- 1. Sea $\mathbb{P}^2(\mathbb{R})$ es el plano proyectivo con la estructura diferencial estudiada en clase.
 - Si $\alpha: (-\pi/2, \pi/2) \to \mathbb{P}^2(\mathbb{R})$ es la curva cuyo punto $\alpha(t)$ corresponde a la recta $\ell(t)$ de ecuaciones

$$\ell(t) = \begin{cases} (\cos t)x + (\sin t)y = 0, \\ y + z = 0 \end{cases}$$

demuestre que α es una curva diferenciable, y halle sus funciones coordenadas en la carta (U, ϕ) de $\mathbb{P}^2(\mathbb{R})$ definida como

$$U = \{[x,y,z] \,:\, z \neq 0\}, \qquad \phi[x,y,z] = \left(\frac{x}{z},\frac{y}{z}\right).$$

- Sea $f: \mathbb{P}^2(\mathbb{R}) \to \mathbb{R}$ la función definida como $f([x, y, z]) = \frac{xy}{x^2 + y^2}$. Halle $\alpha'(0)(f)$.
- Escriba $\alpha'(0)$ en la base de vectores coordenados correspondiente a (U, ϕ) .
- 2. Sea M el conjunto de todas las circunferencias del plano \mathbb{R}^2 . Demuestre que M admite una estructura de variedad de dimensión 3 con un atlas de una sola carta. Para la estructura diferencial encontrada, conteste a las siguientes preguntas:
- (a) La aplicación $\pi: M \to \mathbb{R}^2$ que lleva una circunferencia a su centro es diferenciable.
- (b) Sea $f: M \to \mathbb{R}$ la función que asigna a una circunferencia C el valor del área del círculo con frontera C. Decida si f es una función diferenciable.
- (c) Sea $\alpha : \mathbb{R} \to M$ la curva donde $\alpha(t)$ es la circunferencia con centro (t, t^2) y radio t. Halle $\alpha'(t_0)(f)$.
- (d) Si C_0 es la circunferencia unidad centrada en el origen, escriba la matriz de $d\pi_{C_0}$ en las bases de vectores coordenados de la carta global de M y la carta usual en \mathbb{R}^2 .
- **3.** Sea S el hiperboloide de \mathbb{R}^3 de ecuación $x^2 + y^2 z^2 = 1$.
 - Demuestre que $\xi:(0,2\pi)\times\mathbb{R}\to S$ dada por $\xi(u,v)=(\cosh v\cos u,\cosh v\sin u,\sinh v)$ es una parametrización de la estructura diferencial de S.
 - $\blacksquare \text{ Haga lo mismo para } \chi: \{(\bar{u},\bar{v})\,:\, \bar{u}^2+\bar{v}^2>1\} \rightarrow S,\, \chi(\bar{u},\bar{v})=(\bar{u},\bar{v},\sqrt{\bar{u}^2+\bar{v}^2-1}).$
 - Si $p = (0, \sqrt{2}, 1)$, halle la matriz de cambio de la base $\left\{ \frac{\partial}{\partial \bar{u}} \Big|_p, \frac{\partial}{\partial \bar{v}} \Big|_p \right\}$ a la base $\left\{ \frac{\partial}{\partial u} \Big|_p, \frac{\partial}{\partial v} \Big|_p \right\}$, y viceversa.
- 4. Sea $\theta: \mathbb{R} \times M \to M$ una aplicación diferenciable. Supongamos que $\theta(0,p)=p$ para todo $p \in M$. Demuestre que
 - para cada $p \in M$ la curva $c_p : \mathbb{R} \to M$ definida como $c_p(t) = \theta(t, p)$ es una curva suave;
 - para cada $p \in M$, denotamos por X_p al vector $c'_p(0)$. Demuestre que X es un campo de vectores diferenciable en M.

- 5. Identificamos la matrices 2×2 con entradas reales con \mathbb{R}^4 (esto les da una estructura diferencial a partir de la estructura diferencial usual de \mathbb{R}^4). Sea M el subconjunto formado por aquellas matrices de rango 1.
 - 1. Demuestre que M es una subvariedad de \mathbb{R}^4 de dimensión 3.
 - 2. Si $C(t) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$, definimos la aplicación

$$\theta: \mathbb{R} \times M \to M, \quad \theta(t, A) = C(t) \cdot A$$

Compruebe que, efectivamente, $\theta(t,A) \in M$, y que θ es una aplicación suave. Por el problema 4, θ induce un campo de vectores X en M. Halle la función X(f), donde $f:M\to\mathbb{R}$ es la función que asigna a cada matriz A su traza.

6. Sea S el subconjunto de \mathbb{R}^4 definido como

$$S = \{ (x, y, z, t) : xy = zt = 1 \}$$

- Demuestre que S es una subvariedad de \mathbb{R}^4 ;
- Si Z es el campo de vectores de \mathbb{R}^4 dado por

$$Z = x\frac{\partial}{\partial x} - y\frac{\partial}{\partial y} + z\frac{\partial}{\partial z} - t\frac{\partial}{\partial t}$$

demuestre que el campo $X = Z|_S$ es un campo de vectores suave en S.

- Si $\xi:(0,\infty)\times(0,\infty)\to S$ es la parametrización $\xi(u,v)=(u,\frac{1}{u},v,\frac{1}{v})$, halle la expresión local de X con respecto a los vectores coordenados $\frac{\partial}{\partial u},\frac{\partial}{\partial v}$.
- Decida en qué puntos $p \in S$, la aplicación $F: S \to S$ definida como $F(x, y, z, t) = (x^2, y^2, z^2, t^2)$ es un difeomorfismo local.
- 7. Sea $\pi: S^2 \to \mathbb{P}^2(\mathbb{R})$ la proyección $\pi(x,y,z) = [x,y,z]$. Si X es un campo de vectores en S^2 , identificamos de la forma usual los vectores X_p con vectores $\widetilde{X}(p)$ en \mathbb{R}^3 . Esto es, para cada $X_p \in T_p S^2$, el vector $di_p(X_p) \in T_p \mathbb{R}^3$, por lo que en la base de vectores coordenados canónicos de \mathbb{R}^3 se escribe con unas coordenadas $(a_1(p), a_2(p), a_3(p)); \widetilde{X}(p)$ es entonces $(a_1(p), a_2(p), a_3(p)) \in \mathbb{R}^3$.
 - 1. Demuestre que existe un campo de vectores Z en $\mathbb{P}^2(\mathbb{R})$ con $d\pi_p(X_p) = Z_{\pi(p)}$ para todo $p \in S^2$ si y solamente si $\widetilde{X}(p) = -\widetilde{X}(-p)$.
 - 2. Sea $a: S^2 \to S^2$ la aplicación antipodal a(p) = -p. Demuestre que $da_p(X_p) = X_{a(p)}$ sii $\widetilde{X}(p) = -\widetilde{X}(-p)$.
 - 3. Supongamos que un grupo discreto G actúa en M y que M/G es una variedad cociente. Conjeture bajo que condiciones un campo de vectores X en la variedad M induce un campo de vectores Z en el cociente M/G mediante la fórmula $Z_{\pi(p)} = d\pi_p(X_p)$.