Universidad Autónoma de Madrid GEOMETRÍA III

Segundo cuatrimestre 2006-07

Hoja 1 de problemas: Topología de superficies

Instrucciones: Haz el ejercicio numerado con tu DNI módulo 5. Fecha de entrega: 22 de Marzo del 2007

1) De una acción de \mathbb{Z}_2 sobre el toro \mathbb{T} con espacio cociente homeomorfo al cilidro $S^1 \times [0,1]$. Halle también una acción de \mathbb{Z}_2 sobre el toro \mathbb{T} con cociente el toro \mathbb{T} .

2) Sean C_1 , C_2 variedades topológicas conexas de dimensión 1, e I el intervalo (a,b). Se define la suma conexa de C_1 y C_2 como el espacio cociente resultante de elegir intervalos abiertos I_i en C_i e identificar los puntos extremos de I_1 con los de I_2 en $C_1 \cup C_2$. Decida si las superficies $(C_1 \# C_2) \times I$ y $(C_1 \times I) \# (C_2 \times I)$ son homeomorfas.

3) Clasifica, salvo homeomorfismo, las superficies compactas y conexas S que cumplen las dos condiciones siguientes:

(a)
$$\chi_S \ge -1$$
;

(b) Existe $F: S \to \mathbb{R}^2$ continua y localmente inyectiva.

4) Sea S una superficie orientable. Tomamos una curva cerrada sin autointersecciones en S y la "engrosamos" para obtener un pequeo entorno suyo U. ¿Por qué U debe ser homeomorfo a un cilindro $S^1 \times (0,1)$? Construya ahora una nueva superficie recortando U de S y pegando discos en las dos fronteras resultantes. Demuestre que esta construcción nos da una superficie S'. ¿Qué relación existe entre la característica de Euler de S y de S'?.

5) Una superficie con frontera como la del dibujo se conoce como "un par de pantalones"; estos pueden pegarse entre ellos identificando las diversas componentes de la frontera (no es necesario identificar todos los puntos de la frontera en un pegado; estos pueden realizarse con sólo parte de la frontera). En este problema sólo consideraremos pegados donde las superficies obtenidas sean todas orientables.

Demuestre que no se puede obtener S^2 pegando un núnero finito de pantalones. Demuestre asimismo que no puede obtenerse el toro \mathbb{T} pegando tres o más pares de pantalones. ¿Y con dos? ¿Se atreve usted a generalizar a partir de qué número de pares de pantalones no puede obtenerse la superficie de género g?

