PROBLEMAS DE GEOMETRÍA DIFERENCIAL, MÁSTER

Primer semestre, 2009/2010.

Entrega: martes 15 de diciembre.

Semana 6.

- 1. Sea $f \in C^{\infty}$ una función sin puntos críticos, i.e, en todo punto $p \in M$ existe al menos un vector $v \in T_pM$ tal que $v(f) \neq 0$, Para cada $p \in M$, se define $\Delta_p \subseteq T_pM$ como $\Delta_p = \{u \in T_pM : df_p(u) = 0\}$. Demuestre que Δ es una distribución diferenciable e involutiva. Identifique las variedades integrales maximales.
- **2.** Sean $\Delta_1, \ldots, \Delta_h$ distribuciones involutivas de dimensiones d_1, \ldots, d_h respectivamente. Supongamos que en cada punto p,

$$T_pM = \Delta_1, p \oplus \cdots \oplus \Delta_h, p.$$

Demuestre que alrededor de cada p, existe un entorno coordenado (U, ϕ) con Δ_1 generada por los primeros d_1 vectores coordenados, Δ_2 generada por los siguientes d_2 's vectores coordenados, y así hasta Δ_h .

3. Si G es un grupo de Lie, dé una estructura natural de grupo de Lie en su fibrado tangente TG.