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Abstract

In this paper we analyze the global existence of classical solutions to the initial boundary-
value problem for a nonlinear parabolic equation describing the collective behavior of an ensem-
ble of neurons. These equations were obtained as a diffusive approximation of the mean-field
limit of a stochastic differential equation system. The resulting nonlocal Fokker-Planck equation
presents a nonlinearity in the coefficients depending on the probability flux through the bound-
ary. We show by an appropriate change of variables that this parabolic equation with nonlinear
boundary conditions can be transformed into a non standard Stefan-like free boundary problem
with a Dirac-delta source term. We prove that there are global classical solutions for inhibitory
neural networks, while for excitatory networks we give local well-posedness of classical solutions
together with a blow up criterium. Surprisingly, we will show that the spectrum for the opera-
tor in the linear case, that corresponding to a system of uncoupled networks, does not give any
information about the large time asymptotic behavior.

1 Introduction

Collective behavior of a large ensemble of interacting neurons is commonly modeled by a system
of stochastic differential equations. Each subsystem describes an individual neuron in the net-
work as an electric circuit model with a choice of parameters such as the membrane potential v,
the conductances, the proportion of open ion channels and their type. The individual descrip-
tion of each neuron includes a stochastic current, which describes the voltage rate change due
to the electrical discharges (spikes) of the rest of the network neurons. We refer to the classical
references [17, 12, 28] and the nice brief introduction [15] for a wider overview of this area and
further references. As a result of the coupling network, the collective behavior of the stochastic
differential system can lead to complicated dynamics such as existence of several stationary
states, bifurcations and synchronization (see [1, 22, 23]).

The time evolution of the potential v(t) through the cell membrane has been modeled by
several authors [1, 2, 25, 7, 27, 24]. The neurons relax towards their resting potential vL (leak
potential) in the absence of any interaction. As mentioned above, all interactions of the neuron
within the network are modeled by an incoming presynaptic current I(t) given by an stochastic
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process to be specified below. Therefore, the evolution of the membrane potential is assumed
to follow the equation

Cm
dv

dt
= −gL(v − vL) + I(t) , (1.1)

where Cm is the capacitance of the membrane and gL denotes the leak conductance. If the
voltage achieves the so-called threshold voltage vth (maximum voltage), then the neuron emits
a spike transmitted to the network through I(t) and its voltage is instantaneously reset to vR
(reset voltage). The mean firing rate produced by the network N(t) is defined as the average
number of spikes per unit time.

The network consists of C = CE +CI neurons: CI inhibitory and CE excitatory, producing
spikes of strength JE and JI respectively at their spike times. The total presynaptic current I(t)
in (1.1) is computed as the difference of the total spike strengths received through the synapses
by a neuron at the network:

I(t) = JE

CE∑
i=1

∑
j

δ(t− tiEj)− JI
CI∑
i=1

∑
j

δ(t− tiIj) ,

where tiEj and tiIj are the times of the jth-spike coming from the ith-presynaptic excitatory and
inhibitory neurons respectively. Most of the microscopic models for neuron dynamics assume
that the spike times, tiEj and tiIj , follow independent discrete Poisson processes with probability
of emitting a spike per unit time ν. This stochastic process I(t) has mean given by µC = Bν
with B := CEJE − CIJI and variance σ2

C = (CEJ
2
E + CIJ

2
I )ν. We will say that the network

is excitatory if B > 0 (inhibitory respectively if B < 0). The model just described is known
[12, 28, 1] as the Leaky Integrate & Fire (LIF) neuron model.

Dealing with these discrete Poisson processes can be difficult and thus an approximation was
proposed in the literature. This approximation consists in substituting the stochastic process
I(t) by a drift-diffusion process with the same mean and variance I(t) dt ≈ µC dt + σC dWt,
where Wt is the standard Brownian motion. We refer for more details of this approximation to
[1, 2, 25, 7, 27, 24, 20]. The approximation to the original LIF neuron model (1.1) is given by

dv = (−v + vL + µC) dt+ σC dWt , (1.2)

where we choose the units such that Cm = gL = 1, for v ≤ vth with the jump process: v(t+o ) = vR
whenever at to the voltage achieves the threshold value v(t−o ) = vth; with vL < vR < vth. The
last ingredient of the model is given by the probability ν of firing per unit time of the Poisson
processes, i.e., the so-called total firing rate. The firing rate depends on the activity of the
network and on some external stimuli and it is given by ν = νext+N(t), where N(t) is the mean
firing rate produced by the network and νext ≥ 0 is the external firing rate. The value of N(t)
is then computed as the flux of neurons across the threshold or firing voltage vth.

The stochastic problem (1.2) with the jump process specified above can be written in terms
of a partial differential equation for the evolution of the probability density p(v, t) ≥ 0 of finding
neurons at a voltage v ∈ (−∞, vth] at a time t ≥ 0. This PDE has the structure of a backward
Kolmogorov or Fokker-Planck equation with sources and is given by

∂p

∂t
(v, t) =

∂

∂v

[(
v − vL − µC

)
p(v, t)

]
+
σ2
C

2

∂2p

∂v2
(v, t) +N(t) δv=vR , v ≤ vth . (1.3)

A Dirac delta source term in the right-hand side appears due to the firing at time t ≥ 0 for
neurons whose voltage is immediately reset to vR. Imposing the condition that no neuron should
have the firing voltage due to their instantaneous discharge, we complement (1.3) with Dirichlet
and initial boundary conditions: p(vth, t) = 0, p(−∞, t) = 0, and p(v, 0) = pI(v) ≥ 0. The mean

firing rate N(t) is implicitly given by N(t) := −σ
2
C

2
∂p
∂v (vth, t) ≥ 0, that is the flux of probability

at vth. The above definition for N(t) formally implies that any solution to (1.3) is a probability
density for all times, i.e.∫ vth

−∞
p(v, t) dv =

∫ vth

−∞
pI(v) dv = 1 , for all t ≥ 0.
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Let us note that in most of the computational neuroscience literature [1, 20], equation (1.3) is
specified on the intervals (−∞, vR) or (vR, vth) with no Dirac delta source term but rather a
boundary condition relating the values of the fluxes from the right and the left at v = vR. The
formulation presented here is equivalent and more suitable for mathematical treatment. Other
more complicated microscopic models including the conductance, and leading to kinetic-like
Fokker-Planck equations, have been studied recently, see [4] and the references therein. Finally,
the nonlinear Fokker-Planck equation (1.3) can be rewritten as

∂p

∂t
=
σ2

2

∂2p

∂v2
+

∂

∂v
[(v − µ̄)p] +N(t) δv=vR , v ≤ vth ,

where σ2 = 2a20 + a1N(t), with a0 > 0, a1 ≥ 0 and µ̄ = Bνext + BN(t). We will focus only on
the simplest case in which the nonlinearity in the diffusion coefficient is neglected by assuming
a1 = 0. Without loss of generality, we can choose a new voltage variable ṽ ≤ 0 and a scaled
density p̃ defined by p̃(t, ṽ) = βp(t, βṽ+vth) for β = a0. Then our main equation, after dropping
the tildes, reads as

∂p

∂t
=
∂2p

∂v2
+

∂

∂v
[(v − µ)p] +N(t) δv=vR , v ≤ 0 , (1.4)

where the drift term, source of the nonlinearity, is given by

µ = b0 + bN(t) with N(t) = −∂p
∂v

(0, t) ≥ 0, (1.5)

for b0 = (Bνext − vth)/a0 and b = B/a30, and complemented by the conditions

p(0, t) = 0, p(−∞, t) = 0, p(v, 0) = pI(v) ≥ 0 . (1.6)

Let us remark that the sign of b0 determines if the neurons due only to external stimuli may
produce a spike or not, therefore it controls the strength of the external stimuli.

The aim of this paper is to analyze the well-posedness of classical solutions to the initial-
boundary value problem (1.4), (1.5), and (1.6). We first give a characterization of the maximal
time of existence of classical solutions. We show that if the maximal existence time is finite,
it coincides with the time at which the firing rate N(t) diverges. Next, we show that classical
solutions exist globally in time for inhibitory networks b < 0.

In a recent work [3], it was shown that the problem (1.4)-(1.6) can lead to finite-time blow
up of solutions for excitatory networks b > 0 when the initial data is concentrated close enough
to the threshold voltage. This result was obtained by a contradiction argument giving no
information about the behavior at the blow-up time. Our theorem gives a characterization
of this blow-up time when it occurs for b > 0. We do not have at the moment a complete
understanding of the set of initial data leading to blow-up in finite time. This divergence in
finite time of the firing rate has no clear biological significance; it could mean that some sort of
synchronization of the whole network happens, see [3] for a deeper discussion. This is a scenario
that does not show up in the typical reported applications [1, 2].

Our main theorem can be summarized as follows:

Theorem 1.1. Let pI(x) be a non-negative C1((−∞, vth]) ∩ L1(−∞, vth) function such that
pI(vth) = 0 and

lim
x→−∞

∂pI
∂x

= 0.

There exists a unique classical solution to the problem (1.4)-(1.6) in the time interval [0, T ∗)
with T ∗ > 0. The maximal existence time T ∗ > 0 can be characterized as

T ∗ = sup{t > 0 : N(t) <∞} .

Furthermore, when b ≤ 0 we have that T ∗ = ∞, while for b > 0 there exist classical solutions
which blow up at finite time T ∗ and consequently have diverging mean firing rate as t↗ T ∗.
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A precise definition of classical solution will be discussed in the next section. The last
statement in the Theorem 1.1 for b > 0 is obtained by combining the work in [3] with our result
on existence of classical solutions and the characterization of the maximal time of existence.

As it is shown in Section 2, the main strategy of the proof is given by an equivalence. This
equivalence, through an explicit time-space change of variables, transforms our problem into a
Stefan-like free boundary problem with a Dirac delta source term, resembling price-formation
models studied in [18, 13, 19, 6, 14]. Although the methods are based on finding an integral
equation for the flux across the free boundary which allows to handle the Dirac delta source
term, there is a crucial difference in the free boundary motion which in our case is similar to the
Stefan law. In Section 3, we are able to use ideas and arguments in Stefan problems to show
local existence of a solution, see [9, 10, 21].

In section 4 we prove global existence of classical solutions for inhibitory networks (b < 0)
and give a characterization of the blow up time for excitatory networks (b > 0). The difference
between the cases b < 0 and b > 0 corresponds to the classical dichotomy between the stable
and the supercooled Stefan-problems, see [8, 16].

The final section is devoted to study the spectrum of the linear version of (1.4) (b = 0) that
has some surprising features in contrast to the classical Fokker-Planck equation. In particular,
we show that in most cases, the spectrum only contains the zero eigenvalue corresponding to
the steady state. Thus we cannot extract any result on the asymptotic behavior of the time
dependent solution via spectral gap and perturbation arguments.

2 Relation to the Stefan problem

The main aim of this section is to formulate equation (1.4) as a free boundary Stefan problem
with a nonstandard right hand side. For this we recall a well known change of variables, [5], that
transforms Fokker-Planck type equations into a non-homogeneous heat equation. This change
of variables is given by y = etv, τ = (e2t − 1)/2, that yields

p(v, t) = etw

(
etv,

1

2
(e2t − 1)

)
⇐⇒ w(y, τ) = (2τ + 1)−1/2p

(
y√

2τ + 1
,

1

2
log(2τ + 1)

)
.

In the sequel, to simplify the notation, we use α(τ) = (2τ + 1)−1/2 = e−t. A straightforward
computation shows that w satisfies

wτ = wyy − µ(τ)α(τ)wy +M(τ)δy= vR
α(τ)

, where M(τ) = α2(τ)N(t) = − wy|y=0 . (2.1)

The additional change of variables u(x, τ) = w(y, τ) with

x = y −
∫ τ

0

µ(s)α(s) ds = y − b0
(√

1 + 2t− 1
)
− b

∫ τ

0

M(s)α−1(s) ds,

removes the term with wy in (2.1). Let sI = vth = 0. We have the following equivalent equation,
whose proof is straightforward by the changes of variables specified above:

Lemma 2.1. System (1.4)-(1.6) is equivalent to the following problem

ut = uxx +M(t)δx=s1(t), x < s(t), t > 0,

s(t) = sI − b0
(√

1 + 2t− 1
)
− b

∫ t

0

M(s)α−1(s) ds, t > 0,

s1(t) = s(t) +
vR
α(t)

, t > 0,

M(t) = − ux|x=s(t) , t > 0,

u(−∞, t) = 0, u(s(t), t) = 0, t > 0,

u(x, 0) = uI(x), x < sI .

(2.2)
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We now give a definition of classical solution for the Stefan-like free boundary problem
(2.2). It is immediate to translate this to a notion of classical solution to the original problem
(1.4)-(1.6) by substituting u by p, x by v, M(t) by N(t), s1(t) by vR, and s(t) by vth.

Throughout the paper we will make the following assumptions (H1) on the initial data uI :
uI(x) is a non-negative C1((−∞, vth]) ∩ L1(−∞, vth) function such that uI(vth) = 0 and

lim
x→−∞

∂uI
∂x

= 0.

Definition 2.2. We say that (u(x, t), s(t)) is a classical solution to (2.2) in the time interval
J = [0, T ) or J = [0, T ] for a given 0 < T ≤ ∞ and with initial data uI(x) satisfying (H1), if
the following conditions are satisfied:

1. M(t) is a continuous function for all t ∈ J ,

2. u is continuous in the region {(x, t) : −∞ < x ≤ s(t), t ∈ J},
3. uxx and ut are continuous in the region {(x, t) : −∞ < x < s1(t), t ∈ J\{0}} ∪ {(x, t) :

s1(t) < x < s(t), t ∈ J\{0}},
4. ux(s1(t)−, t), ux(s1(t)+, t), ux(s(t)−, t) are well defined,

5. ux(x, t)→ 0 when x→ −∞,

6. Problem problem (2.2) is satisfied (in the classical sense).

The next lemma presents some of the a priori properties of the solution to (2.2).

Lemma 2.3. Let u(x, t) be a solution to (2.2) in the sense of Definition 2.2. It holds:

i) the mass is conserved, i.e., for all t > 0∫ s(t)

−∞
u(x, t) dx =

∫ sI

−∞
uI(x) dx ,

ii) the flux across the free boundary s1 is exactly the strength of the source term:

M(t) := −ux(s(t), t) = ux(s1(t)−, t)− ux(s1(t)+, t),

iii) for b0 < 0 and b < 0 (resp. b0 > 0 and b > 0) the free boundary s(t) is a monotone
increasing (resp. decreasing) function of time.

Proof. Mass conservation follows by straightforward integration by parts. To establish the
jump across the free boundary, i.e. part ii), integrate the first equation in (2.2) over the interval
(−∞, s1(t)) , yielding ∫ s1(t)

−∞
utdx−

∫ s1(t)

−∞
uxxdx = 0.

Hence,

∂

∂t

∫ s1(t)

−∞
u(x, t)dx = ux(s1(t)−, t) + ṡ1(t)u(s1(t), t). (2.3)

Similarly, an integration of the first equation in (2.2) in the interval (s1(t), s(t)) gives

∂

∂t

∫ s(t)

s1(t)

u(x, t)dx+ ṡ1(t)u(s1(t), t)− ṡ(t)u(s(t), t) = ux(s(t), t)− ux(s1(t)+, t).

If we substitute u(s(t), t) = 0 in the previous line we get

∂

∂t

∫ s(t)

s1(t)

udx+ ṡ1(t)u(s1(t), t) = ux(s(t), t)− ux(s1(t)+, t). (2.4)
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Adding (2.3) to (2.4) and recalling that the mass is preserved we get

0 =
∂

∂t

∫ s(t)

−∞
u(x, t)dx = ux(s1(t)−, t) + ux(s(t), t)− ux(s1(t)+, t).

It follows that
ux(s(t), t) = ux(s1(t)+, t)− ux(s1(t)−, t),

as desired. The free boundary is an increasing function of time since b0 < 0, b < 0, α > 0, and

s(t) = sI − b0
(√

1 + 2t− 1
)
− b

∫ t

0

M(s)α−1(s) ds, t > 0.

The fact that M(t) is strictly positive follows by the classical Hopf’s lemma.

3 Local existence and uniqueness

In this section we prove local existence of solution. Our method is inspired by the theory
developed by Friedman in [9, 10] for the Stefan problem. We first derive an integral formulation
for the problem. A derivative with respect to x yields an integral equation for the flux M , where
a fixed point argument can be used to obtain short time existence. Once M(t) is known, the
function u the solution of a linear problem.

Theorem 3.1. Let uI(x) satisfy (H1). Problem (2.2) has an unique classical solution (u, s)
in the sense of Definition 2.2 for any t ∈ [0, T ], T > 0. The existence time T is an inversely
proportional function of

sup
−∞<x≤sI

∣∣∣∣∂uI∂x
∣∣∣∣ .

The proof of Theorem 3.1 will be divided in several steps. The first step deals with an
integral formulation of the solution, which is used to show the existence of M(t).

3.1 The integral formulation

Let G be the Green’s function for the heat equation on the real line:

G(x, t, ξ, τ) =
1

[4π(t− τ)]1/2
exp

{
− |x− ξ|

2

4(t− τ)

}
.

To obtain an integral formulation of the solution u of (2.2), recall the following Green’s identity

∂

∂ξ

(
G
∂u

∂ξ
− u∂G

∂ξ

)
− ∂

∂τ
(Gu) = 0. (3.1)

To recover u we first integrate the identity (3.1) in the two regions

−∞ < ξ < s1(τ), 0 < τ < t, and s1(τ) < ξ < s(τ), 0 < τ < t,

and then add up the results from the integration. We split the resulting expression into the
following four terms; the only problematic one is the one containing uξξ:

I =

∫ t

0

∫ s1(τ)

−∞

∂

∂ξ

(
G
∂u

∂ξ

)
dξdτ, II =

∫ t

0

∫ s(τ)

s1(τ)

∂

∂ξ

(
G
∂u

∂ξ

)
dξdτ,

III =

∫ t

0

∫ s(τ)

−∞

∂

∂ξ

(
u
∂G

∂ξ

)
dξdτ, IV =

∫ t

0

∫ s(τ)

−∞

∂

∂τ
(Gu) dξdτ.
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Each term will be analyzed separately. Note that u and G have enough decay as |ξ| → ∞ to
justify the following computations due to Definition 2.2. Since G(x, t,−∞, τ) = 0 it holds

I =

∫ t

0

G
∂u

∂ξ

∣∣∣∣ξ=s1(τ)
ξ=−∞

dτ =

∫ t

0

G(x, t, s1(τ), τ)
∂u

∂ξ

∣∣∣∣
s1(τ)−

dτ. (3.2)

Next, we obtain

II =

∫ t

0

{
G
∂u

∂ξ

∣∣∣∣
ξ=s(τ)

−G ∂u

∂ξ

∣∣∣∣
ξ=s1(τ)+

}
dτ = −

∫ t

0

{
G|ξ=s(τ)M(τ) +G

∂u

∂ξ

∣∣∣∣
ξ=s1(τ)+

}
dτ.

Here we have used that ∂u
∂ξ

∣∣∣
ξ=s(τ)

= −M(τ). For the third and fourth integrals we have

III = −
∫ t

0

{(
u
∂G

∂ξ

)∣∣∣∣
ξ=s(τ)

−
(
u
∂G

∂ξ

)∣∣∣∣
ξ=−∞

}
dτ

= −
∫ t

0

{
(u(s(τ), τ)

∂G

∂ξ

∣∣∣∣
ξ=s(τ)

− u(−∞, τ)
∂G

∂ξ

∣∣∣∣
ξ=−∞

}
dτ = 0,

IV =

∫ t

0

∂

∂τ

∫ s(τ)

−∞
Gudξdτ =

∫ s(t)

−∞
Gu|τ=t dξ −

∫ s(0)

−∞
Gu|τ=0 dξ ,

taking into account that u(s(τ), τ) = u(−∞, τ) = 0. Next, recalling G(x, t, ξ, t) = δx=ξ, we get

IV =

∫ s(t)

−∞
δξ=xu(ξ, t) dξ −

∫ s(0)

−∞
G(x, t, ξ, 0)uI(ξ) dξ. (3.3)

Combining (3.2)-(3.3), and part ii) of Lemma 2.3, yields that the solution u reads as

u(x, t) =

∫ s(0)

−∞
G(x, t, ξ, 0)uI(ξ) dξ +

∫ t

0

G(x, t, s1(τ))
∂u

∂ξ

∣∣∣∣
ξ=s1(τ)−

dτ

−
∫ t

0

M(τ)G(x, t, s(τ), τ) dτ −
∫ t

0

G(x, t, s1(τ))
∂u

∂ξ

∣∣∣∣
ξ=s1(τ)+

dτ

=

∫ s(0)

−∞
G(x, t, ξ, 0)uI(ξ) dξ −

∫ t

0

M(τ)G(x, t, s(τ), τ) dτ +

∫ t

0

M(τ)G(x, t, s1(τ), τ) dτ

= : I1 − I2 + I3. (3.4)

The term I1 represents the solution to the homogeneous heat equation with initial data

u0(ξ) =

{
uI(ξ) ξ ≤ s(0),
0 ξ > s(0).

All the calculations up to here are formal assuming that u is a solution of the equation (2.2)
as in Definition 2.2. We now derive an equation for M which will be solved for short time using a
fixed point argument. The first step is to obtain the space derivatives of the terms Ii, i = 1, 2, 3
and evaluate them at x = s(t)−:

∂I1
∂x

∣∣∣∣
x=s(t)−

=

∫ s(0)

−∞
Gx(x, t, ξ, 0)uI(ξ) dξ = −

∫ s(0)

−∞
G(x, t, ξ, 0)u′I(ξ) dξ.

To get the derivative of I2, we use [9, Lemma 1, pag 217]. This lemma states that for any
continuous function ρ the following limit holds:

lim
x→s(t)−

∂

∂x

∫ t

0

ρ(τ)G(x, t, s(τ), τ) dτ =
1

2
ρ(t) +

∫ t

0

ρ(τ)
∂G

∂x
(s(t), t, s(τ), τ) dτ. (3.5)
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As a consequence,

∂I2
∂x

∣∣∣∣
x=s(t)−

=
1

2
M(t) +

∫ t

0

M(τ)Gx(s(t), t, s(τ), τ) dτ.

For the derivative of I3 note that problems can only occur if t = τ and s(t) = s1(τ), but this is
not possible by the definition of s1. Thus,

∂I3
∂x

∣∣∣∣
x=s(t)−

=

∫ t

0

Gx(s(t), t; s1(τ), τ)M(τ) dτ.

Substituting the estimates on I1, I2 and I3 into (3.4) yields

M(t) =− 2

∫ s(0)

−∞
G(s(t), t, ξ, 0)u′I(ξ) dξ

+ 2

∫ t

0

M(τ)Gx(s(t), t, s(τ), τ) dτ − 2

∫ t

0

M(τ)Gx(s(t), t, s1(τ), τ) dτ.

(3.6)

3.2 Local existence and uniqueness for M

Theorem 3.2. Let uI(x) satisfy (H1). There exists a unique solution M(t) ∈ C([0, T ]) to (3.6)
and the maximal existence time T is estimated as

T ≤
(

sup
−∞<x≤sI

∣∣∣∣∂uI∂x
∣∣∣∣)−1 .

Proof. The local in time existence of M(t) is showed via a fixed point argument. For this, we
modify the classical argument for the Stefan problem to account for the additional source term
given by M(t) δx=s1(t). For given constants σ,m > 0 consider the set

Cσ,m := {M ∈ C([0, σ]) : ‖M‖ := sup
0≤t≤σ

|M(t)| < m}.

Define

Γ(M)(t) :=− 2

∫ s(0)

−∞
G(s(t), t, ξ, 0)u′I(ξ)dξ

+ 2

∫ t

0

M(τ)Gx(s(t), t, s(τ), τ)dτ − 2

∫ t

0

M(τ)Gx(s(t), t, s1(τ), τ)dτ

=: J1 + J2 + J3.

(3.7)

In order to apply fixed point argument it is necessary to show that for sufficiently small σ the
operator Γ : Cσ,m → Cσ,m is a contraction.

Step 1. We fist show that for σ sufficiently small Γ(Cσ,m) ⊆ Cσ,m. For simplicity, we focus
on the proof in the case b < 0. At the end we make the necessary changes for b > 0. Choose σ
sufficiently small so that

i. α−1(t) ≤ 2, ∀ t ≤ σ ,

ii. m(|b0|+2m|b|)√
π

σ1/2 ≤ 1/2,

iii. |vR| − |b0|σ > 0,

iv.
2m√
π

∫ ∞
|vR|−|b0|σ√

8σ

z−1 exp{−z2}dz ≤ 1/2,
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and define

m := 1 + 2 sup
−∞<x≤s(0)

∣∣∣∣∂uI∂x
∣∣∣∣ . (3.8)

We obtain first an auxiliary estimate. Since σ has been chosen so small that condition i.
holds and α−1

√
1 + 2t is a 1-Lipschitz function for t ≥ 0, if M ∈ Cσ,m we have

|s(t)− s(τ)| ≤ |b0||t− τ |+ |b|
∫ t

τ

M(s)α−1(s) ds ≤ (|b0|+ 2|b|m) |t− τ |, (3.9)

i.e., s(t) is a Lipschitz continuous function of time.
To estimate the image of the operator Γ(M) as defined in (3.7) for M ∈ Cσ,m we find

separately a bound for each Ji, i = 1, 2, 3. It is straightforward to check

|J1| ≤ 2

{
sup

−∞<x≤s(0)

∣∣∣∣∂uI∂x
∣∣∣∣
}∫ s(0)

−∞
G(x, t, ξ, 0) dξ ≤ 2 sup

−∞<x≤s(0)

∣∣∣∣∂uI∂x
∣∣∣∣ .

On the other hand, the Lipschitz bound (3.9) for s yields

|Gx(s(t), t, s(τ), τ)| ≤ 1

2
√

4π

|s(t)− s(τ)|
(t− τ)3/2

≤ (|b0|+ 2m |b|)
2
√

4π

1

(t− τ)1/2
,

and thus, we bound the following integral as∫ t

0

|Gx(s(t), t, s(τ), τ)| dτ ≤ (|b0|+ 2m|b|)√
4π

t1/2 ≤ (|b0|+ 2m|b|)√
4π

σ1/2 ≤ 1

4m
, (3.10)

taking into account the choice of σ given by ii.. The above estimates imply |J2| ≤ 1
2 . Next, we

estimate J3. The inequality y exp{−y2} ≤ exp{−y2/2} yields

|Gx(x, t, ξ, τ)| ≤ 1√
4π(t− τ)

exp

{
− |x− ξ|

2

8(t− τ)

}
. (3.11)

The definitions of s(t) and s1(τ), using that b < 0 and condition iii., yield

|s(t)− s1(τ)| ≥ |vR| − |b0|σ > 0. (3.12)

If we integrate (3.11) we get∫ t

0

|Gx(s(t), t, s1(τ), τ)| dτ ≤ 1√
4π

∫ t

0

1

t− τ
exp

{
−|s(t)− s1(τ)|2

8(t− τ)

}
dτ

≤ 1√
4π

∫ t

0

1

t− τ
exp

{
− (|vR| − |b0|σ)2

8(t− τ)

}
dτ

=
1√
π

∫ ∞
|vR|−|b0|σ√

8t

1

z
e−z

2

dz ≤ 1√
π

∫ ∞
|vR|−|b0|σ√

8σ

1

z
e−z

2

dz,

(3.13)

where we used the change of variables z = |vR|−|b0|σ√
8(t−τ)

. By the last estimate and by condition iv.,

it follows

|J3| ≤ 2m

∫ t

0

|Gx(s(t), t, s1(τ), τ)| dτ ≤ 2m√
π

∫ ∞
|vR|−|b0|σ√

8σ

1

z
e−z

2

dz ≤ 1

2
. (3.14)

The estimates for Ji, i = 1, 2, 3 establish that Γ(M) ∈ Cσ,m since ‖Γ(M)‖ ≤ J1 + J2 + J3 ≤ m,
for all M ∈ Cσ,m, by the choice of m in (3.8).
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It remains to consider the case b > 0. It is clear that the only modification needed is in
(3.12). For this use

|s(t)−s1(τ)| = |s(t)−s(τ)−vRα−1(τ)| ≥
∣∣|vR|α−1(τ)− |s(t)− s(τ)|

∣∣ ≥ |vR|−(|b0|+m)σ, (3.15)

which may be estimated from below by a positive constant for some σ small enough. The main
difference between the cases b ≤ 0 and b > 0 may be found by comparing (3.12) with (3.15): for
b > 0 the bound on the distance of s(t) to s1(τ) for 0 ≤ τ ≤ t now depends on the initial data
(3.8).

Step 2. The map Γ : Cσ,m → Cσ,m defined in (3.7) is a contraction for σ small enough. In

the sequel, constants C are arbitrary and may change from line to line. Let M, M̃ ∈ Cσ,m,

s(t) = sI − b0
(√

1 + 2t− 1
)
− b

∫ t

0

M(τ)α−1(τ) dτ , (3.16)

and analogously for s̃(t) and M̃(t). The following auxiliary estimate holds:

|s(t)− s̃(t)| ≤ |b|
∫ t

0

|M(τ)− M̃(τ)|α−1(τ) dτ ≤ |b|
3
‖M − M̃‖

[
(2t+ 1)3/2 − 1

]
. (3.17)

It is straightforward from (3.16) that

|ṡ(t)− ˙̃s(t)| ≤ 2 |b| ‖M − M̃‖, 0 < t ≤ σ < 1. (3.18)

From condition i. on σ and (3.9), it follows that

max{|s(t)− s(τ)|, |s̃(t)− s̃(τ)|} ≤ (|b0|+ 2m |b|)|t− τ | ≤ (|b0|+ 2 |b|)m|t− τ | . (3.19)

To show that Γ is a contraction we proceed as follows.

|Γ(M)− Γ(M̃)| ≤ 2

[∫ s(0)

−∞
|u′I(ξ)||G(s(t), t, ξ, 0)−G(s̃(t), t, ξ, 0)| dξ

]

+ 2

∣∣∣∣∫ t

0

M(τ)Gx(s(t), t, s(τ), τ)− M̃(τ)Gx(s̃(t), t, s̃(τ), τ) dτ

∣∣∣∣
+ 2

∣∣∣∣∫ t

0

M(τ)Gx(s(t), t, s1(τ), τ)− M̃(τ)Gx(s̃(t), t, s̃1(τ), τ) dτ

∣∣∣∣
= : A1 +A2 +A3.

Without loss of generality assume that s̃(t) > s(t). The mean value theorem applied to the
kernel G(x, t, ξ, 0) implies the following inequality for some s̄ ∈ [s(t), s̃(t)]:

|G(s(t), t, ξ, 0)−G(s̃(t), t, ξ, 0)| ≤ |Gx(s̄, t, ξ, 0)| |s(t)− s̃(t)|. (3.20)

Recall that

|Gx(s̄, t, ξ, 0)| = |s̄− ξ|
2t

1√
4πt

exp

{
−|s̄− ξ|

2

4t

}
≤ 1√

t

1√
4πt

exp

{
−|s̄− ξ|

2

8t

}
,

where we have used the relation ye−y
2 ≤ e−y2/2. Hence (3.20) simply reduces to

|G(s(t), t, ξ, 0)−G(s̃(t), t, ξ, 0)| ≤ C√
t
G(s̄(t), 2t, ξ, 0))|s(t)− s̃(t)|.

Integrating in ξ, together with (3.17) yields

A1 ≤ C|b|‖u′I‖‖M − M̃‖
{

(1 + 2t)3/2 − 1

t1/2

}
.

10



Since lim
t→0

t−1/2((1 + 2t)3/2 − 1) = 0, for σ small we have A1 ≤ 1
6‖M − M̃‖. To estimate A2 we

consider first

|A2| ≤ 2

∣∣∣∣∫ t

0

M(τ)Gx(s(t), t, s(τ), τ)− M̃(τ)Gx(s(t), t, s(τ), τ) dτ

∣∣∣∣
+ 2

∣∣∣∣∫ t

0

M̃(τ)Gx(s(t), t, s(τ), τ)− M̃(τ)Gx(s̃(t), t, s̃(τ), τ) dτ

∣∣∣∣
= : A21 +A22.

Using (3.10), we get

|A21| ≤
(|b0|+ 2m|b|)√

4π
σ1/2 ‖M − M̃‖ ≤ 1

12
‖M − M̃‖,

for σ small enough. To estimate A22 proceed as follows:

|Gx(s(t),t, s(τ), τ)−Gx(s̃(t), t, s̃(τ), τ)|

= C

∣∣∣∣s(t)− s(τ)

t− τ
G(s(t), t, s(τ), τ)− s̃(t)− s̃(τ)

t− τ
G(s̃(t), t, s̃(τ), τ)

∣∣∣∣
≤ C

∣∣∣∣s(t)− s(τ)

t− τ
− s̃(t)− s̃(τ)

t− τ

∣∣∣∣G(s(t), t, s(τ), τ)

+ C
s̃(t)− s̃(τ)

t− τ
|G(s(t), t, s(τ), τ)−G(s̃(t), t, s̃(τ), τ)|

=: B1 + B2.

For B1 we use the mean value theorem

[s(t)− s̃(t)]− [s(τ)− s̃(τ)]

t− τ
= ṡ(τ̄)− ˙̃s(τ̄) (3.21)

for some 0 < τ̄ < t. By the previous equality and (3.18) we have

B1 ≤ C(t− τ)−1/2|ṡ(τ̄)− ˙̃s(τ̄)| ≤ C(t− τ)−1/2‖M − M̃‖.

On the other hand, to handle the term B2, we first note that

|G(s(t), t, s(τ), τ)−G(s̃(t), t, s̃(τ), τ)|

≤ G(s(t), t, s(τ), τ)
∣∣∣1− exp

{
−(s̃(t)−s̃(τ))2+(s(t)−s(τ))2

4(t−τ)

}∣∣∣ . (3.22)

Define now

S := (s(t)− s(τ))2 − (s̃(t)− s̃(τ))2 = [s(t)− s(τ) + s̃(t)− s̃(τ)] [s(t)− s̃(t)− (s(τ)− s̃(τ))].

The mean value theorem (3.21) and the estimate (3.18) lead to

|[s(t)− s̃(t)]− [s(τ)− s̃(τ)]| =
∣∣ṡ(τ̄)− ˙̃s(τ̄)

∣∣ (t− τ) ≤ C‖M − M̃‖(t− τ). (3.23)

On the other hand, we recall again the Lipschitz estimate (3.19), i.e.,

max{|s(t)− s(τ)|, |s̃(t)− s̃(τ)|} ≤ Cm(t− τ), (3.24)

for a constant C depending on |b|, |b0|, which yields |S| ≤ C(t−τ)mσ‖M−M̃‖. The combination
of the last inequality with (3.22) together with the mean value theorem shows that

|G(s(t), t, s(τ), τ)−G(s̃(t), t, s̃(τ), τ)| ≤ G(s(t), t, s(τ), τ)Cmσ‖M − M̃‖,
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and thus the term B2 is estimated using (3.24) as

B2 ≤ C(t− τ)−1/2m2‖M − M̃‖σ.

Multiplying B1 + B2 by M̃(τ) and integrating over the interval [0, t] yields

A22 ≤ Cm
∫ t

0

|Gx(s(t), t, s(τ), τ)−Gx(s̃(t), t, s̃(τ), τ)| dτ

≤ Cm
∫ t

0

(B1 + B2) dτ ≤ Cm3‖M − M̃‖σ1/2 <
1

12
‖M − M̃‖,

for σ small enough. The next step is to estimate A3. Split the integral into two terms

|A3| ≤ 2

∣∣∣∣∫ t

0

M(τ)Gx(s(t), t, s1(τ), τ)− M̃(τ)Gx(s(t), t, s1(τ), τ)dτ

∣∣∣∣
+ 2

∣∣∣∣∫ t

0

M̃(τ)Gx(s(t), t, s1(τ), τ)− M̃(τ)Gx(s̃(t), t, s̃1(τ), τ)dτ

∣∣∣∣
= : A31 +A32.

The estimate for A31 is very similar to that of J3 from (3.14). Indeed,

|A31| ≤ 2‖M − M̃‖
∫ t

0

|Gx(s(t), t, s1(τ), τ)|dτ

≤ C‖M − M̃‖
∫ ∞

Λ√
8σ

1

z
e−z

2

dz <
1

12
‖M − M̃‖,

where we used that s̃(t)− s̃1(τ) ≥ Λ > 0 for σ sufficiently small with

Λ :=

{
|vR| − |b0|σ for b < 0

|vR| − (|b0|+m)σ for b > 0.

To bound A32 we split

|Gx(s(t),t, s1(τ), τ)−Gx(s̃(t), t, s̃1(τ), τ)|

= C

∣∣∣∣s(t)− s1(τ)

t− τ
G(s(t), t, s1(τ), τ)− s̃(t)− s̃1(τ)

t− τ
G(s̃(t), t, s̃1(τ), τ)

∣∣∣∣
≤ C

∣∣∣∣s(t)− s1(τ)

t− τ
− s̃(t)− s̃1(τ)

t− τ

∣∣∣∣G(s(t), t, s1(τ), τ)

+ C
s̃(t)− s̃1(τ)

t− τ
|G(s(t), t, s1(τ), τ)−G(s̃(t), t, s̃1(τ), τ)|

=: B′1 + B′2.

We observe that B′1 is estimated exactly in the same way as B1. This is a consequence of
[s(t)− s̃(t)]− [s1(τ)− s̃1(τ)] = [s(t)− s̃(t)]− [s(τ)− s̃(τ)]. We can continue from (3.21) as before
to obtain

|B′1| ≤ C(t− τ)−1/2‖M − M̃‖. (3.25)

The estimate for B′2 is slightly more involved. We write

B′2 = C(s̃(t)− s̃1(τ))(t− τ)−1|G(s̃(t), t, s̃1(τ), τ)|
(

1− exp
{

S′

4(t−τ)

})
(3.26)

for S′ := −(s(t)− s1(τ))2 + (s̃(t)− s̃1(τ))2 = [s̃(t)− s̃1(τ) + s(t)− s1(τ)] [s̃(t)− s̃1(τ)− s(t) +
s1(τ)]. By the definitions of s1 and s̃1 (see (2.2)) we have that

|s̃(t)− s̃1(τ)− s(t) + s1(τ)| = |s̃(t)− s̃(τ)− s(t) + s(τ)| ≤ C‖M − M̃‖(t− τ), (3.27)
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where in the last inequality we have used estimate (3.23). On the other hand,

|[s̃(t)− s̃1(τ) + s(t)− s1(τ)]| ≤ |s(t)− s(τ)|+ |s̃(t)− s̃(τ)|+ 2|vR|
√

2τ + 1 ≤ Cmσ, (3.28)

by the Lipschitz estimate (3.24). Hence combining (3.27) with (3.28) we get again that |S′| ≤
C(t− τ)mσ‖M − M̃‖. Consequently (3.26) reduces to

|B′2| ≤ Cm
s̃(t)− s̃1(τ)

t− τ
G(s̃(t), t, s̃1(τ), τ)σ‖M − M̃‖.

Integrating the previous expression, using again the inequality y exp{−y2} ≤ exp{−y2/2}, and
noting that s̃(t) − s̃1(τ) ≥ Λ > 0, we can give a very rough estimate that is enough to our
purposes: ∫ t

0

|B′2| dτ ≤ Cmσ‖M − M̃‖. (3.29)

Thus, from the estimates for B′1 and B′2 from (3.25) and (3.29) respectively,

|A32| ≤ Cm
∫ t

0

(B′1 + B′2) dτ ≤ C‖M − M̃‖
(
mσ1/2 +m2σ

)
<

1

12
‖M − M̃‖,

for some suitable σ small enough. Then, adding the estimates obtained for A1,A2 and A3 yields
that Γ is a contraction satisfying for some σ small enough inversely proportional to m:

Γ(M)− Γ(M̃)‖ ≤ 1

2
‖M − M̃‖.

This concludes the proof of Theorem 3.2 as desired.

3.3 Recovery of u

Theorem 3.2 shows that we have short time existence of a mild solution for problem (2.2) (i.e.,
a solution in the integral sense). However, one can easily show that:

Corollary 3.3. There exists a unique solution of problem (2.2) in the sense of Definition 2.2
for t ∈ [0, T ].

Proof. Once M is known, one can construct u from Duhamel’s formula (3.4). The smoothness
and decay of u follow immediately from here. One needs to check also that u has well defined
side derivatives at s1. But this follows from formula (3.5) applied to s1(t) and from the estimate
for |Gx(s1(t), t, s1(τ), τ)| similarly as the calculation in (3.13).

This completes the proof of Theorem 3.1.

4 Proofs of the Main Results

From the previous arguments, and in particular from (3.8), it is clear that the obstacle for long
time existence in this case is the possible blow up in time of ‖ux(·, t)‖∞ particularly at the free
boundary, i.e. the blow up of M(t). We now formalize this idea by showing that we can extend
the solution as long as the firing rate M(t) is bounded.

Proposition 4.1. Let (u, s) be a classical solution to (2.2) in the time interval [0, T ], as proven
in Theorem 3.1. Assume, in addition, that

U0 := sup
x∈(−∞,s(t0−ε)]

|ux(x, t0 − ε)| <∞ and that M∗ = sup
t∈(t0−ε,t0)

M(t) <∞ ,

for some 0 < ε < t0 ≤ T . Then

sup {|ux(x, t)| with x ∈ (−∞, s(t)] , t ∈ [t0 − ε, t0)} <∞ ,

with a bound depending only on the quantities M∗, U0, and t0.
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Proof. Differentiating (3.4) with respect to x yields

ux(x, t) =

∫ s(t0−ε)

−∞
G(x, t, ξ, t0 − ε)ux(ξ, t0 − ε)dξ

−
∫ t

t0−ε
M(τ)Gx(x, t, s(τ), τ)dτ +

∫ t

t0−ε
M(τ)Gx(x, t, s1(τ), τ)dτ

=:I1 − I2 + I3.

The estimate for I1 is straightforward from heat kernel properties and depends only on U0.
Consider now I2: since M is uniformly bounded in the whole interval t0 − ε < t < t0, we get

|I2| ≤ C
∫ t

t0−ε
|Gx(x, t, s(τ), τ)|dτ. (4.1)

Next, it is shown in [9, Eq. (1.16), pag. 219] that for any Lipschitz continuous function s(t)
there exists a constant C depending on t0, ε and on the Lipschitz constant of s such that∫ t

t−ε

|x− s(τ)|
(t− τ)

G(x, t, s(τ), τ)dτ ≤ C, t ∈ (t0 − ε, t0).

The previous estimate allows to bound (4.1). However such bound for I2 may depend on t0 and
M∗ since the Lipschitz constant of s does, see (3.16).

Finally, the same argument works for I3, replacing s by s1 in the previous calculations.

With this result in hand, our solutions can be extended to a maximal time of existence. The
maximal time can be characterized, as shown in the following theorem. Note that the result
does not depend on the sign of b.

Theorem 4.2. Let (u, s) be a classical solution to (2.2), as proven in Theorem 3.1. Then the
solution u can be extended up to a maximal time 0 < T ∗ ≤ ∞ given by

T ∗ = sup{t > 0 : M(t) <∞} .

Proof. Assume that the maximal time of existence of a classical solution (u(t), s(t)) to (2.2) in
the sense of Definition 2.2 is T ∗ < ∞. If T ∗ = ∞ there is nothing to show. By definition we
have T ∗ ≤ sup{t > 0 : M(t) < ∞}. Let us show the equality by contradiction. Let us assume
that T ∗ < sup{t > 0 : M(t) <∞} and then, there exists 0 < ε < T ∗ such that

M∗ = sup
t∈(T∗−ε,T∗)

M(t) <∞ .

Let U0 be defined as in Proposition 4.1 with t0 = T ∗. Applying Proposition 4.1, we deduce
that ux(x, t) is also uniformly bounded for x ∈ (−∞, s(t)] and t ∈ [T ∗ − ε, T ∗) by a constant,
denoted U∗. The same proposition tells us that U∗ only depends on M∗ and on U0, i.e. on the
uniform bound of ux(x, T ∗− ε) for x ∈ (−∞, s(T ∗− ε)]. We may now use Theorem 3.1 to show
that problem (2.2) has a classical solution in the time interval [t0, t0 + δ], with t0 ∈ [T ∗ − ε, T ∗)
and δ depending only on U∗. Thus, we can extend the solution (u(t), s(t)) to (2.2) after T ∗ and
find a continuous extension of M(t) past T ∗. We have then reached a contradiction and the
conclusion of the Theorem follows.

We now show, following Friedman’s ideas [9], that it is possible to extend the solution for a
short (but uniform) time ε for b < 0.

Proposition 4.3. For b < 0, let (u, s), t ∈ [0, t0), be a classical solution to (2.2) as proven in
Theorem 3.1. There exists ε > 0 small enough such that, if

M0 := sup
x∈(−∞,s(t0−ε)]

|ux(x, t0 − ε)| <∞,
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for 0 < ε < t0 then
sup

t0−ε<t<t0
M(t) ≤ C <∞.

The constant ε does not depend on t0, and the constant C above only depends on M0.

Proof. We use the integral formulation (3.6) for M , this time with initial condition at time t0−ε
for some fixed ε chosen below, and t ∈ (t0 − ε, t0). It holds

M(t) =− 2

∫ s(t0−ε)

−∞
G(s(t), t, ξ, t0 − ε)ux(ξ, t0 − ε)dξ

+ 2

∫ t

t0−ε
M(τ)Gx(s(t), t, s(τ), τ)dτ − 2

∫ t

t0−ε
M(τ)Gx(s(t), t, s1(τ), τ)dτ

= : K1 +K2 +K3.

(4.2)

Since s(t) ≥ s(τ), it follows that Gx(s(t), t, s(τ), τ) ≤ 0; hence K2 ≤ 0 by taking into account
that M ≥ 0. To estimate K3 let

Φ(t) := sup
t0−ε<τ<t

M(τ).

Note that

|K3| ≤ Φ(t)

∫ t

t0−ε
|Gx(s(t), t, s1(τ), τ)| dτ. (4.3)

To estimate the derivative |Gx(s(t), t, s1(τ), τ)| we use the fact that the nonlinear part of s is an
increasing function in the case b < 0 as in (3.12). Thus, for ε small enough, we conclude that

s(t)− s1(τ) = s(t)− s(τ)− vRα−1(τ) ≥ |vR| − |b0|ε > 0 . (4.4)

Hence, repeating the computations in (3.13) to estimate∫ t

t0−ε
|Gx(s(t), t, s1(τ), τ)| dτ ≤ C

∫ ∞
|vR|−|b0|ε√

8(t−t0+ε)

1

z
e−z

2

dz ≤ C
∫ ∞
|vR|−|b0|ε√

8ε

1

z
e−z

2

dz.

It is clear that this last integral can be made less than 1/2 for some ε small enough independently
of t0. Substituting the above inequality into (4.3) gives the estimate |K3| ≤ 1

2Φ(t). Finally, note
that |K1| ≤ C depending on sup |ux(x, t0 − ε)|. Combining the estimates for K1,K2,K3 with
(4.2) yields

M(t) ≤ 1
2Φ(t) +M0.

Since our solution is classical in [0, t0), we have that Φ(t) < ∞ for t ∈ (t0 − ε, t0). Note that
Φ(t) is an increasing function. For any δ < ε, take t ∈ (t0 − ε, t0 − δ), then

M(t) ≤ 1
2Φ(t− δ) +M0.

Taking the supremum on the left hand side, we get that Φ(t0−δ) ≤ 2M0 for all t ∈ (t0−ε, t0−δ).
Now let δ → 0 and the conclusion of the Proposition follows.

Remark. Let us point out that the key estimate (4.4) comes from the fact that the nonlinear
part of the free boundary s(t) is monotone increasing. For the case b > 0, instead of (4.4) we
got (3.15), which makes impossible to get a uniform estimate with respect to t0 since m will
depend on it.

The combination of Proposition 4.3 with Theorem 4.2 and Theorem 4.1 gives global existence
for b < 0, as summarized in the following result:

Theorem 4.4. Let uI(x) satisfy (H1). For b < 0 problem (2.2) has a unique global classical
solution (u, s). Furthermore, the function s(t) is a monotone increasing function of time t if
both b and b0 are negative.

The main Theorem 1.1 is now complete. We emphasize that Theorem 4.2 characterizes the
possible blow-up of classical solutions in finite time as the time of divergence of the firing rate
N(t).

15



5 Study of the spectrum

In this section we study the spectrum of the linear version µ = 0 of (1.4):

pt − ∂v(vp)− ∂vvp = N(t)δv=vR on (−∞, 0),

where N(t) = −pv(0, t) and p(0, t) = 0. The objective is to solve the eigenvalue problem{
∂vvp+ ∂v(vp)− pv(0)δv=vR = λ p, v ∈ (−∞, 0),

p(0) = 0,
(5.1)

with eigenfunctions p(v) in the space L2
exp(R) defined as

L2
exp(R) :=

{
p ∈ L2(R) : ‖p‖L2

exp(R)
<∞

}
, with ‖p‖2L2

exp(R)
:=

∫
R

(
ev

2/2|p(v)|
)2

dv.

Note that although problem (5.1) is only defined in (−∞, 0), it can be easily extended to R by
odd reflection. Following an idea developed in [13, 14], we consider the equivalent problem to
(5.1) defined as

L(pλ) := ∂vvpλ + ∂v(vpλ) = λ pλ in (−∞, vR) ∪ (vR, 0), (5.2)

with pλ satisfying the following properties:

(F1) pλ ∈ L2
exp(R) (F2) pλ(0) = 0,

(F3) Matching: pλ(v+R) = pλ(v−R), (F4) Jump: ∂vpλ(v+R) = ∂vpλ(v−R) + ∂vpλ(0).

The main result of this section is:

Theorem 5.1. Consider the eigenvalue problem (5.1) subject to conditions (F1) - (F4).

1. There is no continuous spectrum.

2. The value λ = 0 is an eigenvalue with a one-dimensional eigenspace spanned by the function

p∞(v) =


e−v

2/2 v ∈ (−∞, vR),

α0e
−v2/2

∫ 0

v

ev
2/2 dv v ∈ (vR, 0],

for α0 :=

(∫ 0

vR

ev
2/2 dv

)−1
.

3. There exists a countable set S ⊂ R such that for all vR 6∈ S, there are no other eigenvalues.

4. If n and vR happen to satisfy the compatibility condition (5.9), then λ = −2n is an
eigenvalue with eigenspace of finite dimension spanned by p2n(v) defined in (5.8).

We are going to write the solution for (5.1) in the form:

pλ(v) = χ(−∞,vR)p
1(v) + χ(vR,0)p

2(v), (5.3)

where each pi(v), i = 1, 2, is a linear combination of the two linearly independent solutions of
(5.2) in R, and such that the combination (5.3) satisfies (F1)-(F4).

The functions p1(v) and p2(v) will be calculated by a standard classical method used to
compute the spectrum for the classical Fokker-Planck equation given by L(p) = λp in R. Define
first the function space

L2
m(R) =

{
p ∈ L2(R) : ‖p‖L2

m(R) <∞
}
, with ‖p‖2L2

m(R) :=

∫
R

(
1 + v2

)m |p(v)|2 dv.

For completeness we recall a well known result on the spectrum for the classical operator L,
see for instance [11, 26]:
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Lemma 5.2. For any m ≥ 0, the spectrum of the operator L on L2
m(R) is given by

σ(L) =
{
λ ∈ C : R(λ) ≤ 1

2 −m
}
∪ {−n : n ∈ N ∪ {0}} .

Moreover, if m > 1
2 and if n ∈ N ∪ {0} satisfies n + 1

2 < m, then λn = −n is an isolated
eigenvalue of L, with multiplicity one, and eigenfunction given by the n-th Hermite polynomial

Hn(v) = (−1)nev
2/2 d

n

dvn
e−v

2/2.

In particular, the spectrum of the Fokker-Planck operator L in the space L2
exp(R) reduces to the

eigenvalues λ = −n, n ∈ N ∪ {0}.

We consider now the original problem (5.1) and seek for solutions p(v) of the form (5.3).
Our first observation is that the values for λ are determined only by the decay of p as v → −∞.
Consequently, if we impose that the function p1 belongs to L2

exp(R), then this fixes the possible
values of the eigenvalues λ as in Lemma 5.2. In particular, there is no continuous spectrum.
Moreover, for each λn = −n, n ∈ N, we must have for some α ∈ R

p1(v) = αHn(v)e−v
2/2 . (5.4)

The difference between our problem and the classical Fokker-Planck operator lies in the fact
in the interval (vR, 0) all solutions to the ODE L(p) = λ p for λ = −n are admissible since the
behavior at infinity does not play any role. One of the solutions is given by (5.4) and the other

one can be easily found by making the following ansatz: p2(v) = e−v
2/2Hn(v)g(v).

By imposing that p2(v) satisfies (5.2) one can obtain an equation for g(v) that reads: 2H ′ng
′−

vg′Hn +Hng
′′ = 0. This equation has the following general solution:

g(v) = β1

∫ v

v0

es
2/2

H2
n(s)

ds+ β2,

for some constants β1, β2 ∈ R, and where we have fixed any v0 ∈ (vR, 0) such that Hn(v0) 6= 0 for
the integral to be well defined. Note that g is well defined for all v even where the denominator
vanishes because the Hermite polynomials only have single roots. Consequently we define

p2(v) := β1e
−v2/2Hn(v)

∫ v

v0

es
2/2

H2
n(s)

ds+ β2e
−v2/2Hn(v),

and the eigenfunction corresponding to λ = −n is simply

pn(v) =


αe−v

2/2Hn(v), v ∈ (−∞, vR),

β1e
−v2/2Hn(v)

∫ v

v0

es
2/2

H2
n(s)

ds+ β2e
−v2/2Hn(v), v ∈ (vR, 0].

(5.5)

for some real constants α, β. For simplicity define

θn(v) := Hn(v)

∫ v

v0

es
2/2

H2
n(s)

ds.

It is clear, by doing a careful Taylor expansion, that if v1 is a root of Hn, then there exists a
finite limit for ∆v1,n := limv→v1 θn(v) 6= 0. Now we are ready to check if (5.5) is an admissible
eigenfunction. In the case n is odd integer, the Hermite polynomial H2n+1 vanishes at zero,
but as we have mentioned, θ2n+1(v) → ∆0,2n+1 6= 0, as v → 0 for any n ∈ N. Then in this
case condition (F2) is satisfied only when β1 = 0. Then, if we wish p2n+1 to be a continuous
function as stated in condition (F3), we must have α = β2 unless H2n+1(vR) = 0 that will be
considered afterwards. The solution constructed this way does not satisfy condition (F4), so
we conclude that 2n+ 1 is not an admissible eigenvalue.
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On the other hand, let us check if p2n is an admissible eigenvalue. For even integers it holds
that H2n(0) 6= 0. Thus we can simply take v0 = 0. Consequently condition (F2) is satisfied if
and only if β2 = 0. The matching condition (F3) implies

αH2n(vR) = β1H2n(vR)

∫ vR

0

es
2/2

H2
n(s)

ds. (5.6)

Here we distinguish two cases: if vR is not a root for any H2n, then the above equality implies

α = β1

∫ vR

0

es
2/2

H2
n(s)

ds. (5.7)

If instead H2n(vR) = 0 (note that Hermite polynomials only have single roots), one can repeat
a Taylor expansion around vR for θ2n(v) and see that θ2n(v) → ∆vR,2n 6= 0, as v → vR.
Consequently (5.6) cannot be satisfied for these n such that H2n(vR) = 0. Using conditions
β2 = 0 and (5.7) for pn we get

p2n(v) = β1e
−v2/2H2n(v) ·


∫ vR

0

es
2/2

H2
2n(s)

ds, v ∈ (−∞, vR),∫ v

0

es
2/2

H2
2n(s)

ds, v ∈ (vR, 0].

(5.8)

One can easily check that the jump condition (F4) is satisfied if and only if

H2n(0) = H2n(vR). (5.9)

Remark. We remark that the steady state p∞(v) was previously obtained in [13, 3]. In this
last paper, it was also shown exponential decay towards equilibrium p∞. However, the speed of
convergence is unknown and the spectral analysis does not seem to give any insight.

Acknowledgements. JAC and MdG are partially supported by the project MTM2011-27739-
C04/-01 and -02 DGI (Spain) and 2009-SGR-345 from AGAUR-Generalitat de Catalunya. MPG
is supported by NSF-DMS 0807636 and DMS-1109682. MS is partially supported by the NSF
Grant DMS-0900909. MS was supported by the sabbatical program of the MEC-Spain Grant
SAB2009-0024.

References

[1] N. Brunel and V. Hakim V: Fast global oscillations in networks of integrate-and-fire neu-
rons with long fiting rates. Neural Computation, 11:1621–1671, 1999.

[2] N. Brunel, Dynamics of sparsely connected networks of excitatory and inhibitory spiking
networks. J. Comp. Neurosci., 8:183–208, 2000.
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