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Isometric Immersions without Positive Ricci Curvature

Luis Guijarro

Abstract. In this note we study isometric immersions of Riemannian mani-
folds with positive Ricci curvature into an Euclidean space.

1. Introduction

When studying isometric immersions, one often realizes that restrictions on
the curvature result in the need for extra space. For instance, a classical result of
Hilbert affirms that in R3 there are no complete surfaces whose induced metrics have
constant negative curvature [5]. In the same spirit, Chern and Kuiper proved that
if an n-dimensional compact Riemannian manifold M with nonpositive sectional
curvature immerses isometrically in some RN , then N ≥ 2n [1], [2].

When turning to the positive sectional curvature case, the main observation
was due to A. Weinstein [14], who showed that for immersions of Mn in Rn+2, the
curvature operator R : Λ2M → Λ2M had to be positive. As a consequence, if Mn

is simply connected, then it has to be homeomorphic to a sphere. Related research
appeared in [8] and [11].

Our aim in this note is to collect a few observations about the positive Ricci
curvature case, by taking into account the type of the normal bundle to the immer-
sion as a possible obstruction. Our main tool is Lemma 2.1. We then apply it to
several situations, and among them, we get

Theorem 1.1. Let M4 = CP2# . . .#CP2 a connected sum of complex projec-
tive spaces (CP2 itself is allowed). Then no immersion f : M4 → R7 induces a
metric with positive Ricci curvature.

The author would like to thank B. Wilking for a conversation related to the
proof of the above theorem.

2. Positive Ricci curvature and normal bundles

Let (M, g) be a Riemannian manifold of dimension n and f : M → Rm an
isometric immersion. Denote by ν(f) the normal vector bundle of the immersion;
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i.e,
ν(f) = { (x, v) : x ∈ M,v ∈ TxRn, v ⊥ f∗(TxM) } .

There is an isomorphism of vector bundles TM ⊕ ν(f) ' Rn, where, without
risk of confusion, Rn denotes the product n–bundle over M .

Lemma 2.1. If (M, g) has positive Ricci curvature, then the mean curvature
vector H is a non-vanishing section of ν(f).

Proof : Denote by B : TM × TM → ν(f) the second fundamental form of the
immersion, and x ∈ TpM a unit vector field that we complete to an orthonormal
basis {x = e1, e2, . . . , en}. Gauss’ formula implies that

Ric(x, x) =
n∑

i=2

K(x, ei) =
n∑

i=2

〈B(x, x), B(ei, ei)〉 − ‖B(x, ei)‖2.

Thus

〈B(x, x),H〉 = Ric(x, x) +
n∑

i=1

‖B(x, ei)‖2 > 0.

�
Although we have phrased the Theorem in terms of positive Ricci curvature,

the proof shows that it suffices to have a vector x with Ric(x) > 0 at each point.

3. Immersions of CP2# . . .#CP2 in R7

Whitney’s immersion theorem asserts that any four-dimensional manifold can
be immersed in R7. We use the lemma to give the application mentioned in the
introduction:

Theorem 3.1. M4 = CP2# . . .#CP2 cannot be immersed into R7 with an
induced metric of positive Ricci curvature.

Proof: If not, then by Lemma 2.1 we have a plane bundle E → M such that

M × R7 ' TM ⊕ E ⊕ R.

Since M is simply connected, E is oriented, and a simple topological argument
shows that H2(M, Z) is torsion–free ([4], proposition E.1). Thus, the product
formula for Pontryagin classes (see [9], theorem 15.3) gives:

(1 + p1(M))(1 + p1(E)) = 0.

Hence p1(E) = −p1(M). By Hirzebruch’s theorem in dimension 4 ([9] Theorem
19.4), 〈p1(M), [M ]〉 = 3σ(M). Since by hypothesis, this is positive, we have

〈p1(E), [M ]〉 < 0.

On the other hand, by Corollary 15.8 in [9], p1(E) = e(E)2. Thus we can use
the intersection form Q of M to give an alternate computation of p1(E) as

〈p1(E), [M ]〉 =
〈
e(E)2, [M ]

〉
= Q(e(E), e(E)).

However, M was chosen so that Q was positive definite (see [3], for instance), and
we obtain a contradiction. �
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The theorem is optimal, since the Veronese embedding

φ : CP2 −→ Herm0(C, 3)

where Herm0(3, C) are the 3× 3 trace–free hermitian matrices, defined by

φ[z0, z1, z2] = I − 2(z0, z1, z2)t (z0, z1, z2)

induces the Fubini–Study metric in CP2, which has positive sectional curvature. In
fact, the natural action of SU(3) on CP2 induces an isometric action on its image
by φ with U(2) as isotropy, and hence the induced metric agrees with the quotient
metric SU(3)/U(2). Observe that the dimension of Herm0(C, 3) is eight.

Remark: There are several extensions of the above proof. For instance, the same
argument shows that the complex projective plane CPn cannot be immersed with
positive curvature in codimension 3. But also any proof of the impossibility of
immersing a given manifold Mn into RN that uses the impossibility of splitting the
trivial rank N bundle as a sum TM ⊕ E can be adapted to our situation to show
that Mn does not immerse in RN+1 with positive curvature. As a concrete example,
RPn can be immersed in R2n−1 by Whitney’s theorem, but when n is a power of
two, the induced metric cannot have positive curvature everywhere. Otherwise, the
normal bundle would split a line and we would get a contradiction to the product
formula for Stiefel-Whitney classes as in [9].

4. Immersions of the sphere with positive Ricci curvature

Due to the work of Smale in [12], we have a good understanding of the immer-
sions of n-spheres in the euclidean space of dimension n + k. Up to isotopy, they
are in one-to-one correspondence with elements of πn(Vn+k,n), where Vn+k,n is the
Stiefel manifold of n-orthonormal frames in Rn+k.

In a development of [12], Kervaire gave a characterization of the bundles over
Sn that can appear as a normal bundle of an immersion into Rn+k. Namely, the
isomorphism classes of rank k vector bundles over Sn correspond to elements in
πn−1(SO(k)) through their clutching maps [13]. On the other hand, the usual
fibration of the Stiefel manifold SO(k) → SO(n+k) → Vn+k,k induces a homotopy
sequence

· · · → πn(SO(n + k)) → πn(Vn+k,k) → πn−1(SO(k)) → . . .

where ∂ : πn(Vn+k,k) → πn−1(SO(k)) is the boundary homomorphism. Kervaire
proved that there is a bijection between the set of clutching maps for normal bundles
of immersions in Rn+k and the image of ∂. He denoted this subgroup by Jn,k and
proceeded to compute it for some values of k and n.

The results in this section follow from combining some of these facts with the
information given by Lemma 2.1.

Theorem 4.1. Let n and k positive integers such that Jn,k = 0. Then any
immersion f : Sn → Rn+k+1 with positive Ricci curvature can be isotoped to the
map Sn i→ Rn+1 → Rn+k+1, where i is the standard inclusion.
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Proof: The normal bundle ν(f) to the immersion admits a section without zeros due
to lemma 2.1. Thus there is a splitting ν(f) = R⊕E, where E has rank k. Theorem
6.1 in [6] asserts that f can now be isotoped to an immersion g : Sn → Rn+k, and
the bundle E is isomorphic to ν(g). The hypothesis on Jn,k (= 0) implies that E
is the trivial bundle, and correspondingly ν(f) is just Sn×Rk+1. But corollary 6.2
from [6] affirms that in this case, f can be isotoped into Rn+k+1, and the theorem
is proved. �

Corollary 4.2. Any immersion of S8s+5 into R16s+6 or R16s+7 with an in-
duced metric of positive Ricci curvature can be isotoped into the standard immersion
of S8s+5 in R8s+6.

Proof: In [7], it was shown that π8s+4(SO(8s)) = π8s+4(SO(8s + 1)) = 0. Thus
J8s+5,8s = J8s+5,8s+1 = 0, and we are in the hypothesis of theorem 4.1. �

It is somewhat unsatisfactory that the theorem does not give any information
about the induced metrics at each stage of the isotopy between f and the inclusion
Sn → Rn+1. The induced metrics at times t = 0 and t = 1 of the isotopy have both
positive Ricci curvature, and we would like to know whether the deformation could
be done entirely by such metrics. However, in the codimension two case, Moore
showed that there are not obstructions to such deformations in the class of positive
sectional curvature metrics [10].
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