### Teorema de Frobenius

Luis Guijarro

UAM

19 de octubre de 2010

Sea  $F: U \to V$  una aplicación diferenciable entre abiertos de espacios euclídeos. El rango de F en  $p \in U$  es el rango de la matriz diferencial DF(p).

### Teorema (Teorema del rango)

Sean  $U \subset \mathbb{R}^n$  y  $V \subset \mathbb{R}^m$  abiertos. Si  $F: U \to V$  es una aplicación diferenciable con rango constante k, entonces para cada  $a \in U$ , hay

- abiertos  $A \subset U$ ,  $B \subset V$ , con  $a \in A$  y con  $b = F(a) \in B$ ;
- un difeomorfismo  $G: A \rightarrow A_0$  con G(a) = 0,
- un difeomorfismo  $H: B \rightarrow B_0$  con H(b) = 0,

tal que

$$H \circ F \circ G^{-1}(x_1, \ldots, x_n) = (x_1, \ldots, x_k, 0, \ldots, 0)$$

Dos casos frecuentes:

- rango(F) = n,  $\bar{F}(x_1, \dots, x_n) = (x_1, \dots, x_n, 0, \dots, 0)$
- rango $(F) = m, \bar{F}(x_1, ..., x_n) = (x_1, ..., x_m)$



#### Definición

Sea  $F: N \to M$  una aplicación diferencial. El rango de F en p es el rango de  $\psi \circ F \circ \phi^{-1}$  en  $\phi(p)$ , donde  $(U,\phi)$  es una carta de M en p, y  $(V,\psi)$  es una carta de N en q = F(p).

El rango de F no depende de las cartas  $(U, \phi)$ ,  $(V, \psi)$  que aparecen en la definición.

El rango de F en p coincide con el rango de la aplicación lineal  $dF_p: T_pM \to T_qN$ .

### Lema

Si  $F: M \to N$  es una aplicación de rango constante k, entonces para todo  $p \in M$  existen cartas  $(U, \phi)$  de M en p,  $(V, \psi)$  de N en F(p), tal que la expresión local de F en estas cartas es

$$\psi \circ F \circ \phi^{-1}(x_1, \dots, x_n) = (x_1, \dots, x_k, 0, \dots, 0)$$

Las cartas anteriores se pueden tomar con  $\phi(U) = (-\varepsilon, \varepsilon)^n$ ,  $\psi(V) = (-\varepsilon, \varepsilon)^m$ , o con  $\phi(U) = B_{\varepsilon}^n(0)$ ,  $\psi(V) = B_{\varepsilon}^m(0)$ .

3 / 47

Luis Guijarro (UAM) Teorema de Frobenius 19 de octubre de 2010

### Inmersiones y submersiones

#### Definición

Sea  $F: N \rightarrow M$  una aplicación diferencial.

- F es una inmersión si rango $(F) = \dim N$ ;
- F es una submersión si rango $(F) = \dim M$ .

Una inmersión es localmente inyectiva, pero hay ejemplos de:

- Inmersiones no invectivas;
- inmersiones inyectivas con imagen no cerrada;
- inmersiones invectivas con imagen cerrada, pero con  $F:M\to F(M)\subset N$  no siendo un homeomorfismo.

### Subvariedades

**Ejercicio:** Si N es una subvariedad, y si  $F: N \to X$  es una aplicación biyectiva sobre un *conjunto* X, podemos poner en X una topología y una estructura diferencial que hacen de f un difeomorfismo.

### Definición

Sea  $F: N \to M$  una inmersión inyectiva. Su imagen  $F(N) = \tilde{N} \subset M$  recibe una topología y una estructura diferencial como en el ejercicio anterior. Con ellas,  $\tilde{N}$  se llama una subvariedad de M.

**Observación:** A menudo, la topología de  $\widetilde{N}$  como subespacio, y la que tiene como subvariedad son muy diferentes. Ejemplos típicos son la figura ocho, y la recta de pendiente irracional en el toro.

# Subvariedades (cont.)

### Definición

Una inmersión inyectiva  $F: N \to M$  donde la topología de  $\tilde{N}$  como subvariedad coincide con la topología subespacio se llama un embebimiento (encaje). En este caso,  $\tilde{N}$  se llama una subvariedad embebida en M.

### **Teorema**

Si  $F: N \to M$  es una inmersión, entonce todo  $p \in N$  tiene un entorno U tal que  $F: U \to M$  es un embebimiento.

## Cartas k-adaptadas

Sea M una variedad de dimensión n,  $P \subset M$  un subconjunto,  $p \in P$ 

### Definición

Una carta  $(U, \phi)$  de M en p se dice que está k-adaptada a P en p si  $\phi(U \cap P) = \phi(U) \cap (\mathbb{R}^k \times \{0\}^{n-k})$ 

**Notación:** Por  $\{0\}^{n-k}$  indicamos una n-k-tupla de ceros. Cuando escribimos  $\mathbb{R}^k \times \{0\}^{n-k}$  indicamos el conjunto de puntos de  $\mathbb{R}^n$  de la forma  $(x_1,\ldots,x_k,0,\ldots,0)$  con  $x_i \in \mathbb{R}$ , y un total de n-k ceros al final.

A menudo, en la definición de carta k-adaptada, se requiere que  $\phi(p)=0$ , y que  $\phi(U)=(-\varepsilon,\varepsilon)^n$ ; si es necesario, asumiremos ambas propiedades, ya que pueden obtenerse fácilmente componiendo  $\phi$  con traslaciones, restricciones y dilataciones en  $\mathbb{R}^n$ .

#### Definición

Una subvariedad regular de M de dimensión k es un subconjunto S de M que tiene cartas k-adaptadas en cada uno de sus puntos.

### **Teorema**

Sea S una subvariedad regular de M. Entonces S con su topología subespacio tiene una estructura de variedad diferencial de dimensión k.

**Demostración:** Para cada punto p de S vamos a construir primero una carta de S en p:

- Primero tomamos una carta k-adaptada de S en p,  $(U, \phi)$ ;
- denotamos por  $\pi: \mathbb{R}^n \to \mathbb{R}^k$  la proyección  $\pi(x_1, \dots, x_k, \dots, x_n) = (x_1, \dots, x_k);$
- $U \cap S$  es abierto en S:



- $\pi \circ \phi : U \cap S \to \mathbb{R}^k$  es continua;
- $\pi \circ \phi(U \cap S)$  es abierto en  $\mathbb{R}^k$ : para esto observad que la aplicación

$$i: \mathbb{R}^k \to \mathbb{R}^k \times \{0\}^{n-k}, \quad i(x_1, \dots, x_k) = (x_1, \dots, x_k, 0, \dots, 0)$$

es un homeomorfismo cuando a  $R^k \times \{0\}^{n-k}$  se le da la topología subespacio desde  $\mathbb{R}^n$ ; su inversa es precisamente  $\pi|_{R^k \times \{0\}^{n-k}}$ . Pero

$$\phi(U \cap S) = \phi(U) \cap (\mathbb{R}^k \times \{0\}^{n-k})$$

es abierto en  $R^k \times \{0\}^{n-k}$ , así que  $\pi \circ \phi(U \cap S)$  es abierto en  $\mathbb{R}^k$ .

• Como  $\pi|_{R^k \times \{0\}^{n-k}}$  es inyectiva y  $\phi(U \cap S) \subset R^k \times \{0\}^{n-k}$ , entonces  $\pi \circ \phi$  es inyectiva en  $U \cap S$ .



- $\pi \circ \phi$  es sobreyectiva sobre su imagen, con lo que es biyectiva por el punto anterior.
- $(\pi \circ \phi)^{-1}$  está dada por

$$\xi(x_1,\ldots,x_k)=\phi^{-1}(x_1,\ldots,x_k,0,\ldots,0)$$

ya que

$$\pi \circ \phi \circ \xi(x_1,\ldots,x_k) = \pi \circ (\phi \circ \phi^{-1})(x_1,\ldots,x_k,0,\ldots,0) = (x_1,\ldots,x_k),$$

así que es continua.

Ahora que tenemos cartas de S en cada uno de sus puntos, vamos a ver que podemos extraer un atlas diferenciable de ellas. Para acortar, denotaremos

$$\widetilde{\phi} = \pi \circ \phi$$
 en cada  $U \cap S$ 



Para cada  $p \in S$ , tomamos una carta k-adaptada a S en p, y las juntamos a todas en  $\mathcal{A} = \{(U_{\alpha} \cap S, \widetilde{\phi}_{\alpha})\}$ .

### Lema

A es un atlas diferencial en S.

#### Demostración.

Como hemos escogido una carta adaptada para cada punto de S, es claro que

$$\cup_{\alpha}(U_{\alpha}\cap S)=S.$$

Sólo queda por ver que las cartas son compatibles entre sí. Suponemos que  $(U_{\alpha} \cap S) \cap (U_{\beta} \cap S) = U_{\alpha} \cap U_{\beta} \cap S \neq \emptyset$ .

$$\widetilde{\phi}_{\beta} \circ \widetilde{\phi}_{\alpha}^{-1}(x_1, \ldots, x_k) = \pi \circ \phi_{\beta} \circ \phi_{\alpha^{-1}}(x_1, \ldots, x_k, 0, \ldots, 0)$$

que es diferenciable porque  $\phi_{\beta} \circ \phi_{\alpha^{-1}}$  es un cambio de coordenadas en M.

4 U P 4 DP P 4 E P 4 E P E

19 de octubre de 2010

# Subvariedades (cont.)

### **Teorema**

Si S es una subvariedad regular de M, entonces la inclusión  $i:S\to M$  es un embebimiento (cuando se le da a S la ED que recibe como subvariedad)

### Demostración.

Basta ver que  $i: S \to M$  es suave, ya que S tiene la topología subespacio. Para ello, tomamos  $p \in S$ . Como i(p) = p, hay que tomar cartas de S en p, de M en p y hallar la expresión local de i en estas cartas.

- En S tomamos una carta k-adaptada ( $U \cap S, \widetilde{\phi}$ );
- ullet en M tomamos la carta  $(U,\phi)$  que dió lugar a la carta anterior.

La expresión local queda:

$$\phi^{-1}(x_1,\ldots,x_k,0,\ldots,0) \xrightarrow{i} \phi^{-1}(x_1,\ldots,x_k,0,\ldots,0)$$

$$\downarrow^{\phi} \qquad \qquad \downarrow^{\phi} \qquad \qquad$$

### Embebida es regular

Toda subvariedad regular es embebida. El recíproco es cierto:

### **Teorema**

Si  $F: N' \to M$  es un embebimiento, N = F(N') es una subvariedad regular. Además  $F: N' \to N$  es un difeomorfismo (donde N tiene la estructura diferencial de subvariedad regular).

#### **Teorema**

Si  $F: N \to M$  es una inmersión inyectiva y N es compacta, entonces F es un embebimiento y F(N) es una subvariedad regular de M.

Si una subvariedad (inmersa) N no es regular, entonces N no puede ser compacta.

## Valores regulares

### **Teorema**

Si  $F: N \to M$  es una aplicación suave con rango constante k, y si  $q \in F(N)$ , entonces  $F^{-1}(q)$  es una subvariedad regular de M de dimensión  $\dim(N) - k$ 

### Corolario

Si  $F: N \to M$  es una submersión,  $F^{-1}(a)$  es una subvariedad de dimensión  $\dim(N) - \dim(M)$  para todo  $a \in F(N)$ .

# Algunas diferencias entre los distintos tipos de variedades

- Si  $A \subset M$  es una subvariedad, y  $F: M \to P$  es una aplicación suave, entonces  $F|_A: A \to P$  es suave.
- Si  $F:P \to M$  es una aplicación suave (o incluso meramente continua), y si  $\widetilde{N} \subset M$  es una subvariedad de M con  $F(P) \subset \widetilde{N}$ , no es necesario que  $G:P \to \widetilde{N}$  obtenida como restricción de F a su imagen, sea continua (y mucho menos suave).
- Si  $F: P \to M$  es una aplicación suave, y si  $\widetilde{N} \subset M$  es una subvariedad regular de M con  $F(P) \subset \widetilde{N}$ , entonces  $G: P \to \widetilde{N}$  obtenida como restricción de F a su imagen, es suave.

## Campos de vectores

#### Definición

Sea  $\mathcal O$  un abierto de M. Un campo de vectores X en  $\mathcal O$  es una correspondencia que asigna a cada punto  $p\in \mathcal O$  un vector tangente  $X_p\in T_pM$ .

Si  $(U, \phi = (x_1, \dots, x_n))$  es una carta de M, la expresión local de X en la carta es

$$X|_{U} = \sum_{i=1}^{n} X(x_i) \frac{\partial}{\partial x_i}$$

donde cada  $X(x_i)$  es la función  $X(x_i)(p) = X_p(x_i)$ .

### Definición

X es suave si para toda función suave  $f: \mathcal{O} \to \mathbb{R}$ , la función  $X(f): \mathcal{O} \to \mathbb{R}$  (definida como  $X(f)(p) = X_p(f)$ ) es suave.

## Fibrado tangente

M una variedad diferencial de dimensión n.

$$TM = \bigcup_{p \in M} T_p M = \{ (p, v) : p \in M, v \in T_p M \}$$

es el conjunto formado por todos los posibles vectores tangentes en todos los puntos de  ${\it M}$ .

Si  $(U, \phi = (x_1, \dots, x_n))$  es una carta de M, los vectores tangentes basados en puntos de U se pueden escribir como

$$v = \sum_{i=1}^{n} a_{i} \frac{\partial}{\partial x_{i}} \bigg|_{p}$$

donde  $a_i = v(x_i) \in \mathbb{R}$ .

Hay una aplicación natural (*la proyección*)  $\pi:TM\to M$  enviando  $(p,v)\in TM$  a  $p\in M$ .

### Cartas en TM

Vamos a dotar a TM de una estructura diferencial usando para ello las cartas de M.

- $\pi^{-1}(U) = \{(p, v) : p \in U\};$
- $\widetilde{\phi}: \pi^{-1}(U) \to \phi(U) \times \mathbb{R}^n$  definida como

$$\widetilde{\phi}(q, v) = (x_1(q), \dots, x_n(q), v(x_1), \dots, v(x_n))$$

Es fácil comprobar que estas cartas forman un atlas suave para la que  $\pi:TM\to M$  es una submersión.

### Definición

Una sección de TM es una aplicación  $s:M\to TM$  tal que  $\pi\circ s$  es la aplicación identidad.

Ejemplos de secciones son los campos de vectores, ya que  $\pi(X_p) = p$  para todo  $p \in M$ .

4 D S 4 D S 4 D S 4 D S 5 D

# Campos de vectores: definiciones equivalentes

#### Teorema

Son equivalentes:

- **1** X es un campo de vectores suave en  $\mathcal{O}$ ;
- **②** para todo  $p \in \mathcal{O}$ , hay una carta de M en p en la que las funciones  $X(x_i)$  son suaves;
- **3**  $X: \mathcal{O} \to TM$  es una sección suave.

# Campos de vectores y subvariedades

Sea  $F: \mathbb{N}' \to M$  una inmersión inyectiva con imagen la subvariedad  $N \subset M$ ; para cada  $p' \in N'$ , la diferencial

$$dF_{p'}:T_{p'}N'\to T_pM$$

es inyectiva (donde p = F(p')). Su imagen  $dF_p(T_{p'}N')$  es un subespacio de  $T_pM$  de la misma dimensión que N, y que denotamos  $T_pN$ .

### Lema

Si X es un campo suave de vectores en M tal que para cada  $p \in N$ ,  $X_p \in T_pN$ , entonces hay un campo suave de vectores X' en N' con  $dF_{p'}(X'_{p'}) = X_p$  para todo  $p' \in N'$ .

En el caso de subvariedades dadas como conjuntos de nivel de un valor regular, la condición  $v \in T_pS$  es fácil de comprobar:

### Lema

Sea  $F: M \to N$  suave y  $a \in N$  un valor regular de F. El espacio tangente a la subvariedad  $S = F^{-1}(a)$  en un punto  $p \in S$  coincide con el núcleo de  $dF_p: T_pM \to T_{F(q)}N$ .

# Campos de vectores y aplicaciones

### Definición

Sea  $F: M \to N$  una aplicación suave entre variedades, y X un campo de vectores en X. Si hay un campo de vectores Y en N tal que para todo  $p \in M$ ,  $dF_p(X_p) = Y_{F(p)}$ , entonces X e Y están F-relacionados.

Dado un X en M, no tiene por qué existir tal Y; por ejemplo, pueden haber  $p_1$ ,  $p_2 \in M$  con  $F(p_1) = F(p_2)$  pero con  $dF_{p_1}(X_{p_1}) \neq dF_{p_2}(X_{p_2})$ .

#### Lema

Si  $F: M \to N$  es un difeomofismo, para cada X en M existe un y solo un campo Y en N que está F-relacionado con X.

Un caso útil es cuando F es el difeomorfismo  $\phi:U\to\phi(U)\subseteq\mathbb{R}^n$  que proviene de una carta. En este caso, es fácil ver que

$$\phi_*\left(\frac{\partial}{\partial x_i}\right) = E_i$$

donde  $E_i$  son los campos de vectores en  $\mathbb{R}^n$  asociados a las derivadas parciales (i.e,  $E_{i,x}(f) = D_i f(p)$ ).

# Flujo global

### Definición

Un flujo global en una variedad M es una acción suave de  $\mathbb{R}$  en M, i.e, una aplicación suave  $\theta : \mathbb{R} \times M \to M$ , tal que

- $\theta(0,p) = p$ , para todo  $p \in M$ ;
- $\theta(s, \theta(t, p)) = \theta(s + t, p)$  para todos  $s, t \in \mathbb{R}$ ,  $p \in M$ .

Para cada  $p \in M$ , consideramos el vector  $X_p$  tangente en t = 0 a la curva  $c_p : \mathbb{R} \to M$ ,  $c_p(t) = \theta(t, p)$ .

### Definición

X se llama el generador infinitesimal del flujo  $\theta$ .

#### Lema

El generador infinitesimal de un flujo es un campo suave.



# Flujo global (cont.)

Para cada  $t \in \mathbb{R}$ , consideramos la aplicación  $\theta_t : M \to M$  definida como

$$\theta_t(p) = \theta(t, p)$$

#### Lema

Con la notación anterior,

- **1**  $\theta_t$  es un difeomorfismo de M con inversa  $\theta_{-t}$ .
- **2** X está  $\theta_t$ -relacionado consigo mismo (=invariante); en otras palabras,

$$(d\theta_t)_p(X_p) = X_{\theta_t(p)}$$



# Órbitas

Para cada  $p \in M$ , la órbita de p mediante el flujo  $\theta$  es la imagen de la curva

$$c_p: \mathbb{R} \to M, \quad c_p(t) = \theta(t, p),$$

Las órbitas dan una partición de M en conjuntos disjuntos, ya que  $\theta(t, \theta(s, p)) = \theta(s + t, p)$  implica que si  $q = c_p(s) = \theta(s, p)$ , entonces

$$c_q(t) = \theta(t,q) = \theta(t,\theta(s,p)) = \theta(s+t,p) = c_p(s+t)$$

#### **Teorema**

Para cada  $p \in M$ , su órbita es, o bien un sólo punto, o bien una inmersión de  $\mathbb{R}$  en M mediante la aplicación  $t \to \theta(t,p)$ . El primer caso ocurre si  $X_p = 0$ , y el segundo si  $X_p \neq 0$ .

Observación: las curvas  $c_p(t)$  satisfacen  $c_p'(t) = X_{c_p(t)}$ .



# Curvas integrales de un campo de vectores

### Definición

Una curva integral de un campo de vectores X es una curva suave  $c: I \to M$  desde un intervalo I a M con  $c'_p(t) = X_{c_p(t)}$ .

Para el generador infinitesimal de un flujo global, las curvas  $t \in \mathbb{R} \to \theta(t, p)$  son integrales.

Para un campo arbitrario X, sus curvas integrales no necesitan estar definidas en todo  $\mathbb{R}$  (por lo que no todo campo de vectores viene de un flujo global).

Ejemplo:

$$X_x = x^2 \frac{\partial}{\partial x}$$
 en  $\mathbb{R}$ .

 $x'(t)=x(t)^2$ ,  $x(0)=x_0$ ,  $\Longrightarrow x(t)=\frac{x_0}{1-tx_0}$ , cuyo intervalo de definición (conteniendo t=0) es  $(-\infty,\frac{1}{x_0})$  para  $x_0>0$ , y  $(\frac{1}{x_0},\infty)$  para  $x_0<0$ .



# Flujo "local"

### Definición

Un flujo "local" de un campo de vectores X cerca de un punto p es una aplicación suave

$$\theta: (-\delta, \delta) \times V \to M$$

donde  $\delta > 0$ , V es un abierto de p, y tal que para cada  $p \in V$ , la curva  $t \to \theta(t,p)$  es integral para X.

#### Próximamente:

- Probar la existencia de flujos locales para todo campo de vectores alrededor de cada punto;
- construir la curva integral con dominio maximal por cada punto;
- **1** intentar agrupar todos los flujos locales en una aplicación  $\theta: W \to M$ , donde W será un abierto en  $\mathbb{R} \times M$  conteniendo (0, p) para todo p.



# Aplicaciones y curvas integrales

Supongamos que  $F: M \to N$  es suave y que  $F_*X = Y$ ; si  $c: I \to M$  es una curva integral de X pasando por p, entonces  $F \circ c: I \to N$  es una curva integral de Y pasando por F(p):

$$(F \circ c)'(t) = dF_{c(t)}(c'(t)) = dF_{c(t)}(X_{c(t)}) = Y_{F(c(t))}$$

Esto hace que si

$$\theta^X: (-\delta, \delta) \times V \to M$$

es un flujo local de X, entonces

$$F \circ \theta^X(t, F(p))$$

describa curvas integrales para puntos en F(V).



# Existencia y unicidad para EDO's

Sea  $\mathcal{O} \subset \mathbb{R}^n$  abierto. Supongamos que tenemos funciones suaves

$$f_i: (-\varepsilon, \varepsilon) \times \mathcal{O} \to \mathbb{R}, \quad f_i = f_i(t, x_1, \dots, x_n)$$

Entonces para cada  $x \in \mathcal{O}$ , existen  $\delta > 0$ , y un entorno abierto de x,  $V \subset \mathcal{O}$ , tal que

• para cada  $(a_1, \ldots, a_n) \in V$  hay una curva suave  $x(t) = (x_1(t), \ldots, x_n(t))$  con  $x : (-\delta, \delta) \to \mathcal{O}$  tal que es solución del sistema

$$x_i'(t) = f_i(t, x), \quad i = 1, \ldots, n$$

con condición inicial

$$x(0)=(a_1,\ldots,a_n)$$

- ② Para cada a, la curva x(t) es única, en el sentido de que si otra curva  $\bar{x}(t)$  cumple el sistema anterior, entonces  $x = \bar{x}$  en su dominio común de definición:
- si escribimos la solución del sistema x(t) con x(0) = a como x(t, a), entonces  $x : (-\delta, \delta) \times V \to U$  es una aplicación suave (dependencia suave de las condiciones iniciales).

# Flujo local en $\mathbb{R}^n$

Si

$$Y = Y_1 E_1 + Y_n E_n$$

es un campo en  $\mathbb{R}^n$  (donde, como antes,  $E_i$  son los campos coordenados asociados a la carta identidad), entonces la curva integral  $x(t) = (x_1(t), \dots, x_n(t))$  de Y con x(0) = a cumple

$$x_i'(t) = Y_i(x(t)),$$

y podemos usar el resultado anterior para asegurar la existencia de un flujo local del campo Y en algún abierto de  $\mathbb{R}^n$  conteniendo a.

# Flujo local en variedades

Si X es un campo de vectores suave en una variedad M, y si  $p \in M$ , el flujo local de X cerca de p se halla combinando lo anterior tras pasar una carta  $(U, \phi)$ :

- 2 Y tiene un flujo local  $\theta^Y(t, a)$  en  $\mathbb{R}^n$ ;
- $X = (\phi^{-1})_* Y$  tendrá el flujo  $\theta^X = \phi^{-1} \circ \theta^Y$  en el dominio adecuado.

#### **Teorema**

X campo de vectores suave,  $p \in M$ . Existe un entorno abierto V de p, un  $\delta > 0$ , y una aplicación suave

$$\theta: (-\delta, \delta) \times V \to M$$

que cumple

$$\theta(0,q) = q, \quad \theta'(t,q) = X_{\theta(t,q)}$$

para todo  $q \in V$  ( $\theta'(t,q)$  denota el vector tangente a la curva  $t \to \theta(t,q)$ ). Además, si c(t) es cualquier otra curva integral de X con  $c(0) = q \in V$ , entonces  $c(t) = \theta(t, q)$  para  $t \in (-\delta, \delta)$ .

## Curvas integrales maximales

#### **Teorema**

X suave,  $p \in M$ . Hay un único intervalo abierto I(p) conteniendo 0 tal que:

- Existe una curva integral  $c_p: I(p) \to M$  de X con  $c_p(0) = p$ .
- **3** Si  $c: I \to M$  es otra curva integral de X con c(0) = p, entonces  $I \subset I(p)$  y  $c(t) = c_p(t)$  para todo  $t \in I$ .

La  $c_p: I(p) \to M$  se llama la curva integral maximal de X por p.

### Lema

Si  $q = c_p(s_0)$ , entonces  $I(q) = I(p) - s_0$ , y en este caso,  $c_q(s) = c_p(s + s_0)$ .

## Dominio de flujo

Para construir el flujo maximal de un campo de vectores X, juntaremos las curvas integrales maximales pasando por cada punto de M.

### Definición

X un campo suave. Su dominio (maximal) de flujo es el abierto  $W \subset \mathbb{R} \times M$  definido como

$$W = \{ (t, p) : t \in I(p), p \in M \}$$

#### **Teorema**

Sea X un campo de vectores suave. Entonces, con la notación anterior,

- **1** W es un abierto en  $\mathbb{R} \times M$  conteniendo  $\{0\} \times M$ ;
- **2** la aplicación  $\theta:W\to M$  definida como

$$\theta(t,p)=c_p(t)$$

es suave.



# Flujo de un campo de vectores

#### Definición

 $\theta: W \to M$  se llama el flujo (maximal) de X.

#### Lema

Sea  $t \in \mathbb{R}$ . Si X es suave, denotamos por  $\theta : W \to M$  su flujo, y por  $\theta_t(*)$  a  $\theta(t,*)$ , entonces:

**1** si  $t \in \mathbb{R}$ , entonces el conjunto

$$W_t = \{ q \in M : (t,q) \in W \}$$

es un abierto de M;

- ullet el mayor conjunto en que puede definirse  $\theta_t$  es  $W_t$  y su imagen es  $W_{-t}$ ;
- $\bullet$   $\theta_t: W_t \to W_{-t}$  es un difemomorfismo con inversa  $\theta_{-t}$ .



## Campos completos

### Definición

Un campo X se llama completo si sus curvas integrales maximales están definidas en todo  $\mathbb{R}$ , i.e, si  $W=\mathbb{R}\times M$ , i.e, si  $\cdot X\cdot$  es el generador infinitesimal de alguna acción global de  $\mathbb{R}$  en M..

#### Lema

Sunpongamos que para un  $p \in M$  el intervalo de su curva maximal es de la forma  $I(p) = (\alpha(p, \beta(p)) \ con \ \beta(p) < \infty$ . Si  $t_n \to \beta(p) \ con \ t_n < \beta(p)$ , entonces la sucesión de puntos  $\theta(t_n, p)$  abandona cualquier subconjunto compacto de M.

### Corolario

Si un campo X tiene soporte compacto (i.e,  $\{p \in M : X_p \neq 0\}$  es compacto), entonces X es completo. Por consiguiente, en una variedad compacta, todo campo es completo.

# Derivada de Lie de un campo de vectores

X, Y, campos suaves en M;  $\theta:W\to M$  el flujo de X. Vamos a "derivar" Y a lo largo de las curvas integrales de X:

- A lo largo de la curva  $t \to \theta(t, p)$  el campo Y toma valores  $Y_{\theta(t,p)} \in T_{\theta(t,p)}M$ ;
- para cada t, usamos  $d\theta_{-t}$  para traerlos a p:  $d\theta_{-t}(Y_{\theta(t,p)}) \in T_pM$ ;
- los derivamos de la forma usual en el espacio vectorial  $T_pM$ .

#### Definición

La derivada de Lie de Y con respecto a X es el campo de vectores  $L_XY$  obtenido con este proceso.

### Teorema

Si  $f: M \to \mathbb{R}$  es una función suave, entonces

$$(L_X Y)_p(f) = X_p(Yf) - Y_p(Xf)$$



Luis Guijarro ( UAM)

### Corchete de Lie

### Definición

X, Y campos suaves. El corchete de Lie de X e Y es el campo de vectores [X,Y] definido como

$$[X.Y]_p(f) = X_p(Yf) - Y_p(Xf)$$

para cualquier función diferenciable.

- $[aX + bY, Z] = a[X, Z] + b[Y, Z], a, b \in \mathbb{R};$
- [Y, X] = -[X, Y];
- [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0 (identidad de Jacobi).

## Corchete de Lie (cont.)

#### Lema

 $F: M \to N$  una aplicación suave. Si  $X_1$ ,  $X_2$ , están F-relacionados con  $Y_1$ ,  $Y_2$ , entonces  $[X_1, X_2]$  está F relacionado con  $[Y_1, Y_2]$ .

Es más fácil recordarlo así:

$$F_*[X_1, X_2] = [F_*X_1, F_*X_2]$$

#### Teorema

X, Y, campos suaves con flujos  $\theta$ ,  $\sigma$  respectivamente. Entonces [X,Y]=0 sii para cada  $p \in M$  hay un  $\delta > 0$  tal que  $\sigma_s \circ \theta_t(p) = \theta_t \circ \sigma_s(p)$  para  $|s|, |t| < \delta$ .

# Distribuciones de *n*-planos