ µ
−1
2 Sµ(u, x0) ⊂ Ω1 ⊂ µ

−1
2 Θ∗BC′

√
µ+ε0(y0) ⊂ µ

−1
2 BC

√
µ+ε0(x0) ⊂ Bn(0)
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and

B1(y0) ⊂ µ
−1
2 BC

√
µ−ε0(y0) ⊂ µ

−1
2 ΘSµ(u, x0) ⊂ Ω′1 ⊂ µ

−1
2 BC′

√
µ+ε0(y0) ⊂ Bn(y0).

Hence we can apply Proposition 4.2 to get

‖u1 − w1‖L∞(B1) ≤ ε0, (5.5)

where w1 is the optimal transport solution for the quadratic cost between Ω1 and Ω′1, and
with densities f1 and g1.

Step 2: Let Θ1(x) := x−∇c∗1(−∇u1(x)) = µ
−1
2 Θ(µ

1
2x) be the optimal map corresponding

to u1 and let Θ∗1(y) := y − ∇c∗1(−∇u∗1(y)) = µ
−1
2 Θ∗(µ

1
2 y) be its dual optimal map. As the

target domain Ω′1 is convex and f1, g1 are Hölder continuous with Cα norms are controlled
by those of f and g, we know from Caffarelli’s C2,α estimate in [7] for quadratic cost that w1

is regular in the interior. Therefore, by using (5.5) and arguing as in Step 1 we get

Θ1BR(x0) ⊂ B
C
(
R+ 1

λ1
+
ε0
R

)(y0) ∀R ≤ C√µ. (5.6)

We would like to have (5.3) for Θ∗1 but this is not immediate since we do not know whether
w∗1 is regular due to the nonconvexity of Ω1. Observe that we do not really need Θ∗1 to be
well behaved in every interior subregion of Ω′1, but only in the subregion BC√µ(y0) ⊂ Ω′1. To
obtain this regularity we proceed as follows.

Let Ω̃1 := µ
−1
2 [Sµ(u, x0)] and Ω̃′1 := µ

−1
2 Θ[Sµ(u, x0)]. Then u1|Ω̃1

is the optimal transport

solution between Ω̃1 and Ω̃′1 with cost c1 and with densities f1 and g1. As above, by using
(5.2) and (5.3) we also have B1(0) ⊂ Ω̃1 ⊂ Bn(0) and B1(y0) ⊂ Ω̃′1 ⊂ Bn(y0). Note that
even though we can not compare Ω̃′1 to Ω′1, we know that Ω̃′1 contains the big ball B1(y0)
centered at y0 and as mentioned above this is enough for our purpose. Hence we can apply
Proposition 4.2 to get ‖u1 − w̃1‖L∞(B1) ≤ ε0 implying

‖u∗1 − w̃∗1‖L∞(B1) ≤ ε0 +
C

λ1
.

Here w̃∗1 is the optimal transport solution for the quadratic cost between Ω̃′1 and Ω̃1, and with
densities g1 and f1. Moreover as Ω̃1 is convex, we know that w̃∗1 is regular in the interior of
Ω̃′1. Therefore, we also have

Θ∗1BR(y0) ⊂ B
C
(
R+ 1

λ1
+
ε0
R

)(x0) or BR(y0) ⊂ Θ1BC
(
R+ 1

λ1
+
ε0
R

)(x0). (5.7)

From (5.6) and (5.7), we see that Θ1 and Θ∗1 enjoy the same property as Θ and Θ∗ given by
(5.2) and (5.3). This allows us to carry the next level of the rescaling process. Indeed, let
Ω2 := µ−1Θ∗[Θ

(
Sµ2(u, x0)

)
], Ω′2 := µ−1[Θ

(
Sµ2(u, x0)

)
] and

u2(x) :=
1

µ2
u
(
µx
)

=
1

µ
u1

(
µ

1
2x
)

for x ∈ µ−1Ω ⊃ µ
−1
2 Ω1 ⊃ Ω2.

Then by Lemma 5.3, u2|Ω2 is the optimal transport solution between Ω2 and Ω′2 with cost
c2(x) := 1

µ2 c
(
µx
)
, and with densities f2(x) := f

(
µx
)

and g2(y) := g
(
µy
)
. Notice that

Ω2 = µ
−1
2 Θ∗1[Θ1

(
Sµ(u1, x0)

)
] and Ω′2 = µ

−1
2 [Θ1

(
Sµ(u1, x0)

)
]. Hence by arguing as in Step 1

and using (5.6) and (5.7) we obtain

‖u2 − w2‖L∞(B1) ≤ ε0,
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with w2 is an optimal transport solution for the quadratic cost between Ω2 and Ω′2, and with
densities f2 and g2.

Step k: Repeating the above process we get

‖uk − wk‖L∞(B1) ≤ ε0,

where uk(x) := 1
µk
u
(
µ
k
2 x
)

and wk is the optimal transport solution for the quadratic cost

between Ωk := µ
−k
2 Θ∗[Θ

(
Sµk(u, x0)

)
] and Ω′k := µ

−k
2 [Θ

(
Sµk(u, x0)

)
], and with densities

fk(x) := f
(
µ
k
2 x
)

and gk(y) := g
(
µ
k
2 y
)
. Since 0 < ρ ≤ µ0 = µ2, we can pick the positive

integer number k such that µk+2 < ρ ≤ µk+1. Thus

µ
k
2T ρ

µk
−ε0(wk, x̄k) ⊂ Sρ(u, x0) = µ

k
2S ρ

µk
(uk, x0) ⊂ µ

k
2T ρ

µk
+ε0(wk, x̄k).

Here x̄k denotes the minimum point of w̄k := wk + 1
2 |x− y0|2. As the target domain Ω′k

is convex and fk, gk are Hölder continuous with Cα norms are controlled by those of f and
g, we know that B

C1

√
ρ

µk
−ε0

(x̄k) ⊂ T ρ

µk
−ε0(wk, x̄k) and T ρ

µk
+ε0(wk, x̄k) ⊂ B

C2

√
ρ

µk
+ε0

(x̄k). It

follows from these and the fact |x̄k − x0| ≤ C
√
ε0 that

Sρ(u, x0) ⊂ µ
k
2B

C
√

ρ

µk
+ε0

(x0) ⊂ B
C
√
ρ+µkε0

(x0) ⊂ B
C
√
ρ+ρ

ε0
µ2

(x0) ⊂ BC√ρ(x0).

Similarly, we also have BC′√ρ(x0) ⊂ Sρ(u, x0) yielding, (5.1) as desired.

In the above proof, we have used the following simple lemma:

Lemma 5.3. Let u1 be defined by (5.4). Then u1 is the optimal transport solution between

Ω1 := µ
−1
2 Θ∗[Θ

(
Sµ(u, x0)

)
] and Ω′1 := µ

−1
2 [Θ

(
Sµ(u, x0)

)
] with cost c1(x) := 1

µc
(
µ

1
2x
)
, and

with densities f1(x) := f
(
µ

1
2x
)

and g1(y) := g
(
µ

1
2 y
)
. The similar statement also holds for

the function uk.

Proof. Let Θ1(x) := x − ∇c∗1(−∇u1(x)). Then as u1 is c1-convex, it suffices to show that

Θ1#f1χΩ1dx = g1χΩ′1
dy. Now since c∗1(x) = 1

µc
∗(µ 1

2x
)
, we obtain

Θ1(x) = x− µ
−1
2 ∇c∗

(
−∇u(µ

1
2x)
)

= µ
−1
2

[
µ

1
2x−∇c∗

(
−∇u(µ

1
2x)
)]

= µ
−1
2 Θ
(
µ

1
2x
)
.

It follows that for any function h ∈ C(Ω′1), by letting h̃(x) := h(µ
−1
2 x) we have∫

Ω1

h(Θ1(x))f1(x) dx =

∫
µ
−1
2 Θ∗[Θ

(
Sµ(u,x0)

)
]
h
(
µ
−1
2 Θ
(
µ

1
2x
))
f
(
µ

1
2x
)
dx

= µ
−n
2

∫
Θ∗[Θ

(
Sµ(u,x0)

)
]
h̃
(
Θ(z)

)
f(z) dz

= µ
−n
2

∫
[Θ
(
Sµ(u,x0)

)
]
h̃(y′)g(y′) dy′

=

∫
µ
−1
2 [Θ
(
Sµ(u,x0)

)
]
h̃(µ

1
2 y)g(µ

1
2 y) dy =

∫
Ω′1

h(y)g1(y) dy.

Thus Θ1#f1χΩ1dx = g1χΩ′1
dy and the proof is completed.
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6 Comparison Principles

We consider now the main ingredients in the proof of Theorem 1.2. Our strategy is to compare
ũ with the solution w̃ of a standard Monge-Ampère equation with given Dirichlet data at the
boundary. However, the difficulty is to obtain an explicit estimate for the difference between
ũ and w̃. This task will be achieved by constructing some suitable barriers for the operator
Mλ in a certain class of admissible functions. We remind that

Mλ[u] := g(x+∇u+G(∇u)) det
(
I +D2u+H(∇u)(D2u)

)
,

where G and H in particular satisfy (2.11).
To motivate our choice of admissible functions, let us seek a pointwise condition guaran-

teeing that a function φ ∈ C2(Ω) is cλ-convex in Ω. Note that φ is cλ-convex at x0 if and only
if the function h0(x) := φ(x) + cλ(x − y0) has a minimum point in Ω at x0 or equivalently
h0 has a supporting plane in Ω at x0, where y0 := x0 −∇c∗λ(−∇φ(x0)). But for Ω ⊂ Bn, we
have

D2h0(x) = I +D2φ(x) +
1

λ
D2E(x− y0) ≥ I +D2φ(x)− C

λ
I|x− y0|

≥ I +D2φ(x)− C

λ
I
(
|x0 +∇φ(x0)|+ 2n

)
∀x ∈ Ω.

Thus if Ω ⊂ Bn is convex and

inf
Ω

(I +D2φ) >
C

λ
I
(
‖id+∇φ‖L∞(Ω) + 2n

)
,

then for any x0 ∈ Ω, the function h0 has a supporting plane in Ω at x0. This implies that φ
is cλ-convex in Ω and in particular I +D2c∗λ(−∇φ(x))D2φ(x) ≥ 0 in Ω. We will choose the
class of admissible functions to be those satisfying the above inequality.

Definition 6.1. Let Ω ⊂ Bn be an open set. A function φ is said to be in the admissible
class for the operator Mλ in Ω if φ ∈ C2([Ω]) and

inf
[Ω]

(
I +D2φ

)
>
C

λ
I
(
‖id+∇φ‖L∞([Ω]) + 2n

)
. (6.1)

Remark 6.2. Let u ∈ C(Ω) be a cλ- convex function. Then if φ is in the admissible class for
Mλ in Ω and u− φ has a maximum or minimum at x0 ∈ Ω, we have x0 −∇c∗λ(−∇φ(x0)) ∈
∂cλu(x0).

Since Alexandroff weak solutions are expected to be stable with respect to a small per-
turbation, u should be close to a Monge-Ampère solution if [Ω] is close to Ω (that is, Ω is
almost convex) and λ is large enough. To quantify this closeness precisely, we will need the
following property for Alexandroff weak solutions:

Proposition 6.3. Let Ω ⊂ Bn be an open set and f ∈ C(Ω), g ∈ C(Ω′). Let u ∈ C(Ω) be a
cλ-convex function satisfying ∂cλu(Ω) ⊂ Ω′ and∫

∂cλu(E)
g(y) dy =

∫
E
f(x) dx for all Borel sets E ⊂ Ω.

Suppose that φ ∈ C2([Ω]) ∩ C(Ω) is a function in the admissible class for the operator Mλ in
Ω. Then:
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(i) If Mλ[φ] < f at any point x ∈ Ω satisfying x−∇c∗λ(−∇φ(x)) ∈ ∂cλu(Ω), then

max
Ω
{u− φ} = max

∂Ω
{u− φ}.

(ii) If Mλ[φ] > f at any point x ∈ Ω satisfying x−∇c∗λ(−∇φ(x)) ∈ ∂cλu(Ω), then

min
Ω
{u− φ} = min

∂Ω
{u− φ}.

Proof. (i) Suppose by contradiction that maxΩ̄{u − φ} > max∂Ω{u − φ}. Then there exists
x̃ ∈ Ω such that u(x̃)−φ(x̃) = maxΩ̄{u−φ}, and so u−φ has a maximum in Ω at x̃. Notice
that x̃ − ∇c∗λ(−∇φ(x̃)) ∈ ∂cλu(x̃) ⊂ ∂cλu(Ω) by the remark after Definition 6.1. We can
assume further that u(x̃) = φ(x̃) and u(x) < φ(x) for all x ∈ Ω \ {x̃}. This can be achieved
by adding u(x̃) − φ(x̃) + r |x− x̃|2 to φ and later taking r → 0+. Indeed, the only thing
we need to check is the function φ̃(x) := φ(x) + u(x̃) − φ(x̃) + r |x− x̃|2 also belongs to the
admissible class for Mλ in Ω. But this is true because

inf
[Ω]

(
I +D2φ̃

)
= inf

[Ω]

(
I +D2φ

)
+ 2rI >

C

λ
I
(
‖id+∇φ‖L∞([Ω]) + 2n

)
+ 2rI

≥ C

λ
I
(
‖id+∇φ̃‖L∞([Ω]) + 2n

)
+ 2r

(
1− 2nC

λ

)
I

≥ C

λ
I
(
‖id+∇φ̃‖L∞([Ω]) + 2n

)
. (6.2)

Let m := minδ/2≤|x−x̃|≤δ{φ(x)−u(x)} > 0, where δ > 0 is a small number. Fix 0 < ε < m
and set

Eε := {x ∈ Bδ(x̃) : u(x) + ε > φ(x)} .

It is easy to see that Eε ⊂ Bδ/2(x̃), because if δ/2 ≤ |x− x̃| < δ, then φ(x) − u(x) ≥ m, so
that x 6∈ Eε. Note also that Eε ↓ {x̃} as ε→ 0+, and u+ ε = φ on ∂Eε.

Since u is an Alexandroff weak solution in Ω, we have∫
Eε

f(x)dx =

∫
∂cu(Eε)

g(y)dy =

∫
∂c(u+ε)(Eε)

g(y)dy. (6.3)

But ∂c(u + ε)(Eε) ⊂ ∂c(φ,Eε)(Eε) = ∂cφ(Eε) by Lemma 3.3 and the fact φ is a smooth
c-convex function in Ω. Thus the chain of equalities (6.3) continues as follows:

(6.3) ≤
∫
∂cφ(Eε)

g(y)dy = wc(g, φ)(Eε) =

∫
Eε

g(x−Dc∗(−∇φ)) det
(
I +D2c∗(−∇φ)D2φ

)
dx,

where the last equality is due to the representation (2.5). Next, because f and g are contin-
uous, we can let ε→ 0 to obtain

Mλ[φ] ≥ f at x̃,

which is a contradiction with the hypothesis in (i).
(ii) The second statement follows in a similar manner. Suppose by contradiction that

minΩ̄{u − φ} < min∂Ω{u − φ}. Then there exists x̃ ∈ Ω such that u − φ has a minimum
in Ω at x̃. Notice that x̃ −∇c∗λ(−∇φ(x̃)) ∈ ∂cλu(x̃) by the remark after Definition 6.1. We
can assume in addition that u(x̃) = φ(x̃) and u(x) > φ(x) for all x in Ω \ {x̃}. This can be
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achieved by adding u(x̃) − φ(x̃) − r |x− x̃|2 to φ and later taking r → 0+. Indeed, we only
need to check that the function φ̃(x) := φ(x) + u(x̃) − φ(x̃) − r |x− x̃|2 is in the admissible
class for Mλ in Ω for all r > 0 sufficiently small. But as done in (6.2), we have

inf
[Ω]

(
I +D2φ̃

)
− C

λ
I
(
‖id+∇φ̃‖L∞([Ω]) + 2n

)
≥ inf

[Ω]

(
I +D2φ

)
− C

λ
I
(
‖id+∇φ‖L∞([Ω]) + 2n

)
− 2r

(
1 +

2nC

λ

)
I

> 0 for all r > 0 small enough.

Let m := minΩ\Bδ(x̃){u(x)− φ(x)} > 0, where δ > 0 is small. Fix 0 < ε < m and set

Eε := {x ∈ Ω : u(x)− ε < φ(x)} .

It is easy to see that Eε ⊂ Bδ(x̃) ⊂ Ω, because if |x− x̃| ≥ δ, then u(x)− φ(x) ≥ m, so that
x 6∈ Eε. Note also that Eε ↓ {x̃} as ε→ 0+ and u− ε = φ on ∂Eε.

Now it follows from the assumption for u that
∫
∂cu(Eε)

g(y)dy =
∫
Eε
f(x)dx. But as a

consequence of the proof of Lemma 3.3 and the fact φ(x) ≤ u(x) − ε for x ∈ Ω \ Eε, we get
∂cφ(Eε) ⊂ ∂cu(Eε). Therefore we obtain∫

Eε

g(x−Dc∗(−∇φ)) det
(
I +D2c∗(−∇φ)D2φ

)
dx =

∫
∂cφ(Eε)

g(y)dy ≤
∫
Eε

f(x)dx,

where the first equality is due to (2.5) and the fact φ is c-convex in Ω. Next, we let ε→ 0 to
obtain Mλ[φ] ≤ f at x̃, which is a contradiction with the hypothesis in (ii).

6.1 An approximation result

Our objective here is to establish the main step in the proof of Theorem 1.2, which allows us
to compare weak solutions coming from two different equations. This approximation result
is proved by constructing very careful barriers to which we apply the previous comparison
principle:

Theorem 6.4. Let B1 ⊂ Ω ⊂ Bn be a domain in Rn, not necessarily convex, but such that

dist(x, ∂[Ω]) ≤ d

λ
∀x ∈ ∂Ω. (6.4)

Assume that f ∈ C(Ω) and g ∈ C(Ω′). Let u ∈ C(Ω) be a cλ-convex function such that
∂cλu(Ω) ⊂ Ω′ and u is an Alexandroff weak solution of the problem{

Mλ[u] = f in Ω,
u(x) = −cλ(x) on ∂Ω,

(6.5)

where Mλ is the operator defined in (2.10) satisfying (2.11). Consider also the cq-convex
solution w ∈ C3(Ω) ∩ C(Ω) of{

det
(
I +D2w

)
= 1 in V := N

( dλ)
β [Ω],

w = −1
2 |x|

2 on ∂V,
(6.6)

where 0 < β ≤ 1. Assume also that
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1. For some θ > 0 and 0 < α < 1,

|f(x)− 1| ≤ θ in Ω and |g(y)− 1| ≤ θ |y|α in ∂cλu(Ω). (6.7)

2. For a universal constant Cn given precisely in the proof,

Cn

(d
λ

)−β((n−1)2+n−2
n
α
)[
θ +

1

λ

(d
λ

)n−2
n

(α−1)β]
≤ 1. (6.8)

Then we have

−C
(
d

λ

)β(n−1)2

≤ u− w ≤ C
(
d

λ

) 2β
n

in Ω. (6.9)

In case that [Ω] (equivalently V ) not strictly convex, we can modify V slightly so that
V is strictly convex and still V ≈ N

( dλ)
β [Ω]. Now we note that w exists because w̄ =

1
2 |x|

2 +w is the solution of a standard Monge-Ampère equation with smooth right hand side
and homogeneous Dirichlet boundary data, and thus, w̄ ∈ C3(V ) and it is strictly convex.
However, the estimates on w̄ (in particular, Pogorelov estimates for the second derivatives)
are not uniform up to the boundary. To handle this issue, we will use Proposition 6.5 and
Proposition 6.6 below concerning the behavior of w̄ near the boundary when we do not have
extra information on the domain.

The following is a barrier argument by Caffarelli [6]:

Proposition 6.5. Let Ω1 ⊂ Bn be a convex domain in Rn and w̄ ∈ C(Ω1) be a generalized
solution of the Monge-Ampère equation{

det(D2w̄) ≤ 1 in Ω1,
w̄ = 0 on ∂Ω1.

Then
w̄(x) ≥ −C(n) dist(x, ∂Ω1)

2
n if n ≥ 3,

and
w̄(x) ≥ −C(ρ) dist(x, ∂Ω1)ρ for any ρ ∈ (0, 1) if n = 2.

Pogorelov type estimates for the second derivatives of solutions for a Monge-Ampère
equation hold. Although it is well known that in the interior of the domain, the Hessian
matrix of the solution is positive definite, the constants deteriorate at the boundary. The
next lemma by Caffarelli-Li [3] quantifies this deterioration.

Proposition 6.6. Let Ω1 ⊂ Rn be an open convex subset satisfying B1 ⊂ Ω1 ⊂ Bn, and let
w̄ ∈ C2(Ω1) ∩ C(Ω1) be a convex solution of{

det(D2w̄) = 1 in Ω1,
w̄ = 0 on ∂Ω1.

Then ∣∣D2w̄(x)
∣∣ ≤ C ′(n) dist(x, ∂Ω1)1−n for n ≥ 3

and ∣∣D2w̄(x)
∣∣ ≤ C ′(ρ) dist(x, ∂Ω1)

1− 2
ρ for n = 2,

where ρ is any real number in (0, 1).
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Proof of Theorem 6.4: Without loss of generality, assume that n ≥ 3. The proof reduces
to finding suitable smooth sub and supersolutions of the equation Mλ[u] = f , and using the
comparison principle for Alexandroff solutions given in Proposition 6.3 in the domain Ω.

Let w be the solution of problem (6.6). We will show that the functions

w− = w + δ
2 |x|

2 and w+ = w − δ
2 |x|

2

are a sub and a supersolution, respectively, of problem (6.5), for a suitable δ > 0 which will
be determined later. In the following, we denote w̄ := 1

2 |x|
2 + w and m̄ := ‖∇w̄‖L∞([Ω]).

Observe that w̄ is the unique convex function satisfying{
detD2w̄ = 1 in V,

w̄ = 0 on ∂V.

By the hypothesis for f and g, we have that

|f(x)− 1| ≤ θ (6.10)

and ∣∣∣g(x+∇w ± δx+G(∇w ± δx)
)
− 1
∣∣∣ ≤ θ (2m̄+ 2n)α. (6.11)

We note that to obtain the estimate (6.11), we have also used the fact Cm̄/λ ≤ 1 which is a
consequence of the estimate for m̄ given in the Step 3 below and our assumption (6.8).
Step 1. Construction of a supersolution. We show first that w+ is in the admissible
class for the operator Mλ in Ω (see Definition 6.1) and that the matrix

A+ := I +D2c∗λ(−∇w+)D2w+ = I +D2w − δI + (D2w − δI)H(∇w − δx)

is positive definite. Indeed, we can write

A+ = D2w̄[I +H]− δI − (1 + δ)H

≥ 1
2D

2w̄ − δI − 2 |H| I
=
[

1
4D

2w̄ − δI
]

+
[

1
4D

2w̄ − 2 |H| I
]
.

Moreover, it follows from the hypothesis (2.11) for H that

|H| ≤ C(m̄+ 2n)

λ
≤ δ

4
, (6.12)

for a suitable choice of δ. Therefore,

A+ ≥ 2
[

1
4D

2w̄ − δI
]
. (6.13)

Since det(D2w̄) = 1, an upper bound for the eigenvalues of D2w̄, given in Proposition 6.6,
implies a lower bound. In fact,

D2w̄(x) ≥
(

1

C ′ndist(x, ∂V )1−n

)n−1

I ≥ 1

C ′n

(
d

λ

)β(n−1)2

I > 4δI for all x ∈ [Ω]. (6.14)

For this choice of δ, looking at (6.13), we obtain that A+ is positive definite in Ω. Furthermore,
(6.14) together with the second inequality in (6.12) gives

inf
[Ω]
D2w̄ > δI +

C

λ
I
(
m̄+ δ‖id‖L∞([Ω]) + 2n

)
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implying that w+ satisfies (6.1). Therefore, w+ is in the admissible class for Mλ in Ω.
Now we check that w+ is indeed a supersolution. It remains to show that

Mλ[w+] < f (6.15)

for
Mλ[w+] = g

(
x+∇w − δx+G(∇w − δx)

)
det(A+).

We compute
(I +H)(I +D2w) = A+ + δ

2I +
[
δ
2I + (1 + δ)H

]
. (6.16)

Because |H| ≤ δ
4 by the choice of δ from (6.12), we have that the term δ

2I + (1 + δ)H is
positive definite. On the other hand, given any two positive definite matrices A1, A2,

det
1
n (A1 +A2) ≥ det

1
n (A1) + det

1
n (A2).

Consequently, from (6.16) we obtain that

1 +
δ

4
≥ det

1
n (I +H) ≥ det

1
n (A+) +

δ

2
,

yielding

det(A+) ≤
(

1− δ

4

)n
≤ 1− n

8 δ.

Finally, using the bounds for f, g from (6.10) and (6.11),

Mλ[w+] = g
(
x+∇w − δx+G(∇w − δx)

)
det(A+)

≤
(

1 + θ(2m̄+ 2n)α
)(

1− n

8
δ
)
< 1− θ ≤ f

given a suitable choice of

δ ≥ 16θ

n
(2m̄+ 2n)α. (6.17)

Then (6.15) follows as desired.

Step 2. Construction of a subsolution. We now check that w− is a subsolution. As
w− is obviously in the admissible class for the operator Mλ in Ω, we only need to show
Mλ[w−] > f . We compute

Mλ[w−] = g
(
x+∇w + δx+G(∇w + δx)

)
det(A−)

for
A− := I +D2w + δI + (D2w + δI)H(∇w + δx).

If we choose δ satisfy (6.12), then we know that the following matrices D2w̄, δ
4I + H and

δ
2I − H + δH are positive definite because of the estimate |H(∇w + δx)| ≤ C(m̄+2n)

λ ≤ δ
4 .

Consequently,

A− =
(
1− δ

4

)
D2w̄ +

(
δ
4I +H

)
D2w̄ + δ

2I +
[
δ
2I −H + δH

]
≥
(
1− δ

4

)
D2w̄ + δ

2I.
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Thus the matrix A− is positive definite. Moreover by using the bounds for f, g from (6.10)
and (6.11) we obtain the desired conclusion

Mλ[w−] ≥
(

1− θ(2m̄+ 2n)α
)(

1 +
δ

4

)n
≥
(

1− θ(2m̄+ 2n)α
)(

1 +
nδ

4

)
> 1 + θ ≥ f,

where δ is chosen as in (6.17). Note that in the above estimate for w− we actually do not
need a uniform estimate of D2w̄ as in the case of w+.

Step 3. Choice of δ.
We now check that all the conditions on δ given in (6.12), (6.14) and (6.17) are compatible.

Let us take

δ :=
1

4C ′n

(
d

λ

)β(n−1)2

(6.18)

which guarantees (6.14). To see that this choice of δ also satisfies (6.12) and (6.17), we first
observe that Proposition 6.5 implies

m̄ ≤ Cndist([Ω], ∂V )
2
n
−1 ≤ Cn

(
d

λ

) 2−n
n
β

.

Therefore, both (6.12) and (6.17) hold provided that

Cn
1

λ

(
d

λ

) 2−n
n
β

≤
(
d

λ

)β(n−1)2

and Cnθ

(
d

λ

) 2−n
n
αβ

≤
(
d

λ

)β(n−1)2

.

But these are true thanks to the hypothesis (6.8).

Step 4. Completion of the proof. The proof of the theorem is completed using the
comparison principle for Alexandroff solutions of Proposition 6.3 and the initial hypothesis
on u, which guarantee that

(u− w)(x) ≤ max
∂Ω
{u− w+} − δ

2 |x|
2 , for all x ∈ Ω, (6.19)

and
min
∂Ω
{u− w−}+ δ

2 |x|
2 ≤ (u− w)(x), for all x ∈ Ω. (6.20)

Let us estimate the boundary values for u−w+ and u−w−. Recall that w̄(x) = 1
2 |x|

2 +

w(x) and u(x) = −cλ(x) = −1
2 |x|

2 − 1
λE(x) on ∂Ω. Hence

u(x)− w+(x) = u(x)− w(x) + δ
2 |x|

2 = −w̄(x)− 1

λ
E(x) + δ

2 |x|
2 on ∂Ω.

We are going to use Proposition 6.5 to estimate the behavior of w̄ near ∂V . In particular,
for x ∈ ∂Ω,

w̄(x) ≥ −C dist(x, ∂V )
2
n ≥ −C

(d
λ

+
(d
λ

)β) 2
n ≥ −C

(
d

λ

) 2β
n

,

where we have used the assumption (6.4) and the definition of V in the second inequality. It
follows that

u(x)− w+(x) ≤ C
(
d

λ

) 2β
n

+
C

λ
+ Cδ ≤ C

(
d

λ

) 2β
n

for x ∈ ∂Ω (6.21)
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by our choice of δ in (6.18). From (6.19) and (6.21) we obtain the second inequality in (6.9).
To estimate the values of u−w− on ∂Ω, observe that w̄ ≤ 0. Hence, we have for x ∈ ∂Ω,

u(x)− w−(x) = u(x)− w(x)− δ
2 |x|

2 = −w̄(x)− 1

λ
E(x)− δ

2 |x|
2 ≥ −C

λ
− C δ

2
≥ −Cδ.

This together with (6.20) yields the first inequality in (6.9) and the theorem is proved.

Remark 6.7. In the proof of Theorem 6.4, it might happen that x−∇c∗λ(−∇w±(x)) does not
belong to the domain of g for some x in Ω. Therefore, Mλ[w±] is not well defined at those x.
However we do not have any problem since to apply Proposition 6.3 in Step 4 above we only
need to check Mλ[w+] < f and Mλ[w−] > f at points x where x−∇c∗λ(−∇w±(x)) ∈ ∂cλu(Ω).

6.2 Sections are round

Here we compare sections Sµ(u, x0) of u to those of a solution of a Monge-Ampère equation.
Let [Ω] be the convex hull of Ω and w be the solution of{

det
(
I +D2w

)
= 1 in [Ω],

w = −1
2 |x− y0|2 on ∂[Ω],

(6.22)

which is given by w̄ = w + 1
2 |x− y0|2 where w̄ is the unique convex solution of detD2w̄ = 1

in [Ω] and w̄ = 0 on ∂[Ω].
Note that in Theorem 5.1 we already have a preliminary control of the sections of u.

However, we would like to obtain a more precise estimate using the comparison principle
from Theorem 6.4, that allows us to say that w is a good approximation for u, and this
approximation may be quantified explicitly. In the following three lemmas, we compare
sections of u and w by assuming in advance that ‖u − w‖ is small. We remind the reader
that the µ-section of u was defined in (2.12) and (2.13), while the sections for w are defined
in (4.13) and (4.14).

Lemma 6.8. Let B1 ⊂ Ω ⊂ [Ω] ⊂ Bn be a domain. Let u ∈ C(Ω) be a cλ-convex function
and y0 ∈ ∂cu(Ω). Consider w be the solution of (6.22), and ū, w̄ be defined as above. Assume
that we have proved that

‖ū− w̄‖L∞(Ω) ≤ ε (6.23)

for some ε > 0. There exist some dimensional constants δn > 0, µ0 > 0, τ0 > 0 and C > 0
such that if

dist (x, ∂[Ω]) ≤ δn
2

for all x ∈ ∂Ω (6.24)

and x0 ∈ Ω is a minimum point of ū in Ω, then we have

Tµ−Cε1/2(w, x0) ⊂ Sµ(u, x0) ⊂ Tµ+Cε1/2(w, x0) ⊂ Ω δn
4

(6.25)

for all µ ≤ µ0, ε ≤ τ0µ
2.

Proof. Recall that w̄ is the convex function satisfying detD2w̄ = 1 in [Ω] and w̄ = 0 on ∂[Ω].
Let x̄ ∈ [Ω] be the point where w̄ attains its minimum value in [Ω]; it exists because w̄ is
a strictly convex function (see [6]). We would like to say that x̄ and x0 stay away from the
boundary of Ω. Indeed, [26, Proposition 3.2.3] gives an estimate for the value of w̄ at its
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minimum, |w̄(x̄)| ≈ Cn, Cn dimensional constant, and from Alexandroff’s maximum principle
[26, Theorem 1.4.2], we get that dist(x̄, ∂[Ω]) ≥ δn, δn universal constant. It then follows
from the assumption (6.24) that dist(x̄, ∂Ω) ≥ δn

2 . Consequently, we obtain from (6.23) that
w̄(x̄)− ε ≤ w̄(x0)− ε ≤ ū(x0) ≤ ū(x̄) ≤ w̄(x̄) + ε, i.e.,

|ū(x0)− w̄(x̄)| ≤ ε. (6.26)

Since w̄(x0) ≤ w̄(x̄)+2ε ≤ −Cn if ε is small enough, we conclude from Alexandroff’s maximum
principle that dist(x0, ∂[Ω]) ≥ δn. In particular, dist(x0, ∂Ω) ≥ δn

2 by (6.24).
In [Ω]δn := {x ∈ [Ω] : dist(x, ∂[Ω]) ≥ δn}, we can use Pogorelov’s estimates [26, formula

(4.2.6)], to get that
2

C2
2

I ≤ D2w̄(x) ≤ 2

C2
1

I for all x ∈ [Ω]δn . (6.27)

With these in mind, it is known (see [27], for instance) that

|∇w̄(x0)| ≤ Cε1/2. (6.28)

We present the proof of (6.28) here for the sake of clarity. First of all, Taylor estimates give

w̄(x0)− ū(x0) = w̄(x̄)− ū(x0) + 1
2〈D

2w(ξ)(x0 − x̄), x0 − x̄〉 (6.29)

for some ξ between x0 and x̄. Therefore, since x0, x̄ ∈ [Ω]δn , we can use (6.26) and Pogorelov
estimates (6.27) in (6.29) to obtain

|x̄− x0| ≤ Cε1/2. (6.30)

On the other hand,

Diw̄(x0)−Diw̄(x̄) = −
∫ 1

0
D(Diw̄)(x0 + t(x̄− x0)) · (x̄− x0) dt,

thus using (6.30) we obtain the desired (6.28).
Now, we would like to say that the sections of w do not approach the boundary of Ω.

Using Alexandroff principle again we know that Tµ(w, x̄) ⊂ Ω δn
4

for 0 < µ < Cn. Then,

because of (6.23), (6.26) and (6.28), there exist τ0, µ0 universal constants such that

Tµ(w, x0) ⊂ TCε1/2+µ(w, x̄) ⊂ Ω δn
4

for ε ≤ τ0µ
2 and µ ≤ µ0.

Next, we compare the sections of u and w. Let x ∈ Sµ(u, x0). Then, using (2.13), (6.23)
and (6.28), it follows,

w̄(x) ≤ ū(x) + ε ≤ ū(x0) + µ+ ε

≤ w̄(x0) + 〈∇w̄(x0), x− x0〉+ µ+ 2ε− 〈∇w̄(x0), x− x0〉
≤ w̄(x0) + 〈∇w̄(x0), x− x0〉+ µ+ 2ε+ 2Cε1/2

≤ w̄(x0) + 〈∇w̄(x0), x− x0〉+ µ+ Cε1/2.

Hence, x ∈ Tµ+Cε1/2(w̄) and the second inclusion of (6.25) is proved. The other inclusion is
very similar.
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We can also show that u is close to a quadratic polynomial:

Lemma 6.9. In the hypothesis of the previous lemma, there exist a positive definite matrix
M = AtA and a vector p ∈ Rn satisfying

detM = 1, 0 < C1I ≤M ≤ C2I, and |p| ≤ Cε1/2,

such that we have

B(1−C(µ1/2+µ−1ε1/2))
√

2 ⊂ µ
−1/2TSµ(u, x0) ⊂ B(1+C(µ1/2+µ−1ε1/2))

√
2 (6.31)

and ∣∣ū(x)−
(
ū(x0) + 〈p, x− x0〉+ 1

2〈M(x− x0), x− x0〉
)∣∣ ≤ C(µ3/2 + ε) (6.32)

for x ∈ Sµ(u, x0), where Tx = A(x−x0) and ū(x) := u(x) + c(x− y0). Or equivalently for u,

∣∣u(x)−
(
u(x0) + 〈p− x0 + y0, x− x0〉+ 1

2〈(M − I)(x− x0), x− x0〉
)∣∣ ≤ C(µ3/2 +

µ1/2

λ
+ ε).

Proof. The behavior of the sections of the function w follows from the following three claims
(that are proven in [27]).

1. There exist τ0 and µ0, δn, dimensional constants, such that, for ε ≤ τ0µ
2 and µ ≤ µ0,

Tµ(w, x0) ⊂ [Ω]δn .

2. There exists µn such that if µ ≤ µn and γ ≤ 3
4µ, then

∂Tµ+γ(w, x0) ⊂ NCγ√
µ

(∂Tµ(w, x0)) and ∂Tµ−γ(w, x0) ⊂ NCγ√
µ

(∂Tµ(w, x0)). (6.33)

3. Let M = D2w̄(x0) and E = {x : 1
2〈D

2w̄(x0)(x − x0), x − x0〉 ≤ 1}. We compare
Tµ(w, x0) with ellipsoids and claim that

∂Tµ(w, x0) ⊂ NCµ(∂µ1/2E), (6.34)

for some structural constant C and all 0 < µ ≤ µn. Here the dilation is with respect to
the point x0.

We set µ0 := min{µ0, µn}, and let µ ≤ µ0, ε ≤ τ0µ
2. From (6.25) and (6.33), we obtain

∂Sµ(u, x0) ⊂ NCµ−1/2ε1/2(∂Tµ(w, x0)), (6.35)

which together with (6.34) gives

∂Sµ(u, x0) ⊂ NC(µ+µ−1/2ε1/2)(∂µ
1/2E). (6.36)

We also notice that
∂µ1/2E = x0 +A−1

(
∂B√2µ

)
, (6.37)

where M = AtA. If we let Tx = A(x− x0), then we have that

T
(
Nδ
(
∂µ1/2E

))
⊂ B√2µ+‖A‖δ, (6.38)
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and
T
(
Nδ
(
∂µ1/2E

))
⊂
(
B√2µ−‖A‖δ

)c
.

Hence taking δ = C(µ+ µ−1/2ε1/2) from (6.36) we get (6.31).

And for the second part of the lemma, using (6.31), the fact that ‖A‖ is bounded, and
that ε ≤ τ0µ

2, we obtain Sµ(u, x0) ⊂ BCµ1/2(x0). Then, taking p = ∇w̄(x0) yields∣∣∣∣ū(x)−
(
ū(x0) + 〈p, x− x0〉+

1

2
〈M(x− x0), x− x0〉

)∣∣∣∣
≤ |ū(x)− w̄(x)|+

∣∣∣∣w̄(x)− w̄(x0)− 〈p, x− x0〉 −
1

2
〈M(x− x0), x− x0〉

∣∣∣∣+ |w̄(x0)− ū(x0)|

≤ 2ε+
∥∥D3w̄

∥∥
L∞(B

Cµ1/2 )
|x− x0|3 ≤ C(ε+ µ3/2),

as desired. Notice that |p| ≤ Cε1/2 by (6.28).

If the boundary of the convex hull of Ω is close to that of B√2, then we can get better
estimates for M and ∂Sµ:

Lemma 6.10. In addition to the hypothesis of Lemma 6.8, suppose that Ω is a domain
satisfying

B(1−σ)
√

2 ⊂ [Ω] ⊂ B(1+σ)
√

2

for some 0 < σ ≤ 1. Then, there exist µ0 > 0, τ0 > 0 which are independent of σ, a positive
definite matrix M = AtA, and p ∈ Rn with

detM = 1, (1−Cσ)|ξ|2 ≤ 〈Mξ, ξ〉 ≤ (1 +Cσ)|ξ|2, |p| ≤ Cε1/2 and |p−x0| ≤ Cσ (6.39)

such that for 0 < µ ≤ µ0 and ε ≤ τ0µ
2 we have

B(1−C(σµ1/2+µ−1ε1/2))
√

2 ⊂ µ
−1/2TSµ(u, x0) ⊂ B(1+C(σµ1/2+µ−1ε1/2))

√
2, (6.40)

and in Sµ(u, x0),∣∣ū(x)−
(
ū(x0) + 〈p, x− x0〉+ 1

2〈M(x− x0), x− x0〉
)∣∣ ≤ C(σµ3/2 + ε), (6.41)

where Tx = A(x− x0) and ū(x) := u(x) + c(x− y0). Or equivalently,

∣∣u(x)−
(
u(x0) + 〈p− x0 + y0, x− x0〉+ 1

2〈(M − I)(x− x0), x− x0〉
)∣∣ ≤ C(σµ3/2 +

µ1/2

λ
+ ε)

in Sµ(u, x0).

Proof. It is similar to that of Lemma 6.9. The only difference is that since now ∂[Ω] ⊂
Nσ√2(∂B√2), we will get the following improvement of (6.34):

∂Tµ(w, x0) ⊂ NCσµ(∂µ1/2E). (6.42)

To do this, let P (x) = 1
2 |x|

2 − 1, then detD2P (x) = 1. Since ∂[Ω] ⊂ Nσ√2(∂B√2), we have
P − 3σ ≤ 0 ≤ P + 3σ on ∂[Ω] and by the comparison principle we get ‖w̄ − P‖L∞([Ω]) ≤ 3σ.
Since w̄ is smooth, v := w̄ − P satisfies the following uniformly elliptic linear equation

trace(D(x)D2v) = 0,
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where D(x) =
∫ 1

0 (tD2w̄(x) + (1− t)I)−1 det(tD2w̄(x) + (1− t)I) dt. Therefore, by interior
Schauder estimates

‖w̄ − P‖C2
loc
≤ C‖w̄ − P‖L∞loc

≤ Cσ.

In particular, |p−x0| = |Dw̄(x0)−DP (x0)| ≤ Cσ and |Dijw̄(x0)−δij | ≤ Cσ for 1 ≤ i, j ≤ n.
By differentiating detD2w̄(x) = 1, we obtain that the function v = D(w̄ − P ) satisfies the
linearized equation

trace((D2w̄(x))−1D2v) = 0.

Again by the interior Schauder estimates (C2
loc estimates) we get

‖D3w̄‖L∞loc
= ‖D3(w̄ − P )‖L∞loc

≤ C‖D(w̄ − P )‖L∞loc
≤ C∗σ. (6.43)

The rest of the proof is standard and follows as in [27, Lemma 1.2].

7 Interior C2,α estimates

Here we present the proof of Theorem 1.2. Let u be a solution of (1.1), or equivalently
(thanks to the results in Subsection 2.2), u is an Alexandroff weak solution of{

Mλ[u] = f in Ω,
∂cλu(Ω) = Ω′

(7.1)

for some λ > 0. Fix δ0 > 0, and let

Ωδ0 := {x ∈ Ω : dist(x, ∂Ω) > δ0} .

We will find λ0 and r > 0 depending on δ0 and α such that for all λ ≥ λ0, and for every point
x0 ∈ Ωδ0 it is possible to construct a second order polynomial in x, call it P0, such that

|u(x)− P0(x)| ≤ C |x− x0|α
′
∀x ∈ Br(x0), (7.2)

for some α′ ∈ (0, 1) depending only on n, α and chosen later, and C depending only on λ0,
n, Λ1, Λ2, α, δ0, ‖f‖Cα(Ωδ1), ‖g‖Cα

(
Ω′δ1

), Ω and Ω′. The constant δ1 > 0 will be made precise

in the proof and depends only on δ0 and universal constants.
The proof goes by induction. In the first step, we will compare the function u with

the solution of an optimal transport problem with quadratic cost. In the successive steps,
once we have localized the problem, the comparison will be with respect to a solution of a
Monge-Ampère equation with homogeneous Dirichlet boundary data.

7.1 Localization

We first localize the problem in a section so that we have control of the boundary data. Fix
any x0 ∈ Ωδ0 and y0 ∈ ∂cu(x0). The notion of sections for u at x0 was defined in (2.12), or
equivalently for ū(x) := u(x) + c(x− y0), as in (2.13). Note that x0 is a minimum point for
ū in Ω.

We make now one further simplification. It is enough to assume that x0 = y0, i.e., that
p0 := −∇c(x0−y0) = 0. This can be achieved by subtracting a linear function to the potential
u.

This first step in the induction argument was considered in Section 4. In fact, Proposi-
tion 4.1 shows that u is actually close in the L∞ norm to a strictly convex function w. It
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also implies that the sections of u stay away from the boundary ∂Ω. This is done in Propo-
sition 4.5 and Corollary 4.6. These imply, in particular, that there exists a positive constant
µ1 = µ1

(
δ0, n,Λ1,Λ2,Ω,Ω

′) satisfying: for all h ≤ µ1 we can find λ0 > 0 depending on h
such that for all λ ≥ λ0, if u is the solution of (7.1) for the cost cλ, then

Sh(u, x0) := Sh(u, x0, y0) ⊂ Ωcδθ0
.

As we assume
∂loc
c u(x) = ∂cu(x) for all x ∈ Ωcδθ0

, (7.3)

the restriction of u to any subregion of Ωcδθ0
is still an Alexandroff weak solution in that

subregion of the same equation Mλ[u] = f . Next look at the image set. Note that Propo-
sition 4.4 gives that ∂cu(Ωcδθ0

) ⊂ Ω′δ1 for some small δ1 > 0 depending only on δ0 and

universal constants. Since Ω′ is strongly convex by the assumption, so is Ω′δ1 and hence as
in Lemma 2.4 we conclude that Ω′δ1 is c∗λ-convex with respect to Ω. It then follows from

[35] that ∂cu(Ωcδθ0
) ⊂ Ω′δ1 which allows to restrict the dependence on g in the arguments to

‖g‖Cα(Ω′δ1
)
, as stated in the theorem.

Next, Corollary 4.6 and its subsequent remark (see formulas (4.18) and (4.19)) show
that Sh(u, x0) ⊂ BC

√
h(x0) and there exists an affine transformation Tx = Ax + b with

C1 ≤ |detA|
2
n h ≤ C2, ‖A‖ ≤ Ch

−1
2 and

∥∥A−1
∥∥ ≤ Ch 1

2 such that

BK(0) ⊂ Ω̃ := TSh(u, x0) ⊂ Bn(0) and dist(x, ∂[Ω̃]) ≤ Ch
−1
2

λ
for all x ∈ ∂Ω̃.

Let us consider the function

ũ(x) :=
1

h

[
u(T−1x)− u(x0)− c(x0 − y0)− h

]
, for x ∈ Ω̃.

Then ũ is an Alexandroff weak solution to the Monge-Ampère equation:{
g̃(x−∇c̃∗(−∇ũ)) det

(
I +D2c̃∗(−∇ũ)D2ũ

)
= f̃(x) in Ω̃,

ũ(x) = −c̃(x− Ty0) on ∂Ω̃,
(7.4)

for f̃(x) := f(T−1x), g̃(y) := g(T−1y) and

c̃(x) :=
1

h
c(T−1x) =

1

2
|x|2 +

1

λ̃
Ẽ(x) with λ̃ := h

−1
2 λ.

Equivalently, c̃∗(z) = 1
hc
∗(hT tz) by the Legendre transform.

We will use the comparison principle from Theorem 6.4 to get a better L∞ approximation
for ũ. In order to apply this theorem, we first need to verify the assumptions. Without loss
of generality, we can assume that x0 = y0 = 0 and f(x0) = g(y0) = 1. We then have

|f̃(x)− 1| = |f(T−1x)− f(0)| ≤ |A−1x|α ≤ ‖A−1‖α |x|α ≤ Ch
α
2 |x|α for all x ∈ Ω̃.

In particular, ‖f̃ − 1‖L∞(Ω̃) ≤ Ch
α
2 . On the other hand for y ∈ ∂c̃ũ(Ω̃) = T∂cu(Sh(u, x0)),

we write y = Tx for x ∈ ∂cu(Sh(u, x0)) and thus

|g̃(y)− 1| = |g(x)− g(0)| ≤ C|x− 0|α = C|A−1y|α ≤ Ch
α
2 |y|α.
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Therefore, we would like to apply Theorem 6.4 with d = Ch−1, λ  λ̃, θ  θ̃ := Ch
α
2 and

β > 0 satisfying
(
d
λ̃

)β = θ̃
nα̂
α , where α̂ = α̂(n, α) is chosen arbitrary as long as 0 < α̂ <

α

n
(

(n−1)2+n−2
n
α
) . Notice that β ≤ 1 because we can assume without loss of generality that

λ ≥ λ0 ≥ C

h
nα̂+2

2

ensuring that d
λ̃
≤ θ̃

nα̂
α . Observe also that condition (6.8) is satisfied since

Cn

(d
λ̃

)−β((n−1)2+n−2
n
α
)[
θ̃ +

1

λ̃

(d
λ̃

)n−2
n

(α−1)β]
≤ Cnθ̃−

nα̂
α

(
(n−1)2+n−2

n
α
)[
θ̃ +

1

d
θ̃
nα̂
α θ̃

α̂
α

(n−2)(α−1)
]
≤ 2Cnθ̃

1−nα̂
α

(
(n−1)2+n−2

n
α
)
≤ 1.

Thus we conclude from Theorem 6.4 that

‖ũ− w‖L∞(Ω̃) ≤ C
(d
λ̃

) 2β
n

= Cθ̃
2α̂
α = Chα̂ =: ε0, (7.5)

where w is the cq-convex solution of{
det
(
I +D2w

)
= 1 in V := N

θ̃
nα̂
α

[Ω],

w = −1
2 |x− Ty0|2 on ∂V.

(Note that Ty0 ∈ ∂c̃ũ(Tx0)). The above estimate holds for any 0 < h ≤ µ1. We now fix
h ≤ µ1 (and hence λ0 is fixed) such that ε0 = τ0µ

3, where 0 < µ ≤ min{µ0, 1/2} is a universal
constant whose precise value will be determined later and µ0, τ0 > 0 are the constants given
in Lemma 6.8. In order to prove u is C2,α′ at x0, it is enough to prove that its normalization
ũ defined in Ω̃ is C2,α′ at Tx0. However for simplicity, from now on we will abuse notations
by writing u, c, λ, Ω, f , g, x0 and y0 for ũ, c̃, λ̃, Ω̃, f̃ , g̃, Tx0 and Ty0 respectively. In
particular, we have

BK(0) ⊂ Ω ⊂ Bn(0) and
1

λ
≤ h

nα̂+3
2 ,

|f(x)− 1| ≤ θ̃|x|α ∀x ∈ Ω and |g(y)− 1| ≤ θ̃|y|α ∀y ∈ ∂cu(Ω).

Define
ū(x) := u(x) + c(x− y0), for x ∈ Ω.

7.2 Induction

To show that u (equivalently ū) is C2,α′ at the point x0, we will compare smaller and smaller
sections Sµ(u, x0) of u with those of a solution w of a Monge-Ampère equation with Dirichlet
boundary data. The precise inductive procedure will be carried out next.
First induction step. As a consequence of (7.5) and Lemma 6.9 we can find a map
T1x = A1(x− x0), where A1 is a unitary matrix, such that C1|x|2 ≤ |A1x|2 ≤ C2|x|2 and

B(1−σ1)
√

2 ⊂ µ
−1/2T1Sµ(u, x0) ⊂ B(1+σ1)

√
2, with σ1 := C(µ1/2 + µ−1ε

1/2
0 ). (7.6)

Moreover,∣∣ū(x)−
(
ū(x0) + 〈p1, x− x0〉+ 1

2〈M1(x− x0), x− x0〉
)∣∣ ≤ C(µ3/2 + ε0) in Sµ(u, x0),

where M1 := At1A1 and p1 is some vector satisfying |p1| ≤ Cε1/20 .
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Now consider the rescaled function

u1(x) :=
1

µ

[
u(µ1/2T−1

1 x)− u(x0)− c(x0 − y0)− µ
]
, x ∈ Ω1 := µ−1/2T1Sµ(u, x0).

Then, thanks to the assumption (7.3), u1 is an Alexandroff weak solution of the following
Monge-Ampère equation:{

g1(x−∇c∗1(−∇u1)) det
(
I +D2c∗1(−∇u1)D2u1

)
= f1(x) in Ω1,

u1(x) = −c1(x− µ−
1
2T1y0) on ∂Ω1,

(7.7)

for
f1(x) := f(µ1/2T−1

1 x), g1(y) := g(µ1/2T−1
1 y)

and

c1(x) :=
1

µ
c(µ1/2T−1

1 x) =
1

2
|x|2 +

1

λ1
E1(x) with

1

λ1
:=

µ1/2

λ
.

The definition of c1 implies that c∗1(z) = 1
µc
∗ (µ1/2T t1z

)
. It is clear from (7.7) that the

boundary values of u1 are controlled. Notice also that we can apply Proposition 3.2 to say,

dist(x, ∂[Sµ(u, x0)]) ≤ C

λ
for all x ∈ ∂Sµ(u, x0),

and after rescaling,

dist(x, ∂[Ω1]) ≤ µ
−1
2 ‖A1‖

C

λ
≤ C
√
C2µ

−1

λ1
∀x ∈ ∂Ω1.

We have

|f1(x)− 1| = |f(µ
1
2T−1

1 x)− 1| ≤ θ̃µ
α
2 |A−1

1 x|α ≤ θ̃(C−1
1 µ)

α
2 |x|α = θ1|x|α ∀x ∈ Ω1, (7.8)

where θ1 := θ̃(C−1
1 µ)

α
2 ≤ θ̃. Also as µ

1
2T−1

1 ∂c1u1(Ω1) = ∂cu(Sµ(u, x0)),

|g1(y)− 1| = |g(µ
1
2T−1

1 y)− 1| ≤ θ̃µ
α
2 |A−1

1 y|α ≤ θ1|y|α for all y ∈ ∂c1u1(Ω1). (7.9)

Therefore, we would like to apply Theorem 6.4 with d = C
√
C2µ

−1, λ  λ1, θ  θ1 and

β > 0 satisfying
(
d
λ1

)β = θ
nα̂
α

1 . Notice that β ≤ 1 because our condition on α̂ yields

d

λ1
=
C
√
C2µ

1/2µ−1

λ
≤ C

√
C2µ

1/2µ−1h
nα̂+2

2 ≤ Cµ( 3
α̂
− 1+nα̂

2
)θ

nα̂
α

1 ≤ θ
nα̂
α

1 (7.10)

and

1

λ1
=
µ

1
2

λ
≤ Ch

nα̂+1
2 (hµ)

(1−α)
2

[1−(n−2)α̂]θ1θ
α̂
α

(n−2)(1−α)

1 ≤ θ1θ
α̂
α

(n−2)(1−α)

1 . (7.11)

Observe also that condition (6.8) is satisfied since

Cn

( d
λ1

)−β((n−1)2+n−2
n
α
)[
θ1 +

1

λ1

( d
λ1

)n−2
n

(α−1)β]
≤ Cnθ

−nα̂
α

(
(n−1)2+n−2

n
α
)

1

[
θ1 + θ1θ

α̂
α

(n−2)(1−α)

1 θ
α̂
α

(n−2)(α−1)

1

]
≤ 2Cnθ

1−nα̂
α

(
(n−1)2+n−2

n
α
)

1 ≤ 2Cnθ̃
1−nα̂

α

(
(n−1)2+n−2

n
α
)
≤ 1.
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We have checked all the hypotheses necessary to apply Theorem 6.4. Thus Theorem 6.4 gives

‖u1 − w1‖L∞(Ω1) ≤ C
( d
λ1

) 2β
n

= Cθ
2α̂
α

1 =: ε1, (7.12)

where w1 is the cq-convex solution of{
det
(
I +D2w1

)
= 1 in V := N

θ
nα̂
α

1

[Ω1],

w1 = −1
2

∣∣x− µ−1
2 T1y0

∣∣2 on ∂V.

Then as ε1 ≤ ε0 ≤ τ0µ
2, Lemma 6.10 (now centered at x0 = 0) shows the existence of a

positive definite matrix M = AtA and a vector p ∈ Rn satisfying

detM = 1, (1− Cσ1)I ≤M ≤ (1 + Cσ1)I, |p| ≤ Cσ1

such that

B(1−σ2)
√

2 ⊂ µ
−1/2ASµ(u1, 0) ⊂ B(1+σ2)

√
2, with σ2 := C(σ1µ

1/2 + µ−1ε
1/2
1 ). (7.13)

Moreover∣∣ū1(x)−
(
ū1(0) + 〈p, x〉+ 1

2〈Mx, x〉
)∣∣ ≤ C(σ1µ

3/2 + ε1) in Sµ(u1, 0), (7.14)

where

ū1(x) := u1(x) + c1(x− µ
−1
2 T1y0) =

1

µ

[
ū(µ1/2T−1

1 x)− u(x0)− c(x0 − y0)− µ
]
.

Let M2 := At1MA1, A1 is computed in the previous step. Since M2−M1 = At1(M−I)A1,
we have that ‖M2 −M1‖ ≤ ‖A1‖2 ‖M − I‖ ≤ Cσ1. Also, because M = AtA, we have that
(1−Cσ1) |x|2 ≤ |Ax|2 ≤ (1 +Cσ1) |x|2. If we let A2 := AA1, then M2 = At2A2 and therefore,

C(1− Cσ1) |x|2 ≤ (1− Cσ1) |A1x|2 ≤ |AA1x|2 ≤ (1 + Cσ1) |A1x|2 ≤ C(1 + Cσ1) |x|2 ,

that is ‖A2‖2 ≤ C(1 + Cσ1) and
∥∥A−1

2

∥∥2 ≤ 1/C(1− Cσ1).

On the other hand, Sµ(u1, 0) = µ−1/2T1Sµ2(u, x0). Hence it follows from (7.13) that

B(1−σ2)
√

2 ⊂ µ
−1T2Sµ2(u, x0) ⊂ B(1+σ2)

√
2, (7.15)

for T2x := A2(x− x0). Moreover, from (7.14), letting x = µ−1/2T1z we obtain∣∣ū(z)−
(
ū(x0) + 〈p2, z〉+ 1

2〈M2z, z〉
)∣∣ ≤ Cµ(σ1µ

3/2 + ε1

)
for all z ∈ Sµ2(u, x0),

where p2 := µ1/2At1p and so |p2| ≤ Cµ1/2σ1.
We are now in good shape to iterate the induction process, that will be explained in the

following paragraph. The crucial observation is that problem (7.7) is better than the original
one in the sense that the rescaled cost c1 is closer to the quadratic one by a factor µ1/2.

The general induction step. It is clear from above step that how the induction process
continues. The main point is the following: while the gradient of uk deteriorates by a factor
of µk/2 (bad!) with respect to the gradient of the original u, on the other hand the cost cλk is
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closer to quadratic by the same factor (good!). The strategy is to find the right compensation
between the two facts.

Let us explain the main details of the k-th step given the (k − 1)-th step. From the
(k − 1)-th step, we have

‖uk−1 − wk−1‖L∞(Ωk−1) ≤ Cθ
2α̂
α
k−1 =: εk−1, (7.16)

where Ωk−1 := µ−
k−1

2 Tk−1Sµk−1(u, x0),

uk−1(x) :=
1

µk−1

[
u(µ

k−1
2 T−1

k−1x)− u(x0)− c(x0 − y0)− µk−1
]

and wk−1 is the cq-convex solution of det
(
I +D2wk−1

)
= 1 in V := N

θ
nα̂
α
k−1

[Ωk−1],

wk−1 = −1
2

∣∣x− µ− k−1
2 Tk−1y0

∣∣2 on ∂V.

Also there is a positive definite matrix Mk = AtkAk such that for Tkx := Ak(x− x0),

B(1−σk)
√

2 ⊂ µ
− k

2TkSµk(u, x0) ⊂ B(1+σk)
√

2.

To continue the process, we consider the rescaled function

uk(x) :=
1

µk

[
u(µ

k
2T−1

k x)− u(x0)− c(x0 − y0)− µk
]
, x ∈ Ωk := µ−

k
2TkSµk(u, x0).

Note that uk satisfies a Monge-Ampère equation in the weak sense of Alexandroff with a new
cost ck, i.e.,{

gk(x−∇c∗k(−∇uk)) det
(
I +D2c∗k(−∇uk)D2uk

)
= fk(x) in Ωk,

uk(x) = −ck(x− µ−
k
2Tky0) on ∂Ωk,

for

fk(x) := fk−1(µ
1
2A−1x) = f(µ

k
2T−1

k x), gk(y) := gk−1(µ
1
2A−1y) = g(µ

k
2T−1

k y)

and

ck(x) :=
1

µ
ck−1(µ

1
2A−1x) =

1

µk
c(µ

k
2T−1

k x) or equivalently c∗k(z) =
1

µk
c∗
(
µ
k
2T tkz

)
,

where the matrix A is given precisely in the (k − 1)-th step which in particular satisfy

Ak = AAk−1, ‖A‖ ≤
√
C2 and ‖A−1‖ ≤ C

−1/2
1 . Because ‖A−1‖ is universally bounded, we

can write

ck(x) =
1

2
|x|2 +

1

λk
Ek(x) with

1

λk
:=

µ1/2

λk−1
=
µk/2

λ

for some
|Ek(x)| ≤ C |x|3 , |∇Ek(x)| ≤ C |x|2 , |D2Ek(x)| ≤ C |x| .

We write
Mλk [uk] = fk
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for
Mλk [uk] := gk (x+∇uk +Gk(∇uk)) det

[
I +D2uk + (D2uk)Hk(∇uk)

]
where Hk and Gk satisfy for some universal constant C,

‖Hk(∇uk)‖L∞ ≤
C

λk
‖∇uk‖L∞(Ωk) , ‖Gk(∇uk)‖L∞ ≤

C

λk
‖∇uk‖2L∞(Ωk) .

First observe that Proposition 3.2 and the fact Ωk = µ−1/2ASµ(uk−1, 0) give

dist(x, ∂[Ωk]) ≤ µ
−1
2 ‖A‖ C

λk−1
≤ C
√
C2µ

−1

λk
∀x ∈ ∂Ωk.

Next since µ
1
2A−1Ωk = Ωk−1, we obtain from the (k − 1)-th step that

|fk(x)− 1| = |fk−1(µ
1
2A−1x)− 1| ≤ θk−1µ

α
2 |A−1x|α ≤ θk|x|α for all x ∈ Ωk,

where θk := θk−1(C−1
1 µ)

α
2 ≤ θk−1. Similarly as µ

1
2A−1∂ckuk(Ωk) = ∂ck−1

uk−1(Sµ(uk−1, 0)),

|gk(y)− 1| = |gk−1(µ
1
2A−1y)− 1| ≤ θk−1µ

α
2 |A−1y|α ≤ θk|y|α for all y ∈ ∂ckuk(Ωk).

We apply Theorem 6.4 with d = C
√
C2µ

−1, λ  λk, θ  θk and β > 0 satisfying
(
d
λk

)β =

θ
nα̂
α
k . Notice that the constant d is the same for all steps. Also β ≤ 1 because it follows from

the (k − 1)-th step that

d

λk
= µ

1
2

d

λk−1
≤ µ

1
2 θ

nα̂
α
k−1 = C

nα̂
2

1 µ
1−nα̂

2 θ
nα̂
α
k ≤ θ

nα̂
α
k

and

1

λk
=

µ
1
2

λk−1
≤ µ

1
2 θk−1θ

α̂
α

(n−2)(1−α)

k−1 = C
1
2

(
α+α̂(n−2)(1−α)

)
1 µ

(1−α)
2

[1−(n−2)α̂]θkθ
α̂
α

(n−2)(1−α)

k

≤ θkθ
α̂
α

(n−2)(1−α)

k .

These also imply that condition (6.8) is satisfied because

Cn

( d
λk

)−β((n−1)2+n−2
n
α
)[
θk +

1

λk

( d
λk

)n−2
n

(α−1)β]
≤ 2Cnθ

1−nα̂
α

(
(n−1)2+n−2

n
α
)

k ≤ 2Cnθ
1−nα̂

α

(
(n−1)2+n−2

n
α
)

k−1 ≤ 1.

Now apply Theorem 6.4 and continue the same procedure as done in the first induction step.
Observe that we always have

εk := C
( d
λk

) 2β
n

= Cθ
2α̂
α
k .

Conclusion. The above induction process allows to construct a sequence of matrices Mk =
AtkAk, transformations Tk, vectors pk ∈ Rn, and polynomials Pk(x), k ≥ 1, such that

1. detMk = 1, ‖Mk+1 −Mk‖ ≤ C(1 + Cσ1) · · · (1 + Cσk−1)σk,

2. ‖Ak‖2 ≤ C(1 + Cσ1) · · · (1 + Cσk−1), ‖A−1
k ‖

2 ≤ C[(1− Cσ1) · · · (1− Cσk−1)]−1,
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3. B(1−σk)
√

2 ⊂ µ
−k/2TkSµk(u, x0) ⊂ B(1+σk)

√
2,

4. ‖ū(x)− Pk(x)‖L∞(S
µk

(u,x0)) ≤ Cµk−1(σk−1µ
3/2 + εk−1),

5. |pk| ≤ Cµ
k−1

2

√
(1 + Cσ1) · · · (1 + Cσk−2) σk−1,

where

1. Pk(x) := ū(x0) + 〈pk, x− x0〉+ 1
2〈Mk(x− x0), x− x0〉,

2. ε0 = τ0µ
3 and εk = Cθ

2α̂
α
k = ε0(C−1

1 µ)kα̂ for k ≥ 1,

3. σ0 = 1 and σk = C(σk−1µ
1/2 + µ−1ε

1/2
k−1) for k ≥ 1.

Let us estimate σk. First choose µ small enough such that σ1 = C(1 + τ
1
2

0 )µ
1
2 < 1. Then

as the sequence {εk}∞k=1 is decreasing to 0, it is clear that {σk}∞k=1 is decreasing to 0 as well.
By induction we see that for all k ≥ 1

σk = (C
√
µ)k +

C

µ
(C
√
µ)k−1

k−1∑
i=0

(C
√
µ)−iε

1/2
i

= (C
√
µ)k +

Cε
1/2
0

µ
(C
√
µ)k−1

k−1∑
i=0

[
C−1C

−α̂
2

1 µ
α̂−1

2
]i

≤ (C
√
µ)k +

Cε
1/2
0

µ
(C
√
µ)k−1C

−kC
−kα̂

2
1 µ

k(α̂−1)
2

C−1C
−α̂
2

1 µ
α̂−1

2

≤ Ĉ(C−1
1 µ)

kα̂
2 .

Thus
∑∞

i=1 σi is convergent and hence
∏∞
i=1 (1 + Cσi) and

∏∞
i=1 (1− Cσi) converge to

some positive numbers since Cσi ≤ 1/2 for all i large. Consequently, we obtain the following
estimates for all k ≥ 1:

‖Ak‖ ≤ C, ‖A−1
k ‖ ≤ C, |pk| ≤ C µ

k−1
2 (C−1

1 µ)
(k−1)α̂

2 and ‖Mk+1 −Mk‖ ≤ C(C−1
1 µ)

kα̂
2 .

It follows that Mk is a Cauchy sequence and hence Mk → M for some matrix M and
pk → 0 as k →∞. So if we let P0(x) := ū(x0) + 〈M(x− x0), (x− x0)〉, then Pk(x)→ P0(x)
pointwise in Rn. Also the above estimates together with the fact Tkx0 = 0 yield BCµk/2(x0) ⊂
Sµk(u, x0) for all k ≥ 1. Therefore, for any l = 1, 2, ... and for any x ∈ BCµl/2(x0) ⊂ Sµl(u, x0),
we obtain

|ū(x)− P0(x)| ≤ |ū(x)− Pl(x)|+ |Pl(x)− P0(x)|

≤ Cµl−1(σl−1µ
3/2 + εl−1) + ‖pl‖ |x− x0|+

∞∑
k=l

|〈(Mk −Mk+1)(x− x0), (x− x0)〉|

≤ C ′µl−1(C−1
1 µ)

(l−1)α̂
2 + C ′µl

∞∑
k=l

(C−1
1 µ)

kα̂
2 ≤ C ′′µl(C−1

1 µ)
lα̂
2 ≤ C ′′µ

l
2

(2+α′),

where the last inequality holds if we choose 0 < α′ < α̂ (note that C1 < 1). This yields (7.2)
as desired and we conclude that u is C2,α′ at x0 for any 0 < α′ < α

n
(

(n−1)2+n−2
n
α
) . The proof

of Theorem 1.2 is completed.
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2005.

[2] Y. Brenier. Polar factorization and monotone rearrangement of vector-valued functions.
Comm. Pure Appl. Math., 44(4):375–417, 1991.

[3] L. Caffarelli and Y. Y. Li. A Liouville theorem for solutions of the Monge-Ampère
equation with periodic data. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21(1):97–120,
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[16] P. Delanoë and Y. Ge. Regularity of optimal transport on compact, locally nearly
spherical, manifolds. J. Reine Angew. Math., 646:65–115, 2010.

[17] A. Figalli, Y.-H. Kim, and R. J. McCann. Hölder Continuity and Injectivity of Optimal
Maps. Arch. Ration. Mech. Anal., 209(3):747–795, 2013.

[18] A. Figalli, Y.-H. Kim, and R. J. McCann. Regularity of optimal transport maps on
multiple products of spheres. J. Eur. Math. Soc. (JEMS), to appear.

[19] A. Figalli and G. Loeper. C1 regularity of solutions of the Monge-Ampère equation for
optimal transport in dimension two. Calc. Var. Partial Differential Equations, 35(4):537–
550, 2009.

[20] A. Figalli and L. Rifford. Continuity of optimal transport maps and convexity of in-
jectivity domains on small deformations of S2. Comm. Pure Appl. Math. 62, no. 12,
1670–1706, 2009.

[21] A. Figalli, L. Rifford and C. Villani. On the Ma-Trudinger-Wang curvature on surfaces.
Calc. Var. Partial Differential Equations 39, no. 3-4, 307–332, 2010.

[22] A. Figalli, L. Rifford, and C. Villani. Necessary and sufficient conditions for continuity of
optimal transport maps on Riemannian manifolds. Tohoku Math. J. (2), 63(4):855–876,
2011.

[23] W. Gangbo and R. J. McCann. Optimal maps in Monge’s mass transport problem. C.
R. Acad. Sci. Paris Sér. I Math., 321(12):1653–1658, 1995.

[24] W. Gangbo and R. J. McCann. The geometry of optimal transportation. Acta Math.,
177(2):113–161, 1996.

[25] D. Gilbarg and N.S. Trudinger. Elliptic Partial Differential Equations of Second Order.
Springer–Verlag, New York, 2001.

[26] C. E. Gutiérrez. The Monge-Ampère equation. Progress in Nonlinear Differential Equa-
tions and their Applications, 44. Birkhäuser Boston Inc., Boston, MA, 2001.
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