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Maŕıa del Mar González
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Abstract

In this paper, we will consider the fractional Caffarelli-Kohn-Nirenberg inequality

Λ

(∫
Rn

|u(x)|p

|x|βp
dx

) 2
p

≤
∫
Rn

∫
Rn

(u(x)− u(y))2

|x− y|n+2γ |x|α|y|α
dy dx

where γ ∈ (0, 1), n ≥ 2, and α, β ∈ R satisfy

α ≤ β ≤ α+ γ, −2γ < α <
n− 2γ

2
,

and the exponent p is chosen to be

p =
2n

n− 2γ + 2(β − α)
,

such that the inequality is invariant under scaling. We first study the existence and nonex-
istence of extremal solutions. Our next goal is to show some results on the symmetry
and symmetry breaking region for the minimizers; these suggest the existence of a Felli-
Schneider type curve separating both regions but, surprisingly, we find a novel behavior
as α → −2γ. The main idea in the proofs, as in the classical case, is to reformulate the
fractional Caffarelli-Kohn-Nirenberg inequality in cylindrical variables. Then, in order to
find the radially symmetric solutions we need to solve a non-local ODE.

For this equation we also get uniqueness of minimizers in the radial symmetry class;
indeed, we show that the unique continuation argument of Frank-Lenzmann (Acta’13)
can be applied to more general operators with good spectral properties. We provide, in
addition, a completely new proof of non-degeneracy which works for all critical points. It
is based on the variation of constants approach and the non-local Wronskian of Ao-Chan-
DelaTorre-Fontelos-González-Wei (Duke’19).
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1 Introduction and statement of the results

The Caffarelli-Kohn-Nirenberg (CKN) inequality was introduced in 1984 (see [7] and [33]),
and the existence or non-existence of extremal solutions and their symmetry properties have
been extensively studied since then. A particular case of this inequality establishes that for all
α ≤ β ≤ α+ 1 and α ̸= n−2

2 , in space dimension n > 2, it holds that

Λn
α,β

(∫
Rn

|u|p

|x|βp
dx

)2/p

≤
∫
Rn

|∇u|2

|x|2α
dx, ∀ u ∈ C∞

c (Rn), (1.1)

where

p =
2n

n− 2 + 2(β − α)
, (1.2)

and (Λn
α,β)

−1 denotes the optimal constant. This inequality represents an interpolation between
the usual Sobolev inequality (α = 0, β = 0) and the Hardy inequality (α = 0, β = 1) or weighted
Hardy inequality (β = α+ 1).

In this work we consider a new fractional version of the Caffarelli-Kohn-Nirenberg inequality
(1.1), for γ ∈ (0, 1), n ≥ 2, and we will always assume that α, β ∈ R satisfy

α ≤ β ≤ α+ γ, −2γ < α <
n− 2γ

2
. (1.3)

We also set

p =
2n

n− 2γ + 2(β − α)
. (1.4)

Proposition 1.1 (Fractional CKN inequality). There exists a constant Λ > 0 such that

Λ

(∫
Rn

|u(x)|p

|x|βp
dx

) 2
p

≤
∫
Rn

∫
Rn

(u(x)− u(y))2

|x− y|n+2γ |x|α|y|α
dy dx (1.5)

for every u ∈ C∞
c (Rn).

Let Dγ
α(Rn) be the completion of C∞

c (Rn) with respect to the inner product

⟨u1, u2⟩γ,α :=

∫
Rn

∫
Rn

(u1(x)− u2(y))(u1(x)− u2(y))

|x− y|n+2γ |x|α|y|α
dy dx.

Its associated norm is denoted by

∥u∥2γ,α :=

∫
Rn

∫
Rn

(u(x)− u(y))2

|x− y|n+2γ |x|α|y|α
dy dx. (1.6)
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The functional space Dγ
α will be studied in detail in Section 3.1. The proof of the fractional

CKN inequality (1.5) is a consequence of the fractional Sobolev embedding on the cylinder as
it will be explained in Remark 3.5.

Note that the restriction −2γ < α in (1.3) is not present in the local setting; however in
our context it is necessary because the way we have defined the norm in (1.6). A more general
definition to include all range of α should be possible but it falls outside the scope of this
paper. We refer the reader to Remark 3.7 for a more detailed explanation.

Several versions of the CKN inequality for the fractional norm (1.6) have already appeared
in the literature: [5] (for α = β), and [38] (for β = 0), and the very old paper (in Russian)
[30], which actually contains the first proof of the standard CKN inequality.

Similarly to the classical case, inequality (1.5) is an interpolation between the fractional
Sobolev inequality α = 0, β = 0 (see [25]) and the weighted fractional Hardy inequality, for
β = α + γ (see [5] or [26]). In the Sobolev inequality, extremals are the so-called “bubbles”,
this is, solutions for the fractional Yamabe problem. When β = α + γ the best constant is
universal but never attained. Note that this last fact, although well known in the literature,
can be also obtained as a consequence the non-local ODE theory of [3] (see Remark 4.4).

Now, in order to understand the extremals for inequality (1.5) for any given parameters
satisfying (1.3) and (1.4), we consider the energy functional

Eα,β(u) =
∥u∥2γ,α( ∫

Rn |x|−βp|u|p dx
)2/p . (1.7)

The best constant in this inequality is given by

S(α, β) = inf
u∈Dγ

α(Rn)\{0}
Eα,β(u). (1.8)

Extremal solutions for (1.8) satisfy the following equation:

Lγ,α(u) = c
|u(x)|p−2u(x)

|x|βp
, (1.9)

for some constant c, where we have defined

Lγ,α(u) :=

∫
Rn

u(x)− u(y)

|x− y|n+2γ |x|α|y|α
dy. (1.10)

The first goal of this paper is to study the existence, nonexistence and some symmetry
properties of extremal solutions to (1.8).
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Theorem 1.2 (Best constants, existence and non-existence of extremal solutions). It holds:

i. S(α, β) is continuous in the full parameter domain (1.3).

ii. For α = β, 0 < α < n−2γ
2 , S(α, α) is achieved and the extremal solution is radially

symmetric and non-increasing in the radial variable.

iii. For α = β, −2γ < α < 0, S(α, α) = S(0, 0) and it is not achieved.

iv. For α < β < α+ γ, S(α, β) is always achieved. Moreover, for α ≥ 0, α < β < α+ γ, the
extremal solution is radially symmetric and non-increasing in the radial variable.

Note that, in the case α = β or 0 ≤ α < β < α + γ with 0 ≤ α < n−2γ
2 (statements ii.

and part of iv.), given an extremal solution u of (1.9), if we use ũ(x) = |x|−αu(x), then ũ will
satisfy

(−∆)γ ũ+ τ
ũ(x)

|x|2γ
=

ũp−1

|x|(β−α)p
, (1.11)

for some constant τ . This equation has been considered in [27, 18], where they studied at-
tainability of the best constant and radial symmetry of the minimizers (via a rearrangement
argument). In any case, we provide here a proof of these facts directly for the energy Eα,β in
order to make the paper self-contained (Proposition 4.1).

Our initial approach in the proofs is, similarly to the local case of [10], to rewrite the
inequality in cylindrical coordinates. Thus we set

t = ln |x|, θ =
x

|x|
, t ∈ R, θ ∈ Sn−1, (1.12)

and
v(t, θ) = e

n−2γ−2α
2

tu(etθ). (1.13)

Many times it will be more preferable to work with the function v instead of u. While this
is an immediate change of variables in the local framework, in the non-local case it is a non-
trivial step. The key is to rewrite the operator Lγ,α(u) from (1.10) in terms of the conformal
fractional Laplacian on the cylinder, denoted by Pγv, which is defined by

Pγv = r
n+2γ

2 (−∆)γ(r−
n−2γ

2 v),

on the cylinder C = R × Sn−1, with coordinates t ∈ R, θ ∈ Sn−1. The definition of Pγ

comes from conformal geometry: it is the conformally covariant pseudo-differential operator
(of order 2γ) that arises as the Dirichlet-to-Neumann operator on Anti-de-Sitter space. In
analytic terms, this operator is just a conjugation of the usual fractional Laplacian on Rn, but
it has a simpler expression in polar coordinates. This theory has been developed in a series of
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papers following DelaTorre’s PhD thesis and it is explained in Section 2 below. We also note
that in the paper [22] the author proves a sharp Sobolev inequality for (−∆)1/2 in dimension
n = 3 with a Hardy term subtracted, which yields a sharp CKN inequality. The idea is still
to use cylindrical coordinates; however, it is inspired in a complete different problem in fluid
mechanics (the intermediate long-wave equation).

Then in Section 3 we study the CKN inequality in cylindrical coordinates (1.12)-(1.13). In
particular, the Euler-Lagrange equation (1.9) is equivalent to

Pγv + C(α)v = cvp−1, t ∈ R, θ ∈ Sn−1, (1.14)

where C(α) a real constant defined in (9.7) and its properties are studied in the Appendix.
We notice that, if u is an extremal solution, then u must be strictly positive in Rn \ {0}.

This is so because of the integral definition of Pγ in (2.1) (see Proposition 4.7 for details).

An objective of this paper is to study radial symmetry of a minimizer for the range of
parameters where symmetrization is not available, this is, −2γ < α < 0, α < β < α + γ.
On the one hand, if we restrict to the radially symmetric class of functions, a minimizer
always exists (see Proposition 3.6). On the other hand, this radially symmetric solution may
not achieve the minimum (see Theorem 1.4 below on symmetry breaking). In both cases,
minimizers always satisfy the following inversion symmetry:

Theorem 1.3 (Symmetry property). For α ≤ β < α + γ, any solution of (1.9) in Dγ
α(Rn)

satisfying u(x) > 0 in Rn \ {0} satisfies the modified inversion symmetry

u

(
x

|x|2

)
= |x|n−2γ−2αu(x),

after a dilation u(x) = λ
n−2γ−2α

2 u(λx), λ > 0 if necessary. Moreover, in cylindrical coordinates
we have that the function v defined in (1.13) is even in t and monotonically decreasing for
t > 0.

We now look at the symmetry and symmetry breaking regions for the minimizers of (1.8).
Already in the local case γ = 1, to have a full answer is highly non-trivial and, indeed, it was
only recently completed using non-linear flows (see the seminal paper [19]). But in this process
there were many crucial developments: [10], the first paper where symmetry breaking occurs
for the CKN inequality, and [20], where they proved the existence of a curve separating the
symmetry and the symmetry breaking regions. Our next Theorem suggests that this should
also occur in the non-local case:

Theorem 1.4 (Symmetry breaking). It holds:

(i) For −2γ < α < 0, there exists an open subset H inside this region containing the set
{(α, α) ∈ R2, α ∈ (−2γ, 0)} such that for any (α, β) ∈ H with α < β, the extremal
solution to S(α, β) is non-radial.
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(ii) There exists α0 ∈ (−2γ, 0) and a smooth curve β = h(α) satisfying that

α < h(α) < α+ γ in the interval α ∈ (−2γ, α0)

and
h(α)− α → γ as α → −2γ, (1.15)

such that for −2γ < α < α0 and α < β < h(α), the extremal solution to S(α, β) is
non-radial.

We first remark that, while the first statement in Theorem 1.4 is expected, (1.15) is quite
striking in comparison with the behavior of the Felli-Schneider curve in the local case. This
does not yield a contradiction since our claim is not uniform in γ as γ → 1, as we will see in
the proof. In any case, this is another interesting example where the non-local version presents
a contrasted behavior from its local counterpart.

As we have mentioned, we expect that there should exist a Felli-Schneider type curve
separating the symmetry and symmetry breaking regions in the fractional setting (see Remark
7.1). However, the proof in the local case relies on the explicit knowledge of the spectrum of
a Schrödinger type operator, which is not available here.

Let us notice that for equation (1.11), the recent papers [36, 37] look at non-degeneracy,
symmetry and symmetry breaking issues of solutions. In particular, they prove symmetry
breaking for τ large enough (which, in our setting, corresponds to α close to −2γ).

Next, we turn to non-degeneracy issues. For the rest of the paper, we will work on the
symmetry region, where we know that minimizers are radially symmetric. This includes, but
it is not restricted to, the value of the parameters 0 ≤ α < n−2γ

2 and α ≤ β < α+ γ.
Thus let ū be a positive radially symmetric (energy) solution of (1.9), and set v̄ as in

(1.13). Then v̄ = v̄(t) is a positive energy solution to of (1.14), that is even in the t variable
by Theorem 1.3. Consider the linearized operator given by

L̄w := Pγw + C(α)w − c(p− 1)v̄p−2w, t ∈ R, θ ∈ Sn−1, (1.16)

and project it over the radial sector (in the notation of Section 2)

L̄(0)w = P (0)
γ w + C(α)w − c(p− 1)v̄p−2w, w = w(t), t ∈ R. (1.17)

One advantage of this point of view is that it allows to exploit the invariances that are present.
Indeed, since the equation is translation invariant in the variable t, then ∂tv̄ := v̄t belongs to
the kernel of L̄(0). Our next result shows that this is the only possibility:

Theorem 1.5 (Non-degeneracy). Let v̄(t) be a positive solution of (1.14) in the energy space
D̃γ. Then, in the L2-radial symmetry class,

ker(L̄(0)) = ⟨v̄t⟩.
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Non-degeneracy for non-local problems has been considered by several authors. For in-
stance, the (non-local) bubble in the critical case for the γ-Yamabe equation was studied
in [14]. But the most important developments were the seminal works [23] and [24] on the
non-local Schrödinger equation

(−∆)γu+ u = up−1. (1.18)

The authors developed there a non-local Sturm-Liouville oscillation theory and highlighted the
significant of Hamiltonian identities. Subsequent work includes [36], where non-degeneracy
of minimizers for the fractional Hardy-Sobolev inequality is proved, and [2], for the critical
fractional Hénon equation.

However, in all these papers it is assumed that ū is minimizer (or a local minimizer) for the
energy functional. Instead, here we use the ODE-type arguments developed in [3] (see also the
survey article [4]) for equations such as (1.14) to give an alternative proof of non-degeneracy
that is valid for any bounded, positive, radially symmetric solution, not necessarily a mini-
mizer. We use a (non-local) Wronskian together with Frobenius type theorem to control the
asymptotic expansion of the solution in terms of the indicial roots of the problem. This ap-
proach to non-degeneracy works because we already know one kernel by the scaling invariance
of the equation, while this type of argument cannot be used for the non-linear Schrödinger
equation (1.18). This is the content of Section 6.

As a consequence of non-degeneracy, in Section 8 we prove uniqueness of minimizers in the
symmetry range:

Theorem 1.6 (Uniqueness). Let n > 2. Then, in the symmetry region, minimizers for Fα,β

are unique up to translation in the t-variable (and thus, uniqueness up to rescaling holds for
minimizers of Eα,β).

Remark 1.7. In fact, by our argument, we obtain non-degeneracy and uniqueness of positive
radial solutions to equation (1.14) up to translation in the energy space D̃γ .

Existence and uniqueness theorems for a non-local equation are not available in general,
since one cannot reduce it to the study of a phase portrait as in the local case. Variational
arguments will lead to the existence part but uniqueness is usually the hardest.

In this regard, the only available proof of uniqueness for equation (1.18) is that of [23]
and [24]. The proof of Theorem 1.6 follows their scheme: the key idea is to perform a unique
continuation argument in γ for γ → 1; if we had two solutions for the γ-problem, this would
yield a contradiction since for the local equation (γ = 1) uniqueness holds. For our equation
(1.14) we need to deal with a different non-local operator (see Proposition 2.1 below for the
precise formulas). However, we show that this approach only depends on having good spectral
properties for its Fourier symbol as γ → 1.

Additionally, we have just heard about the recent work by Alarcón, Barrios and Quaas
[2], mentioned above, where they consider the critical fractional Hénon equation in Rn. They
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prove that the ground state solution is unique up to scaling. While they still use unique con-
tinuation as γ → 1 as in [23], they simplify the proof of the a-priori estimates. Indeed, they
use the blow-up method of Gidas and Spruck for the operator (2.4) combined with a version of
Liouville’s theorem for fractional equations (see, for instance, [21] if γ ≥ 1/2) to prove a-priori
global estimates, thus avoiding the use of spectral arguments.

Finally, we will use the notation

2∗γ :=
2n

n− 2γ

for the critical exponent in the fractional Sobolev embedding in Rn.

The paper is organized as follows. In Section 2, some preliminaries for the conformal
fractional Laplacian on the cylinder are given. In Section 3, we reformulate our problem in
cylindrical variables. The main Theorems are proved in Sections 4-8, while the Appendix
contains some numerology.

2 The conformal fractional Laplacian on the cylinder

We first set up some notation. Let x = (r, θ), r > 0, θ ∈ Sn−1 be polar coordinates in Rn and
set r = et. The cylinder will be denoted by C = R × Sn−1, with coordinates t ∈ R, θ ∈ Sn−1,
together with the cylindrical metric

g0 :=
1

r2
|dx|2 = dr2 + r2dθ2

r2
= dt2 + dθ2.

Here dθ2 denotes the canonical metric on Sn−1. Let dµ be the corresponding measure on the
cylinder, this is, dµ = dt dθ.

Following the notation in [3] (see also the survey [4]), we define the conformal fractional
Laplacian on the cylinder (first introduced in [16, 15]) by

P g0
γ v(t, θ) = ςn,γP.V.

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃)) dµ̃+ cn,γv(t, θ), (2.1)

for

ςn,γ = π−n
2 22γ

Γ(n2 +γ)
Γ(1−γ) γ and cn,γ = 22γ

(
Γ(12(

n
2 + γ))

Γ(12(
n
2 − γ))

)2

> 0, (2.2)

and the integration kernel

K(t, t̃, θ, θ̃) =
e−

n+2γ
2

|t−t̃|

(1 + e−2|t−t̃| − 2e−|t−t̃|⟨θ, θ̃⟩)
n+2γ

2

, t, t̃ ∈ R, θ, θ̃ ∈ Sn−1. (2.3)
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To simplify the notation, we will drop the reference to the metric in the operator and we
will call it simply Pγ . It is a non-local self-adjoint operator of order 2γ and its relevance
comes from the conformal property thus it can be understood as a conjugation of the standard
fractional Laplacian on Rn. However, the advantage of the operator Pγ on the cylinder C over
the Euclidean (−∆)γ is the fact that it can be easily decomposed into spherical harmonics.

With some abuse of notation, let ϑm = m(m+n− 2), m = 0, 1, 2, . . . be the eigenvalues of
∆Sn−1 . Then any function v(t, θ), t ∈ R, θ ∈ Sn−1 defined on the cylinder C may be decomposed
as

v(t, θ) =
∑
m,k

vm(t)Em,k(θ),

where Hm := ⟨Em,k : k = 1, . . . , km⟩ is the eigenspace corresponding to the eigenvalue ϑm. Let

v̂(ξ) =
1√
2π

∫
R
e−iξtv(t) dt

be our normalization for the one-dimensional Fourier transform.
A crucial fact is that the operator Pγ diagonalizes under such eigenspace decomposition,

and each projection can be fully characterized. More precisely:

Proposition 2.1 ([16]). Fix γ ∈ (0, n2 ) and let P
(m)
γ be the projection of the operator Pγ over

each eigenspace ⟨Em,k⟩. Then
̂

P
(m)
γ (vm) = Θ(m)

γ (ξ) v̂m,

where the Fourier symbol is given by

Θ(m)
γ (ξ) = 22γ

∣∣∣Γ(n
4 + γ

2 + m
2 + ξ

2 i
)∣∣∣2∣∣∣Γ(n

4 − γ
2 + m

2 + ξ
2 i
)∣∣∣2 .

Moreover,

P (m)
γ (vm)(t) = ςn,γ

∫
R
Km(t− t̃)[vm(t)− vm(t̃)] dt̃+ cn,γvm(t), (2.4)

for a convolution kernel Km on R with the asymptotic behavior

Km(t) ≍

|t|−1−2γ as |t| → 0,

e
−
(
1+γ+

√
(n−2

2
)2+m(m+n−2)

)
|t|

as t → ±∞.

In the particular case that m = 0,

K0(t) = e−
n+2γ

2
|t|

2F1

(n+2γ
2 , 1 + γ; n2 ; e

−2|t|).
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It is interesting to observe that, given ξ ∈ R, Θm(ξ) = Θm(−ξ) and

Θm(ξ) ≍ |m+ ξi|2γ , as |ξ| → ∞, (2.5)

and this limit is uniform in m. This also shows that, for fixed m, the behavior at infinity is
the same as the one for the standard fractional Laplacian (−∆)γ , i.e., |ξ|2γ .

This operator can also be understood as the Dirichlet-to-Neumann operator for an elliptic
extension problem to a manifold in one more dimension in the spirit of [8, 11, 9]. For this, we
need to introduce some notation. Define

d̃γ = −22γ−1Γ(γ)

γΓ(−γ)
, a =

Γ(n2 )Γ(γ)

Γ
(
γ + n

4 − 1
4)Γ
(
n
4 + 1

4

) .
The extension manifold is Xn+1 = (0, 2) × C with coordinates R ∈ (0, 2), t ∈ R, θ ∈ Sn−1

with canonical metric

ḡ = dR2 +
(
1 + R2

4

)2
dt2 +

(
1− R2

4

)2
dθ2.

Note that the apparent singularity at R = 2 is of the same type as the origin in polar co-
ordinates. This fact will be implicitly assumed in the following exposition without further
mention.

The boundary of Xn+1, given by {R = 0}, is precisely the cylinder C. Now we make the
change of variables from the coordinate R to

ρ(R) =

[
a−1
(

4R
4+R2

)n−2γ
2

2F1

(
γ

p−1 ,
n−2γ

2 − γ
p−1 ;

n
2 ;
(
4−R2

4+R2

)2)]2/(n−2γ)

, R ∈ (0, 2).

The function ρ is known as the special (or adapted) defining function. It is strictly monotone
with respect to R, which implies that we can write R = R(ρ) even if we do not have a precise
formula and, in particular, ρ ∈ (0, ρ0) for

ρ0 := ρ(2) = a
− 2

n−2γ .

Moreover, near the conformal infinity we have the asymptotic expansion ρ(R) = R
[
1 +O(R2γ)

]
.

In the new manifold X∗ = (0, ρ0)× C consider the metric ḡ∗ := ( ρ
R)

2ḡ, which satisfies

ḡ∗ = dρ2(1 +O(ρ2γ)) + g0(1 +O(ρ2γ)). (2.6)

Then for the conformal fractional Laplacian, one has the following extension construction:

Proposition 2.2 ([16]). Let v be a smooth function on C. The extension problem{
divḡ∗(ρ

1−2γ∇ḡ∗V )= 0 in (X∗, ḡ∗),
V |ρ=0= v on C, (2.7)
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has a unique solution V . In addition, the conformal fractional Laplacian can be recovered from
the Neumann data as

Pγ(v) = −d̃γ lim
ρ→0

ρ1−2γ∂ρV + cn,γv. (2.8)

Moreover, the first equation in (2.7) can be expanded to

∂ρ
(
e1(ρ)ρ

1−2γ∂ρV
)
+ e2(ρ)ρ

1−2γ∂ttV + e3(ρ)ρ
1−2γ∆θV = 0, (2.9)

for ρ ∈ (0, ρ0), t ∈ R, θ ∈ Sn−1, where ei(ρ) are some non-negative functions satisfying

ei(ρ) = 1 +O(ρ2) as ρ → 0, i = 1, 2, 3. (2.10)

3 The inequality in cylindrical variables

Let us now go back to the fractional CKN inequality. With the new tools we have just
introduced in Section 2, it is possible to transform our original problem into an equivalent one
defined on the cylinder R× Sn−1, similarly to the classical case from [10].

The Euler-Lagrange equation for our minimization problem (1.8) is given, in the weak form,
by ∫

Rn

∫
Rn

(u(x)− u(y))(φ(x)− φ(y))

|x− y|n+2γ |x|α|y|α
dydx = 2c

∫
Rn

|u(x)|p−2u(x)

|x|βp
φ(x) dx,

for every φ ∈ C∞
c (Rn), which yields

Lγ,α(u) :=

∫
Rn

u(x)− u(y)

|x− y|n+2γ |x|α|y|α
dy = c

|u(x)|p−2u(x)

|x|βp

for some Lagrange multiplier c ∈ R.
First, we will consider the homogeneous singular solution to equation (1.9). From the

arguments in the Appendix we have:

Proposition 3.1. Let

ν :=
n− 2γ

2
− α. (3.1)

Then the function u(x) = |x|−ν is a solution of Euler-Lagrange equation (1.9) with the constant
normalized as c = κnα,γ with 0 < κnα,γ < ∞ defined in (9.6).

Now use polar coordinates for x ∈ Rn (r = |x| > 0, θ ∈ Sn−1), and set r = et. We fix the
value ν as in (3.1) for the rest of the paper.

In the light of Proposition 3.1, we can write any function u ∈ Dγ
α as

u(x) = |x|−νv
(
log r,

x

|x|

)
, (3.2)
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where v ∈ D̃γ
α,β; this functional space will be explained in (3.9) below. One can see that the

space D̃γ
α,β is independent of the parameters α, β, so it will be denoted simply by D̃γ .

We start with a preliminary result:

Lemma 3.2. In the notation above one has

r
n+2γ

2
+αLγ,αu(r, θ) = κnα,γv(t, θ) +

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃)) dµ̃, (3.3)

where the kernel is given in (2.3) and dµ̃ = dθ̃ dt̃ is the cylindrical volume element. This is
equivalent to

ςn,γr
n+2γ

2
+αLγ,αu = (ςn,γκ

n
α,γ − cn,γ)v + Pγv. (3.4)

Proof. This is a simple calculation. In polar coordinates (r = |x|, θ ∈ Sn−1 and s = |y|, θ̃ ∈
Sn−1),

Lγ,αu(r, θ) =

∫
Sn−1

∫ ∞

0

(r−νv(r, θ)− s−νv(s, θ̃))sn−1−αr−α

(s2 + r2 − 2sr⟨θ, θ̃⟩)
n+2γ

2

ds dθ̃,

which, after the change of variable s̄ = s
r , is equivalent to

r
n+2γ

2
+αLγ,αu(r, θ) =

∫
Sn−1

∫ ∞

0

(v(r, θ)− s̄−νv(rs̄, σ))s̄n−1−α

(1 + s̄2 − 2s̄⟨θ, σ⟩)
n+2γ

2

ds̄ dσ

= κnα,γv(r, θ) +

∫ ∞

0

∫
Sn−1

(v(r, θ)− v(rs̄, σ))s̄n−1−α−ν

(1 + s̄2 − 2s̄⟨θ, σ⟩)
n+2γ

2

dσ ds̄,

where we have applied the trivial equality

v(r, θ) = (1− s̄−ν)v(r, θ) + s̄−νv(r, θ).

Next, using the Emden-Fowler change of variable (r = et, s = et̃ and thus, s̄ = e−(t−t̃)), we
arrive to (3.3).

The second assertion follows from (2.1) by simple inspection.

Now, from the expression in (3.4), it is natural to define

L̃γ,αv := ςn,γr
n+2γ

2
+αLγ,α(r

−νv)

for a function v(t, θ) on the cylinder given by (3.2). From Lemma 3.2, we have the following
formulas:

L̃γ,αv(t, θ) = (ςn,γκ
n
α,γ − cn,γ)v(t, θ) + Pγv(t, θ)

= ςn,γκ
n
α,γv(t, θ) + ςn,γ

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃)) dµ̃.

(3.5)

12



Moreover, the Euler-Lagrange equation (1.9) with the constant normalized as c = κnα,γ , can be
written as

L̃γ,αv = ςn,γκ
n
α,γ |v|p−2v. (3.6)

For simplicity in the notation in expression (3.5), we will call

C(α) := ςn,γκ
n
α,γ − cn,γ .

Additionally, we can also write the equivalent formulation of the Euler-Lagrange equation using
the extension problem from Proposition 2.2. More precisely, (3.6) is equivalent to∂ρ

(
e1(ρ)ρ

1−2γ∂ρV
)
+ e2(ρ)ρ

1−2γ∂ttV + e3(ρ)ρ
1−2γ∆θV = 0 in X∗,

− d̃γ lim
ρ→0

ρ1−2γ∂ρV (ρ, t) + ςn,γκ
n
α,γv − ςn,γκ

n
α,γ |v|p−2v = 0 on C,

with ei as in (2.10).
Next, we give a formula for the energy (1.7) on the cylinder using similar ideas. Recall the

value of ν from (3.1). Taking polar coordinates as in Lemma 3.2,

∥u∥2γ,α =

∫
Rn

∫
Rn

(u(x)− u(y))2

|x− y|n+2γ |x|α|y|α
dy dx

=

∫
Sn−1

∫
Sn−1

∫ ∞

0
rn−1−2(α+γ+ν)

∫ ∞

0

(v(r, θ)− s̄−νv(rs̄, θ̃))2s̄n−1−α

(1 + s̄2 − 2s̄⟨θ, θ̃⟩)
n+2γ

2

ds̄ dr dθ̃ dθ

which, using the trivial equalities

v2(r, θ) = (1− s̄−ν)v2(r, θ) + s̄−νv2(r, θ)

and
v2(rs̄, θ̃) = (1− s̄ν)v2(rs̄, θ̃) + s̄νv2(rs̄, θ̃)

is equivalent to

∥u∥2γ,α = κnα,γ

∫
Sn−1

∫ ∞

0
rn−1−2(α+γ+ν)v2(r, θ) dr dθ

+

∫
Sn−1

∫
Sn−1

∫ ∞

0

∫ ∞

0

rn−1−2(α+γ+ν)v2(rs̄, σ)s̄n−1−α−2ν(1− s̄ν)

(1 + s̄2 − 2s̄⟨θ, θ̃⟩)
n+2γ

2

dr ds̄ dθ dθ̃

+

∫
Sn−1

∫
Sn−1

∫ ∞

0
rn−1−2(α+γ+ν)

∫ ∞

0

(v(r, θ)− v(rs̄, θ̃))2s̄n−1−α−ν

(1 + s̄2 − 2s̄⟨θ, θ̃⟩)
n+2γ

2

ds̄ dr dθ dθ̃.
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Now, we change variables s = s̄r and r̄ = rs−1 on the second integral in the right hand side in
the formula above. Recalling the value κnα,γ , we have

∥u∥2γ,α = 2κnα,γ

∫
Sn−1

∫ ∞

0
r−1v2(r, θ) dr dθ

+

∫
Sn−1

∫
Sn−1

∫ ∞

0
r−1

∫ ∞

0

(v(r, θ)− v(rs̄, θ̃))2s̄n−1−α−ν

(1 + s̄2 − 2s̄⟨θ, θ̃⟩)
n+2γ

2

ds̄ dr dθ dθ̃.

In cylindrical coordinates (r = et, s = eτ and s̄ = e−(t−τ)), it becomes

∥u∥2γ,α = 2κnα,γ

∫
C
v2(t, θ) dµ+

∫
C

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃))2 dµ dµ̃,

while, in addition, ∫
Rn

|u|p

|x|βp
dx =

∫
C
|v(t, θ)|p dµ.

Thus we can define an energy functional on the cylinder C by

Fα,β(v) =

∫
C

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃))2 dµdµ̃+ 2κnα,γ

∫
C
v2 dµ(∫

C
|v|p dµ

)2/p . (3.7)

Finally, note that one can write Fα,β as

Fα,β(v) = 2ς−1
n,γ

∫
C
vL̃γ,αv dµ(∫

C
|v|p dµ

)2/p . (3.8)

This follows simply by taking into account that

(v(t, θ)− v(t̃, θ̃))2 = v(t, θ)[v(t, θ)− v(t̃, θ̃)] + v(t̃, θ̃)[v(t̃, θ̃)− v(t, θ)],

and the fact that the integral kernel inside the double integral
∫
C
∫
C is symmetric under the

change t → t̃ and θ → θ̃.

3.1 Function spaces and the proof of Proposition 1.1

Recall that we have defined Dγ
α(Rn) to be the completion of C∞

c (Rn) with respect to the inner
product

⟨u1, u2⟩γ,α :=

∫
Rn

∫
Rn

(u1(x)− u2(y))(u1(x)− u2(y))

|x− y|n+2γ |x|α|y|α
dy dx,
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with associated norm

∥u∥2γ,α =

∫
Rn

∫
Rn

(u(x)− u(y))2

|x− y|n+2γ |x|α|y|α
dy dx.

Define also the weighted space Lp
β(R

n) as the completion of C∞
c (Rn) with respect to the norm

∥u∥Lp
β
:=

(∫
Rn

|u(x)|p

|x|βp
dx

) 1
p

.

As in Lemma 2.1 in [10], one can easily verify that both spaces can be understood as the
completion of C∞

c (Rn \ {0}) under their respective norms. In fact, from the embedding result
below, one has

Dγ
α(Rn) = {u ∈ Lp

β(R
n) : ∥u∥γ,α < ∞}.

Now define the functional space on the cylinder by

D̃γ(C) := {v ∈ L2(C) :
∫
C

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃))2 dµ dµ̃ < ∞}, (3.9)

given in terms of the scalar product

⟨v1, v2⟩ : = 2κnα,γ

∫
C
v1(t, θ)v2(t, θ) dµ

+

∫
C

∫
C
K(t, t̃, θ, θ̃)(v1(t, θ)− v1(t̃, θ̃))(v2(t, θ)− v2(t̃, θ̃)) dµ dµ̃.

(3.10)

From the above definition it is clear that the space D̃γ(C) is independent of the parameters α
and β.

Moreover, the above calculations show that the Hilbert spaces Dγ
α(Rn) and D̃γ(C) are

isomorphic. We have the following:

Lemma 3.3. The mapping given by (3.2) is an isomorphism from Dγ
α(Rn) to D̃γ(C). More-

over, if u ∈ Dγ
α(Rn) and v ∈ D̃γ(C) are related by (3.2), then

Eα,β(u) = Fα,β(v)

and
S(α, β) = inf

v∈D̃γ(C)\{0}
Fα,β(v). (3.11)

Similarly, the solutions of (1.9) and (3.6) are one-to-one.

15



Let us rewrite the energy in D̃γ(C) in terms of the extension problem (2.9). With some
abuse of notation, dρdµ will denote the volume element of the metric ḡ∗ given in (2.6). We
have

0 =

∫ ρ0

0

∫
C
V
{
−∂ρ

(
e1(ρ)ρ

1−2γ∂ρV
)
− e2(ρ)ρ

1−2γ∂ttV − e3(ρ)ρ
1−2γ∆θV

}
dρdµ

=

∫ ρ0

0

∫
C
ρ1−2γ

{
e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2 + e3(ρ)|∇θV |2

}
dρdµ

+ IC ,

where

IC =

∫
C
vρ1−2γ∂ρV |ρ=0 dµ.

For the boundary term, equation (2.8) yields

d̃γIC = −
∫
C
vPγv dµ+ cn,γ

∫
C
v2 dµ

= −ςn,γ

∫
C
v(t, θ)

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃)) dµ̃dµ

=
−ςn,γ
2

∫
C

∫
C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃))2 dµdµ̃,

where we have used the symmetry of the kernel in the last equality. We conclude that

∥v∥2
D̃γ(C) = 2κnα,γ

∫
C
v2 dµ

+
2d̃γ
ςn,γ

∫ ρ0

0

∫
C
ρ1−2γ

{
e1(ρ)(∂ρW )2 + e2(ρ)(∂tW )2 + e3(ρ)|∇θW |2

}
dρdµ.

(3.12)

Sobolev embeddings for the (fractional-order) Hilbert space Hγ on a complete manifold for
integer powers γ have been well studied (see, for instance, [29] where they give examples of
manifolds where the embedding is false). However, the literature is not so extensive in the case
of fractional operators. In particular, usual embeddings are true for manifolds with bounded
geometry [28], for which the proof is reduced to that of Rn by using normal coordinates
around a point. See also [6] for the characterization of the fractional Laplacian on a manifold
via extension to one more dimension in the spirit of [8].

In our case, we are dealing with the space D̃γ(C), which is not exactly Hγ(C) since the
integration kernel for the fractional order operator is different. In any case, we still have the
usual embeddings as in the Euclidean setting due to the specific form of the energy. More
precisely:
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Proposition 3.4. We have the continuous embedding

D̃γ(C) ↪→ Lq(C), q ∈ [1, 2∗γ ].

The embedding is compact for q ∈ [1, 2∗γ), if we restrict to compact subsets in C.

Proof. Inspired by the ideas of [6] and [16], we write the norm in D̃γ(C) as a local weighted
energy in the extension to one more dimension, which is given by (3.12).

Recalling the asymptotic behavior of the ei(ρ), i = 1, 2, 3, from (2.10), this norm is equiv-
alent to the weighted norm in W 1,2(X∗, ρ1−2γ), and we can use the standard trace embedding
in the extension X∗ to complete the proof.

Remark 3.5. Proposition 1.1 is an immediate consequence of Proposition 3.4.

In the radially symmetric case, the above compactness result yields the existence of mini-
mizer in the radial symmetry class. For this, we define the radially symmetric function space
which we denote by D̃γ

r , i.e. the subspace of D̃γ which contains functions that are independent
of θ. The scalar product in this new space is given by (3.10) simply by substituting the kernel
K by the one-dimensional K0 and all the above arguments follow similarly.

Proposition 3.6. There always exists a minimizer of Fα,β in D̃γ
r .

Proof. By the definition of S(α, β) and (3.11), we know that S(α, β) ≥ 0 is finite and there
exists a minimizing sequence (vn) in D̃γ

r such that ∥vn∥Lp(C) = 1 and

lim
n→∞

Fα,β(vn) = S(α, β).

For all γ ∈ (0, 1), we have the compact embedding of D̃γ
r into Lq for q ∈

(
1, 2

1−2γ

)
if γ ≤ 1

2

and any q ≥ 1 for 1
2 < γ < 1. In our case, p = 2n

n−2γ+2(β−α) . So when n ≥ 2, this exponent

is subcritical for dimension 1 . So there exists v∗ ∈ D̃γ
r such that (vn) converges to v∗ weakly.

This implies that∫
R

∫
R
K0(t− t′)(v∗(t)− v∗(t

′))2 dtdt′ + 2κnα,γ

∫
R
v∗(t)

2 dt ≤ lim inf
n

Fα,β(vn).

Moreover, by the compact embedding, we have ∥v∗∥Lp = lim
n→∞

∥vn∥Lp = 1, which yields that

Fα,β(v∗) = S(α, β). Thus v∗ is an extremal solution.

From now on, we denote the value of the optimal constant in the radially symmetric case
by

R(α, β) = inf
v∈D̃γ

r \{0}
Fα,β(v). (3.13)
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Contrary to the local case, where minimizers are positive solutions for a nonlinear second-order
ODE which are explicitly known (see Proposition 2.6 in [10] and the introduction of Section 2
in [20]), in the non local setting it will not be possible to find the explicit expression of such
extremal solutions.

Remark 3.7. Note that, compared with the local case γ = 1, in the fractional case the region
for the parameter α has extra constraint α > −2γ. This is a technical constraint due to the
definition of fractional Laplacian as a singular integral. Indeed, this additional restriction is
only needed in order to apply the operator (1.10) to an homogeneous distribution |x|ν for ν as
in (3.1). It should be possible to extend our results to the whole range α < n−2γ

2 . As it happens
with the standard fractional Laplacian operator, one can admit more singular distributions by
giving a different regularization in the definition of (−∆)γ , but we will not consider this case
in order to avoid unnecessary technicalities.

4 Proof of Theorem 1.2

In the previous section we have shown the embedding theory for the function space D̃γ . Now
we will follow the arguments in [10] for the classical CKN inequality to study the best constant
and existence of extremal solutions for the energy Eα,β(u) given by (1.7). The main idea is
to use instead the energy in cylindrical coordinates Fα,β, which is equivalent to Eα,β(u) by
Lemma 3.3.

Before we start with the proof of the Theorem let us show a simple symmetrization result,
which is essentially contained in [27]. However, we have decided to include it here, written in
the notation of functional (1.8):

Proposition 4.1. Let 0 < α < n−2γ
2 and α ≤ β < α + γ, or α = 0 and 0 < β < γ. If an

extremal solution for (1.8) exists, then it is radially symmetric and non-increasing in the radial
variable.

Proof. Let u ∈ C∞
c (Rn \ {0}) and consider

w(x) = |x|−αu(x).
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As in the proof of Lemma 3.2,

Eα,β(u) =

∫
Rn

∫
Rn

(|x|αw(x)− |y|αw(y))2

|x− y|n+2γ |x|α|y|α
dy dx(∫

Rn

|w(x)|p

|x|(β−α)p
dx

)2/p

=

2

∫
Rn

∫
Rn

(|x|α − |y|α)w2(x)

|x− y|n+2γ |y|α
dy dx+

∫
Rn

∫
Rn

(w(x)− w(y))2

|x− y|n+2γ
dy dx(∫

Rn

|w(x)|p

|x|(β−α)p
dx

)2/p
,

(4.1)

where we have used that

w2(x) =

(
1−

∣∣∣∣xy
∣∣∣∣−α
)
w2(x)+

∣∣∣∣xy
∣∣∣∣−α

w2(x) and w2(y) =

(
1−

∣∣∣y
x

∣∣∣−α
)
w2(y)+

∣∣∣y
x

∣∣∣−α
w2(y).

Now, the first integral term in the expression (4.1) can be written as 2
∫
RN w2(x)I(x) dx, where

I is the integral from Lemma 9.1 when ᾱ = −α. Thus the energy expansion (4.1) is equivalent
to

Eα,β(u) =

2κn,−α
α,γ

∫
Rn

w2(x)

|x|2γ
dx+

∫
Rn

∫
Rn

(w(x)− w(y))2

|x− y|n+2γ
dy dx(∫

Rn

|w(x)|p

|x|(β−α)p
dx

) 2
p

.

Let w̃ be the decreasing rearrangement of w. A standard rearrangement inequality (see, for
instance, Theorem 3.4 in Chapter 3 of [32]) yields that∫

Rn

|w̃(x)|p

|x|(β−α)p
dx ≥

∫
Rn

|w(x)|p

|x|(β−α)p
dx and

∫
Rn

|w̃(x)|2

|x|2γ
dx ≥

∫
Rn

|w(x)|2

|x|2γ
dx.

In addition, the fractional Polya-Szegö inequality (see, for instance, the note [39]) implies that∫
Rn

∫
Rn

(w̃(x)− w̃(y))2

|x− y|n+2γ
dy dx ≤

∫
Rn

∫
Rn

(w(x)− w(y))2

|x− y|n+2γ
dy dx.

Because of Corollary 9.2 we have that κn,−α
α,γ < 0 for α ∈ [0, n−2γ

2 ), and we conclude that the
symmetrization decreases the energy Eα,β. In addition, if equality is attained by a function w,
then u = |x|αw reaches equality in (4.1), i.e., Eα,β(u) = Eα,β(ũ), and by Theorem 3.4 in [32]
we must have w̃ = w, which completes the proof.

Now we recall the two following technical lemmas that correspond to Lemmas 3.1 and 3.2
in [10]. Their proofs are similar taking into account the embeddings from Proposition 3.4 in
the fractional case and therefore we skip them.
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Lemma 4.2. Let −2γ < α0 <
n−2γ

2 , α0 ≤ β0 ≤ α0 + γ. Then

lim sup
(α,β)→(α0,β0)

S(α, β) ≤ S(α0, β0).

Lemma 4.3. Let (pn) be a sequence convergent to p satisfying pn ∈ [2, p]. If a sequence (vn)
is uniformly bounded in D̃γ(C), then

(i) if p ∈ (2, 2∗γ), we have

lim
n→∞

∫
C
(|vn|pn − |vn|p) dµ = 0;

(ii) if p = 2 or p = 2∗γ, we have

lim
n→∞

∫
C
(|vn|pn − |vn|p) dµ ≤ 0.

Proof of Theorem 1.2 i. By Lemma 4.2, one has

lim sup
(α,β)→(α0,β0)

S(α, β) ≤ S(α0, β0).

So it suffices to prove
lim inf

(α,β)→(α0,β0)
S(α, β) ≥ S(α0, β0).

Assume, by contradiction, that there exists a sequence (αn, βn) → (α0, β0) such that

lim
n→∞

S(αn, βn) < S(α0, β0),

then there exists ϵ > 0 and (vn) ∈ D̃γ(C) such that∫
C
|vn|pn dµ = 1

and
S(α0, β0)− ϵ ≥ Fαn,βn(vn).

Since vn is bounded in D̃γ(C), from Lemma 4.3 and (3.8), we get

Fαn,βn(vn) + o(1) ≥ Fα0,β0(vn) ≥ S(α0, β0),

which yields a contradiction.
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Remark 4.4. If β = α + γ, then p = 2 and we are in the linear setting. Clearly by the
definition of Fα,α+γ(v) given in (3.7), we have

Fα,α+γ(v) ≥ 2κnα,γ

for all v ∈ D̃γ(C). Choose vR to be a cutoff function such that vR(t) = 1 for |t| ≤ R and
vR(t) = 0 in R\(−2R, 2R). One can check that vR ∈ D̃γ(C) for each R and Fα,α+γ(vR) → 2κnα,γ
as R → ∞. Therefore,

S(α, α+ γ) = 2κnα,γ .

In order to prove the nonexistence of extremal solutions note that, for p = 2, the Euler-Lagrange
equation (3.6) reduces to ∫

C
K(t, t̃, θ, θ̃)(v(t, θ)− v(t̃, θ̃)) dµ̃ = 0

which is, using the definition of the conformal fractional Laplacian on the cylinder,

Pγv = cn,γv. (4.2)

According to the arguments in Section 6 of [3] (see also Corollary 4.2 in [4]), the only solution
to (4.2) in D̃γ(C) is zero. Therefore, the infimum of Sα,α+γ is not achieved.

Proof of Theorem 1.2 ii. For α = β and 0 < α < n−2γ
2 , from Proposition 4.1, we know

that if the extremal exists, it must be radially symmetric. In addition, existence of a radially
symmetric minimizer is proved in Proposition 3.6.

Proof of Theorem 1.2 iii. The approach follows that of [10], only more technical. When α =
β = 0, (1.5) reduces to the well known fractional Sobolev inequality in Rn, which corresponds
to the fractional Yamabe problem, i.e.,

(−∆)γ = u
n+2γ
n−2γ in Rn.

In this case, it is well-known that the extremal is attained by the so-called “bubble” functions

Uλ,x0(x) =
λ

n−2γ
2

(λ2 + |x− x0|2)
n−2γ

2

, λ > 0, x0 ∈ Rn.

We can use this Uλ,x0 as a test function in our problem. Indeed:
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Lemma 4.5. Given

α ∈
(−n+ 2γ − 2

2
,
n− 2γ

2

)
, (4.3)

we have that Uλ,x0 ∈ Dγ
α(Rn). Moreover, for x0 ̸= 0,

S(0, 0) = lim
λ→0

Eα,α(Uλ,x0).

Proof. This is a direct calculation. By the definition of Eα,α(u), one has

Eα,α(Uλ,x0) =
∥Uλ,x0∥2γ,α( ∫

Rn |x|−αp|Uλ,x0 |pdx
) 2

p

where p = 2∗γ in this case. First note that

∥Uλ,x0∥2γ,α =

∫
Rn

∫
Rn

(Uλ,x0(x)− Uλ,x0(y))
2

|x− y|n+2γ |x|α|y|α
dxdy

(x1 = x− x0, y1 = y − x0)

=

∫
Rn

∫
Rn

λn−2γ
(

1

(λ2+|x1|2)
n−2γ

2

− 1

(λ2+|y1|2)
n−2γ

2

)2
|x1 − y1|n+2γ |x0 + x1|α|x0 + y1|α

dx1dy1

(x1 = λx2, y1 = λy2)

=

∫
Rn

∫
Rn

(
1

(1+|x2|2)
n−2γ

2

− 1

(1+|y2|2)
n−2γ

2

)2
|x2 − y2|n+2γ |x0 + λx2|α|x0 + λy2|α

dx2dy2.

Similarly, one can derive the following:∫
Rn

|x|−αp|Uλ,x0 |p dx =

∫
Rn

( λ
n−2γ

2

|x|α(λ2 + |x− x0|2)
n−2γ

2

)p
dx

(x1 = x− x0)

=

∫
Rn

( λ
n−2γ

2

|x0 + x1|α(λ2 + |x1|2)
n−2γ

2

)p
dx1

(x1 = λx2)

=

∫
Rn

( λ
n−2γ

2

λn−2γ |x0 + λx2|α(1 + |x2|2)
n−2γ

2

)p
λn dx2

=

∫
Rn

( 1

|x0 + λx2|α(1 + |x2|2)
n−2γ

2

)p
dx2.
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Combining the above estimates, one has

lim
λ→0

Eα,α(Uλ,x0) = lim
λ→0

∫
Rn

∫
Rn

(
1

(1+|x2|2)
n−2γ

2

− 1

(1+|y2|2)
n−2γ

2

)2

|x2−y2|n+2γ |x0+λx2|α|x0+λy2|α dx2dy2( ∫
Rn

(
1

|x0+λx2|α(1+|x2|2)
n−2γ

2

)p
dx2

) 2
p

=

∫
Rn

∫
Rn

(U1,0(x2)−U1,0(y2))2

|x2−y2|n+2γ |x0|2α dx2dy2( ∫
Rn |x0|−αpUp

1,0(x2) dx2

)n−2γ
n

=
∥U1,0∥2γ,0

∥U1,0∥2
L

2n
n−2γ

= S(0, 0).

We conclude then that for α in the range (4.3)

S(α, α) ≤ S(0, 0).

On the other hand, if
−n+ 2γ − 2

2
< α < 0, (4.4)

then for any v ∈ D̃γ(C) \ {0}, one has Fα,α(v) > F0,0(v) ≥ S(0, 0) where we use the fact (see
Corollary 9.3) that κnα,γ is decreasing in α if α < 0. From this, one has that

S(α, α) ≥ S(0, 0)

for α as in (4.4) and hence S(α, α) = S(0, 0) for such values of α.

Next we fix α1 ∈ (−n+2γ−2
2 , 0). For any α ∈ (−2γ, −n+2γ−2

2 ], in case it is non empty, and

ϵ > 0, there exists v ∈ D̃γ(C) such that

Fα1,α1(v) ≤ S(0, 0) +
ϵ(κnα,γ − κn0,γ)

2(κnα,γ − κnα1,γ)
.

Since S(0, 0) ≤ F0,0(v) ≤ Fα1,α1(v), we have∫
C v

2 dµ

(
∫
C v

p dµ)2/p
≤ ϵ

2(κnα,γ − κnα1,γ)
.
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Then

Fα,α(v) = Fα1,α1(v) + 2(κnα,γ − κnα1,γ)

∫
C v

2 dµ

(
∫
C v

p dµ)2/p

≤ S(0, 0) + ϵ+
ϵ(κnα,γ − κn0,γ)

2(κnα,γ − κnα1,γ)
.

As ϵ → 0, one has S(α, α) ≤ S(0, 0) and thus, S(α, α) = S(0, 0) for α ∈ (−2γ, 0).

Finally we will show S(α, α) is not achieved for α < 0. If this is not true, then there exists
v ∈ D̃γ(C), such that S(α, α) = Fα,α(v). But using Fα,α(v) > F0,0(v) ≥ S(0, 0), we arrive to a
contradiction.

Proof of Theorem 1.2 iv. Here, since the case α ≥ 0 has been considered in Proposition
4.1, we take −2γ < α < 0 and α < β < α + γ. The proof follows the ideas of Theorem 1.2 in
[10] for the fractional energy. We need the following lemma:

Lemma 4.6. Let r > 0 and 2 ≤ q < 2∗γ. Let (ωj) be a bounded sequence in D̃γ(C). If

sup
y∈C

∫
Br(y)∩C

|ωj |q dµ → 0 as j → ∞,

where Br(y) denotes the ball in Rn+1 with radius r centered at y, then ωj → 0 in Lp(C) for
2 < p < 2∗γ.

Proof. In the local case, this is written in Lemma 1.21 of [40], although originally it is due to
Lions [34, 35]. The non-local case only requires minor variations and the (continuous) Sobolev
embedding D̃γ(C) ↪→ L2∗γ (C) from Proposition 3.4.

Now let −2γ < α < 0 and α < β < α + γ be fixed. Consider a minimizing sequence
(vj) ∈ D̃γ(C), such that ∫

C
vpj dµ = 1,

where we recall that 2 < p < 2∗γ , and∫
C

∫
C
K(t, t̃, θ, θ̃)(vj(t, θ)− vj(t̃, θ̃))

2 dµdµ̃+ 2κnα,γ

∫
C
v2j dµ → S(α, β) as j → ∞.

According to Lemma 4.6, there exists r > 0 such that

δ := lim inf
j→∞

sup
y∈C

∫
Br(y)∩C

|vj |q dµ > 0,

24



otherwise vj → 0 in Lp(C) which is a contradiction. Then there exists a sequence (yj) ∈ C
and y0 ∈ C such that yj → y0, and v̄j(x) := vj(x − yj + y0), where, for x = (t, θ), y = (t̄, θ̄),
the “translation” in cylinder is understood to be (x− y) = (t− t̄, θθ̄), i.e. translation in t and
rotation in θ. Then v̄j has the following property:∫

Br(y0)∩C
|v̄j |2 dµ ≥ δ

2
. (4.5)

We have that ∫
C
v̄pj dµ = 1

and ∫
C

∫
C
K(t, t̃, θ, θ̃)(v̄j(t, θ)− v̄j(t̃, θ̃))

2 dµdµ̃+ 2κnα,γ

∫
C
v̄2j dµ → S(α, β).

Here we have used that our energy is translation invariant in the sense explained above. A
way to see this is by looking at the kernel (2.3) both in the θ and t coordinates.

By the compact embedding from Proposition 3.4, we may assume that

v̄j → v̄ weakly in D̃γ(C),
v̄j → v̄ in L2

loc(C),
v̄j → v̄ a.e. in C.

Moreover, we have
1 = ∥v̄∥pLp + lim

j→∞
∥v̄j − v̄∥pLp .

Hence

S(α, β) = lim
j→∞

∫
C

∫
C
K(t, t̃, θ, θ̃)(v̄j(t, θ)− v̄j(t̃, θ̃))

2 dµd̃µ+ 2κnα,γ

∫
C
v̄2j dµ

=

∫
C

∫
C
K(t, t̃, θ, θ̃)(v̄(t, θ)− v̄(t̃, θ̃))2 dµdµ̃+ 2κnα,γ

∫
C
v̄2 dµ

+ lim
j→∞

2κnα,γ

∫
C
(v̄2j − v̄2) dµ

+ lim
j→∞

∫
C

∫
C
K(t, t̃, θ, θ̃)

(
(v̄j − v̄)(t, θ)− (v̄j − v̄)(t̃, θ̃)

)2
dµdµ̃

≥ S(α, β)
(
∥v̄∥2Lp + ∥v̄j − v̄∥2Lp

)
= S(α, β)

(
∥v̄∥2Lp + (1− ∥v̄∥pLp)

2
p

)
.

Since v̄ ̸= 0 by (4.5), we derive that ∥v̄∥Lp = 1 and∫
C

∫
C
K(t, t̃, θ, θ̃)(v̄(t, θ)− v̄(t̃, θ̃))2 dµdµ̃+ 2κnα,γ

∫
C
v̄2 dµ = S(α, β).
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So v̄ is the desired extremal solution. This completes the proof of the Theorem.

Finally, let us comment on positivity of a miminizer:

Proposition 4.7. In the setting of Theorem 1.2, if an extremal solution for (1.8) exists, then
it is strictly positive.

Proof. It is clear to see that, for the absolute value of u, it holds ∥ |u| ∥γ,α ≤ ∥u∥γ,α. Now we
show that an extremal solution must be strictly positive. Changing to cylindrical coordinates
as in (1.13), we have a non-negative solution v to

Pγv + C(α)v = vp−1, t ∈ R, θ ∈ Sn−1.

Now, let us show that v is strictly positive. Indeed, if there exists (t0, θ0) such that v(t0, θ0) = 0,
from the integral expression for the operator Pγ from (2.1) we have

Pγv(t0, θ0) = ςn,γ

∫
C
K(t0, t̃, θ0, θ̃)(v(t0, θ0)− v(t̃, θ̃)) dµ̃+ cn,γv(t0, θ0)

= vp−1(t0, θ0) = 0.

The first line should be strictly negative unless v is identically zero, which is a contradiction.
We conclude that v must be strictly positive everywhere.

We notice here that in the paper [1] they showed a weak Harnack inequality for the operator
Lγ,α(u) in the case α > 0. Although it should be possible to extend this result to negative
values of α, some numerology needs to be done.

5 Proof of Theorem 1.3

In this section, we will use the moving plane method to prove the modified inversion symmetry
of the extremal solutions. As in the local case, there are two key points in applying the
moving plane method: the maximum principle and Hopf’s lemma for the conformal fractional
Laplacian operator Pγ .

In the notation of Theorem 1.3, let v be a positive solution of

L̃γ,αv(t, θ) = ςn,γκ
n
α,γv(t, θ)

p−1

on the cylinder C. Up to translation in the variable t, we will show that this solution is even
in t variable and decreasing for t > 0.

For λ < 0 and z = (t, θ) ∈ C, denote zλ = (2λ− t, θ) ∈ C the reflection of z relative to the
plane t = λ. We let

wλ(z) := v(zλ)− v(z),
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which is defined on Σλ:={(t, θ) ∈ C, t < λ}. So wλ(z) = 0 for z ∈ Tλ := ∂Σλ = {(t, θ) ∈ C, t =
λ}. We also consider the odd extension of wλ in C with respect to Σλ. By definition of wλ, it
will satisfy the equation

Pγwλ + c(z)wλ = 0, wλ(z) = −wλ(z
λ) in Σλ, (5.1)

where

c(z) := ςn,γκ
n
α,γ − cn,γ − ςn,γκ

n
α,γ(p− 1)

∫ 1

0
[v(z) + s(v(zλ)− v(z))]p−2 ds. (5.2)

Note that wλ(z) → 0 as t → ±∞, since v ∈ D̃γ(C).

Lemma 5.1. If wλ has a negative minimum at (t0, θ0) for t0 < λ, then there exists R > 0
such that |t0| < R.

Proof. Since v(t, θ) → 0 as t → ±∞, we can choose R large enough such that

|v(z)| < T =
( 2

(p− 1)

) 1
p−2

for |t| ≥ R. (5.3)

If z0 = (t0, θ0) ∈ Σλ is a minimum point such that wλ(z0) < 0 and |t0| > R, then one has

v(zλ0 ) < v(z0) < T.

Therefore c(z0) > −cγ,n, looking at (5.2) and (5.3). Since z0 is a minimum, we know that
wλ(z0) < 0 and thus,

Pγwλ(z0) + c(z)wλ(z0)

= ςn,γ

∫
C
K(t0, t̃, θ0, θ̃)(wλ(t0, θ0)− wλ(t̃, θ̃)) dµ̃+ cn,γwλ(z0) + c(z0)wλ(z0)

= ςn,γ

∫
Σλ

{
[K(t0, t̃, θ0, θ̃)−K(−t0, t̃, θ0, θ̃)][wλ(t0, θ0)− wλ(t̃, θ̃)]

+ 2K(−t0, t̃, θ0, θ̃)wλ(t0, θ0)
}
dµ̃+ cn,γwλ(z0) + c(z0)wλ(z0)

=:

∫
Σλ

F(t0, θ0, t̃, θ̃) dµ̃+ 2ςn,γwλ(t0, θ0)

∫
Σλ

K(−t0, t̃, θ0, θ̃) dµ̃+ cγ,nwλ(z0) + c(z0)wλ(z0)

≤ cn,γwλ(z0) + c(z0)wλ(z0) < 0

where, in the inequality in the last line, to handle the term with F we have used that
K(t,−t̃, θ, θ̃) is even and decreasing in |t− t̄|. This yields a contradiction with (5.1).
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Lemma 5.2 (Maximum Principle). Let v a solution to

Pγv = f(v) in Σλ,

satisfying v ≥ 0 in Σλ, f(v) ≥ 0 for v ≥ 0 and v is anti-symmetric with respect to ∂Σλ, i.e.
v(zλ) = −v(z). Then v ≡ 0 or v > 0 in Σλ.

Proof. Let us assume that there exists (t0, θ0) ∈ Σλ with v(t0, θ0) = 0. Then, as above,

Pγv(t0, θ0) = ςn,γ

∫
C
K(t0, t̃, θ0, θ)(v(t0, θ0)− v(t̃, θ̃)) dµ̃+ cn,γv(t0, θ0)

= −ςn,γ

∫
Σλ

[K(t0, t̃, θ0, θ̃)−K(t0,−t̃, θ0, θ̃)]v(t̃, θ̃) dµ̃

≤ 0.

Thus Pγv = f(v) is satisfied if and only if v ≡ 0.

Hopf’s Lemma for anti-symmetric functions has been studied by [13] for the fractional
Laplacian operator in Euclidean space (see also [17] for the one-dimensional case under weaker
assumptions). In the following, we will adapt their ideas and derive the analogous Hopf lemma
for Pγ . Here, for simplicity of notation, we denote Σ = Σλ and w the odd extension of wλ.

Lemma 5.3 (Hopf Lemma for anti-symmetric functions). Assume that w ∈ C3
loc(Σ),

lim sup
z→∂Σ

c(z) = o
( 1

[dist(z, ∂Σ)]2

)
,

and 
Pγw + c(z)w = 0 in Σ,
w(z) > 0 in Σ,
w(zλ) = −w(z) in Σ.

Then
∂w

∂n⃗
< 0, for every z ∈ ∂Σ,

where n⃗ is the outer unit normal vector of ∂Σ.

Proof. Without loss of generality, we may assume that λ = 0. It suffices to show that ∂w
∂t (0) <

0. We argue by contradiction; thus suppose that ∂w
∂t (0) = 0, then it follows from the anti-

symmetry of the function that ∂2w
∂t2

(0) = 0 and w(t, θ) = O(|t|3) for t close to 0. We will derive
a contradiction to the equation.
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Recall that, by definition, for z0 = (0, θ0),

Pγw(z0) =

∫
C
K(0, t̃, θ0, θ̃)(w(0, θ0)− v(t̃, θ̃)) dµ̃+ cn,γw(0, θ0).

Using the oddness of w with respect to ∂Σ,∫
C
K(t, t̃, θ, θ̃)(w(t, θ)− w(t̃, θ̃)) dµ̃

=

∫
Σ

{
[K(t, t̃, θ, θ̃)−K(−t, t̃, θ, θ̃)][w(t, θ)− w(t̃, θ̃)] + 2K(−t, t̃, θ, θ̃)w(t, θ)

}
dµ̃

=:

∫
Σ
F(t, θ, t̃, θ̃) dµ̃+ 2w(t, θ)

∫
Σ
K(−t, t̃, θ, θ̃) dµ̃

=: I1 + I2.

We divide Σ into several subregions and estimate the above integrals in each region. Let
δ = |t| = dist(z, ∂Σ), z = (t, θ) ∈ Σ := {t < 0}. Define

A1 = {z̃,−2δ ≤ t̃ ≤ 0, |θ̃| ≤ ϵ},
A2 = {z̃,−ϵ ≤ t̃ ≤ −2δ, |θ̃| ≤ ϵ},
A3 = {−R < t̃ < −η} \ (A1 ∪A2),

A5 = Σ \ (A1 ∪A2 ∪A3),

and the auxiliary
A4 = {z̃,−2 ≤ t̃ ≤ −1},

where δ, ϵ, η, R are to be determined later. We take ϵ sufficiently small and δ with δ << ϵ. In
the following, we will always assume that t is close to 0.

We estimate I1 first. Since K(t, t̃, θ, θ̃) is even in t− t̃ and decreasing with respect to |t− t̃|,
we have

K(t, t̃, θ, θ̃)−K(−t, t̃, θ, θ̃) > 0

and, since w(z) = O(|t|3) for t small and w(z) > 0 in Σ, in A4, there exists some constant
c > 0 independent of small ϵ, δ such that

K(t, t̃, θ, θ̃)−K(−t, t̃, θ, θ̃) > c > 0,

and moreover,

w(t, θ)− w(t̃, θ̃) ≤ O(|t|3)− c < −1

2
c < 0,

so one has ∫
A4

F(t, θ, t̃, θ̃) dµ̃ ≤ −c1δ
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for some c1 > 0 independent of ϵ small. In addition, using the asymptotic behaviour of K,∣∣∣ ∫
A1

F(t, t̃, θ, θ̃) dµ̃
∣∣∣ ≤ cmax{δ2−2γ , ϵ2−2γ}δ

and ∫
A2

F(t, θ, t̃, θ̃) dµ̃ ≤ cϵ2−2γδ.

By the above two estimates, we can choose δ and ϵ small enough such that∫
A1∪A2

F(t, θ, t̃, θ̃) dµ̃ ≤ c1
4
δ.

Fixed ϵ and δ, using the fact that K(t, t̃, θ, θ̃) is exponentially decaying in t− t̃ for |t− t̃| large,
one can choose R large enough and η small enough such that, for t → 0,∫

A5

F(t, θ, t̃, θ̃) dµ̃ ≤
∫
Sn−1

∫
{t̃<−R}

F(t, θ, t̃, θ̃) dµ̃+

∫
Sn−1

∫
{t̃>−η}

F(t, θ, t̃, θ̃) dµ̃ <
c1
4
δ.

For this R and η it holds that, for t small enough, w(t, θ)−w(t̃, θ̃) ≤ 0 for all (t̃, θ̃) ∈ A3. Then
one has ∫

A3

F(t, θ, t̃, θ̃) dµ̃ ≤
∫
A4

F(t, θ, t̃, θ̃) dµ̃ < −c1δ.

Combining the above estimates we arrive to

I1 =

∫
Σ
F(t, θ, t̃, θ̃) dµ̃ =

{∫
A1∪A2

+

∫
A3

+

∫
A5

}
F(t, θ, t̃, θ̃) dµ̃ < −c1

2
δ.

On the other hand, for I2, since w(t, θ) = O(δ3) we have

w(t, θ)

∫
Σ
K(−t, t̃, θ, θ̃) dµ̃ = O(δ3−2γ).

In addition,
c(z)w(z) = o(1)δ

and thus, combining the above,

Pγw(z0) + c(z0)w(z0) < 0,

which is a contradiction. Therefore, we must have ∂w
∂t (0) < 0 and this concludes the proof of

the Lemma.
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Proof of Theorem 1.3. Now, by Lemma 5.1, wλ(z) ≥ 0 for λ ≤ −R. Let λ0 be the largest
λ such that the property wλ ≥ 0 in Σλ holds. Clearly λ0 exists since v(t, θ) → 0 as |t| → ∞.
We will prove that

a. wλ(z) > 0, z ∈ Σλ, λ < λ0;

b. wλ0(z) = 0, z ∈ Σλ0 .

To prove the first statement, assume that there exists δ > 0 small such that for some z0 =
(t0, θ0) with t0 < λ0 − δ, it holds that wλ0−δ(z0) = 0. Then by the maximum principle
Lemma 5.2, we have wλ0−δ ≡ 0 in Σλ0−δ. This implies that v(λ0 − 2δ, θ0) = v(λ0, θ0). Since
∂v
∂t (t, θ0) ≥ 0, it follows that

∂v

∂t
(t, θ0) = 0 for t ∈ [λ0 − 2δ, λ0].

Therefore,
∂wλ0−2δ

∂t
(λ0 − 2δ, θ0) = 0.

By the Hopf’s lemma above, we get that wλ0−2δ ≡ 0. Continuing this process one can show
that v is independent of t, which is impossible. Therefore, ∂wλ

∂t < 0 in Tλ for λ < λ0 by Hopf’s

lemma again. Then ∂v
∂t > 0 in Σλ and this yields claim a.

For the second result, assume that wλ0 ̸≡ 0. Then by the maximum principle, wλ0 > 0 in

Σλ0 and
∂wλ0
∂t < 0 on ∂Σλ0 by Hopf’s lemma. From the definition of λ0, there exists a sequence

λk → λ0 with λk > λ0, and there exist points zk ∈ Σλk
such that wλk

(zk) < 0. By Lemma 5.1,
we know that the sequence (zk) is bounded, hence it converges to a point z0. It follows that

z0 ∈ ∂Σλ0 and
∂wλ0
∂t (z0) = 0. Contradiction.

Therefore, after a translation in t, we can assume that λ0 = 0 which implies that v is even
in t and decreasing for t > 0. This completes the proof of Theorem 1.3.

6 Non-degeneracy

Let ū be a positive, radially symmetric, energy solution to (1.9) in Dγ
α(Rn) and set v̄ as in

(1.13) using cylindrical coordinates. Then, v̄ = v̄(t) is an energy solution to

L̃γ,αv̄ := Pγ v̄ + C(α)v̄ = ςn,γκ
n
α,γ v̄

p−1 in C

that, from Theorem 1.3, is positive, even and decreasing for t > 0.
We say that v̄ is a ground state if, in addition, it is a stable solution, this is,

d2

dϵ2

∣∣∣∣
ϵ=0

Fα,β(v̄ + ϵw) ≥ 0 for every w ∈ C∞
c (C).

In particular, a minimizer v̄ for Fα,β is a ground state.
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6.1 Non-degeneracy in the radial sector

Let L̄ be the linearized operator around such v̄, which is given by

L̄w = Pγw + C(α)w − (p− 1)ςn,γκ
n
α,γ v̄

p−2w (6.1)

acting on L2(C).
Here we study non-degeneracy in the space of radially symmetric functions on C. We thus

project over the m = 0 eigenspace; our aim is to show that the kernel

L̄(0)w := P (0)
γ w + C(α)w − (p− 1)ςn,γκ

n
α,γ v̄

p−2w = 0, w = w(t), (6.2)

is one-dimensional. Our initial observation is that the function w̄ := v̄t= ∂tv̄(t) is a solution
to (6.2). We will prove that this is the only possibility up to multiplication by constant. In
addition, since by Theorem 1.3, v̄ is even in t, this will imply that the linearization L̄(0) is
invertible in the space of even functions on R.

Our proof is mostly contained in our previous papers [3, 4], but we present it here in detail
for completeness.

The first step is to find the indicial roots of the problem as t → ±∞. Since v̄ is decaying as

t → ±∞, we need to look first at the associated “constant coefficient” operator P
(0)
γ + C(α).

Taking into account Proposition 2.1 above on the Fourier characterization of P
(0)
γ , its kernel

is fully described in Corollary 4.2 of [4]. Indeed, it is generated by exponential functions eηt

as in a regular second-order ODE. The precise exponents are given by η = iz0 where z0 is any
solution in the complex plane of equation

Θ(0)
γ (z) + C(α) = 0, (6.3)

where we have defined the meromorphic function

Θ(0)
γ (z) = 22γ

Γ
(γ
2 + n

4 + z
2 i
)
Γ
(γ
2 + n

4 − z
2 i
)

Γ
(
− γ

2 + n
4 + z

2 i
)
Γ
(
− γ

2 + n
4 − z

2 i
) , z ∈ C.

Contrary to the second-order setting, one may have an infinite number of indicial roots, not
just two:

Lemma 6.1. The zeroes of (6.3) are of the form {τj ± iσj}, {−τj ± iσj}, for some τj , σj >
0, j = 0, 1, . . ., satisfying in addition that σj > 0 is a strictly increasing sequence with no
accumulation points. Moreover, τj = 0 for large j and the first zero lies on the imaginary axis
away from the origin (τ0 = 0, σ0 > 0).

In particular, Θ
(0)
γ (ξ) + C(α) is bounded from below for ξ ∈ R.
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Proof. For the location of the zeroes, see Theorem 4.1 in [4], based on Section 6 of [3] (just
take into account a sign difference with the notation there). In any case, condition (9.8) in
the Appendix implies that there are no zeroes on the real axis. The asymptotic behavior is
controlled from [3, Section 6.4].

Note that a radially symmetric, radially decreasing function in D̃γ must decay at infinity.
In the case γ ∈ (12 , 1), this decay is exponential. Although we will not need this fact, let us
give a precise statement:

Lemma 6.2. Fix γ ∈ (12 , 1). Let v = v(t) be any function in D̃γ. Then, for every 0 < δ < σ0,
we have

v(t) = o(e−δ|t|), as t → ±∞.

Proof. Take t → +∞. We estimate

eδtv(t) =
1√
2π

∫
R
etξi+δtv̂(ξ) dξ =

1√
2π

∫
R−δi

etξ̃iv̂(ξ̃ + δi) dξ̃.

By Cauchy-Schwarz inequality,

|eδtv(t)| ≤ C

(∫
R−δi

|Θ(0)
γ (ξ̃ + δi) + C(α)| |v̂(ξ̃ + δi)|2 dξ̃

) 1
2

(∫
R−δi

dξ̃

|Θ(0)
γ (ξ̃ + δi) + C(α)|

) 1
2

= C

(∫
R
|Θ(0)

γ (ξ) + C(α)| |v̂(ξ)|2 dξ
) 1

2

(∫
R

dξ

|Θ(0)
γ (ξ) + C(α)|

) 1
2

≤ C∥v∥D̃γ ,

where we have used that ∫
R

1

|Θ(0)
γ (ξ) + C(α)|

dξ < ∞

since Θ
(0)
γ (ξ) is a positive function and behaves like |ξ|2γ as |ξ| → ∞.

Finally, for this calculation to be rigorous we need that the function 1
Θ(0)(ξ)+C(α)

has no

poles in the region {z ∈ C : 0 ≤ Im z ≤ δ}, which is true as long as 0 < δ < σ0.

Now we come to the study of positive radial solutions of equation (1.14). As one can see
in the previous lemma, a-priori, any radial function in D̃γ decays exponentially for γ ∈ (12 , 1).
Now we show that if in addition, v is also a positive radial solution to (1.14), then it decays
exponentially t → ±∞ for all γ ∈ (0, 1). The main idea in the proof is to relate the solutions
of the variable coefficient operator L̄(0) to its indicial roots. More precisely:
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Proposition 6.3. We have

v̄(t) = (a0 + o(1))e−σ0t as t → +∞,

for some a0 > 0 (and similarly for t → −∞).

Proof. We follow Proposition 5.2 in [4]. Note that v̄ is a solution to

P (0)
γ v̄ + C(α)v̄ = ςn,γκ

n
α,γ v̄

p−1 =: h.

Since v̄ is at least bounded, the asymptotic behavior of h is given by O(e−δ|t|) for some δ ≥ 0.
Let us concentrate in the limit t → +∞.

Using the same ideas as in Proposition 4.3 in [4], we know that there exists a non-negative
integer j such that either

v̄(t) = (aj + o(1))e−σjt as t → +∞,

for some real number aj ̸= 0, or

v̄(t) =
(
a1j cos(τjt) + a2j sin(τjt) + o(1)

)
e−σjt,

for some real numbers a1j , a
2
j not vanishing simultaneously. There is a similar expansion as

t → −∞. Finally, we have that

a0 = c

∫
R
eσ0t′h(t′) dt′ > 0

since, by hypothesis, v̄ is non-negative.

Recall that we had defined w̄ = v̄t. The previous Proposition implies that also

w̄(t) = (a+ o(1))e−σ0t as t → +∞

for some a ̸= 0 (and similarly as t → −∞). We will compare any other solution of (6.2) to w̄.
First we show a Frobenius-type theorem for (6.2):

Proposition 6.4. Let w be a solution to (6.2) satisfying w(t) = O(e−δ|t|) as |t| → ∞ for some
δ > 0. Then there exists a non-negative integer j such that either

w(t) = (aj + o(1))e−σjt as t → +∞,

for some real number aj ̸= 0, or

w(t) =
(
a1j cos(τjt) + a2j sin(τjt) + o(1)

)
e−σjt,

for some real numbers a1j , a
2
j not vanishing simultaneously. There is a similar expansion as

t → −∞.
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Proof. This is essentially Theorem 4.9 in [4] with minor modifications. One just needs to take
into account that the potential is different. We rewrite equation (6.2) as

L̄(0)w = Pγw + V(t)w = 0, w = w(t),

for
V(t) := C(α)− (p− 1)ςn,γκ

n
α,γ v̄

p−2.

From Proposition 6.3 we know that

V(t) = C(α) +O(e−q|t|)

for some q > 0. We write

P (0)
γ w + C(α)w = (−V(t) + C(α))w =: h,

for h := (p − 1)ςn,γκ
n
α,γ v̄

p−2w = O(e−δ′|t|), which allows us to apply Theorem 4.4 in [4] and
this yields the proof.

We remark here that if w ∈ L2(C) is a solution to (6.2), then automatically w ∈ D̃γ (we
just need to multiply the equation by w and integrate). Thus, similarly to Proposition 6.3, w
has exponential decay as t → ±∞ and we can use Proposition 6.4.

One of the main results in [3] is the interpretation of a non-local ODE as infinite system
of second order ODEs. Since this formulation is particularly simple when all the τj are zero,
we will restrict to this case and refer to [4] for the full theorem in order to avoid complex
exponentials and simplify the notation (and, in any case, τ0 = 0 always).

Let w be a solution to (6.2), this is,

P (0)
γ w + V(t)w = 0, w = w(t).

Then, it can be written as

w(t) =

∞∑
j=0

cjwj(t),

where

wj(t) :=

∫
R
e−σj |t−t′|h(t′) dt′.

Moreover, one may directly check that wj is a particular solution to the second order ODE

w′′
j (t)− σ2

jwj(t) = −2σjh(t). (6.4)

Now define the Wrońskian of two solutions for the ODE (6.4) as

Wj [w, w̃] := wjw̃
′
j − w′

jw̃j ,
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and its weighted sum in j = 0, 1, . . . by

W[w, w̃] :=
∞∑
j=0

cj
σj

Wj [w, w̃], (6.5)

for the constants given in Theorem 4.4 in [4]. Then Lemma 5.4 in [4] yields:

Lemma 6.5. Let w, w̃ be two solutions of (6.2). Then the Wrońskian quantity from (6.5)
satisfies

W[w, w̃]′ = 0.

Proof of Theorem 1.5. From Lemma 6.5, using the arguments from Proposition 5.2 in [4],
one can prove that any other radially symmetric solution to L̄(0)w = 0 that decays both at
±∞ must be a multiple of w̄ = v̄t. This completes the proof for Theorem 1.5.

6.2 Stability of the extremals

In this subsection we restrict to the symmetry range of α and β to assure the existence of a
minimizer on Rn (or equivalently, on C) and study its stability. More precisely, we will relate
stability of Fα,β to the number of negative eigenvalues (Morse index) of L̄ as in the local case
[20].

For this, consider the functional

F0(V ) =
1
2

∫∫
ρ1−2γ

{
e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2 + e3(ρ)|∇θV |2

}
dρ dµ+ κ

2

∫
v2 dµ( ∫

C |v|p dµ
)2/p

among functions V = V (t, θ, ρ), where ei are given by (2.10). Note that we have dropped
some constants with respect to the energy (3.12), for simplicity. Here κ > 0. For the rest of
the paper we will use this notation, unless the exact value of the constants is required in the
proofs.

Assume that we are in the symmetry range for α and β and let V̄ be a non-negative,
radially symmetric, critical point. Then it is a solution of the Euler-Lagrange equation∂ρ

(
e1(ρ)ρ

1−2γ∂ρV
)
+ e2(ρ)ρ

1−2γ∂ttV = 0, ρ ∈ (0, ρ0), t ∈ R, θ ∈ Sn−1,

− lim
ρ→0

ρ1−2γ∂ρV (ρ, t) + κv − c|v|p−2v = 0, on C, (6.6)

where c = A/B, for

A = cSn−1

∫∫ {
e1(ρ)ρ

1−2γ(∂ρV̄ )2 + e2(ρ)ρ
1−2γ(∂tV̄ )2

}
dρdt+ κ

∫
v̄2 dt, B = cSn−1

∫
v̄p dt,
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where cSn−1 denotes the volume of Sn−1.
Now we define L̄+w to be the linearized operator of (6.6) around V̄ :

L̄+W = − lim
ρ→0

ρ1−2γ∂ρW + κw − c(p− 1)v̄p−2w,

for W the (unique) solution of

∂ρ
(
e1(ρ)ρ

1−2γ∂ρW
)
+ e2(ρ)ρ

1−2γ∂ttW + e3(ρ)∆θW = 0, ρ ∈ (0, ρ0), t ∈ R, θ ∈ Sn−1

with boundary data w.
In the following we study (linear) stability. For this, we calculate the second variation of

the energy functional. The proof is a straightforward but messy computation that the reader
may skip.

Lemma 6.6.

d2

dϵ2

∣∣∣∣
ϵ=0

F0(V̄ + ϵW ) = B
− 2

p

{
⟨L̄+w,w⟩+

A

B2
(p− 2)

(∫
v̄p−1w dt

)2}
.

Proof. By direct calculation, using the equation satisfied by V̄ , we can simplify the above to

d2

dϵ2

∣∣∣∣
ϵ=0

F0(V + ϵW )

= B
− 2

p

{∫
ρ1−2γ

{
e1|∂ρW |2 + e2|∂tW |2 + e3(ρ)|∇θW |2

}
dµdρ+ κ

∫
w2 dµ

+
A

B2
(p− 2)

(∫
v̄p−1w dµ

)2
− (p− 1)

A

B

∫
v̄p−2w2 dµ

}
= B

− 2
p

{
−
∫

w lim
ρ→0

ρ1−2γ∂ρW dµ+ κ

∫
w2 dµ+

A

B2
(p− 2)

(∫
v̄p−1w dµ

)2
− (p− 1)

A

B

∫
v̄p−2w2 dµ

}
= B

− 2
p

{
⟨L̄+w,w⟩+

A

B2
(p− 2)

(∫
v̄p−1w dµ

)2}
,

as desired.

Proposition 6.7. Let v̄ be a stable energy solution, this is,

d

dϵ

∣∣∣∣
ϵ=0

F0(v̄ + ϵw) = 0,
d2

dϵ2

∣∣∣∣
ϵ=0

F0(v̄ + ϵw) ≥ 0.

Then the number of negative eigenvalues (Morse index) of L̄ must be exactly one.
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Proof. From Lemma 6.6 we know that ⟨L̄w,w⟩L2 ≥ 0 for every w in the orthogonal complement
of v̄p−1. This implies that L̄ has at most one negative eigenvalue. Since we already know that

⟨v̄, L̄v̄⟩L2 = −(p− 2)ςn,γκ
n
α,γ∥v̄∥

p−1
Lp−1 ,

the number of negative eigenvalues (Morse index) must be exactly one.

6.3 Perron-Frobenius

Now we show a Perron-Frobenius property for our problem. We could have followed the proof
in [23] since Pγ is just the conjugate operator of (−∆)γ , so it is still a positivity preserving
operator. We give an alternative proof instead:

Let v̄ := vα,β be a minimizer for Fα,β in the radially symmetric class. It satisfies

P (0)
γ v̄ + C(α)v̄ = ςn,γκ

n
α,γ v̄

p−1, t ∈ R.

Proposition 6.8. The linear operator

L̄(0)ϕ := P (0)
γ ϕ+ C(α)ϕ− (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ

satisfies a Perron-Frobenius property, i.e. the eigenspace corresponding to the lowest eigenvalue
is simple and the eigenfunction can be chosen strictly positive.

Proof. Let ϕ0 be the first eigenfunction corresponding the lowest eigenvalue λ0. Existence of
ϕ0 follows from the same arguments as in Proposition 3.6 using the Rayleigh quotient for λ0.
We have that

L̄(0)ϕ0 = P (0)
γ ϕ0 + C(α)ϕ0 − (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ0 = λ0ϕ0. (6.7)

Step 1. First we will show that ϕ0 is positive for all t ∈ R. Recall that

λ0 = inf
ϕ

∫
R
(
ϕP

(0)
γ ϕ+ C(α)ϕ2 − (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ2
)
dt∫

R ϕ2 dt

= inf
ϕ

{ ςn,γ ∫R ∫RK0(t− t̃)(ϕ(t)− ϕ(t̃))2 dtdt̃

2
∫
R ϕ2 dt

+

∫
R
(
(C(α)− cn,γ)ϕ

2 − (p− 1)ςn,γκ
n
α,γ v̄

p−2ϕ2
)
dt∫

R ϕ2 dt

}
.

From this expression one automatically knows that ϕ0 ≥ 0 (otherwise, just replace ϕ0 by its
absolute value). Next, if there exists t0 such that ϕ0(t0) = 0, then at t = t0,

P (0)
γ ϕ0(t0) = ςn,γ

∫
R
K0(t0 − t)(ϕ0(t0)− ϕ0(t)) dt ≤ 0
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and the inequality is strict if ϕ0 is not identically zero. Thus one has the left hand side of (6.7)
is less than zero while the right hand side is zero at t0, which is a contradiction. We conclude
ϕ0 > 0, as desired.

Step 2. Next we show that λ0 is simple. For this, we first we claim that the eigenfunction
ϕ0 is even in t. This follows the same idea as in Proposition 4.1 by considering the decreasing
rearrangement.

Assume that there exist ϕ0,1, ϕ0,2 which are eigenfunctions for λ0. We can take ϕ0,1(0) =
ϕ0,2(0) (up to multiplying by a constant). Consider the equation satisfied by ϕ = ϕ0,1 − ϕ0,2,

P (0)
γ ϕ+

(
C(α)− λ0

)
ϕ− (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ = 0.

It is equivalent to the following extension problem:∂ρ(e1ρ
1−2γ∂ρW ) + e2ρ

1−2γ∂ttW = 0, ρ ∈ (0, ρ0), t ∈ R,
− d̃γ lim

ρ→0
ρ1−2γ∂ρW (ρ, t) +

(
κ− λ0

)
ϕ− (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ = 0 on {ρ = 0}, (6.8)

where W (t, 0) = ϕ(t) and κ := cn,γ + C(α) = ςn,γκ
n
α,γ > 0. As in Section 4.2 of [24], we use a

Hamiltonian argument. For t > 0, let

H(t) =
1

2

∫ ρ0

0
ρ1−2γ

[
e2(ρ)(∂tW )2 − e1(ρ)(∂ρW )2

]
dρ− 1

2
V(t)W 2(t, 0)

where
V(t) = (κ− λ0)− (p− 1)ςn,γκ

n
α,γ v̄

p−2,

and it satisfies V ′(t) > 0 for t > 0. We note that H(t) is well-defined and smooth enough and
also satisfies

H(+∞) = 0.

Multiplying the first equation in (6.8) by Wt and integrating by parts, we can get that

H ′(t) = −1

2
V ′(t)W 2(t, 0) ≤ 0.

Then H(t) is decreasing for t ≥ 0 and by our definition of ϕ, we know that ϕ is even in t and
ϕ(0) = 0, so

0 = H(+∞) ≤ H(0)=
1

2

∫ ρ0

0
ρ1−2γ [e2(ρ)(∂tW )2(0, ρ)− e1(ρ)(∂ρW )2(0, ρ)] dρ− 1

2
V(0)W 2(0, 0)

≤ −1

2
V(0)ϕ(0)2 = 0,
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since ∂tW (0, ρ) = 0 by symmetry. As a consequence, one has H(t) ≡ 0, H ′(t) ≡ 0 and
W (t, 0) ≡ 0, i.e. ϕ(t) ≡ 0. We obtain that the eigenspace for λ0 is one-dimensional, and thus
it is simple.

7 Symmetry breaking

Proposition 6.7 highlights the relation between linear stability and the spectrum of L̄+, which
is a key idea in the construction of the Felli-Schneider curve [20] in the local case. The main
obstacle in the fractional setting is the lack of an explicit formula for the eigenvalues of L̄+.
Even if we do not have a complete picture, Theorem 1.4 gives some partial answers to the
symmetry breaking issue.

Proof of Theorem 1.4 (i). From the definition of the energy functional (3.7), and using the
fact that κnα,γ is strictly decreasing in α for α < 0, one can readily see that

R(α, α) > S(0, 0) = S(α, α)

for α < 0, where in the last equality we have used of Theorem 1.2.iii. and R(α, α) is the
minimum in radial class given in (3.13). Then by the continuity of S(α, β) in α, β, it is easy
to see that for (α, β) close to (α, α), one has

R(α, β) > S(α, β),

as desired.

Next we shall give the proof of the second statement in Theorem 1.4. The main idea is to
perturb a radially symmetric solution in the direction of a negative eigenvalue λ1 (corresponding
to the mode m = 1) in order to decrease the functional. Here the properties of the conformal
fractional Laplacian on C described in Section 2 and, in particular, Proposition 2.1 will prove
to be crucial.

Fixed −2γ < α < 0 and α < β < α + γ, let v̄ := vα,β be a minimizer in the radially
symmetric class. It satisfies

P (0)
γ v̄ + C(α)v̄ = ςn,γκ

n
α,γ v̄

p−1, t ∈ R. (7.1)

As before, we consider the linearized operator (6.1), and its projection over them-th eigenspace:

L̄(m)ϕ := P (m)
γ ϕ+ C(α)ϕ− (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ, t ∈ R.
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We look at the eigenvalue problem

L̄(m)ϕm = λmϕm, m = 0, 1, . . . . (7.2)

Note that one can construct eigenfunctions for the original L̄ on C by simply taking

wm(t, θ) = ϕm(t)Em(θ), m = 0, 1, . . . . (7.3)

By Proposition 6.8, λ0 is simple and ϕ0 > 0.
Now we look at the first eigenvalue for (7.2) corresponding to the mode m = 1. The

Rayleigh quotient is given by

λ1 = inf
ϕ

∫
R
(
ϕP

(1)
γ ϕ+ C(α)ϕ2 − (p− 1)ςn,γκ

n
α,γ v̄

p−2ϕ2
)
dt∫

R ϕ2 dt
.

Note that test functions ϕ should be understood as defined in C by ϕ(t)E1(θ), which are
orthogonal in L2(C) to the zeroth-eigenfunction.

We use ϕ = v̄ as test function in the Rayleigh quotient above. Then, from (7.1), we have
that

λ1 ≤
∫
R
(
v̄P

(1)
γ v̄ − (p− 1)v̄P

(0)
γ v̄ − (p− 2)C(α)v̄2

)
dt∫

R v̄2 dt

:= Ip − (p− 2)C(α).

(7.4)

We estimate the term Ip above using Fourier transform in the variable t. For this, recall the

formulas in Proposition 2.1 for the symbol of P
(0)
γ and P

(1)
γ . Then

Ip =

∫
R
{
Θ

(1)
γ (ξ)− (p− 1)Θ

(0)
γ (ξ)

}
|ˆ̄v|2 dξ∫

R |ˆ̄v|2 dξ
.

Thus Ip is bounded for −2γ < α < 0, and there exists a positive constant M independent of
γ, α such that

|Ip| ≤ M.

Recalling the value of p from (1.2), we deduce from (7.4) that there exists a curve

h(α) :=
4γC(α)− (n− 2γ)M

4C(α) + 2M
+ α (7.5)

such that for β < h(α), we have λ1 < 0.
Moreover, since C(α) is a smooth function in (−2γ, 0) satisfying C(α) → +∞ as α → −2γ

(recall Corollary 9.4), one can see that there exists α0 ∈ (−2γ, 0) such that for −2γ < α < α0,

α < h(α) < α+ γ.
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In fact, from the definition of h(α), we have that h(α)− α → γ as α → −2γ.

Proof of Theorem 1.4 (ii). This is now a relatively standard argument, using perturbation
to relate the symmetry breaking phenomena to the sign of the eigenvalue λ1 as in [10].

Let ϕ0, ϕ1 be eigenfunctions of the linearized equation (7.2) corresponding to the eigenvalues
λ0, λ1. Set also w0, w1 as in (7.3). We will use v̄ + δw0 + sw1 as a test function in the energy
functional. For this we set

G(δ, s) =

∫
C
|v̄ + δw0 + sw1|p dµ.

As in Lemma 5.1 of [10], we can find an open s interval around 0 and a solution δ(s) such that

G(δ(s), s) = 1.

Moreover, δ′(0) = 0 and

δ′′(0) = −
(p− 1)

∫
C v̄

p−2w2
1 dµ∫

C v̄
p−1w0 dµ

,

so that we have

δ(s) = −s2
(p− 1)

∫
C v̄

p−2w2
1 dµ

2
∫
C v̄

p−1w0 dµ
+ o(s2). (7.6)

The trickier part is to evaluate the functional on our test function, this is

Fα,β(v̄ + δw0 + sw1) = Fα,β(v̄) + 4δκnα,γ

∫
C
v̄(z)w0(z) dµ+ 2s2κnα,γ

∫
C
w2
1(z) dµ

+ 2δ

∫
C

∫
C
K(z, z̃)(v̄(z)− v̄(z̃))(w0(z)− w0(z̃)) dµdµ̃

+ s2
∫
C

∫
C
K(z, z̃)(w1(z)− w1(z̃))

2 dµdµ̃+ o(s2),

(7.7)

where we have used that w1 is an odd function over the unit sphere in order to cancel some
terms. On the one hand, recall that the pair (λ1, w1) is a solution to equation (7.2) and thus,∫

C

∫
C
K(z, z̃)(w1(z)− w1(z̃))

2 + 2κnα,γ

∫
C
w2
1 = 2(p− 1)κnα,γ

∫
C
v̄p−2w2

1 dµ+ 2λ1ς
−1
n,γ

∫
C
w2
1.

On the other hand, v̄ is a solution to the nonlinear equation (7.1) and hence, taking w0 as a
test function in the weak formulation, we must have∫

C

∫
C
K(z, z̃)(v̄(z)− v̄(z̃))(w0(z)− w0(z̃)) dµdµ̃+ 2κnα,γ

∫
C
v̄w0 dµ = 2κnα,γ

∫
C
v̄p−1w0 dµ.
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Substituting into (7.7) we arrive at

Fα,β(v̄ + δw0 + sw1) = Fα,β(v̄) + 4δκnα,γ

∫
C
v̄p−1w0 dµ+ 2s2(p− 1)κnα,γ

∫
C
v̄p−2w2

1 dµ

+ 2λ1ς
−1
n,γs

2

∫
C
w2
1 dµ+ o(s2)

= Fα,β(v̄) + 2λ1ς
−1
n,λs

2

∫
C
w2
1dµ+ o(s2),

where we have used the relation for the parameters s and δ given by (7.6).
The proof of Theorem 1.4 (ii) is completed by knowing that λ1 < 0 for our choice of

parameters.

Remark 7.1. We conjecture that there should exist a Felli-Schneider curve corresponding
to the case that λ1 is zero, and such that on one side it is negative and corresponds to the
symmetry breaking region.

8 Uniqueness of minimizers

In this Section we give the proof of Theorem 1.6. So assume that we are in the symmetry region
and let ū be radially symmetric minimizer of Eα,β (in fact, as one can see below, our proof
works for positive radial solutions in the energy space, not only energy minimizers). By Lemma
3.3, it is enough to consider minimizers v̄ = v̄(t) of the functional in cylindrical coordinates
Fα,β. We have shown in Proposition 4.7 that v̄ is positive. In addition, by Theorem 1.3, v̄ is
an even function in the t variable.

Such v̄ is a solution to the one-dimensional problem

P (0)
γ v̄ + C(α)v̄ = ςn,γκ

n
α,γ v̄

p−1, v̄ = v̄(t). (8.1)

The proof of Theorem 1.6 will follow the general scheme of [23, 24] for the non-local equation

(−∆)γv + v = vp−1 in R,

performing a continuation argument in γ in order to use the known uniqueness results in the
local case γ = 1. Note also that our approach is sometimes closer to that of [24] since we do
not introduce a Lagrange multiplier as [23] does.

A small side remark is that, since we need to work also on the local case γ = 1, we can
only allow n > 2 in the Theorem instead of the usual n > 2γ.

The first step is to set up function spaces. We would like to work on a fixed space F on R
defined by

F := {v ∈ L2(R) ∩ Lp(R) : v is even and real valued}
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with the norm
∥v∥F := ∥v∥L2(R) + ∥v∥Lp(R).

However, since the original definition of p depends on γ, we rewrite problem (8.1) (modulo a
fixed rescaling constant) as

P (0)
γ v + c0v = |v|p0−2v, v ∈ F , (8.2)

for constants c0 ∈ R, p0 ∈ [2, 2∗) fixed (independently of γ).
Finally, note that a Perron-Frobenius property still holds for the linearized operator thanks

to Proposition 6.8. This is an essential ingredient in the proof of [23].

8.1 Local invertibility

Here we fix γ0 ∈ (0, 1) and use γ as a variable parameter. We show that one can find a unique
solution to (8.2) for γ sufficiently close to γ0.

Consider the linearized operator

Lγw := P (0)
γ w + c0w − (p0 − 1)vp0−2w, w ∈ L2(R). (8.3)

We know by Theorem 1.5 that Lγ is non-degenerate, this is, its kernel consists only on multiples
of v̄t. As a consequence, Lγ has zero-kernel in the space of t-even functions, denoted by

L2
even(R). Thus, by standard arguments, L̄

(0)
γ is invertible (with bounded inverse) in L2

even(R).
In addition:

Proposition 8.1. Assume that we have a solution v̄γ of (8.2) with non-degenerate kernel for
γ = γ0. Then, for some δ > 0, there exists a map in v ∈ C1(I,F) defined on the interval
I = [γ0, γ0 + δ]) and denoted by vγ := v(γ), such that the following holds:

a. vγ solves (8.2) for all γ ∈ I, with vγ |γ=γ0 = v̄γ0.

b. There exists ϵ > 0 such that vγ is the unique solution of (8.2) for γ ∈ I in the neighbor-
hood {v ∈ F : ∥v − v̄γ0∥F < ϵ}.

Proof. The proof is exactly as Proposition 8.1 in [24].

8.2 A priori bounds

Assume that the local branch vγ constructed in the previous subsection can be continued for all
γ ∈ [γ0, γ∗) for some γ∗ in the same conditions as in the proof of Proposition 8.1, in particular,
satisfying the condition that Lγ acting on L2(R) has a bounded inverse on on L2

even(R). Thus
we have a branch vγ ∈ C1([γ0, γ∗),F). We would like to prove that γ∗ = 1.
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In order to prove some a-priori estimates it is helpful to write the original equation (8.2)
in the extension, as given in Proposition 2.2. This is,∂ρ(e1ρ

1−2γ∂ρVγ) + e2ρ
1−2γ∂ttVγ = 0, ρ ∈ (0, ρ0), t ∈ R,

− d̃γ lim
ρ→0

ρ1−2γ∂ρVγ(ρ, t) + κγvγ − |vγ |p0−2vγ = 0 on {ρ = 0}, (8.4)

where Vγ(t, ρ) has trace vγ(t) at {ρ = 0}, and the constant is given by

κγ := c0 + cn,γ = ςn,γ0κ
n
α,γ0 − cn,γ0 + cn,γ , (8.5)

which is positive since cn,γ , defined in (2.2), is an increasing function of γ. In addition, κγ is
uniformly bounded above and below by a positive constant as γ → 1.

We recall the following Pohozaev identities from [4, Proposition 6.1] for this extension
problem:

Proposition 8.2. If V = V (t, ρ) is a solution of (8.4), then we have the following Pohožaev
identities:

d̃γ

∫∫
ρ1−2γ

{
e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2

}
dρdt+ κγ

∫
v2 dt =

(
1

2
+

1

p0

)∫
|v|p0 dt (8.6)

and

κγ
2

∫
v2 dt+

(
1− 1

p0

)∫
|v|p0 dt = d̃γ

2

∫∫
ρ1−2γ

{
−e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2

}
dρdt. (8.7)

It is then natural to consider, for the branch vγ , γ ≥ γ0, the energy

Iγ(v) := d̃γ

∫∫
ρ1−2γ

{
e1(ρ)(∂ρV )2 + e2(ρ)(∂tV )2

}
dρ dt.

From Proposition 8.2 above we conclude that

Iγ(vγ) ∼
∫

v2γ dt ∼
∫

|vγ |p0 dt (8.8)

uniformly as γ → 1. Indeed, from (8.6) and (8.7) we readily have

Iγ(vγ) ∼
∫

|vγ |p0 dt.

Looking again at (8.6), this yields
∫
|vγ |p0 dt ∼

∫
v2γ dt, and the claim is proved.
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Proposition 8.3. There exists σ(γ) > 0 such that∫
|vγ |p0 dt ≤ σ(γ) {Iγ(vγ)}

(p0−2)
4γ

(∫
v2γ dt

) p0
2
− (p0−2)

4γ
.

Moreover, σ(γ) is uniformly bounded for γ > γ0.

Proof. First, Lemma A.4 in [23] shows that there exists Kγ uniformly bounded as γ → 1 such
that ∫

R
|v|p0 dt ≤ Kγ

(∫
R
|(−∆)

γ
2 v|2 dt

) p0−2
4γ
(∫

v2 dt
) p0

2
− (p0−2)

4γ
(8.9)

for every v ∈ L2(R). Next we prove that∫
R
|(−∆)

γ
2 vγ |2 dt ≤ CIγ(vγ).

for C uniformly bounded with respect to γ. It follows from the argument in Lemma 8.4 below
that ∫

R
|(−∆)

γ
2 vγ |2 dt = ∥ |ξ|γ v̂γ∥2L2(R) ≤

∫
R
(Θγ + c0) v̂

2
γ dξ =

∫
R
(vγPγvγ + c0v

2
γ) dt.

Then from Proposition 8.2 and the discussion on the extension problem in Section 3, one has∫
R
|(−∆)

γ
2 vγ |2 dt ≤ CIγ(vγ),

and this completes the proof.

We have shown that (8.8) is improved to

Iγ(vγ) ∼
∫

v2γ dt ∼
∫

|vγ |p0 dt ≳ 1. (8.10)

We will now check the upper bound. For this, we need some preliminary regularity estimates:

Lemma 8.4. Let

ϑ := γ − (p0 − 2)

4p0

and note that ϑ > γ/2 for γ ≥ γ0. Then

∥(−∆R)
ϑvγ∥2L2(R) ≲

(∫
|vγ |p0 dt

) 2(p0−1)
p0 .
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Proof. This is essentially equation (8.13) in [24] taking N = 1 there (see also Lemma 5.4 in
[23]). Let us point the necessary modifications. Recall that Pγvγ + c0vγ = |vγ |p−2vγ . Thus

∥(−∆R)
ϑvγ∥2L2(R) =

∥∥∥∥(−∆R)
ϑ

Pγ + c0
|vγ |p0−2vγ

∥∥∥∥2
L2(R)

=

∥∥∥∥∥ |ξ|2ϑ

Θ
(0)
γ (ξ) + c0

̂|vγ |p0−2vγ

∥∥∥∥∥
2

L2(R)

Now we use Theorem 4.1 in [4]. It implies that, for any k < cn,γ , the function 1

Θ
(0)
γ (ξ)−k

is

a meromorphic function in ξ ∈ C and has no poles on the real line. In our case we take
k = −c0 < cn,γ (recall the discussion around (8.5)).

For the uniformity in γ, one only needs to consider Θ
(0)
γ (0). Since

Θ(0)
γ (0) =

Γ(n+2γ
4 )2

Γ(n−2γ
4 )

and

Θ
(0)
0 (0) = 1, Θ

(0)
1 (0) =

Γ(n+2
4 )2

Γ(n−2
4 )

,

using these facts and that Θ
(0)
γ (0) + c0 > 0, one has Θ

(0)
γ (0) + c0 > 0 for γ ∈ [0, 1], so

Θ
(0)
γ (0) + c0 ≥ C0 > 0 and using the inequality (7.13) in [3], we can prove that Θ

(0)
γ (ξ) + c0 ≥

C0 > 0 uniformly in γ.

In addition, Θ
(0)
γ (ξ) behaves like the usual fractional Laplacian (−∆R)

γ as |ξ| → ∞ thanks
to (2.5). In order to have uniform bounds in γ, recall that Θ(0)(ξ) → |ξ|2 + (n2 − 1)2 as γ → 1,
one can divide the integral into two regions {|ξ| < R}, and {|ξ| > R}. For the second part,∫

{|ξ|>R}

( |ξ|2ϑ

Θ
(0)
γ (ξ) + c0

̂|vγ |p0−2vγ

)2
dξ ≤ C

∫
{|ξ|>R}

(
|ξ|2ϑ−2γ ̂|vγ |p0−2vγ

)2
dξ,

and using Θγ + c0 has no zeros in the real line, uniformly in γ,∫
{|ξ|<R}

( |ξ|2ϑ

Θ
(0)
γ (ξ) + c0

̂|vγ |p0−2vγ

)2
dξ ≤ C

∫
{|ξ|<R}

(
|ξ|2ϑ−2γ ̂|vγ |p0−2vγ

)2
dξ.

So we arrive to
∥(−∆R)

ϑvγ∥2L2(R) ≤ ∥(−∆R)
ϑ−γ(|vγ |p0−2vγ)∥2L2(R),

which suits our purposes even if not the best possible bound.
The rest of the proof goes as in [24], just by noting that p0 < 2∗γ0 ≤ 2∗γ < 2

1−2γ for
γ0 ≤ γ < 1/2 (resp. p0 < +∞ if γ ≥ 1/2).
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Finally, a delicate argument using symbol calculus yields the upper bound for (8.10). More
precisely, it is enough to obtain an upper bound for

∫
vp0γ dt. Since vγ will be a positive function,

we drop the absolute value in the notation.
Recall that the equation satisfied by vγ is

P (0)
γ vγ + c0vγ = vp0−1

γ .

Differentiate with respect to γ (this differentiation will be denoted by a dot). Dropping su-
perindex (0) for simplicity, one has

Lγ v̇γ + Ṗγvγ = 0, (8.11)

where Lγ was defined in (8.3). Using that

Lγvγ = (2− p0)v
p0−1
γ ,

we calculate

d

dγ

∫
(vγ)

p0 dt = p0

∫
(vγ)

p0−1v̇γ dt =
p0

2− p0

∫
v̇γLγvγ dt =

p0
2− p0

∫
vγLγ v̇γ dt,

where we have used that Pγ is self-adjoint. Thus from (8.11) we arrive to

d

dγ

∫
(vγ)

p0 dt = − p0
2− p0

∫
vγṖγvγ dt

= − p0
2− p0

∫
Θ̇(0)

γ (ξ)|v̂γ(ξ)|2 dξ

in Fourier variables.
We need to estimate Θ̇

(0)
γ . For this, we refer to Step 3 in the proof of Lemma 8.2 in [24]

and point out the (minor) modifications. First, split∫
Θ̇(0)

γ (ξ)|v̂γ(ξ)|2 dξ =

∫
{|ξ|<R}

+

∫
{|ξ|≥R}

=: I< + I>.

Since Θ
(0)
γ (ξ) is a meromorphic function in ξ ∈ C, it has no poles on the real line, and behaves

like the usual fractional Laplacian (−∆)γ as ξ → ∞ thanks to (2.5), the calculation for I> is
exactly as in [24].

The estimate for I< is actually easier since the symbol is smooth at the origin and the

bounds can be taken independently of γ (actually, Θ
(0)
γ (ξ) → |ξ|2 + (n2 − 1)2 as γ → 1).

Summarizing the results in this subsection, we have proved:

Lemma 8.5.

Iγ(vλ) ∼
∫

v2γ dt ∼
∫

vp0γ dt ∼ 1 (8.12)

independently of γ, for γ ∈ [γ0, γ∗).
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Now we show positivity:

Lemma 8.6. Suppose that v̄γ0 > 0 is positive, even function. Then, for all γ ∈ [γ0, γ∗), we
have that vγ is also a positive, even function on R.

Proof. This is a small variation of Lemma 5.5 in [23], and we only point out the necessary
modifications. The general scheme is to show that positivity of vγ > 0 is an open and closed
property along the branch (vγ).

1. Open property: Define the family of operators

Aγ := Pγ + c0 − Vγ(t), for V(t) := |vγ |p0−2.

acting on L2(R). They satisfy
Aγvγ = 0 in R, (8.13)

which means that vγ is an eigenfunction with eigenvalue 0.
Let λ1,γ denote the lowest eigenvalue of Aγ . We will prove that if 0 is the lowest eigenvalue

for Aγ′ , then the same property holds for Aγ for any |γ − γ′| < ϵ. In this case, by Lemma
6.8, the eigenvalue λ1,γ is nondegenerate and its corresponding eigenfunction Ψ1,γ is strictly
positive.

As in [23], one shows that if γ → γ′, then Aγ → Aγ′ uniformly in γ in the norm resolvent
sense. The argument is based in the fact that Pγ is an operator of order 2γ as the fractional
Laplacian (−∆R)

γ , and the previous estimates. Then we have that λ1,γ → λ1,γ′ as γ → γ′

and that λ1,γ is simple and isolated from the rest of the spectrum for γ close to γ′. In this
situation, (8.13) implies that λ1,γ = 0 for any |γ − γ′| < ϵ.

Now we claim that if vγ′ is positive solution of (8.13), then 0 must be the first eigenvalue
for Aγ′ . Assume, by contradiction, that λ1,γ′ < 0 and λj,γ′ = 0 for some j > 1. Thus the
orthogonality condition ⟨Ψ1,γ′ ,Ψj,γ′⟩ = 0 must hold, which is not possible by the sign condition.

We conclude that, if vγ′ is positive, also vγ has a sign for every |γ − γ′| < ϵ. Recalling that
vγ → vγ′ a.e. as γ → γ′ we must have vγ = Ψ1,γ > 0.

2. Closed property: Fix γ′ ∈ (γ0, γ∗). Take a sequence (γk) ⊂ [γ0, γ
′) satisfying γk → γ′

and vγk > 0. As in [23], vγk → vγ′ in Hσ0(R) for any 0 ≤ σ0 < γ0, so it converges pointwise
a.e. in R, which implies that vγ′ ≥ 0. Moreover, by our a-priori estimates from Lemma 8.5,
we know that vγ′ ̸≡ 0. Such vγ′ is a solution to

Pγ′vγ′ + c0vγ′ = vp0−1
γ′ .

If there exists t0 such that vγ′(t0) = 0, by definition,

Pγ′vγ′(t0) = ςn,γ′

∫
R
K0(t0 − t)(vγ′(t0)− vγ′(t)) dt+ c0vγ′(t0)

= vp0−1
γ′ (t0) = 0,

(8.14)
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while the first line should be strictly negative unless vγ′ is identically zero, which is a contra-
diction. We conclude that vγ′ > 0 everywhere.

Next we consider a decay estimate (uniform in γ):

Lemma 8.7. Suppose that vγ0 > 0 holds. Then, for all γ ∈ [γ0, γ∗),

0 < vγ(t) ≤
1

|t|
,

for |x| > R0. Here R0 > 0 is some constant independent of γ.

Proof. This is just Lemma 8.3 in [24]. Just take into account that P
(0)
γ is self-adjoint in R.

As a consequence of the previous results, we have:

Lemma 8.8. Let (γk) ⊂ [γ0, γ∗) be a sequence such that γk → γ∗, and suppose that vγk > 0
for all k ∈ N. Then, after passing to a subsequence if necessary, we have vγk → vγ∗ in
L2(R) ∩ Lp0(R). Moreover, the function vγ∗ is strictly positive and satisfies

P (0)
γ∗ vγ∗ + c0vγ∗ = vp0−1

γ∗ in R. (8.15)

Proof. This is just Lemma 8.4 in [24] or Lemma 5.7 in [23].

8.3 Global continuation

We are ready for the proof of Theorem 1.6. Fix γ0 ∈ (0, 1) and let v̄γ0 be a minimizer for Fα,β

that is positive, radially symmetric and decreasing in the radial variable. Let us show that its
maximal branch extends to γ∗ = 1.

Lemma 8.9. Let (vγ) be the maximal branch starting at v̄γ with γ ∈ [γ0, γ∗). Then γ∗ = 1.

Proof. We follow Proposition 5.2 in [23] and only give a rough sketch. The key idea is that
the linearized operator at γ0 is non-degenerate by Theorem 1.5, so it has Morse index 1 when
acting on even functions, and this property is satisfied along the branch.

Let (γk) ⊂ [γ0, γ∗) be a sequence such that γk → γ∗, and consider the corresponding
sequence (vγk). Each vγk is an even, positive solution of

Pγvγ + c0vγ = vp0−1
γ in R.

By the previous Lemma 8.8, the sequence vγk → vγ∗ in L2(R) ∩ Lp0(R) and vγ∗ is a positive
solution of (8.15).
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We show that γ∗ = 1 by a contradiction argument. Indeed, if γ∗ < 1, by passing to the
limit one can prove that the Morse index of Lγ∗ when acting on even functions is exactly one.
In any case, we have non-degeneracy for equation (8.15) as in Section 6. We conclude that Lγ∗

is invertible and the branch could be continued beyond γ∗, which yields a contradiction.

Proof of Theorem 1.6. Now fix γ0 ∈ (0, 1) and assume there exist two radially symmetric,
radially decreasing, positive minimizers vγ0 and ṽγ0 not identically equal. Then the previous
discussion yields the existence of two branches (vγ) and ṽγ that extend up to γ∗ = 1, and they
cannot intersect at any γ ∈ (γ0, 1) by the local uniqueness of Proposition 8.1. In addition, we
have vγ → vγ∗ and ṽγ → ṽγ∗ in L2(R) ∩ Lp0(R). Both vγ∗ and ṽγ∗ are radially symmetric and
radially decreasing, positive solutions to

P
(0)
1 v + c0v = vp0−1 in R. (8.16)

In fact here,

P
(0)
1 = −∂tt +

(n−2)2

4 on R.

Once we arrive to the local equation, we conclude as in [23]. Equation (8.16) is known to
have a unique solution (see Proposition 5.2 in [23], or the references [12, 31]), hence vγ∗ ≡ ṽγ∗ .
In fact, this solution is known in closed form and has the formula

v∗(t) =

(
p0−2
2 + (n−2)2

4 + c0

cosh2(p0−2
2 t)

) 1
p0−2

.

In addition, ∥vγ − ṽγ∥L2∩Lp0 → 0 as γ → 1−. But this is a contradiction since in the local case,
L1 is known to be non-degenerate, thus there must be a unique branch around γ∗ = 1.

9 Appendix A: Numerology

The arguments here are relatively standard but we give full details for convenience of the
reader.

Lemma 9.1. Let γ ∈ (0, 1) and α, ᾱ ∈ R. The integral function given by

I(x) = P.V.

∫
Rn

|x|−ᾱ − |y|−ᾱ

|x− y|n+2γ |y|α
dy

is radially symmetric and, in fact, it is the homogeneous distribution

I(x) =
1

|x|2γ+α+ᾱ
κn,ᾱα,γ , (9.1)
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where κn,ᾱα,γ is the constant defined as

κn,ᾱα,γ := P.V.

∫
Rn

1− |ζ|−ᾱ

|e1 − ζ|n+2γ |ζ|α
dζ. (9.2)

This constant is finite when either ᾱ = 0, so κn,ᾱα,γ = 0, or{
−ᾱ− α < 2γ and n > α, if ᾱ < 0,

α > −2γ and n > α+ ᾱ, if ᾱ > 0.

Proof. First, it is straightforward to check that I is radially symmetric, i.e, if R denotes any
rotation, then I(x) = I(Rx). Then, (9.1) follows by writing e1 = (1, 0, · · · , 0) and changing
variables y = |x|ζ.

Moreover:

Corollary 9.2. Let ᾱ < 0. The constant κn,ᾱα,γ is positive for all α > n−2γ
2 − ᾱ

2 , negative for

all α < n−2γ
2 − ᾱ

2 and zero if α = n−2γ
2 − ᾱ

2 .

Now let ᾱ > 0. Then the constant κn,ᾱα,γ is positive for all α < n−2γ
2 − ᾱ

2 , negative for all

α > n−2γ
2 − ᾱ

2 and zero if α = n−2γ
2 − ᾱ

2 .

Proof. We first use the polar coordinates for the variable ζ: ϱ = |ζ|, θ ∈ Sn−1, and represent
e1 by σ ∈ Sn−1, then we have

κn,ᾱα,γ = P.V.

∫
Rn

(1− |ζ|−ᾱ)

|e1 − ζ|n+2γ |ζ|α
dζ =

∫
Sn−1

J(θ) dθ, (9.3)

where we have defined

J(θ) = P.V.

∫ ∞

0

(1− ϱ−ᾱ)ϱn−1−α

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

dϱ. (9.4)

We can easily write, using the change of variable ϱ̃ = 1/ϱ in the first integral in the second
line, as

J(θ) = lim
ϵ→0

∫ 1−ϵ

0

(1− ϱ−ᾱ)ϱn−1−α

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

dϱ+

∫ ∞

1+ϵ

(1− ϱ−ᾱ)ϱn−1−α

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

dϱ

= lim
ϵ→0

∫ ∞

1+ϵ

−(1− ϱ−ᾱ)ϱ2γ−1+α+ᾱ

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

dϱ+

∫ ∞

1+ϵ

(1− ϱ−ᾱ)ϱn−1−α

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

dϱ

= lim
ϵ→0

∫ ∞

1+ϵ

(1− ϱ−ᾱ)ϱ−1

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

(ϱn−α − ϱ2γ+α+ᾱ) dϱ.

(9.5)

The corollary follows easily by studying the sign of this J .
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Corollary 9.3. Let

ν :=
n− 2γ

2
− α,

and define
κnα,γ := κn,να,γ . (9.6)

If −2γ < α < n−2γ
2 , then we have 0 < κnα,γ < ∞ and κnα,γ is decreasing in α. Moreover, one

has

ςn,γκ
n
0,γ = cn,γ , and ςn,γκ

n
α,γ → 0 as α → n− 2γ

2
.

In addition, the function u(x) = |x|−ν is a solution of Euler-Lagrange equation (1.9) with
the constant normalized as c = κnα,γ.

Proof. This is a simple consequence of Lemma 9.1, but a direct proof follows by calculating
(in polar coordinates with ϱ = |y|

|x| and θ, σ ∈ Sn−1 for x, y, respectively)∫
Rn

|x|−ν − |y|−ν

|x− y|n+2γ |y|α
dy = |x|−ν−2γ−α

∫
Sn

∫ ∞

0

(1− ϱ−ν)ϱn−1−α

(1 + ϱ2 − 2ϱ⟨σ, θ⟩)
n+2γ

2

dϱ dθ

= |x|−ν−2γ−ακnα,γ ,

and recalling the definition of the constant (9.2) (and (9.4)).

Corollary 9.4. We define the constant

C(α) := ςn,γκ
n
α,γ − cn,γ . (9.7)

Then C(α) is a smooth, decreasing function in α for −2γ < α < n−2γ
2 and satisfies C(0) = 0

and
−C(α) < cn,γ (9.8)

for −2γ < α < 0.

Proof. This is just a straightforward consequence of (9.5) and the arguments above.
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