1. Demuestre que si $A \subset \mathbb{R}^n$ es abierto, y si $f: A \to \mathbb{R}$ es una función continua, entonces el grafo de f,

$$\Gamma_f = \{ (x, f(x)) : x \in A \} \subset \mathbb{R}^{n+1}$$

admite una estructura de variedad diferencial construyendo explícitamente un atlas.

2. Sean M y N variedades diferenciales de dimensiones m y n respectivamente. Supongamos que $f: M \to \mathbb{R}, g: N \to \mathbb{R}$ son funciones suaves. Demuestre que la función

$$h: M \times N \to \mathbb{R}, \qquad h(p,q) = f(p)g(q)$$

es suave.

- **3.** Definimos X como el conjunto de las funciones $f(x,y) = \frac{ay}{bx+c}$, donde a > 0, $b^2 + c^2 \neq 0$. En X escogemos
 - U es el subconjunto de funciones donde $b \neq 0$.
 - V el de funciones donde $c \neq 0$.
 - $\phi: U \to \mathbb{R}^2$, $\psi: V \to \mathbb{R}^2$ están definidas como $\phi(f(x,y)) = \left(\frac{a}{b}, \frac{c}{b}\right)$, $\psi(f(x,y)) = \left(\frac{a}{c}, \frac{b}{c}\right)$

Demuestre que X admite estructura de variedad diferencial (si es necesario en el punto adecuado del problema asuma que su topología es Hausdorff).

- **4.** Sea X el conjunto de las rectas en el plano afín \mathbb{R}^2 (pasen o no pasen por el origen). En X introducimos parametrizaciones como sigue:
 - $\xi: (-\frac{\pi}{2}, \frac{\pi}{2}) \times \mathbb{R} \to X$, $\xi(\theta, s)$ es la recta de ecuación $(\cos \theta)x + (\sin \theta)y + s = 0$
 - $\kappa:(0,\pi)\times\mathbb{R}\to X, \ \kappa(\bar{\theta},\bar{s})$ es la recta de ecuación $(\cos\bar{\theta})x+(\sin\bar{\theta})y+\bar{s}=0$

Demuestre que estas dos parametrizaciones inducen un atlas para alguna estructura diferencial en X.

5. Si $\mathcal O$ es el abierto de la variedad X del problema anterior definido como

$$\mathcal{O} = \left\{\,\ell, \text{ rectas en el plano afín de ecuación } Ax + By + C = 0 \,:\, \frac{|C|}{\sqrt{A^2 + B^2}} > 1\,\right\},$$

y si $F: \mathcal{O} \to S^1 \times (1, \infty)$ es la aplicación definida como

$$F(\ell) = \left(\left(\frac{A}{\sqrt{A^2 + B^2}}, \frac{B}{\sqrt{A^2 + B^2}} \right), \operatorname{dist}(\ell, 0) \right)$$

donde $\operatorname{dist}(\ell,0)$ es la distancia euclídea de la recta ℓ al origen de coordenadas,

- \bullet decida si F es diferenciable;
- \blacksquare decida si F es un difeomorfismo.

6. Sea M una variedad diferencial de dimensión $n, f: M \to \mathbb{R}$ una función diferenciable. Denotamos por \mathbb{R}_2 la variedad diferencial obtenida cuando consideramos en \mathbb{R} el atlas $\mathcal{A} = \{(\mathbb{R}, \phi(t) = t^3)\}$. Demuestre que la aplicación (!!) $F: M \to \mathbb{R}_2$ definida como $F(p) = (f(p))^{1/3}$ es diferenciable.

- 7. Sea C el cilindro en \mathbb{R}^3 de ecuación $x^2 + y^2 = 1$.
 - 1. Demuestre que C es subvariedad de \mathbb{R}^3 .
 - 2. Compruebe si la aplicación $\xi: \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3$ dada por

$$\xi(t,\theta) = (\cos\theta, \sin\theta, t)$$

induce una parametrización de la estructura diferencial de C.

- 3. Haga lo mismo para $\kappa : \mathbb{R} \times (-\pi, \pi) \to C$, $\kappa(\bar{t}, \bar{\theta}) = (\cos \bar{\theta}, \sin \bar{\theta}, \bar{t})$.
- 4. Demuestre que las dos cartas construidas anteriormente (que denotaremos (U, ϕ) , (V, ψ) respectivamente), dan un atlas diferencial de C.
- 5. Si $f: C \to \mathbb{R}$, $f(x, y, z) = x^2 y^2 + z^2$, escriba la expresión local de f en la carta (U, ϕ) . Decida si f es diferenciable en los puntos de U.

8. En S^2 tenemos la estructura diferencial inducida por el atlas \mathcal{A} de las cartas estereográficas. Demuestre que esa estructura diferencial coincide con la que recibe como subvariedad de \mathbb{R}^3 .