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1Área de Electromagnetismo, Universidad Rey Juan Carlos, Tulipán
s/n, Mostoles, 28933, Madrid, Spain.
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Abstract

The evolution of a vortex line following the binormal flow equation (i.e. with
a velocity proportional to the local curvature in the direction of the binormal
vector) has been postulated as an approximation for the evolution of vortex
filaments in both the Euler system for inviscid incompressible fluids and the
Gross-Pitaevski equation in superfluids. We address the issue of whether this
is a suitable approximation or not and its degree of validity by using rigorous
mathematical methods and direct numerical simulations. More specifically, we
show that, as the vortex core thickness goes to zero, the vortex core moves (at
leading order and for long periods of time) with a velocity proportional to its local
curvature and the binormal vector to the curve. The main idea of our analysis lies
in a reformulation of the Gross-Pitaevski equation in terms of associated velocity
and vorticity fields that resemble the Euler system written in terms of vorticity
in its weak form. We also present full numerical simulations aimed to compare
Gross-Pitaevski and binormal flow in various physical situations of interest such
as the periodic evolution of deformed vortex rings and the reconnection of vortex
filaments.
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1 Introduction

As in the case of the classical turbulence (see [2] for a general reference), the turbulent
regime in a superfluid is not fully understood. The superfluid flow is influenced by
quantum effects and the visualisation techniques available for classical fluids are not
directly applicable to the quantum case [1].

The pioneering work by Schwarz [3, 4] investigated quantum turbulence using a
vortex filament dynamics model based on an approximation of the familiar Biot-Savart
expression, named as LIA (from localised induction approximation), coupled to an
external frictional force. This approach has been improved since then in subsequent
works [10]. As one example we should mention the study of steady-sate counterflow
quantum turbulence [5], where the LIA approximation was extended. In the LIA
approximation, the evolution of a vortex line follows the binormal flow equation (i.e.
with a velocity proportional to the local curvature in the direction of the binormal
vector)

In this study, we first deduce the binormal flow dynamics as the leading order
contribution to the evolution of the filament core over long time intervals. Specifically,
we demonstrate that, as the vortex core thickness ϵ approaches zero, the vortex core
moves with a velocity given by v = |log ϵ|κb, where κ is the local curvature and b is
the binormal vector to the vortex core. This mathematical approached is based on a
reformulation of the Gross-Pitaevski equation in terms of velocity and vorticity fields,
which closely resembles the weak form of the Euler system written in terms of vorticity.
This is in contrast to previous formal approaches that exploited the facts that Gross-
Pitaevski equation can be transformed into a compressible Euler system by means of
Madelung transformation, and that Euler system formally supports solutions in the
form of vortex filaments.

Second, we provide strong numerical evidence of the accuracy of this approximation
by means of two classical scenarios: the evolution of a perturbed vortex ring leading to
oscillations, and the reconnection of two vortex filaments leading to singular corners
whose later evolution possesses precise self-similar features.

We will write the Gross-Pitaevskii (GP) equation to describe the condensate as
[6, 7],

iℏ
∂ϕ

∂t
= − ℏ2

2m
∇2ϕ+ (V + g|ϕ|2 − µ)ϕ.

Here V denotes any external potential, g = 4πasℏ2/m the coupling parameter, with
as being the s-wave scattering length of the atoms, and µ the chemical potential. For
4He, at zero temperature, µ ∼ 7.15kB [8].

We introduce a convenient rescaling of variables,

x =
ℏ√

2mµϵ2
x̃, t =

ℏ
µϵ2

t̃, ϕ =

√
µ

g
u,

being ϵ a dimensionless small quantity that we will take as an expansion parameter.
Then, without any external potential (V = 0), the GP equation can be cast into the
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form

iut = −∆u+
1

ϵ2
(|u|2 − 1)u, (1.1)

where the tildes in the dimensionless quantities has been dropped and ∆ ≡ ∇2. This
is the GP model that we will use in the following sections.

2 Euler equation from Gross-Pitaevskii

In order to reformulate the GP equation (1.1), let us introduce the product

(a, b) =
1

2
(ab+ ab),

where a denotes the complex conjugate of a. Now we take the time derivative of the
product (iu,∇u),

∂

∂t
(iu,∇u) = (iut,∇u)− (u,∇iut)

and we make use of the GP (1.1) to substitute iut on the right hand side. Using the
fact that

(u,∇∆u) = ∇(u,∆u)− (∇u,∆u)

and

((|u|2 − 1)u,∇u)− (u,∇((|u|2 − 1)u)) = −∇|u|4

2
,

we conclude

∂

∂t
(iu,∇u) = −2(∆u,∇u) + 1

ϵ2
∇

(
(∆u, u)− |u|4

2

)
or, taking the ∇× operator

− ∂

∂t
(∇× (iu,∇u)) = 2∇× (∆u,∇u). (2.1)

Our aim is to show that this equation behaves asymptotically as Euler’s equation
for ϵ≪ 1 for a thin vortex filament. Let us write

u = ρ eiψ,

so that

(∆u,∇u) = ∇ρ
(
∆ρ− ρ |∇ψ|2

)
+ 2ρ∇ψ (∇ρ · ∇ψ) + ρ2∆ψ∇ψ.
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Now if we take ρ(r) ≈ 1 outside a core of order ϵ, and ψ = θ being the angular
coordinate in a normal plane of the core region, we get from (2.1)

− ∂

∂t

(
∇× (ρ2∇ψ)

)
= 2∇×

(
ρ2∆ψ∇ψ

)
+ ... (2.2)

where we have neglected terms at the right hand side that will be small compared
with the main term. Note that, for a filament and in terms of the local coordinates
x′ = (x1, x2, s) we have, at leading order,

∆ψ = ∆x′ψ − κ∇ψ · n+ ...

Moreover, in terms of the Frenet-Serret trihedron,

∇ψ = (∇ψ · n)n+ (∇ψ · b)b+
dψ

ds
t,

so that

ρ2∆ψ∇ψ = ρ2∆x′ψ∇ψ − κρ2 |∇ψ · n|2 n+ ... (2.3)

We substitute this last expression (2.3) into the equation (2.2). Doing that, let us fix
our attention to the second term at the right hand side and note

∇× (φF) = ∇φ× F+ φ∇× F.

Thus, multiplying by a time-independent test function φ and integrating over the
volume (in the spirit of [13], where a rigorous mathematical approach to the problem
is considered) we get

2

∫
∇× (−κρ2 |∇ψ · n|2 n)φd3r = 2

∫
κρ2 |∇ψ · n|2 n×∇φd3r.

By writing

∇φ = φnn+ φbb+ φst,

we can substitute n×∇φ, thus

2

∫
κρ2 |∇ψ · n|2 (φbt− φsb) d

3r ∼ 2π |log ϵ|
[∫

κ (b · ∇φ) tds+
∫
d(κb)

ds
φds

]
,

(2.4)
where we have used, at each cross-section

∫ R/ϵ

0

ρ2 |∇ψ · n|2 rdrdθ = π |log ϵ|+ ...

4



On the other hand, looking at the left hand side of (2.2) and approximating

∇× (ρ2∇ψ) = ∇×
(
ρ2

r
eθ

)
∼ δΓt,

where δΓ is the Dirac delta function supported on the curve Γ, we have

∂

∂t

∫ (
∇× (ρ2∇ψ)

)
φd3r ∼ 2π

∂

∂t

∫
φ(x0(s, t)t ds = 2π

∫ [
(v · ∇φ) t+ φ

dt

dt

]
ds

(2.5)
and, keeping in mind that

dt

dt
=
dv

ds
, (2.6)

after comparing (2.4) and (2.5) we get

v = − |log ϵ|κb, (2.7)

if ψ = θ or
v = |log ϵ|κb,

if ψ = −θ. When ψ = nθ, n = ±1,±2, ... we would have v = ∓n |log ϵ|κb.
We conclude that the velocity of the filament is in the binormal direction, so we

get the result of a binormal flow approximation. We remark that the first term at the
right hand side of (2.3) cancels due to symmetry when integrated in front of a test
function.

We finish by linking our result with the better known Euler’s equation that we
write in the form

∂ω

∂t
+ v · ∇ω − ω · ∇v = 0,

with
∇ · v = 0,

and
∇× v = ω. (2.8)

If
ω = ∇× vθ = δΓt,

we note that in front of a test function

∂

∂t

∫
ωφ =

∂

∂t

∫
φ(x0(s, t))t =

∫ (
(v · ∇φ) t+ φ

dt

dt

)
ds,∫

(v · ∇ω)φ = −
∫
ω (v · ∇φ) = −

∫
(v · ∇φ) tds,∫

(ω · ∇v) =

∫
δΓ
dv

ds
φ =

∫
dv

ds
φ(x0(s, t))ds,

so that a singular filament is a formal solution if we choose the velocity satisfying
(2.8). Traditionally, the binormal law for the velocity is obtained from Biot-Savart
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law under local induction approximation. We are going to follow a different approach
similar to the one in GP. Note first that

v · ∇ω − ω · ∇v = ∇× (v × ω)

where, in each cross-section of the filament we can write in terms of the stream function
ψ

v = ∇⊥ψ,

∆ψ = |ω| .

Here ∇⊥ ≡ (−∂y, ∂x) denotes the skew gradient, so that

v × ω = ∆ψ∇ψ

and we can follow the same steps as in (2.3)–(2.7).

3 Vortex rings dynamics

We are going examine the case of the dynamics of a vortex ring. Early work of Levi-
Civita [9] showed that small perturbations of a vortex ring under the binormal flow
dynamics undergo oscillatory motion. The formulation of previous section allow us to
predict the behaviour of vortex rings evolution under the GP equation.

The analysis is easier when taking the formulation in terms of curvature and tor-
sion. We will outline the derivation. By taking dt′ = − |log ϵ| dt from (2.6) and (2.7)
we get

dt

dt′
=
d(κb)

ds
(3.1)

where s is the the arc-length parameter. Using the Frenet-Serret relations we can write
(3.1) as

tt′ = −κτn+ κsb.

Here τ denotes the torsion and the subindex the respective time and arc-length deriva-
tives. We can use this expression to calculate tt′s. On the other hand we have ts = κn,
so taking the time derivative and equalling both expression we can solve for the time
derivative of the normal vector to get

κnt′ = κ2τt− (κt′ + 2κsτ + κτs)n+ (κss − κτ2)b.

As the normal vector has a constant norm, we get our first equation for the evolution
of the curvature

κt′ + 2κsτ + κτs = 0.
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To get the evolution of the torsion, we compute nt′s from the previous expression and
the time derivative of ns = −κt+ τb, and equalling both expressions we can get bt′ .
Again, imposing that the b component is equal zero (and using (|b|2)t = 0) we get

−τt′ +
(κss
κ

− τ2
)
s
+ κκs = 0.

Rearranging the terms the equations for the curvature and torsion reads,

κt′ =− κτs − 2κsτ,

τt′ =
(κss
κ

− τ2
)
s
+ κκs,

Around a vortex ring of radius R the equations can be linearised so that

κt′ ≃ −τs
R
,

τt′ ≃ Rκsss +
1

R
κs,

that can be combined to provide the evolution of the curvature,

κt′t′ = −κssss −
1

R2
κss.

The equation has a wave like structure, so we can find solutions of the form

κ(s, t′) = ei
t′
R2

√
n4−n2

cos
(ns
R

)
. (3.2)

The cases n = 0 and n = 1 are not very interesting as they correspond to a dilation
and a rigid translation, respectively. However for n ≥ 2, the small perturbations will
oscillate in time with a whole period of oscillation

T =
T ′

| log ϵ|
=

2πR2

| log ϵ|
√
n4 − n2

.

4 Vortex rings oscillations

In this section we are going to compare the time evolution of a vortex ring given by
the GP equation with the one given by the binormal flow. We will solve GP numer-
ically by considering the equation as a system for the real and imaginary parts of u,
and implementing a finite elements method. This is in contrast with other numerical
approaches such as in [11] based on tracking the vortex core. We first simulate the
dynamics of a vortex ring of elliptical shape. We take as the initial condition for (1.1),
u(r, 0) = u0(r, θ) exp iθ, with
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Fig. 1 The evolution of a vortex of initial elliptical shape of eccentricity 0.6 using the GP equation.
A periodic oscillation can be observed as the vortex moves in the vertical direction. We plot the level
surfaces |u|2 = 0.3.

u0(r, θ) =

(
1− e−

(r−p)2+(z−z0)2

ϵ2

)(
1− e−

(r+p)2+(z−z0)2

ϵ2

)
,

θ =arctan

(
z − z0
r − p

)
− arctan

(
z − z0
r + p

)
,

being

r =
√
ax2 + by2.

The z0 parameter controls the initial position along the vertical axis, while a, b and p
controls the ellipse parametrization. The eccentricity is given by e =

√
1− b2/a2.

According to the predictions of the previous section, for small eccentricities, the
elliptical case corresponds to n = 2 in (3.2), so we expect the vortex ring will oscillate
during its motion under the GP equation. In Fig. 1 we simulate the case a = 1, p = 0.5,
ϵ = 0.1/

√
2 and e = 0.6. We can see clearly that the vortex ring, approximately,

recovers the original shape after a time period.
Now we can compare the GP dynamics with the binormal flow evolution charac-

terised by (2.7). Starting with an elliptical curve of the same eccentricity e = 0.6,
we plot its evolution under the binormal flow in Fig. 2. Again the same oscillatory
behaviour can be observed.

From these simulations we can study the dependence of the oscillatory period with
the eccentricity. A larger eccentricity is expected to result in a longer period. We have
done that using both GP and the binormal flow approximation, and the results show
a satisfactory agreement as we can see depicted in Fig. 3. The solid line is the fitting
of the observed rescaled period P in the binormal flow using a rational polynomial.
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Fig. 2 The evolution of a vortex of initial elliptical shape of eccentricity 0.6 by the binormal flow.
A periodic oscillation can be observed as the vortex moves in the vertical direction.

The rescaled period P and the period T are related by

T (x) = ϵ2| log ϵ|P (x), (4.1)

where x is the eccentricity of the initial data and

P (x) =
a0 + a1x+ a2x

2

1 + b1x
.

The optimal fitting coefficients for our data turn out to be

a0 = 33.45, a1 = −20.36, a2 = −7.71, b1 = −1.01.

If we compute the period for very small perturbations provided by formula (4.1) we
have P (0) = 34.23, which is very close to a0.

5 Vortex reconnections and self-similarity

Now let us proceed to study the process of vortex reconnections. In Fig. 4 we can see
the reconnection of two vortex filaments. They correspond to the simulations of the
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Fig. 3 Dependence of the oscillatory recaled period P = T/ϵ2| log ϵ| with the eccentricity of the
vortex ring. Squares are computed using the GP equation, circles using the binormal flow. The fitting
curve was calculated using the binormal points and a rational polynomial as explained in the main
text.

GP equation using as initial conditions, u(r, 0) = u0 exp iθ, with

u0 =

(
1− e−

[x−x0−p cos(2πz/3)]2+y2

ϵ2

)(
1− e−

[x+x0+p cos(2πz/3)]2+y2

ϵ2

)
,

θ =arctan

(
y

x− x0 − p cos(2πz/3

)
− arctan

(
y

x+ x0 + p cos(2πz/3

)
,

and assuming periodic boundary conditions in the vertical direction. The values for the
parameters of the simulations shown in Fig. 4 are x0 = 0.5, p = −0.35 and ϵ = 0.1/

√
2.

We observe that the geometry of the filaments is self-similar before and after the
reconnection. Let us find self-similar solutions to the binormal flow equation

xt = κb.

We consider solutions of the form

x(s, t) = t1/2X
( s

t1/2

)
,

assume that reconnection happens at t = 0 and look at filament profiles after
reconnection. By calling ξ = s/t

1
2 we find the following equation for X:

1

2
X−1

2
ξXξ = Kb, (5.1)

where κ(s, t) = t−
1
2K(ξ). If we take the ξ derivative of (5.1) we obtain

−1

2
ξXξξ = Kξb+Kbξ,
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Fig. 4 Snapshots of the vortex reconnection process in GP at different instants of time. From left
to right and top to bottom, t = 0, 0.04, 0.1, 0.11.

and using Frenet-Serret equations and the fact that tξ = Xξξ = Kn we deduce

−1

2
ξKn = Kξb−Kτn,

where τ is the torsion of the curve X(ξ). Hence, projecting the last equation over the
normal and binormal directions we get

Kξ = 0,

τ =
1

2
ξK,

i.e. a curve with constant curvature and linear torsion. We can numerically compute a
family of solutions parametrized by the curvature at ξ = 0 and whose tangent vector
tends to be constant (say T±) as ξ → ±∞ (see Fig. 5), see also [12] for the full analysis.

Note that, as t→ 0 the curve t
1
2X(s/t

1
2 ) tends to corner spanned by those tangent

vectors T±. Hence, after reconnection of filaments in Gross-Pitaevski, and depending
on the angle of the filaments at reconnection, one could expect a self-similar evolution
of the resulting filaments in the form described above. Indeed, this is the case as shown
in Fig. 6.
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Fig. 5 Self-similar solutions to the binormal flow equation forming a corner at t → 0. Each plot
corresponds to different initial opening angles.

Fig. 6 Left: close caption of the vortex filaments after reconnection by solving the GP. Right: the
self-similar solution to binormal flow with the same opening angle and a similar orientation for
comparison.

6 Conclusions

We have shown that, at leading order in the healing length ϵ, Gross-Pitaevski equation
has solutions in the form of vortex filaments that move following the binormal flow
equation. In order to achieve this, we have reformulated the Gross-Pitaevski equation
in a weak integral form that shares leading order terms (in ϵ) to a weak formulation
to the Euler system for inviscid fluids. This allows to deduce the precise form of the
evolution equation for the vortex core.

In addition, two numerical studies have been presented in order to demonstrate the
approximantion by binormal flow. First, by taking as initial data for Gross-Pitaevski
equation a vortex filament with the shape of a deformed vortex ring, we observe that
the solutions computed numerically undergo oscillations with precise periods. We take
the core of the initial vortex filament as initial data for the binormal flow and observe
oscillations with almost the exact same periods ad Gross-Pitaevski solutions. Secondly,
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we observe the reconnection process by taking as initial data two almost parallel
periodic filaments and observe that the geometry shorly before and after reconnection
is self-similar with similarity laws and profiles almost identical to the theoretical ones
for binormal flow equation.
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