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Abstract. We prove the existence of positive solutions for the supercritical nonlinear fractional

Schrödinger equation (−∆)su + V (x)u− up = 0 in Rn, with u(x)→ 0 as |x| → +∞, where p > n+2s
n−2s

for s ∈ (0, 1), n > 2s. We show that if V (x) = o(|x|−2s) as |x| → +∞, then for p > n+2s−1
n−2s−1

, this

problem admits a continuum of solutions. More generally, for p > n+2s
n−2s

, conditions for solvability

are also provided. This result is the extension of the work by Davila, Del Pino, Musso and Wei to
the fractional case. Our main contributions are: the existence of a smooth, radially symmetric, entire

solution of (−∆)sw = wp in Rn, and the analysis of its properties. The difficulty here is the lack

of phase-plane analysis for a nonlocal ODE; instead we use conformal geometry methods together
with Schaaf’s argument as in the paper by Ao, Chan, DelaTorre, Fontelos, González and Wei on the

singular fractional Yamabe problem.

AMS subject classification: 35J61, 35R11, 53A30

1. Introduction

Fix s ∈ (0, 1) and n > 2s. We consider the following problem

(1.1)

(−∆)su+ V u− up = 0 in Rn,
lim
|x|→∞

u(x) = 0, u > 0,

where V is a non-negative potential, for a supercritical power nonlinearity, i.e., p > n+2s
n−2s .

Problem (1.1) arises when considering standing wave solutions for the nonlinear fractional Schrödinger
equation

(1.2) −i∂ψ
∂t

= (−∆)sψ −Q(y)ψ + |ψ|p−1ψ,

that is, solutions of the form ψ(t, y) = exp (iλt)u(y). If u(y) is positive and vanishes at infinity, then ψ
satisfies (1.2) if and only if u solves (1.1).

The fractional Schrödinger equation, a fundamental tool in fractional quantum mechanics, was intro-
duced by Laskin [23, 24, 25] (see also the appendix in [11]) as a result of extending the Feynman path
integral from the Brownian-like paths, which yields the standard Schr̈odinger equation, to Lévy-like
quantum mechanical paths.

There is by now a huge literature on the fractional Schrödinger equation, see for instance, [13, 29,
5, 11, 21] for a subcritical power, while for the critical case we have [14, 2, 18], but this list is by no
means complete. However, none of these deals with the supercritical regime. The present paper is one
of the first attempts in this direction.

Our main results are the following:

Theorem 1.1. Assume that V ≥ 0, V ∈ L∞(Rn) and lim
|x|→∞

|x|2sV (x) = 0. Then, for

p >
n+ 2s− 1

n− 2s− 1
,

1
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problem (1.1) has a continuum of solutions uλ such that lim
λ→0

uλ = 0 uniformly in Rn.

Theorem 1.2. Assume V ≥ 0, V ∈ L∞(Rn) and

n+ 2s

n− 2s
< p ≤ n+ 2s− 1

n− 2s− 1
.

Then the result of the previous theorem holds if either:

(a) there exist C > 0 and µ > n such that V (x) ≤ C|x|−µ; or
(b) there exist a bounded non-negative function f : Sn−1 → R not identically zero and n − 4s

p−1 <

µ ≤ n such that

lim
|x|→∞

(
|x|µV − f

( x
|x|

))
= 0.

Our approach follows closely the local s = 1 case from [8]. As in their work, we find a new phenomenon
for equation (1.1) that is different from the subcritical case, the one of dispersion.

The main idea in the proof is to perturb a carefully chosen approximate solution. More precisely,
the building blocks we use are smooth entire radial solutions of the equation

(1.3) (−∆)sw = wp in Rn, w > 0,

which satisfy

w(0) = 1, lim
|x|→∞

w(x)|x|
2s
p−1 = β

1
p−1 .

Here β is a positive constant chosen so that w1(r) = β
1
p−1 |x|−

2s
p−1 is a solution to (1.3). Its precise value

is given in [1] (there the constant is denoted by An,p,s).
Note that w1 is singular at the origin. One of our main contributions here is the construction of a

smooth, radially symmetric, entire solution w. While in the local case one readily obtains existence by
simple ODE phase-plane analysis, in the nonlocal regime we need to use an argument due to Schaaf
and a bifurcation argument. Then we prove the asymptotic behavior of w using conformal geometry
methods. These ideas were introduced in [1] to handle a nonlocal ODE. There the authors deal with
the singular fractional Yamabe problem and, more generally, with problem (1.3) when the exponent p
is subcritical; we were able to extend their methods to the supercritical case.

In the case particular s = 1
2 , Chipot, Chlebik and Fila [7] proved the existence of a radial entire

solution and Harada [19] established the desired asymptotic behavior at infinity. While our manuscript
was being prepared we heard of the recent work by Chen, Gui and Hu [6], that have extended the
existence result to systems which includes the existence of solutions to the single equation for any
s ∈ (0, 1) using Rabinowitz’s bifurcation theory. In addition, they prove an upper bound for the
solution, i.e.

w(x) ≤ C|x|−
2s
p−1 for all x ∈ Rn.

However, here we need to show the precise asymptotic behavior of the solution w near infinity, this
is,

(1.4) w = w(|x|) = β
1
p−1 |x|−

2s
p−1 (1 + o(1)) as |x| → ∞,

and this is our first difficulty. In the classical case, this is reduced to analyze the corresponding ODE

for v(t), where v(t) = r
2
p−1w(r), and we have denoted r = |x|, t = − log r. As we have mentioned above,

in the fractional case v is a solution to a non-local ODE. We use the Hamiltonian approach developed
in the previous work [1] in order to prove (1.4).

Our second main difficulty is the study the linearized operator of (1.3) around the entire solution w.
Here again we use the arguments developed in [1], in particular, the study of the asymptotic behavior
of solutions to a non-local linear ODE in terms of the indicial roots of the problem, and the injectivity
properties of this linearized operator.
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Finally, to pass from the linearized equation to the nonlinear problem (1.1) we follows the ideas from
the local case in [8].

The paper is organized as follows. In Sections 2-3, we obtain the existence of entire radial solutions
to (1.3) and analyze its asymptotic behavior. In Section 4, we consider the linearized operator around
the solution w obtained in Section 2. In Section 5, we use the results in Section 4 to study a perturbed
linear problem. Sections 6-7 are devoted to the proof of Theorems 1.1-1.2.

2. Existence of radial entire solutions

Let p+ 1 > 2∗(s) := 2n
n−2s . We look first for radially symmetric solutions for

(2.1) (−∆)sw = wp in Rn, w > 0.

The constant β > 0 is chosen as in the introduction, so that w1(r) = β
1
p−1 r−

2s
p−1 is a solution. However,

this w is singular at the origin. Our main result in this section is the construction of an entire solution:

Proposition 2.1. There exists a radially symmetric, decreasing in the radial variable, entire solution
w̄ to (2.1) such that

w̄(r) ≤ Cr−
2s
p−1 as r → +∞.

To prove this proposition, we follow the method in [1]. First we consider the Dirichlet problem

(2.2)

{
(−∆)sw = λ(1 + w)p in B1,

w = 0 in Rn \B1.

Since (1 − |x|2)s+ is a positive super-solution, there exists a minimal solution wλ which is radially
decreasing for each λ ∈ (0, λ∗), for some λ∗ > 0. Moreover, wλ is non-decreasing in λ. An argument of
Schaaf [28] shows uniqueness:

Lemma 2.2 (Uniqueness). There exists λ0 > 0 depending only on n, s, p, such that for all small
λ ∈ (0, λ0), wλ is the unique solution to (2.2) in the space C2(Rn) ∩ L1(Rn, (1 + |x|)−n−2s dx).

The proof this lemma is postponed to the end of the section.

Next, we consider the blow-up of wλ as λ ↗ λ∗. A standard fixed point theorem, as in Section 2.3
in [1], yields the following existence result for all λ:

Lemma 2.3 (Existence). For any λ > 0, (2.2) has a positive solution.

Now we perform a bifurcation argument in the set of positive and radially decreasing functions in
B1,

E =
{
w ∈ C2(Rn) : w(x) = w̃(|x|), w̃′ ≤ 0, w > 0 in B1, w = 0 in Rn \B1

}
.

Lemma 2.4 (Bifurcation). There exists a sequence of solutions (λj , wj) of (2.2) in (0, λ∗] × E such
that

lim
j→∞

λj = λ∞ ∈ [λ0, λ
∗] and lim

j→∞
‖wj‖L∞(B1) = +∞,

where λ0 is given in Lemma 2.2.

The proof of Lemma 2.4 follows closely [1, Lemma 2.8] and is thus omitted. Now we are ready to
prove Proposition 2.1 using a blow-up argument.
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Proof of Proposition 2.1. Let (λj , wj) be as in Lemma 2.4. Define

mj = ‖wj‖L∞(B1) = wj(0) and Rj = m
p−1
2s
j .

Then

Wj(x) = λ
1
p−1

j m−1
j wj

(
x

Rj

)
satisfies 0 ≤Wj ≤Wj(0) = 1 and{

(−∆)sWj = (λ
1
p−1

j m−1
j +Wj)

p in BRj ,

Wj = 0 in Rn \BRj .

By elliptic regularity (see for instance [26]), Wj ∈ Cαloc(Rn) for some α > 0 and hence, by passing to a
subsequence, Wj → w̄ in Cloc(Rn) for some positive and radially decreasing function w̄ which satisfies
(2.1). Moreover, the solution w̄ is radially symmetric and decreasing. In addition, from Lemma 2.6 of
[1] with β = 0 there, one can get that

w̄(x) ≤ C|x|−
2s
p−1 for x ∈ Rn.

�

We finally go back to uniqueness and the proof of Lemma 2.2:

Proof of Lemma 2.2. Suppose w = wλ + v is another solution. Then v solves{
(−∆)sv = λf(v) in B1,

v = 0 in Rn \B1,

where f(v) = (1 + wλ + v)p − (1 + wλ)p. Let us write F (v) =
∫ v

0
f . For any σ ∈ R, the Pohožaev

identity [22] reads (
1

2∗(s)
− σ

)∫
Rn
v(−∆)sv dx ≤ λ

∫
B1

(F (v)− σvf(v)) dx.

The left hand side is estimated using the fractional Sobolev inequality so that(
1

2∗(s)
− σ

)(∫
B1

v2∗(s) dx

) 2
2∗(s)

dx ≤ λC
∫
B1

(F (v)− σvf(v)) dx.

For the right hand side, since lim
v→+∞

F (v)

vf(v)
=

1

p+ 1
, for any ε > 0 there exists M = M(ε) such that for

any v ≥ M , F (v) ≤ 1+ε
p+1vf(v). Since p+ 1 > 2∗(s), there exist ε and σ such that 1+ε

p+1 < σ < 1
2∗(s) . In

other words, fixing a choice of ε and σ, there is an M such that F (v) − σvf(v) < 0 whenever v ≥ M .
Now, since F (v) is quadratic in v, namely,

F (v) = v2

∫ 1

0

∫ 1

0

pt1(1 + wλ + t1t2v)p−1 dt1dt2,
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we have(
1

2∗(s)
− σ

)(∫
B1

v2∗(s) dx

) 2
2∗(s)

dx ≤ λC
∫
B1∩{v<M}

(F (v)− σvf(v)) dx

≤ λC
∫
B1∩{v<M}

v2 dx

≤ λC

(∫
B1∩{v<M}

v2∗(s) dx

) 2
2∗(s)

|B1 ∩ {v < M} |1−
2

2∗(s)

≤ λC

(∫
B1∩{v<M}

v2∗(s) dx

) 2
2∗(s)

.

Therefore, v ≡ 0 if λ > 0 is chosen small enough. �

3. Conformal geometry results and the asymptotic behavior for the solution

From the last section, we know that there exists a smooth solution w̄ of (−∆)sw = wp in Rn which

satisfies w̄(0) = 1 and w̄(x) ≤ C|x|−
2s
p−1 . Here we will show that it has a precise asymptotic behavior

at infinity. For the rest of the paper, we will drop the bar and simply denote this particular solution
by w. More precisely,

Proposition 3.1. Let w be the solution constructed in Proposition 2.1. Then

lim
|x|→∞

w(x)|x|
2s
p−1 = β

1
p−1 ,

for the constant β given in the introduction, and which corresponds to the coefficient of the singular
solution to (2.1).

We will basically use the results in Sections 3-4 of [1], and follow their notation accordingly. Set
r = |x|, and let P g0s be the conformal fractional Laplacian on the cylinder R × Sn−1. Then, by its
conformal properties one has that

(3.1) P g0s (r
n−2s

2 w) = r
n+2s

2 (−∆)sw.

Set also r = e−t and

(3.2) v = e−
2s
p−1 tw(e−t),

and consider one further conjugation

P̃ g0s (v) := e(n−2s
2 − 2s

p−1 )tP g0s
(
e(−n−2s

2 + 2s
p−1 )tv

)
= r

2s
p−1p(−∆)sw.

Then the equation for w transforms into an equation for v on the cylinder, more precisely,

(3.3) P̃ g0s (v) = vp, in R× Sn−1.

The operator P̃ g0s can be understood as a Dirichlet-to-Neumann for an extension problem in the
spirit of the construction of the fractional Laplacian by [3, 4, 16, 12]. Without being very precise on
the extension manifold Xn+1, with metric ḡ∗, and the extension variable ρ∗, we recall the following
proposition in [1]:

Proposition 3.2. Let v be a smooth function on the cylinder M = R× Sn−1. The extension problem−divḡ∗((ρ
∗)1−2s∇ḡ∗V ∗)− (ρ∗)−(1+2s)

(
4ρ

4+ρ2

)2

2
(
− n−2s

2 + 2s
p−1

)
∂tV

∗= 0 in (X, ḡ∗),

V ∗|ρ=0 = v on M,
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has a unique solution V ∗. Here ρ = ρ(ρ∗) is a positive function of ρ∗, ρ∗ ∈ (0, ρ∗0). Moreover, for its
Neumann data,

P̃ g0s (v) = −ds lim
ρ∗→0

(ρ∗)1−2s∂ρ∗(V
∗) + βv,

for the constant

(3.4) ds =
22s−1Γ(s)

sΓ(−s)
,

and β as above.

Now consider the spherical harmonic decomposition of Sn−1. For this, let µm denote the m-th eigen-
value for −∆Sn−1 , repeated according to multiplicity, and by Em(θ) the corresponding eigenfunction.

Then any v defined on R × Sn−1 can be written as v(t, θ) =
∑
m vm(t)Em(θ). Denote by P̃

(m)
s the

projection of the operator P̃ g0s onto each eigenspace, for m = 0, 1, . . ..
Next, for w a radially symmetric function, then v defined as in (3.2) only depends on the variable

t = − log r and thus, after projection onto spherical harmonics, only the zero-th projection survives and
equation (3.3) reduces to

(3.5) P̃ (0)
s (v) = vp, in R.

Recalling the expression for P̃
(0)
γ from [1, formula (4.3)], one has

(3.6) P̃ (0)
s (v)(t) = P.V.

∫
R
K̃0(t− t′)[v(t)− v(t′)] dt′ + βv(t)

for the convolution kernel

K̃0(t) = c e−( 2s
p−1−

n−2s
2 )t

∫ π

0

(sinφ1)n−2

(cosh t− cosφ1)
n+2s

2

dφ1,

where c is a positive constant that only depends on n and s.
As a consequence of Proposition 3.2, one obtains the following Hamiltonian quantity for the equation

(3.5) (Theorem 4.3 in [1]),

H∗(t) =
1

ds

(
−β

2
v2 +

1

p+ 1
vp+1

)
+

1

2

∫ ρ∗0

0

(ρ∗)
1−2γ {−e∗1(∂ρ∗V

∗)2 + e∗2(∂tV
∗)2
}
dρ∗

= : H1(t) +H2(t),

where V ∗ = V ∗(t, ρ∗) is the extension of v = v(t). Moreover, this Hamiltonian is monotone in t. Indeed,

(3.7) ∂t [H∗(t)] = −2

∫ ρ∗0

0

[
(ρ∗)1−2se∗

(
ρ
ρ∗

)−2 (
1 + ρ2

4

)−2 (
−n−2s

2 + 2s
p−1

)
[∂tV

∗]
2

]
dρ∗,

and the functions e∗, e∗1 and e∗2 are strictly positive.

Proof of Proposition 3.1. Our aim is to show that

lim
t→−∞

v(t) = β
1
p−1 .

Equation (3.7) implies that

∂t [H∗(t)] ≥ 0,

since
(
−n−2s

2 + 2s
p−1

)
< 0 due to the fact that p > n+2s

n−2s . Thus in this case the Hamiltonian H∗(t)

is increasing in t. By Proposition 2.1, v is uniformly bounded, hence so is V ∗. By elliptic regularity,



SUPERCRITICAL NLS 7

∂tV
∗, ∂ρ∗V

∗ are also bounded. Then H∗ is uniformly bounded. Integrating (3.7) on the real line R,
one has∫ ∞

−∞
∂t [H∗(t)] dt = −2

∫ ∞
−∞

∫ ρ∗0

0

[
(ρ∗)1−2γe∗

(
ρ
ρ∗

)−2 (
1 + ρ2

4

)−2 (
−n−2s

2 + 2s
p−1

)
[∂tV

∗]
2

]
dρ∗dt

= H∗(+∞)−H∗(−∞),

which is finite by the uniform boundedness of H∗. Thus we have that
∫ ρ∗0

0
g(ρ∗)|∂tV ∗|2 dρ∗ → 0 as

t→ ±∞ for some non-negative function g, which implies that ∂tV
∗ → 0 as t→ ±∞.

For any sequence {ti} → −∞, consider V ∗i (t, ρ∗) = V ∗(t + ti, ρ
∗). There exists a subsequence

V ∗i (t, ρ∗) → V∞(t, ρ∗) in C ([−1, 1]× [0, ρ∗0]). By the argument above, we know that ∂tV∞(t, ρ∗) = 0,
i.e. V∞ = V∞(ρ∗), and this is a solution of the same equation satisfied by V ∗(t, ρ∗). Since V ∗ is the
extension of v(t), one has v(t)→ V∞(0) as t→ −∞, where V∞(0) is a constant. Moreover, V∞(0) is a
solution of

P̃ (0)
s (v) = vp, in R.

Since lim
t→+∞

H∗(t) = 0, ∂tH
∗(t) ≥ 0 and is not identically zero. One then obtains that V∞(ρ∗) is not

trivial, so V∞(0) is not zero. From this and the expression of P̃
(0)
s above (formula (3.6)), one can easily

get that V∞(0) = β
1
p−1 , as desired. �

4. Linear theory

From the last section, we know that there exists a solution w of (−∆)su = up in Rn that satisfies

(4.1)

{
w(0) = 1,

w(x) ∼ β
1
p−1 |x|−

2s
p−1 , as |x| → ∞.

We are now interested in the linear problem:

(4.2) Lφ := (−∆)sφ− V(r)

r2s
φ = h,

where we have defined the (radial) potential

V := V(r) = r2spwp−1.

The asymptotic behavior of this potential is easily calculated using the asymptotics for w and, indeed,
if we define r = e−t,

(4.3) V(t) =

{
O(e−2st) as t→ +∞,
pβ +O(eq1t) as t→ −∞,

for some q1 > 0.
In the s = 1 case, solutions to (4.2) are constructed directly by projecting φ and h onto spherical

harmonics and then solving the corresponding ODEs. This approach cannot be directly applied here.
Instead, we use the conformal geometry tools developed in [1].

By the well known extension theorem for the fractional Laplacian [3], equation (4.2) is also equivalent,
for s ∈ (0, 1), to the boundary reaction problem

∂yyΦ +
1− 2s

y
∂yΦ + ∆RnΦ = 0 in Rn+1

+ ,

−ds lim
y→0

y1−2s∂yΦ =
V(r)

r2s
φ+ h on Rn,

where we have denoted Φ|y=0 = φ and the constant ds is given by (3.4).
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Using the spherical harmonic decomposition as above, we can write Φ =
∑∞
m=0 Φm(r, y)Em(θ),

φ =
∑∞
m=0 φm(r)Em(θ), h =

∑∞
m=0 hm(r)Em(θ), and Φm satisfies the following:

(4.4)


∂yyΦm +

1− 2s

y
∂yΦm + ∆RnΦm −

µm
r2

Φm = 0 in Rn+1
+ ,

−ds lim
y→0

y1−2s∂yΦm =
V(r)

r2s
φm + hm on Rn.

We will now use conformal geometry to rewrite equation (4.2), as explained in the previous section.
If we define

(4.5) ψ = r
n−2s

2 φ,

then by the conformal property (3.1), we have that equation (4.2) is equivalent to the problem

(4.6) Lψ := P g0s (ψ)− Vψ = r2sh =: h̃.

Projecting onto spherical harmonics we also have

(4.7) Lmψm := P (m)
s (ψm)− Vψm = h̃m, m = 0, 1, . . . .

4.1. Indicial roots. Let us calculate the indicial roots for the model linearized operator defined in
(4.2) as r → 0 and as r →∞.

One can see that the indicial roots here are similar to the ones in [1] with the roles at r = 0 and
∞ interchanged. However, recall that in [1] a subcritical power is taken, n

n−2s < p < n+2s
n−2s , while here

p > n+2s
n−2s is supercritical. To handle this difference we need to use the result in [20], where the authors

study the stability of the singular solution w = β
1
p−1 r−

2s
p−1 . In particular, they show the existence of

a threshold dimension n0(s) such that in any higher dimension n > n0(s), there exists p2 >
n+2s
n−2s such

that the singular solution is unstable if n+2s
n−2s < p < p2, and is stable if p ≥ p2. For n ≤ n0(s), however,

the singular solution is unstable for all p > n+2s
n−2s . When s = 1, this exponent p2 corresponds to the

well-known Joseph-Lundgren exponent [17].
Define now

PJL =

{
p2, n > n0(s),
∞, n ≤ n0(s).

Using the above result and following similar argument in the proof of Lemma 7.1 in [1], one has the
following result:

Lemma 4.1. For the operator L we have that, for each fixed mode m = 0, 1, . . . ,

i. At r = 0, there exist two sequences of indicial roots{
σ̃

(m)
j ± iτ̃ (m)

j − n−2s
2

}∞
j=0

and
{
− σ̃(m)

j ± iτ̃ (m)
j − n−2s

2

}∞
j=0

.

Moreover, at the j = 0 level the indicial roots are real; more precisely, the numbers

γ̃±m := ±σ̃(m)
0 − n−2s

2 = −n−2s
2 ±

[
1− s+

√
(n−2

2 )2 + µm

]
, m = 0, 1, . . . ,

form an increasing sequence in m (except for multiplicity repetitions).
ii. At r =∞, there exist two sequences of indicial roots{

σ
(m)
j ± iτ (m)

j − n−2s
2

}∞
j=0

and
{
− σ(m)

j ± iτ (m)
j − n−2s

2

}∞
j=0

.

Moreover,
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a) For the mode m = 0, if n+2s
n−2s < p < PJL (the unstable case), then the indicial roots γ±0

are a pair of complex conjugates with real part −n−2s
2 and imaginary part ±τ (0)

0 ; while if

p ≥ PJL (the stable case), the indicial roots γ±0 := ±σ(0)
0 − n−2s

2 are real with

−(n− 2s) + 2s
p−1 < γ−0 < −n−2s

2 < γ+
0 < − 2s

p−1 ,

b) In addition, for all j ≥ 1,

σ
(0)
j > n−2s

2 .

c) For the mode m = 1, the indicial roots γ±1 := ±σ(1)
0 − n−2s

2 take the values

− 2s
p−1 − 1 and − (n− 2s) + 2s

p−1 + 1.

4.2. Conformal geometry and invertibility for a Hardy-type operator. First we recall the
results in [1], adapted to our setting, in order to study the invertibility of a Hardy type operator with
fractional Laplacian:

Lκψ := P g0s (ψ)− κψ = r2sh =: h̃,

where κ is any fixed real constant. Projecting onto spherical harmonics this equation is equivalent to

(4.8) Lκ,mψm := P (m)
s (ψm)− κψm = h̃m, m = 0, 1, . . . .

We will consider values of κ for which the indicial roots of Lκ,m are those of Lemma 4.1, except for
a shift of n−2s

2 due to the change (4.5). Based on the results in [1] we have, in both the stable and the
unstable cases of Lemma 4.1, the following

Theorem 4.2. Fix m = 0, 1, . . ., and assume that the right hand side h̃m in (4.8) satisfies

hm(t) =

{
O(eδt) as t→ −∞,
O(e−δ0t) as t→ +∞,

for some real constants δ, δ0.

i. Assume that δ + δ0 ≥ 0. Then a particular solution to (4.8) is

ψm(t) =

∫
R
h̃m(t′)Gm(t− t′) dt′,

where G is an even C∞ function outside the origin. The exact formula for Gm depends on the
value of δ with respect to the indicial roots in Lemma 4.1. In any case,

(4.9) ψm(t) = O(eδt) as t→ −∞, ψm(t) = O(e−δ0t) as t→ +∞.
ii. All solutions of the homogeneous problem Lκ,mψm = 0 are linear combinations of eσj±iτj and

e−σj±iτj , where σj ± iτj, −σj ± iτj, j = 0, 1, . . ., are the indicial roots for the problem. Thus
the only solution to (4.8) with decay as in (4.9) is precisely ψm.

4.3. Study of the linear problem in weighted spaces. In this subsection we come to study the
linear problem (4.2). For this, we will work in weighted L∞ spaces in which the weight is chosen
differently in a bounded set and near infinity. Define the norms

‖φ‖∗ = sup
{|x|≤1}

|x|σ|φ(x)|+ sup
{|x|≥1}

|x|
2s
p−1 |φ(x)|,

‖h‖∗∗ = sup
{|x|≤1}

|x|σ+2s|h(x)|+ sup
{|x|≥1}

|x|
2s
p−1 +2s|h(x)|,

(4.10)

where σ ∈ (0, n− 2s) is a constant to be determined later.
Our aim is to get the following solvability result:

Proposition 4.3. Let h satisfy ‖h‖∗∗ < +∞. For linear problem (4.2), we have:
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i. if p > n+2s−1
n−2s−1 , then there exists a solution φ and it satisfies

(4.11) ‖φ‖∗ ≤ C‖h‖∗∗
for some C > 0;

ii. if n+2s
n−2s < p < n+2s−1

n−2s−1 and, in addition,∫
Rn
h
∂w

∂xi
dx = 0, i = 1, · · · , n,

then there exists a solution φ and it satisfies

‖φ‖∗ ≤ C‖h‖∗∗.

Remark 4.4. It is known that the linear operator L has n + 1 kernels corresponding to scaling (the
mode zero kernel) and translation (the mode one kernels), i.e.

z0(x) =
∂

∂λ

(
λ

2s
p−1w(λx)

)∣∣∣
λ=1

= rw′(r) +
2s

p− 1
w,

zi(x) =
∂

∂xi
w(x), i = 1, . . . , n.

These constitute an obstruction for the solvability of (4.2) and need to be taken into account in the
arguments below.

In the following, we will always assume that

σ ∈
(
0, |Re(γ+

0 )|
)
⊂
(

0,
n− 2s

2

)
.

Additional conditions will be given in the proofs below.

We start with a non-degeneracy result:

Lemma 4.5. If φ is a solution of

(−∆)sφ− pwp−1φ = 0 in Rn

satisfying ‖φ‖∗ <∞, then

φ =
n∑
i=1

ci
∂w

∂xi

for some ci ∈ R.

Proof. Consider the spherical harmonic decomposition φ =
∑
m

φmEm and write ψm = r
n−2s

2 φm.

Step 1: the mode m = 0. Define the constant κ = pβ and rewrite equation (4.7) for m = 0 as

(4.12) Lκ,0ψ := P (0)
s (ψ)− κψ = (V − κ)ψ =: h̃

for some ψ = ψ(t), h̃ = h̃(t). We use (4.3) and the definition of ψ to estimate the right hand side,

h̃(t) =

{
O(e−(n−2s

2 −σ)t) as t→ +∞,
O(e(q1+ 2s

p−1−
n−2s

2 )t) as t→ −∞,

for some q1 > 0. Note that there could be solutions to the homogeneous problem of the form e(σj±iτj)t,
e(−σj±iτj)t. But these are not allowed by the choice of weights since n−2s

2 − 2s
p−1 ∈ (0, n−2s

2 ) and
n−2s

2 − σ > σ
(0)
0 (for this, recall statements a) and b) in Lemma 4.1).
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Now we apply Theorem 4.2 with δ = q1 + 2s
p−1−

n−2s
2 < −σ(0)

0 and δ0 = −σ+ n−2s
2 > σ

(0)
0 . Obviously,

δ + δ0 > 0 if σ < 2s
p−1 . Then we can find a particular solution ψ0 such that

ψ0(t) = (eδt), as t→ −∞, ψ0(t) = (e−δ0t), as t→ +∞,

so ψ will have the same decay.
Now, by the definition of h in (4.12), we can iterate this process with δ = lq1 + 2s

p−1 −
n−2s

2 , l ≥ 2,

and the same δ0, to obtain better decay when t→ −∞. As a consequence, we have that ψ decays faster
than any eδt as t → −∞, which when translated to φ means that φ = o(r−a) as r → +∞ for every

a ∈ N. By considering the equation satisfied by the Kelvin transform φ̂ of φ, one has

(−∆)sφ̂− Ṽ
r2s

φ̂ = 0,

where Ṽ satisfies

Ṽ(x) = p|x|−2swp−1
( x

|x|2
)

=

{
pβ(1 + o(1)) as r → 0,
r−2s as r →∞,

and φ̂(r) = o(ra) as r → 0 for every a ∈ N. The strong unique continuation result of [15] (stable case)

and [27] (unstable case) for the operator P
(0)
s − V̂ implies that φ̂ must vanish everywhere, which yields

that also φ must be zero everywhere.

Step 2: the modes m = 1, . . . , n. Differentiating equation (−∆)sw = wp with respect to xm we get

L
∂w

∂xm
= 0.

Since w only depends on r, we have ∂w
∂xm

= w′(r)Em, where Em = xm
|x| . Using the fact that −∆Sn−1Em =

µmEm, the extension for w′(r) to Rn+1
+ solves (4.4) with eigenvalue µm = n − 1, and ψ1 := r

n−2s
2 w′

satisfies

(4.13) P (m)
s ψ − Vψ = 0.

Note that w′(r) decays like r−( 2s
p−1 +1) as r →∞ and decays like r as r → 0.

Assume that φm decays like r as r → 0 and decays like rγ
−
m as r → ∞. Then ψm = r

n−2s
2 φm is

another solution to (4.13), and we can find a non-trivial combination of w′ and φm that decays faster
than r at zero.

Now we claim that if φ = r−
n−2s

2 ψ, where ψ is any solution to (4.13), it cannot decay faster than r
at 0, which yields that φm = cw′ for m = 1, . . . , n.

To show this claim we argue as in Step 1, taking the indicial roots at 0 (namely −(n+ 1− 2s) and
1) and interchanging the role of +∞ and −∞ in the decay estimate. More precisely, we use the facts

that if such φ like rσ
′

for some σ′ > 1, i.e. σ′ + n−2s
2 > n−2s

2 + 1 = σ̃
(1)
0 and decays like rσ

′
1 for some

σ′1 < −( 2s
p−1 + 1), i.e. σ′1 + n−2s

2 < σ̃
(1)
1 , similarly to Step 1, one can show that the solution is identically

zero, and we conclude that φm = cw′ for some c.

Step 3: the remaining modes m ≥ n+ 1. We use an integral estimate involving the first mode which
has a sign, as in [10, 9]. We note, in particular, that φ1(r) = −w′(r) > 0, which also implies that its
extension Φ1 is positive. In general, the s-harmonic extension Φm of φm satisfies

div(y1−2s∇Φm) = µm
y1−2s

r2
Φm in Rn+1

+ ,

−ds lim
y→0

y1−2s∂yΦm = pup−1
1 φm on Rn+1

+ .
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We multiply this equation by Φ1 and the one for m = 1 by Φm. Their difference gives the equality

(µm − µ1)
y1−2s

r2
ΦmΦ1 = Φ1 div(y1−2s∇Φm)− Φm div(y1−2s∇Φ1)

= div(y1−2s(Φ1∇Φm − Φm∇Φ1)).

Let us integrate over the region where Φm > 0. The boundary ∂ {Φm > 0} is decomposed into a disjoint
union of ∂0 {Φm > 0} and ∂+ {Φm > 0}, on which y = 0 and y > 0, respectively. Hence

0 ≤ ds(µm − µ1)

∫
{Φm>0}

y1−2sΦmΦ1

r2
dxdy

=

∫
∂0{Φm>0}

(
φ1 lim

y→0
y1−2s ∂Φm

∂ν
− φm lim

y→0
y1−2s ∂Φ1

∂ν

)
dx

+

∫
∂+{Φm>0}

y1−2s

(
Φ1
∂Φm
∂ν
− Φm

∂Φ1

∂ν

)
dy.

The first integral on the right hand side vanishes due to the equations Φ1 and Φm satisfy. Then we
observe that on ∂+ {Φm > 0}, one has Φ1 > 0, ∂Φm

∂ν ≤ 0 and Φm = 0. This forces (using µm > µ1)∫
{Φm>0}

y1−2sΦmΦ1

r2
dxdy = 0,

which in turn implies Φm ≤ 0. Similarly Φm ≥ 0 and, therefore, Φm ≡ 0 for m ≥ n+ 1. This completes
the proof of the lemma. �

Now we turn to Fredholm properties. Let L be the operator defined in (4.2). It is actually simpler
to consider the conjugate operator L defined in (4.6) (and its projection (4.7)), which is better behaved
in weighted Hilbert spaces and simplifies the notation in the proof of Fredholm properties.

We define weighted L2
δ,ϑ function spaces. These contain L2

loc functions for which the norm

(4.14) ‖φ‖2L2
δ,ϑ(Rn) =

∫
Rn\B1

|φ|2rn−1−2s−2ϑ drdθ +

∫
B1

|φ|2rn−1−2s−2δ drdθ

is finite. These should be understood after conjugation (4.5), as

‖ψ‖2L2
δ,ϑ(R×Sn−1) =

∫ 0

−∞

∫
Sn−1

|ψ|2e2ϑt dθdt+

∫ ∞
0

∫
Sn−1

|ψ|2e2δt dθdt.

The spaces L2
δ,ϑ and L2

−δ,−ϑ are dual with respect to the natural pairing

〈ψ1, ψ2〉∗ =

∫
Rn
ψ1ψ2,

for ψ1 ∈ L2
δ,ϑ, ψ2 ∈ L2

−δ,−ϑ.

The relation between (4.14) and the weighted L∞ norms from (4.10) is given by the following simple
lemma:

Lemma 4.6. Assume that the parameters satisfy

(4.15) −δ < −σ +
n− 2s

2
, −ϑ > − 2s

p− 1
+
n− 2s

2
,

Then if ‖φ‖∗ <∞, one has that ‖φ‖L2
−δ,−ϑ

is also finite and the inclusion is continuous.
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Proof of Proposition 4.3. First note that elliptic estimates imply that L is a densely defined, closed
graph operator. Moreover, the adjoint of

L : L2
−δ,−ϑ → L2

−δ,−ϑ

is precisely

L∗ = L : L2
δ,ϑ → L2

δ,ϑ.

Similarly to the arguments in Section 8 of [1], one can show that the linear operator L satisfies good
Fredholm properties and, in particular,

Ker(L∗)⊥ = Rg(L).

By checking the proof for Lemma 4.5, one can also get that for this linear problem L∗φ = 0, the mode
0 and mode m for m ≥ n + 1 all have trivial kernels. For mode 1, there is a one dimensional solution
spanned by w′(r). It is easy to see that w′(r) ∈ L2

δ,ϑ iff p < n+2s−1
n−2s−1 , if one chooses the parameters as

in (4.15), since

‖φ‖2L2
δ,ϑ(Rn) =

∫
Rn\B1

|φ|2rn−1−2s−2ϑ drdθ +

∫
B1

|φ|2rn−1−2s−2δ drdθ

∼
∫ ∞

1

r−
4s
p−1−2rn−1−2s− 4s

p−1 +n−2s dr +

∫ 1

0

r2rn−1−2s−2σ+n−2s dr < +∞

for suitable small σ > 0 if p < n+2s−1
n−2s−1 .

From the above argument and the Fredholm property we conclude that:

• If n+2s
n−2s < p < n+2s−1

n−2s−1 , then

Lφ = h

is solvable iff
∫
Rn h

∂w
∂xi

dx = 0 for i = 1, · · · , n.

• If p > n+2s−1
n−2s−1 , then

Lφ = h

is always solvable.

Moreover, the Fredholm property yields that

(4.16) ‖φ‖L2
δ,ϑ(Rn) ≤ C‖h‖L2

δ−2s,ϑ−2s(Rn).

We will show that this estimate still holds in weighted L∞ norm, i.e. (4.11) holds.
As in [1], combining with the Green’s representation formula, one has

φ(x) = −
∫
Rn
G(x, y)pwp−1φ(y) dy −

∫
Rn
G(x, y)h(y) dy.

First, for |x| ≤ 1,∫
Rn
G(x, y)h(y) dy ≤ C

[∫
{|y|< |x|2 }

+

∫
{ |x|2 ≤|y|≤2|x|}

+

∫
{|y|>2|x|}

]
h(y)

|x− y|n−2s
dy

≤ C

[∫
{|y|< |x|2 }

‖h‖∗∗|y|−σ−2s

|x|n−2s
dy +

∫
{|y|≤3|x|}

‖h‖∗∗|x|−σ−2s

|y|n−2s
dy

+

∫
{2>|y|>2|x|}

‖h‖∗∗|y|−σ−2s

|y|n−2s
dy +

∫
{|y|≥2}

‖h‖∗∗|y|−
2s
p−1−2s

|y|n−2s
dy

]
≤ C|x|−σ‖h‖∗∗.
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Next, by the definition of weighted L2 norm and relations (4.15) and (4.16),∫
Rn
G(x, y)pwp−1φ(y) dy

≤ C

[∫
{|y|< |x|2 }

+

∫
{ |x|2 ≤|y|≤2|x|}

+

∫
{2>|y|>2|x|}

φ

|x− y|n−2s
dy +

∫
{|y|>2}

|y|−2sφ

|x− y|n−2s
dy

]

≤ C
(∫
{|y|<2}

φ2r−2s−2δ dy
) 1

2

·

[(∫
{|y|< |x|2 }

|y|2s+2δ

|x|2(n−2s)
dy
) 1

2

+
(∫
{|y|<3|x|}

|x|2s+2δ

|y|2(n−2s)
dy
) 1

2

+ (

∫
{2|x|<|y|<2}

|y|2s+2δ

|y|2(n−2s)
dy
) 1

2

]

+ C
(∫
{|y|>2}

φ2r−2s−2ϑdy
) 1

2
(∫
{|y|>2}

|y|−4s+2s+2ϑ

|y|2(n−2s)
dy
) 1

2

≤ C‖φ‖L2
δ,ϑ(Rn)|x|−σ ≤ C‖h‖L2

δ−2s,ϑ−2s(Rn)|x|−σ

≤ C‖h‖∗∗|x|−σ,

for suitable δ, ϑ satisfying (4.15). Thus one has

sup
{|x|≤1}

|x|σ|φ| ≤ C‖h‖∗∗.

Similarly, for |x| ≤ eR, we still obtain

sup
{1≤|x|≤eR}

|x|
2s
p−1 |φ| ≤ CR‖h‖∗∗,

for some constant depending on R. This implies that the weighted L∞ norm of φ in any compact set
can be bounded by the weighted L∞ norm of h. So one only needs to worry about the norm at infinity.
For this, we go back to the projected problems:

Lκ,mψm := P (m)
s (ψm)− κψm = h̃m + (V − κ)ψm, m = 0, 1, . . . .

In order to show the estimate for φ at infinity, it is enough to prove that

‖e
−2s
p−1 tψm‖L∞({t≤−R}) ≤ C‖e

−2s
p−1 th̃m‖L∞({t≤0}) + ‖e−σth̃m‖L∞({t≥0})

for R large enough. But this follows from Theorem 4.2 and the expression for V in (4.3) by taking
δ = 2s

p−1 and δ0 = −σ (See Lemma 6.7 and the proof for Proposition 6.3 in [1]). Here we use the

assumption on σ that 0 < σ < 2s
p−1 such that δ + δ0 > 0.

This completes the proof of the Proposition. �

5. The operator (−∆)sφ+ Vλφ− pwp−1φ in Rn

In this section we study the following linear problem in Rn in suitable weighted spaces:

(5.1)


(−∆)sφ+ Vλφ− pwp−1φ = h+

n∑
i=1

ciZi,

lim
|x|→∞

φ(x) = 0

where ci are real constants, and Zi are the kernels defined by

(5.2) Zi(x) =
∂w

∂xi
, i = 1, · · · , n,
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and

Vλ(x) = λ−2sV
(x− ξ

λ

)
for λ > 0, ξ ∈ Rn.

Since Vλ has a concentration point at ξ, we define

‖φ‖∗,ξ = sup
{|x−ξ|≤1}

|x− ξ|σ|φ(x)|+ sup
{|x−ξ|>1}

|x− ξ|
2s
p−1 |φ(x)|,

‖h‖∗∗,ξ = sup
{|x−ξ|≤1}

|x− ξ|σ+2s|h(x)|+ sup
{|x−ξ|>1}

|x− ξ|
2s
p−1 +2s|h(x)|.

We will take |ξ| ≤ Λ for some Λ > 0.
For the linear theory, it suffices to assume that

(5.3) V ∈ L∞(Rn), V ≥ 0, V (x) = o(|x|−2s) as |x| → ∞.
Then we have the following solvability result:

Proposition 5.1. We have:

• If p > n+2s−1
n−2s−1 , for λ > 0 small enough, equation (5.1) has a solution φ := Tλ(h) with ci = 0,

and it satisfies
‖Tλ(h)‖∗,ξ ≤ C‖h‖∗∗,ξ.

• If n+2s
n−2s < p < n+2s−1

n−2s−1 , for λ > 0 small enough, equation (5.1) has a solution (φ, c1, · · · , cn) :=

Tλ(h), and it satisfies

‖φ‖∗,ξ +

n∑
i=1

|ci| ≤ C‖h‖∗∗,ξ.

The constant C > 0 is independent of the parameter λ.

Proof. The proof follows the argument in Section 3 of [8]. So here we only sketch the proof. We solve
the linear problem near the point ξ and away from this point. For this, decompose φ = ϕ + ψ, where
ϕ,ψ satisfy

(5.4)


(−∆)sϕ− pwp−1ϕ = pξ0w

p−1ψ − ξ1Vλϕ+ ξ1h+

n∑
i=1

ciZi,

lim
|x|→∞

ϕ(x) = 0,

and

(5.5)

(−∆)sψ − p(1− ξ0)wp−1ψ + Vλψ = −(1− ξ1)Vλϕ+ (1− ξ1)h,

lim
|x|→∞

ϕ(x) = 0,

where ξ0, ξ1 are two cut off functions:

ξ0(x) = 0 for |x− ξ| ≤ R, ξ0(x) = 1 for |x− ξ| ≥ 2R,

and
ξ1(x) = 0 for |x− ξ| ≤ %, ξ1(x) = 1 for |x− ξ| ≥ 2%,

for %,R two positive constants independent of λ to be fixed later and such that 2% ≤ R.
Given ‖ϕ‖∗,ξ <∞, since ‖p(1−ξ0)wp−1‖

L
n
2s
→ 0 as R→ 0, equation (5.5) has a solution ψ = ψ(ϕ) if

R > 0 is small enough (this is because the homogeneous problem for (5.5) has only the trivial solution).
Moreover, ψ(x) = O(|x|−(n−2s)) as |x| → ∞, so the right hand side of (5.4) has finite ‖ · ‖∗∗ norm, by
Proposition 4.3, (5.4) has a solution when ψ = ψ(ϕ) which we write as F (ϕ). We claim that F (ϕ) has
a fixed point in the Banach space

X = {ϕ ∈ L∞(Rn), ‖ϕ‖∗ <∞}
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equipped with

‖ϕ‖X = sup
{|x|≤1}

|ϕ|+ sup
{|x|≥1}

|x|
2s
p−1 |ϕ|.

Following the argument in the proof of Proposition 3.1 in [8], we establish pointwise estimates for
the solution ψ of (5.5). Then we can find a bound of the ‖ · ‖∗∗ norm of the right hand side of (5.4).
Since the proof is similar, we omit the details and just state the estimates here:

‖ψ‖∗,ξ ≤ (C% + C%n−2s)‖ϕ‖X + C%‖h‖∗∗,ξ,
‖ξ0wp−1ψ(ϕ)‖∗∗,ξ ≤ C%n−2s‖ϕ‖X + C%‖h‖∗∗,ξ,

‖ξ1Vλϕ‖∗∗,ξ ≤ C%−2s‖ϕ‖Xa
(%
λ

)
,

where

a(r) = sup
{|x|≥r}

|x|2sV (x), a(r)→ 0 as r →∞.

By the linear theory in Section 2, we know that given ϕ ∈ X, the solution F (ϕ) to (5.4) satisfies

‖F (ϕ)‖∗,ξ ≤ C‖ξ0wp−1ψ(ϕ)‖∗∗,ξ + C‖ξ1Vλϕ‖∗∗,ξ + C‖ξ1h‖∗∗,ξ.

But since the right hand side of (5.4) is bounded near the origin, by regularity estimates, we derive

‖F (ϕ)‖X ≤ C‖ξ0wp−1ψ(ϕ)‖∗∗,ξ + C‖ξ1Vλϕ‖∗∗,ξ + C‖ξ1h‖∗∗,ξ
and

‖F (ϕ1)− F (ϕ2)‖X ≤ C%n−2s‖ϕ1 − ϕ2‖X + Ca(
%

λ
)%−2s‖ϕ1 − ϕ2‖X

≤ C
(
%n−2s + %−2sa

(%
λ

))
‖ϕ1 − ϕ2‖X .

By choosing % > 0 small enough and λ small enough such that %
λ → ∞, we can prove that F (ϕ) is a

contraction mapping, and we get a fixed point ϕ ∈ X. Moreover, thanks to the linear theory in Section
4, we have

‖ϕ‖X ≤ C
(
%n−2s + %−2sa

(%
λ

))
‖ϕ‖X + C%‖h‖∗∗,ξ,

which yields

‖ϕ‖X ≤ C‖h‖∗∗,ξ.
Combining with the estimate for ψ, one has

‖φ‖∗,ξ ≤ C‖h‖∗∗,ξ
for some C > 0 independent of λ small.

�

6. Proof of Theorem 1.1

Assume that p > n+2s−1
n−2s−1 . We aim to find a solution to (1.1) of the form u = w + φ, where w is the

radial entire solution found in Section 2 (recall that w satisfies (4.1)). This yields the following equation
for the function φ,

(−∆)sφ+ Vλφ− pwp−1φ = N(φ)− Vλw,
where

N(φ) = (w + φ)p − wp − pwp−1φ.

Using the operator Tλ defined in Proposition 5.1, we are led to solve the fixed point problem:

φ = Tλ(N(φ)− Vλw) := A(φ).
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Following the argument in Section 4 of [8], one obtains the following estimate for N(φ) and Vλw:

‖Vλw‖∗∗ ≤ C
(
λσR2s+σ‖V ‖L∞ + a(R) + a

( 1

λ

))
≤ Ca(R)

as λ→ 0. Choosing R →∞, then as λ→ 0 one has that ‖Vλw‖∗∗ → 0. In addition, for the nonlinear
term N(φ) we have the bound

‖N(φ)‖∗∗ ≤ C(‖φ‖2∗ + ‖φ‖p∗).
Consider the set

F = {φ : Rn → R, ‖φ‖∗ ≤ ρ}
where ρ > 0 small is to be chosen later.

It is standard to get the following estimates:

‖A(φ)‖∗ ≤ C(‖φ‖2∗ + ‖φ‖p∗ + ‖Vλw‖∗∗) < ρ,

‖A(φ1)−A(φ2)‖∗ ≤ C(‖φ1‖min{p−1,1}
∗ + ‖φ2‖min{p−1,1}

∗ )‖φ1 − φ2‖∗ <
1

2
‖φ1 − φ2‖∗

for λ small and ρ small. One can find that for ρ small enough, A(φ) is a contraction mapping in F ,
thus has a fixed point in this set. This finishes the proof of the theorem. �

7. The case n+2s
n−2s < p ≤ n+2s−1

n−2s−1

In this case, because of the presence of the kernels Zi defined in (5.2), one needs to introduce free
parameters and rescale around a point ξ, to be chosen later. For this reason, we make the change of

variable λ−
2s
p−1u(x−ξλ ) and look for a solution of the form u = w + φ, then φ satisfies

(−∆)sφ+ Vλφ− pwp−1φ = N(φ)− Vλw,

where

Vλ(x) = λ−2sV
(x− ξ

λ

)
.

Similarly to the proof of Lemma 5.1 in [8] can show the following result, for which we omit the proof:

Lemma 7.1. Let n+2s
n−2s < p < n+2s−1

n−2s−1 and Λ > 0. Assume that V satisfies (5.3). Then there exists

ε0 > 0 such that for |ξ| < Λ and λ < ε0, there exists (φ, c1, · · · , cn) solution of

(7.1)


(−∆)sφ+ Vλφ− pwp−1φ = N(φ)− Vλw +

n∑
i=1

ciZi,

lim
|x|→∞

φ(x) = 0.

We have, in addition,

‖φ‖∗,ξ +

n∑
i=1

|ci| → 0 as λ→ 0.

If V also satisfies

V (x) ≤ C|x|−µ for all x

for some µ > 2s, then for 0 < σ ≤ µ− 2s, σ < n− 2s, one has

‖φ‖∗,ξ ≤ Cσλσ for all 0 < λ < ε0.

Now we are ready for the proof of our second main theorem:
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Proof of Theorem 1.2. We have found a solution (φ, c1, · · · , cn) to equation (7.1). By the linear theory
in Section 2, this solution satisfies∫

Rn

(
N(φ)− Vλφ− Vλw +

n∑
i=1

ciZi

) ∂w
∂xj

dx = 0

for j = 1, · · · , n. So for λ small, we need to choose the parameter ξ such that ci = 0 for all i, that is

(7.2)

∫
Rn

(
N(φ)− Vλφ− Vλw

) ∂w
∂xj

dx = 0

because the matrix with coefficients
∫
Rn Zi

∂w
∂xj

dx is invertible.

Case a. Since V ≤ |x|−µ for µ > n, the dominant term in (7.2) is

λ−2s

∫
Rn
V
(x− ξ

λ

)
w
∂w

∂xj
dx = O(λn−2s).

Using the estimates for φ in the last section, one can get that∫
Rn
N(φ)

∂w

∂xj
dx = o(λn−2s).

For the term
∫
Vλφ

∂w
∂xj

dx, one has∫
Vλφ

∂w

∂xj
dx =

∫
BRλ

· · ·+
∫
B1\BRλ

· · ·+
∫
Rn\B1

· · ·

≤ C
∫
BRλ

λR · λ−2s · λσ|x|−σ dx+

∫
B1\BλR

λσ|x−σ| · a(R)|x|−2sλ|x| dx

+

∫
Rn\B1

λσa
( 1

λ

)
|x|−(2s+ 4s

p−1 +1) dx

≤ o(λn−2s)

as λ→ 0, where we have used the fact that n+2s
n−2s < p < n+2s−1

n−2s−1 .
We now set

F
(j)
λ (ξ) = λ−2s

∫
Rn
V
(x
λ

)
uλ

∂w

∂xj
(x+ ξ) dx+

∫
Rn
N(φ)

∂w

∂xj
(x+ ξ) dx.

Fix ρ > 0 small. For |ξ| = ρ, and λ small, one can check that

〈Fλ(ξ), ξ〉 ∼ 〈∇2w(0)ξ, ξ〉 < 0 for |ξ| = ρ,

since 0 is local maximum point of w. By degree theory, we deduce that Fλ has a zero in Bρ.

Case b(i). Assume that lim
|x|→∞

(
|x|µV − f

( x
|x|
))

= 0 for N − 4s
p−1 < µ < n, f 6= 0. Here one can

check that the dominant term of (7.2) is

λ−2s

∫
Rn
V (

x− ξ
λ

)w
∂w

∂xj
dx

= λµ−2s

∫
Rn
|x|−µf

( x
|x|

)
w(x+ ξ)

∂w

∂xj
(x+ ξ) dx+ o(λµ−2s)

= O(λµ−2s).
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Again, using the estimates for φ, one has∫
Rn
N(φ)

∂w

∂xj
dx = O(λµ+σ−2s) = o(λµ−2s),∫

Rn
Vλφ

∂w

∂xj
dx ≤ Cλµ+σ−2s.

So now define

F̃j(ξ) :=
1

2

∫
Rn
|x|−µf

( x
|x|

)
w2(x+ ξ) dx

=
1

2
β

2s
p−1 |ξ|−

4s
p−1 +n−µ

∫
Rn
|y|−µf

( y
|y|

)∣∣∣y +
ξ

|ξ|

∣∣∣− 4s
p−1

dy + o(|ξ|n−µ−
4s
p−1 ).

Similarly,

∇F̃ (ξ) · ξ =
1

2

(
n− µ− 4s

p− 1

)
β

2s
p−1 |ξ|−

4s
p−1 +n−µ

∫
Rn
|y|−µf

( y
|y|

)∣∣∣y +
ξ

|ξ|

∣∣∣− 4s
p−1

dy + o(|ξ|n−µ−
4s
p−1 ).

Therefore

∇F̃ (ξ) · ξ < 0 for all |x| = R for large R.

Using degree theory, we get the existence of ξ in BR such that ci = 0 for all i.

Case b(ii). lim
|x|→∞

(
|x|nV − f

( x
|x|
))

= 0, f 6= 0. In this case, we have

Gj(ξ) :=

∫
Rn

(
N(φ)− Vλφ− Vλw

) ∂w
∂xj

dx

= λ−2s

∫
Rn
V (

x

λ
)uλ(x+ ξ)

∂w

∂xj
(x+ ξ) dx+ o(λn−2s).

We claim that 〈G(ξ), ξ〉 < 0 for all |ξ| = ρ for ρ > 0 small enough. Once this is true, using degree
theory, we conclude that for some |ξ| < ρ we have G(ξ) = 0, which finishes the proof.

In order to prove this claim, note that for ρ > 0 small, one has for all |ξ| = ρ,

〈∇w(ξ), ξ〉 < 0

Thus for δ > 0 small but fixed,

γ := sup
x∈Bδ
〈∇w(ξ), ξ〉 < 0 for all |ξ| = ρ.

Then similarly to the proof of part (b.2) in Section 5 of [8], one has∣∣∣λ−2s

∫
Rn\Bδ

V
(x
λ

)
uλ(x+ ξ)〈∇w(x+ ξ), ξ〉

∣∣∣ ≤ Cλn−2s,∣∣∣λ−2s

∫
BλR

V
(x
λ

)
uλ(x+ ξ)〈∇w(x+ ξ), ξ〉

∣∣∣ = O(λn).



20 W. AO, H. CHAN, M.D.M. GONZÁLEZ, AND J. WEI

Then ∣∣∣λ−2s

∫
Bδ\BλR

V (
x

λ
)uλ(x+ ξ)〈∇w(x+ ξ), ξ〉

∣∣∣ ≤ cγ ∫
Bδ\BλR

V
(x
λ

)
,∫

Bδ\BλR
V
(x
λ

)
=

∫
Bδ\BλR

f
( x
|x|

)
|x|−n dx+

∫
Bδ\BλR

|x|−n
(
V (x)|x|n − f

( x
|x|

))
dx,∫

Bδ\BλR
f
( x
|x|

)
|x|−n dx = log

1

λ

∫
Sn−1

f +O(1),∫
Bδ\BλR

|x|−n
(
V (x)|x|n − f

( x
|x|

))
dx ≤ ε log

1

λ
,

for ε small enough if R is large enough. Combining all the above estimates, one obtains that 〈G(ξ), ξ〉 < 0
for all |ξ| = ρ small.

�

Remark 7.2. For p = n+2s−1
n−2s−1 , we can get the same solvability result as in case ii. of Proposition 4.3 if

one considers the new weighted norm

‖φ‖∗ = sup
{|x|≤1}

|x|σ|φ(x)|+ sup
{|x|≥1}

|x|
2s
p−1 +α|φ(x)|,

‖h‖∗∗ = sup
{|x|≤1}

|x|σ+2s|h(x)|+ sup
{|x|≥1}

|x|
2s
p−1 +α+2s|h(x)|,

for some α > 0 small. In this new norm, one can also show that w′ is in the kernel space of L∗ even
when p = n+2s−1

n−2s−1 . With some minor modifications, we can also obtain existence of solutions.
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