Problemas de Geometría Diferencial, Máster

Primer semestre, 2010/2011.

Entrega: martes 25 de noviembre.

Hoja 3.

- **1.** Encuentre una variedad y campos de vectores $X_1, X_2, Y \in \mathfrak{X}(M)$ tal que $X_1, p = X_{2,p}$ pero con $(L_{X_1}Y)_p \neq (L_{X_2}Y)_p$.
- 2. Halle un campo de vectores en el toro $T = S^1 \times S^1$ una de cuyas curvas integrales coincida con la recta de pendiente irracional estudiada en el problema 1.3.
- 3. Flujos de campos de vectores en subvariedades:
 - 1. Demuestre que si N es una subvariedad de M, y si $Y \in \mathfrak{X}(M)$ cumple $Y_p \in T_pN$ para todo $p \in N$, entonces el flujo de $X = Y|_{N} \in \chi(N)$ se obtiene como restricción del flujo de Y.
 - 2. Use lo anterior para hallar el flujo del campo X tangente a S^3 que aparecía en el problema 3 de la hoja 2.
 - 3. Identifique \mathbb{R}^4 con los cuaternios, y S^3 con los cuaternios de norma 1; escriba el flujo calculado en el punto anterior con un producto de cuaternios.
- **4.** Si $F: M \to N$ es una submersión, demuestre que las fibras $F^{-1}(q), q \in N$, definen una foliación de M.
- 5. Sea $N \subset M$ una subvariedad integral de una distribución involutiva con dim $N = \dim \Delta$. Supongamos que $F: P \to M$ es una aplicación suave con $F(P) \subset N$. Demuestre que la aplicación $G: P \to N$ obtenida restringiendo la imagen de F es suave.