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ABSTRACT

These notes contain an introduction to the mathematical treatment of the porous
medium equation u; = A(u™), one of the simplest examples of nonlinear evolution equa-
tion of parabolic type, which appears in the description of different natural phenomena
related to diffusion, filtration or heat propagation. The notes begin with a discussion of
the relevance of the equation and some of its applications. The main body of the notes is
devoted to the study of the existence, uniqueness and regularity of a (generalized) solution
for the two main problems, i.e. the initial-value problem and the Dirichlet boundary-value
problem. Special attention is paid to the appearance of a free boundary, a consequence of
the finite propagation property.

Keywords. Porous medium equation; existence and uniqueness; Dirichlet and Cauchy
problems; classical, weak and strong solutions; finite propagation; free boundary.
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INTRODUCTION

The aim of these lectures is to provide an introduction to the mathematical theory of
the so-called Porous Medium Equation (in short PME), i.e. the equation

(0.1) ug = A(u™),

where u = u(z,t) is a scalar function and m is a constant larger than 1. The space variable
x takes values in R?, d > 1, while ¢ € R. Physical considerations lead to the restriction
uw > 0, which is mathematically convenient and currently followed, but not essential.

The PME is an example of nonlinear evolution equation, formally of parabolic type.
In a sense it is the simplest possible nonlinear version of the heat equation. Written in
divergence form

(0.2) up = div (D(u)Vu),

we see that the diffusion coefficient D(u)equals mu™~1. It is then clear that the equation
is parabolic only at those points where v > 0, while the vanishing of D implies that it
degenerates wherever u = 0. We say that the PME is a degenerate parabolic equation.

There are a number of physical applications where this very simple model appears in
a natural way to describe processes involving diffusion or heat transfer. Maybe the best
known of them is the description of the flow of an isentropic gas through a porous medium
[M]. Another important application refers to heat radiation in plasmas, [ZR]. Other ap-
plications have been proposed in mathematical biology, in water infiltration, lubrication,
boundary layer theory, and other fields.

In spite of the simplicity of the equation and of its applications, and due perhaps to
its nonlinear and degenerate character, a mathematical theory for the PME has been
developed only very recently. Though the techniques depart strongly from the linear
methods used in treating the heat equation, it is interesting to remark that some of the
basic techniques are not very difficult nor need a heavy machinery. What is even more
interesting, they can be applied in or adapted to the study of many other nonlinear PDE’s
of parabolic type. The study of the PME can provide the reader with an introduction
to some interesting concepts and methods of nonlinear science, like the existence of free
boundaries and the occurrence of regularity thresholds.

To begin with the mathematical treatment of the PME, a first and fundamental example
of solution was obtained around 1950 in Moscow by Zel’dovich and Kompaneets [ZK] and
Barenblatt [Ba], which found and analyzed a solution representing heat release from a
point source, i.e. a source-type solution. In fact, the solution has the explicit formula

Y |CE'|2 m—1



where [s]; = max{s, 0},
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and C' > 0 is an arbitrary constant. This solution was subsequently found by Pattle
[Pa] in 1959, and is often referred to in the literature as the Barenblatt, and also as the
fundamental or source-type solution, because it takes as initial data a Dirac mass: ast — 0
we have U(x,t) — M 6(x), where M is a function of the free constant C' (and m and d).

An analysis of this example shows many of the important features which were encoun-
tered later in the general theory. Maybe the most important is the observation that the
source-type solution has compact support in space for every fixed time, in physical terms
that the disturbance propagates with finite speed. This is in strong contrast with one of the
most contested properties of the classical heat equation, the infinite speed of propagation
(a nonnegative solution of the heat equation is automatically positive everywhere in its
domain of definition). In a sense the property of finite propagation supports the physical
soundness of the equation to model diffusion or heat propagation. The occurrence of this
phenomenon is a consequence of the degeneracy of the equation, i.e. the fact that the
coefficient D vanishes at the level u = 0.

The phenomenon of finite propagation gives rise to the appearance of a free boundary
separating the regions where the solution is positive (i.e. where “there is gas”, according
to the standard interpretation of u as a gas density, see below), from the “empty region”
where u = 0. Precisely, we define the free boundary as

(0.4) '=0P,NQ,

where @ is the domain of definition of the solution in space-time, P, = {(z,t) € Q :
u(z,t) > 0} is the positivity set, and O denotes boundary. This free boundary or propa-
gation front is an important and difficult subject of the mathematical investigation.

A second (and related) observation is that, though the source-type solution is continuous
in its domain of definition @ = R% x R, it is not smooth at the free boundary, again a
consequence of the loss of the parabolic character of the equation when u vanishes. In fact,
the function u™~! is Lipschitz continuous in @ with jump discontinuities on T' (i.e., there
exists a regularity threshold). On the contrary, the solution is C°°-smooth in P,. And we
are interested in noting that though u is not smooth on I', nevertheles the free boundary
is a smooth surface given by the equation

(0.5) t = c|z|m—D+2
where ¢ = ¢(C, m,d).

The systematic theory of the PME was begun by Oleinik and her collaborators around
1958 [OKC], who introduced a suitable concept of generalized solution and analyzed both



the Cauchy and the standard boundary value problems in one space dimension. The work
was continued by Sabinina, who extended the results to several space dimensions, and
Kamin, who began the analysis the asymptotic behaviour. Since the 70’s the interest for
the equation has touched many other scholars from different countries, notably Angenent,
Aronson, Bénilan, Brezis, Caffarelli, Crandall, Dahlberg, di Benedetto, Friedman, Gilding,
Kenig, Peletier and Pierre, to quote just a few names which made important contributions
to the basic theory.

There exists today a relatively complete theory covering the subjects of existence and
uniqueness of suitably defined generalized solutions, regularity, properties of the free
boundary and asymptotic behaviour, for different initial and boundary-value problems.
Many of these results have been extended to the natural generalizations of the equation,
the simplest of them being the so-called fast diffusion equation, which is the same equa-
tion (0.1) with exponent m < 1. More generally, we can consider the general Filtration
Equation, namely

(0.6) up = AP (u),

where ® is an increasing function : Ry — R,. Another extension avenue consists in
considering the PME with data of changing sign. Then we have to write the power in a
convenient way to account for negative values. The usual choice is

(0.7) ug = A(Ju|™ tu) .

Finally, we should mention that a parallel, sometimes divergent, sometimes convergent
story applies to the other popular nonlinear degenerate parabolic equation:

(0.8) ug = div (|VulP~2Vu),
which has also attracted much attention from researchers.

These notes are an enlarged version of the course taught at the Université de Montréal in
June-July of 1990, aimed at introducing the subject and its techniques to young researchers.
The material has been also used for a graduate course at the Universidad Auténoma de
Madrid. It is clearly impossible to cover the so many developments occurred in this field in
a short set of lectures. Therefore, a selection of topics was necessary. The leading idea in
writing these notes has been that of providing an elementary introduction to the questions
of existence, uniqueness and the main properties of the solutions, whereby everything is
derived from basic estimates using standard Functional Analysis and well-known PDE
results. The exposé begins with a reminder of the main applications. Chapters II and
IIT deal respectively with the Dirichlet and Cauchy Problems. For reasons of space the
treatment is restricted to integrable data, a sound assumption on physical grounds.

We hope that the material will make it easier for the interested reader to delve into
deeper or more specific literature. To guide this further study there exist some expository
works. The reader will find an account of many of the main results on the equation in the



excellent survey paper by Aronson [Ar]|, written in 1986. A previous survey was published
by Peletier [Pe] in 1981. In his book on Variational Principles and Free-Boundary Problems
[F], 1982, Friedman devotes a chapter to the PME. These works contain details of the proofs
and techniques. Another contribution, more in the form of a summary but including a
discussion of related equations and a very extensive reference list is due to Kalashnikov
[Ka] in 1987.

There is now a feeling that maybe the time is ripe for a complete version of the mathe-
matics of the PME and related nonlinear parabolic equations and free-boundary problems.
Actually, the outline here described originated as part of a bigger project with Don Aron-
son to supply a comprehensive and elementary introduction to the PME, in a way a natural
continuation of his survey [Ar|. I am very happy to acknowledge my indebtedness to him for
sharing with me his expertise in the field and for so many other reasons. I am also grateful
to Ph. Bénilan, H. Brezis, L. Caffarelli and S. Kamin for their advice and suggestions.

A comment about formula numbers. Inside the same chapter formulas are described by
their section and number; thus, (3.12) refers to the formula 12 in section 3; when referring
to a different chapter the chapter number is added, thus (I1.3.12). A similar notation
applies to the numbering of Theorems, Propositions, Lemmas and Corollaries.

Note on this version. A number of misprints have been eliminated with respect to the
original version. The author welcomes any further information, as well as comments on
the text.



CHAPTER I. APPLICATIONS

1. Flow of a Polytropic Gas Through a Porous Medium. According to Muskat [M]
the flow of an ideal gas through a porous medium can be described in terms of the variables
density, which we represent by u, pressure, represented by v, and velocity, represented by
V', which are functions of space x and time ¢t. These quantities are related by the following
laws:

(i) Mass balance
(1.1) put+V-(uV)=0.

(ii) Darcy’s Law, [Dr], an empirical law which describes the dynamics of flows through
porous media

(1.2) pV =—-kVu.
(iii) Equation of State, which for perfect gases states that
(13) UV =17 u” s

where the exponent v is 1 for isothermal processes and larger than 1 for adiabatic ones.
The parameters p (the porosity), u (the viscosity), k (the permeability) and vy (the refer-
ence pressure) are assumed to be positive and constant, which constitutes an admissible
simplification in many practical instances. An easy calculation allows to reduce (1.1)-(1.3)

to the form
ug = cA(u™),

with m = 1+ and ¢ > 0 a constant, which can be easily scaled out, thus leaving us with
the PME. Observe that in the above applications the exponent m is always equal or larger
than 2. Mathematically constants that can be scaled out play no role, so it is now the
custom to define the mathematical pressure by the expression

(1.4) v=Toymt

and write Darcy’s law in the form

(1.5) V=-Vv=-mu" *Vu.

Then the mass balance is just u; + V - (v V) = 0. In all the formulas the operators
V.- =div, V = grad and A, the Laplacian, are supposed to act on the space variables

x=(x1, - ,xq).

Let us remark that the consideration of flows where p, i and k are not constants, but
functions of space and time, provides us with a natural generalization of the PME.



2. Heat transfer with temperature-dependent thermal conductivity. A second
important application happens in the theory of heat propagation. The general equation
describing such a process (in the absence of heat sources or sinks) takes the form

(2.1) cpaa—f = div (kVT),

where T is the temperature, ¢ the specific heat (at constant pressure), p the density of the
medium (which can be a solid, fluid or plasma) and & the thermal conductivity. In principle
all these quantities are functions of z € R3 and ¢t € R. In the case where the variations of
¢, p and K are negligible we obtain the classical heat equation. However, when the range
of variation of the temperatures is large, say hundreds or thousands of degrees, such an
assumption is not very reasonable. The simplest case of variable coefficients corresponds
to constant ¢ and p and variable k, a function of temperature, kK = ¢(T). We then write
(2.1) in the form

(2.2) T, = A®(T).

This is the generalized PME, called Filtration Equation in the Russian literature. The
constitutive function @ is given by

1 [T
(2.3) O(T) = 5/0 ¢(s)ds.
If the dependence is given by a power function
(2.4) K(T)=aT",
with a and n > 0 constants, then we get
(2.5) T, =bA(T™) with m=n+1,

and b = a/(cpm), thus the PME but for the constant b which is easily scaled out. In case
we also assume that cp is variable, ¢ p = 9(T), we still obtain a generalized PME though
we have to work a bit more. Thus, we introduce a new variable 77 by the formula

(2.6) tr:mmzz;w@@.

We then obtain (2.2) for the variable 77 but now

(2.7) o(T") = / b(s) ds

where T is expressed in terms of T’ by inverting (2.6), i.e. T = ¥~}T"). Again, if
the dependences are given by power functions we obtain the PME with an appropriate
exponent.

Zel’dovich and Raizer [ZR, Chapter X] propose the above model to describe heat prop-
agation by radiation occurring in ionized gases at very high temperatures. According to
them, a good approximation of the process is obtained with the PME for an exponent m
close to 6.



3. Other applications. The previous application shows how naturally the PME ap-
pears to replace the classical heat equation in processes of heat transfer (or diffusion of a
substance) whenever the assumption of constancy of the thermal conductivity (resp. dif-
fusivity) cannot be sustained, and instead it is reasonable to assume that it depends in a
power-like fashion on the temperature (resp. density or concentration). Once the theory
for the PME began to be known, a number of applications have been proposed.

A very interesting example concerns the spread of biological populations. The simplest
law regarding a population consisting of a single species is

(3.1) up = div (k Vu) + f(u),

where the reaction term f(u) accounts for the interaction with the medium, which is
supposed to be homogeneous. According to Gurtin and McCamy [GMC] when populations
behave so as to avoid crowding it is reasonable to assume that the diffusivity x is an
increasing function of the population density, hence

(3.2) k= ¢(u), ¢ increasing.

A realistic assumption in some particular cases is ¢(u) = awu. Disregarding the reaction
term we obtain the PME with m = 2.

Of course, a complete study must take into account at least the reaction terms, and
very often, the presence of several species. This leads to the consideration of nonlinear
reaction-diffusion systems of equations of parabolic type containing lower order terms,
whose diffusive terms are of PME type. Such equations and systems constitute therefore
an interesting possibility of generalization of the theory of the PME. Among the many
works on the subject let us mention the early papers of Aronson and Weinberger [AW] and
Aronson, Crandall and Peletier [ACP].



CHAPTER II. THE HOMOGENEOUS DIRICHLET PROBLEM

In this chapter we consider the first boundary-value problem to the PME in a spatial
domain  C R%, d > 1, which is bounded and has a smooth boundary. We also consider
homogeneous Dirichlet boundary conditions in order to obtain a simple problem for which
a fairly complete theory can be easily developed.

A consequence of the degeneracy of the equation is that we do not expect to have
classical solutions of the problem when the initial data take on the value u = 0, say, in an
open subset of €.

Therefore we need to introduce an appropriate concept of generalized solution of the
equation. At the same time we have to define in what sense the initial and boundary
conditions are taken. In many cases this latter information can be built into the definition
of generalized solution.

There are different ways of defining generalized solutions, the most usual idea being
that of multiplying the equation by suitable test functions, integrating by parts some or
all of the terms and asking from the solution a regularity that allows this expression to
make sense. In this case we say that the solution is a weak solution.

In any case the concept of generalized solution changes the meaning of the term solution,
so we have be careful to ensure that the new definition makes good sense. First of all, the
new solutions must be so defined that they include all classical solutions whenever the latter
exist. Moreover, a concept of generalized solution will be useful if the problem becomes
well-posed for a reasonably wide class of data, i.e. if a unique such solution exists for each
set of data in a given class and it depends continuously on the data in the appropriate
topologies. As we will see, it can happen that several concepts of generalized solution
arise naturally. It is then important to check that they agree in their common domain of
definition (i.e. for data which are compatible with two or more of them). Selecting one
them as the preferred definition depends of several factors, the most important being in
principle that of having the largest domain. However, one could consider a more restrictive
definition which still covers the applications in mind if it involves simpler statements or
more natural concepts, or when it leads to simpler proofs of its basic properties.

In this chapter we introduce a suitable concept of weak solution and prove the existence
and uniqueness of a weak solution for all initial data in L™*1(Q2). We then extend our
definition to encompass data in L'(€2). By means of appropriate estimates we also establish
the main properties of these solutions. In particular, we show that the solution satisfies
the equation in a strong sense.

Though a strong solution of the Dirichlet Probem will not be in general a classical
solution, it is a continuous function in Q = Q X (0, c0), with a uniform Hélder modulus of
continuity away from ¢ = 0.

Finally, we establish the existence of a special solution of the form U(z,t) = f(z)t~®
with decay rate & = 1/(m — 1). This solution is unique and acts as an absolute upper
bound for all solutions of the Dirichlet Problem. The existence of such a solution is a
typical nonlinear effect, which is not possible in the linear theory.

Notations. They are rather standard. As usual, R4 = (0,00). For a subset E of a metric



space E denotes its closure. For vectors u and v € R? the scalar product is denoted
by u-v. If Q ¢ R? is the domain where the spatial variable lives, then 92 denotes its
boundary, while @ is the cylinder 2 x R, and for 0 < T < oo we write Qr = Q x (0,T)
and QT = Q x (T,00). The lateral boundary of @ is denoted by ¥ = 9 x [0, c0), while
Y =0Q x [0, T]. Integrals without limits are understood to extend to the whole domain
under consideration, €2, Q or Q.

Concerning functional spaces, C(£2), C*¥(Q) and C°°(Q) denote the spaces of continuous,
k-times differentiable and infinitely differentiable functions in Q, C2°(£2) denotes the C'>°-
smooth functions with compact support in € and D’(Q2) the space of distributions. For
1 < p < oo we denote the usual Lebesgue spaces by L?(€) with norm || - ||, while H(Q)
and H}(Q) are the usual Sobolev spaces, and the subscript loc refers to local spaces. The
same applies to functions defined in Q or Q7 or their closures. C?!(Q) denotes those
functions being twice differentiable in the space variables and once in time. For a function
u(z,t) we use the notation u(t) to denote the function-valued map t — u(-,t).

Finally, the symbols [s];, [s]|T mean max{s, 0}, i.e. the positive part of the number s,
and [s]_ = [s]” = max{—s, 0}, the negative part. The function sign{ is defined as

signd (s) =1 for s >0, signi(s) =0 for s <0.

1. Weak solutions. We look for solutions v = u(z,t) of the problem

(1.1) ur = A(u™)  inQr,
u(z,0) = up(z) in £,
(1.3) u(z,t) =0 in Xp,

where m > 1 and ug is a nonnegative, locally integrable function defined in €2, a bounded
domain in R%, d > 1, with boundary T' = 092 € C?** « € (0,1). The time T can be finite
or infinite. Though we will obtain solutions for all 7' > 0, i.e. with T' = o0, it is interesting
for technical reasons to allow T" < oo.

First of all we introduce a suitable concept of weak solution for problem (1.1)—(1.3).
Following [OKC] and [Sa] we propose

Definition 1. A nonnegative function u defined in Qr is said to be a weak solution of
problem (1.1)-(1.3) if

i) u™ e L?(0,T: H}(Q))

i) w satisfies the identity

(1.4) {V(u™) Vo —uptdedt = | up(z)e(x,0)dx
! [

for any function ¢ € CY(Qr) which vanishes on ¥ and fort ="T.
In the above definition 1o should belong at least to L'(Q) for (1.4) to be well defined.

10



Observe that the equation is satisfied only in a weak sense since we do not assume
that the derivatives appearing in equation (1.1) are actual functions, but merely exist in
the sense of distributions. In fact, by specializing ¢ to the test function space CZ°(2) we
observe that uy = A(u™) in D'(Qr). Moreover, the boundary condition (1.3) is hidden
in the functional space H{(Q). Finally, the initial condition (1.2) is built into the integral
formulation (1.4), and is actually satisfied in a very weak sense. Let us show as an example
of the scope of the above definition how another natural way of defining a weak solution
is included in Definition 1.

Proposition 1. Let u be a nonnegative function defined in QT and such that
i) u™ e L?(0,T: H}(Q))
i) w satisfies the identity

(1.5) //{V(um) -V —upitdadt =0

for any function ¢ € C°(Qr).

iii) for every t > 0 we have u(t) € LY (Q) and u(t) — ug ast — 0 in L1(Q).

Then u is a weak solution to (1.1)—(1.3) according to Definition 1.
Proof of Proposition 1. Suppose that u is as in the statement. We have to prove that (1.4)
holds. Tt is very easy to see that (1.5) continues to hold when ¢ € C1(Qr) with ¢ = 0 on
the boundary of Qr (Hint: approximate ¢ with ¢, € C2° and pass to the limit).

Now if ¢ is as in (1.4) we take a cut-off function ( € C*°(R), 0 < ¢ < 1 such that
C(s) =0for s <0,((s)=1for s >1and ¢ >0, and let (,(t) = ((nt). Applying (1.5)
with test function ¢(z,t)(,(t) gives

/ [ (5™ -6~ upn) ot = / [ wetns = [ [ st
Qi/n
//(U—U0¢Cnt+//uo o(x,t)Cn i (t) .

Ql/n Ql/n
Fix € > 0 and let n be so large that ||u — uglly < e for 0 < ¢ < 1/n. Then the first

integral in the last member can be estimated as €||¢||oc | (ntdt = €]|¢||oo Which vanishes
as n — 0o, € — 0. As for the last term we get

//uo (2, ) (£) et — /uo(aj)go(a:,%)(h

Ql/n

// uopiCndrdt — / wo(x

Ql/n
as n — oo, which proves (1.4). O

11



Of course, a classical solution of problem (1.1)—(1.3) is automatically a weak solution
of the problem. Moreover, though the explicit source-type solution U(z,t) = U(z,t;C) of
the Introduction is not a weak solution because of its singular initial data and because the
boundary data are not necessarily 0, we can obtain from it weak solutions by the following
method. Take xy € 2, let 7 > 0 and let the constant C' in U be small enough. Then the
function

(1.6) w(z,t) =U(x — xo,t +71;C)

is a weak solution of the Dirichlet Problem (1.1)—(1.3) in any time interval (0,7) in which
the free boundary lies inside of €2, i.e. if

T + 7 < edist(xg, 0Q)4m—D+2

cf. (0.5). Observe that w is not a classical solution.

2. Uniqueness of weak solutions. The uniqueness of weak solutions as defined above
is very easily settled by means of an interesting trick, consisting in using a specific test
function.

Theorem 2. Problem (1.1)-(1.3) has at most one weak solution.

Proof. Suppose that we have two such solutions u; and uy. By (1.4) we have

(2.1) //(V(u’ln —uy') - Vo — (u1 — uz)p) dedt = 0
Qr

for all test functions ¢. We want to use as a test function the one introduced by Oleinik,

T
(2.2) n(x,t) = tf(uin(:v, s) — ug(z, s))ds, fo<t<T
0 ift>T,

where T > 0. Even if 7 does not have the required smoothness we may approximate it (by
mollification) with smooth functions 7. for which (1.4) will hold. Since

(2.3) = —(ul" —uy') € L*(Qr),
(2.4) Vn = /(Vu’ln — Vui")ds € L*(Qr),

t

and moreover 7(t) € H3(2) and n(T) = 0, we may pass to the limit ¢ — 0 and (1.4) will
still hold for n. Hence

[ =y -+ [[ (70 —ag - /T (V! = V) ds) =0,

12



Integration of the last term gives

T
1
(2.5) // —uy') (U — ug dxdt+§/ /(VUT—VU?)dS)Zdaﬁzo.
0

Since both terms are nonnegative, we conclude that u; = us a.e. in Q. [

As a consequence of the uniqueness of weak solutions we have

Corollary 3. There exist initial data for which the problem does not admit a classical
solution.

Proof. This is a rather standard argument. Firstly, we note that a classical solution of
problem (1.1)—(1.3) is necessarily a weak solution in our sense. Secondly, we remark that
w(z,t) defined in (1.6) is a weak and nonclassical solution. By the uniqueness result there
cannot be any other weak solution of (1.1)—(1.3) with the same data, hence no classical
solution exists. [

3. Existence of a weak solution. Energy estimate.

In a first approach we establish existence under the assumption that the data belong to
the space L™1(Q).

Theorem 4. Suppose that ug € L™T1(Q),ug > 0. Then problem (1.1)-(1.3) has a weak
solution with infinite time interval, T = oo.

The proof will be divided into several steps. First, we will consider the case of a smooth
function wug vanishing on the border and prove the result, obtaining at the same time
an important estimate. This estimate will allow us to solve the general problem by an
approximation technique.

First step: We assume that ug is a nonnegative and C'°-smooth function with compact
support in €.

We begin by constructing a sequence of approximate initial data wug, which does not
take the value u = 0, so as to avoid the degeneracy of the equation. In our case we may
simply put

(3.1) Uon () = up(z) + % .
We now solve the problem

(3.2) (un)e = Aluy') in Q,
(3.3) Upn(7,0) = ugy () in  Q,
(3.4) U (2,t) = % on X



In view of the data we expect the solution to be bounded by

1 _
Sup(r,t) <M+~ i Q
n

S|

(3.5)

by the Maximum Principle, where M = sup(ug). Therefore, we are dealing in practice
with a uniformly parabolic problem. Actually, problem (3.2)—(3.4) has a unique solution
u, € C*1(Q). The rigorous justification uses a trick consisting in replacing equation (3.2)
by

(3.27) (up)¢ = div(ay,(u) Vu) ,

where a,,(u) is a positive and smooth function, a,(u) > ¢ > 0, and ay,(u) = mu™"! in

the interval [1/n, M + 1/n]. This equation is not degenerate and a unique solution wu,

of (3.27), (3.3), (3.4) exists in the space C>!(Q) by the standard quasilinear theory, cf.

[LSU, Chapter 6], and it satisfies (3.5). Moreover, by repeated differentiation and interior

regularity we are able to conclude that w,, € C°°(Q). Now, due to the definition of a,,,

equations (3.2) and (3.2’) coincide on the range of wu,,. In this way problem (3.2)-(3.4) is

solved in a classical sense and the degeneracy of the equation has been avoided.
Moreover, again by the Maximum Principle

(3.6) Upt1(z,t) <up(z,t) in Q
for all n > 1. Hence we may define the function

(3.7) w(z,t) = lim wuy,(z,t), (z,t) € Q.

n— 00

Then w,, converges to u in LP(Q2) for every 1 < p < co. In order to show that this u is the
weak solution of problem (1.1)—(1.3) we will need some estimates. First of all, from (3.5)
we get

(3.8) 0<u<M in Q.

We now control the spatial gradient V(u"). Multiply equation (3.2) by ¢, = ul;’ — (%)m
and integrate by parts in Q1 to obtain

1 1
m |2 _ m o
// |Vup|*dzdt = / <7m f 1u0n(x) —nm> uon () dx
Qr

Q

(3.9) —/ <mi Tun (@, T) = n%) Un (7, T)dz

1 1\ 1 1
Si/(u(](a:)%——) da:+—(M+—>/da:.
m+ 1 n nm n
Q

Since T is arbitrary, it follows that {Vu™} is uniformly bounded in L?(Q), and therefore
a subsequence of it should converge to some limit 1 weakly in L?(Q). Since also u”* — u™
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it follows that 1y = Vu™ in the sense of distributions. The limit is uniquely defined so that
the whole sequence must converge to it. Passing to the limit in (3.9) we get the following
important estimate

(3.10) (m+1)//|Vum|2dxdt+/um+1(x,T) dx < /ugn”“(x) dx ,
Qr

called the Energy Estimate. On the other hand, since u,, € C(Q), uy(z,t) = 1 on
and 0 < u < u,,, we have
lim wu(z,t) =0
(z,t)—>%

with uniform convergence. Hence u™ (-, t) € Hj(2) for a.e. t > 0.

Finally, since u,, is a classical solution of (1.1), it clearly satisfies (1.4) with ug replaced
by uo,. Letting n — oo we obtain (1.4) for u. Therefore, u is a weak solution of (1.1)—(1.3).

Let us remark, to end this step, that if we have two initial data wug, g such that ug < 1,
then the above approximation process can produces ordered approximating sequences,
Uon < Ugpn. By the classical maximum principle, [LSU], we have u,, < @, for every n > 1.
Hence in the limit v < 4.

Second step: We assume that ugy is bounded and vanishes near the boundary.

The method of the previous step can still be applied. According to the quasilinear
theory, cf. [LSU], now the approximate solutions u,, € C*(Q) N C*1(Q UX) and are not
continuous down to ¢ = 0 unless the data are, but instead take the initial data in LP(€2)
for every p < oo. Passage to the limit offers no novelty. Comparison still applies.

Third step. General case.
In the general case ug € L™T1(2) we take an increasing sequence of cutoff functions ¢y
which vanish near I', and consider the sequence of approximations of the initial data

(3.11) uok () = min{wug(x)(k(x), k} .

Using Step 2 we solve problem (1.1)—(1.3) with initial data ug; and obtain a unique
weak solution ug. By the comparison remark ugy1 > ug in Q. On the other hand, by
estimate (3.10) {uy} is bounded uniformly in L°°(0, 00 : L™1(Q)) and Vui® is likewise in
L?*(Q). Hence, {ug} converges a.e. to a function u € L>(0,00; L™T1(Q)), Vui® converges
weakly in L2(Q) to Vu™ and (3.10) holds for u. It follows that u™ € L2(0,00; H}(Q)).
Finally, equation (1.4) is satisfied. O

An alternative proof, where Steps 2 and 3 are replaced by a single approximation step
using a stability result, will be given at the end of §6. On the other hand, we see from
the proof that the choice of L™T1(Q) as the space for the initial data depends essentially
on estimate (3.10). A priori estimates are one of the most powerful and widely used tools
in the study of P.D.E. This approach will be stressed in our treatment of the existence,
uniqueness and qualitative properties of solutions to the different problems.
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4. Absolute Bound in Sup Norm. Before we proceed, we will derive another important
estimate, the boundedness of the solutions for positive times. This bound will give us a
needed control on u™.

Proposition 5. Fvery weak solution u of (1.1)-(1.3) is bounded in QT for every T > 0.
Moreover, we have an absolute decay estimate of the form

(4.1) w(z,t) < C(m,d) RmT ¢~ w1,

where C(m,d) > 0 and R is the radius of a ball containing Q.
By absolute we mean that the bound does not depend on the data we are considering.

Proof. Let us first consider the case where ug is continuous and vanishes on 02. We
will construct an explicit super-solution z(z,t) with which to compare the approximate
solutions wu, to (3.2)—(3.4).

In fact we take a ball B of radius R strictly containing €2, i.e. with I' C B, and consider

(4.2) z(x,t) = A(t+7)"%(1 — ba:2)ﬁ

for suitable constants A, T, a, 3,b > 0. Setting b = R~2 will make the function positive in
B % (0,00), hence for all large n

(4.3) U (2,t) = % < z(xz,t) in X

if A, 7,a, are kept fixed. Moreover, we will have
(4.4) won () < 2(z,0)

whenever 7 is small enough. Finally setting @ = 1/(m — 1) and 8 = 1/m we obtain

(4.5) 2zt — A(Z™) >0 = (up) — Aup)
whenever
(4.6) A>R7T(2d(m— 1)) 7T

With those choices, the classical Maximum Principle implies that w, (z,t) < z(z,t) in Q,
hence in the limit u(z,t) < z(x,t). Since 7 could be arbitrarily small, we will let 7 — 0
and finally get

(4.7) u(z,t) < At==T <1 . (%)2> v

By approximation (4.7) holds for every weak solution. [
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5. Existence of classical solutions.

Once a solution of the equation is constructed in some generalized sense, it is an impor-
tant point to decide if it is indeed a classical solution. Though we know that in general
this will not be the case, it can happen under additional requirements on the data. We
prove in this section that when the initial data are smooth and positive inside €2, so that
the equation is parabolic nondegenerate, we obtain a classical solution by essentially using
the standard quasilinear theory.

Proposition 6. Let uy € C(Q2) be positive in Q and vanish on its boundary T, and let

u be the corresponding weak solution. Then u € C*(Q) N C(Q), u is positive in @ and
vanishes on 3.

Proof. The first step will be proving that for every point zg € £ where ug(zg) > 0 we
will have wu(zg,t) > 0 for every ¢ > 0. This is done by the classical method of barriers,
comparing u with a suitable source-type solution. Actually, if B = B,.(x) is a ball of
radius r where ug is positive, say ug(z) > ¢ > 0 for x € B, we consider the Barenblatt
function

u=U(x —x9,t +1;C).

We may choose C' small enough so that ug(xz) > u(x,0) in B, and also that the support
of u is contained in @Qr for a given T' > 0. This support is of the form & = {(z,t) :
cle — x| < (t+ 1)} with vy =d(m —1) 4+ 2 (cf. (0.5)), 2 € C*°(S) and @ vanishes on the
lateral boundary of S.

Hence, by the classical Maximum Principle applied in S N 7 to u and a smooth
approximation to u we conclude that w > @ in S, hence u(z,t) is bounded uniformly
away from 0 in a neighbourhood of the form N = By x (0,T), By = B,(xg).

Therefore, when taking the limit uw,, — w in the approximation process of Theorem 4,
we can apply in N the regularity theory of quasilinear nondegenerate parabolic equations,
and conclude that v € C°°(N) and the initial data are taken continuously in Bj.

The fact that u vanishes continuously on X is a simple consequence of the approximation
process (3.1)—(3.4). In fact u < up,u, € C®(Q) and up(z,t) =+ on X. O

Of course, if moreover ug is smooth, e.g. if ug € C*(Q) for some k > 0, this regularity
is reflected in the regularity of u near ¢ = 0.

6. The basic L'-estimate.
This section contains another very important estimate which allows to develop an exis-
tence, uniqueness and stability theory in the space L(().

Proposition 7 (L!-Contraction Principle). Let ug, o be two initial data in L™ 1(Q)
and let u,u be their respective weak solutions. Then for everyt > 1 >0

(6.1) / e t) — iz, )] Fdz < / fuz, 7) — iz, )] e < / (o () — o ()] *da
so in particular
(6.2) u(t) —a(t)]|1 < [lu(r) —a(7)][1 < luo — doll:-
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Proof. Let p € C1(R) be such that 0 < p < 1, p(s) =0 for s < 0, p'(s) > 0 for s > 0, and
consider the approximate solutions u,,, i, to problem (3.2)-(3.2) with same n. We have in
Qfort>0

(Observe that p(ul™ — @) = 0 on X). Therefore, letting p converge to the sign function

signg’, and observing that %[un — Q)T = (un — Gn)s signgd (uy, — Gy), cf. [GT], we get

% [, — ] Tdz <0,
which implies (6.1) for wu,,@,. Passing to the limit we obtain (6.1). To obtain (6.2),
combine (6.1) applied first to u and @ and then to @ and u. O

The above proof establishes the uniqueness of solutions of problem (1.1)—(1.3) by a
technique (the L! technique) which is completely different from that of Theorem 4. It is
interesting to remark that estimate (6.1) not only implies L'-dependence of solutions on
data, but also a comparison theorem.

Corollary 8. If ug < ug a.e. in 2, then u < 4 a.e. in Q.
Another consequence of the estimate is

Corollary 9 (Continuity in L!). The weak solution of (1.1)-(1.3) can be viewed as a
continuous curve in L1(Q), i.e. u € C([0,00) : L}(£2)).

Proof. When ug € C(£2) is positive in © and vanishes on 952, we have shown in §5 that
u € C(Q), hence u € C([0,T] : L*(2)). For general ug, we approximate with functions
as above and write, using Proposition 7,

[u(r) = wolly < [lul(r) — a(7)lly + [Juo — dolly + [[a(7) — dollr <

< 2[|ug — do|1 + ||G(T) — dol|1.

Therefore, as Gy — ug and 7 | 0 we get u(7) — wug. This settles the continuity at ¢ = 0.
To settle it at any other time ¢t > 0 we may displace the origin of time and argue as before
at the times ¢t and ¢t + 7. [

Remark (The proof of Theorem / revisited). To end this section we give an alternative to
steps 2 and 3 of the existence proof of Theorem 4, §3. Now that we know that solutions
depend continuously on the data in L'(Q), we may approximate a general data ug €
L™TL(Q) with ug,, € C(Q), apply step 1 and pass to the limit using Proposition 7 and
the Energy Estimate (3.10).
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7. Solutions with data in L}(Q).

The continuous dependence with respect to the L' norm allows us to extend our ex-
istence result and consider as data any nonnegative function ug € L(£2). The idea is to
approximate the initial data with a sequence ug, € L°(Q2) such that ug, — ug in L'(2),
obtain solutions u, with these data and use Proposition 7 to pass to the limit in u,, as
n — oco. We thus obtain a function u € C([0,00) : L1(Q)) such that u(0) = ug. The
question is, is u a weak solution of (1.1)-(1.3) according to Definition 17

To begin with, it turns out that in general u does not satisfy the condition u™ €
L2(0,00 : H}(Q)), which is important in giving a sense to identity (1.4), therefore we must
change our definition of weak solution. It happens that, thanks to the absolute bound, in
passing to the limit n — oo in the sequence u,, considered above we encounter difficulties
in checking that u is a weak solution only near ¢ = 0. A convenient definition to cover
solutions with L' data is

Definition 2. A nonnegative function u € C([0,00) : L*(2)) is said to be a weak solution
of problem (1.1)-(1.3) if
i) € I2,(0, 00 : HH(O)

i) w satisfies the identity
(7.1) //{Vum -V — uptpdrdt = 0
Q

for any function p € C1(Q).
i) u(0) = ug.

We immediately see that a weak solution in the sense of Definition 1 is a also a weak
solution in the present sense if we can ensure that it belongs to the class C([0, 00) : L1(£2)).
We will come back to the relation between both definitions later.

Theorem 10. There exists a unique weak solution of Problem (1.1)-(1.3) with given
initial data ug € LY(Q), ug > 0, where weak solution is understood in the sense of Definition
2. The Contraction Principle holds for these solutions.

Proof. (i) Existence. We construct approximations u,, as before and pass to the limit using
the L1 and L™ estimates derived in Propositions 5 and 7 plus the energy estimate (3.10).

(ii) Uniqueness. Let uj,us be weak solutions of the problem with same initial data
up. Given € > 0 there exists 7 > 0 such that |Juj(t) — uo|l1, |Jua(t) — wolls < e for
0 <t < 7. Consider now the functions vy (z,t) = uy(z,t + 7), va(x,t) = uz(x,t + 7). Both
vy and we satisfy the assumptions of Proposition 1, hence they are weak solutions of the
same problem with initial data u(z, 7), us(x,7) resp. In particular these initial data are
bounded functions. Hence, by Proposition 7 we get for ¢ > 7.

lu1(t) — uz(t) |1 = [[v1(t — 7) —va(t — 7)1
< o1(0) = v2(0)[|1 = [Jur (1) — ua(7)|1 < €.

We may now let € — 0 to get uy(t) = uz(t) a.e. for every ¢ > 0.
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(iii) The validity of the Contraction Principle (Proposition 7) is just a consequence of
the limit process. [

We can now establish the relationship between both definitions.

Proposition 11. A weak solution in the sense of Definition 1 such that uw € C([0,T) :
LY(Q)) is also a weak solution in the sense of Definition 2. Conversely, a weak solution in
the new sense is also a weak solution according to Definition 1 if and only if ug € L™T1(Q).

Proof. The first statement is obvious. This applies in particular whenever ug € L™*1(Q).
Thus, both definitions coincide in this case.

Now let u be a solution in the sense 2 with ug € L(€2). Then Definition 1 is satisfied if
Vu™ € L?(0,T : H}(2)). Tt can be proved that the Energy Estimate holds with equality
sign. But then the bound on Vu™ is equivalent to the condition uy € L™1(Q). O

Definition 2 has the advantage over Definition 1 that both the comparison and stability
results proved in the last section are immediately seen to hold. It is also obvious according
to this definition that, if u(z,t) is a solution with data wug(z) and 7 > 0, then v(z,t) =
u(z,t — 7) is the solution corresponding to data vg(z) = u(z, 7) (this is usually known as
the semigroup property).

8. Further regularity.

Though solutions with data which are not stricly positive need not be classical solutions,
they enjoy some interesting regularity properties that we derive as a consequence of new
estimates. We recall that, as a consequence of estimate (3.10) the L™ -norm of a solution
u is nonincreasing in time. By the same method we can obtain monotonicity in all the LP
norms, 1 < p < oo, by using other powers of u as test functions in the calculation. Thus
we obtain the following monotonicity statement for the LP-norms of the solutions.

Proposition 12. For every ug € LP(Q2),p > 1, we have u(-,T) € LP(Q) for any T > 0

and

(8.1) [u(, 0l < fluollp -
Proof. It is based on the estimate

4 gtm 1 1
(8.2) qu /\v 4 +q+—1 wIt (2, T)d < q—|—1/ Wt (2)dz

valid for ¢ > 0. To get the case p = 1 we pass to the limit as ¢ — 0.

The preceding estimate is not very important in our situation since we have a very precise
decay result thanks to Proposition 5. More important is the investigation on regularity of
the derivative u; appearing as one of the members of the equation. Our results will lead
in the next section to the concept of strong solution. We begin with an “energy” estimate
for the time derivative.
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Proposition 13. (u?); € L?(Q7) for every ¢ > (m + 1)/2 and every 7 > 0. The basic
estimate s

(8.3) miiml)z//t\%(u(m“)/z)\z+T/|Vum(a:,T)|2da:g/ IV Pt
Qr Q Qr

valid for all T > 0. From this we obtain the decay rate

(8.4) // |(uq)t|2dxdt:O(t—Qi‘f‘i’)//t IV Pt

m+1
Proof. Let w=wu" 2 with u = u,, smooth solution of (3.2)—(3.4). We have

dw 2 m— m 2 m m
\ m )2y m= by, 2 = LD (my, Ay,

and

2dt/|Vu|dx—/Vu (Vu)d:—/Au (u™) dex,

since (u™): = 0 on X. Therefore, integration in Qr gives

T
2
//t\dw dedt:—m/t d/|Vu 2de ) dt =
8m dt
0

1)2 1)
= _%T/|Vum($,T)|2dx+ %//Wumﬁdxdt.

This is estimate (8.3) for u = u,,. When u is any weak solution we proceed by approxima-
tion. We notice that the same argument applies in any time interval (7, T) with 7 > 0. To
estimate (u?); with ¢ > (m + 1)/2 we observe that

(uf)s = (2q/(m + 1))ut="FD2(m+D/2),

and recall that u is bounded in Q7 by Proposition 5. Combining inequality (8.3) in (7, T),
with T' — oo, with the L>-estimate (4.1), we get (8.4). O

Remark. (8.3) combined with (3.10) gives estimates of the first member in terms of [ u{'**dz.

Thus,
1
//t‘dt (m+1)/2)|? gdt < m+ m+1( )dz .

Unfortunately, the preceding estimates do not allow for a direct control of the derivative
u; appearing in the equation. We obtain next an estimate for wu;.
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Proposition 14. We have in D'(Q)

Proof. (i) First proof. Let u = u,, be one of the approximate solutions to problem (1.1)—
(1.3). Consider the function
z = (m — 1)tus + u.

It is a simple computation to show that z is a solution in () of the equation
(8.6) ze = A(mu™12).

that z(z,t) = u(z,t) > 0 on ¥ and z(z,0) > 0 for all x € Q. Hence, by the standard
Maximum Principle z(z,t) > 0, which is equivalent to (8.5). In this case we obtain a
pointwise inequality.

We now pass to the limit in (8.5) to obtain the estimate for any weak solution of (1.1)-
(1.3). This can only be done on the weak or distributional form of the inequality, which is
obtained by multiplying by a test function ¢ € C°(Q), ¢ > 0, and integrating by parts,

[

Therefore, the fact that (8.5) holds in the sense of distributions does not mean that u,
is a function. At least, since u is the limit of a sequence {u, } for which (u,); is locally
bounded below uniformly in n, u; is a Radon measure.

(ii) Second proof. The reader may wonder how did we find the precise combination
z=u+ (m—1)tu

to which the Maximum Principle can be applied. There is a beautiful and simple argument
based on scaling which produces such magic function. It is as follows: given a smooth
solution u and a constant A > 1, we consider the function

(8.7) a(z,t) = du(z, """ 1),

This is again a solution of the PME. Moreover, for A > 1 we have u(z,0) = Au(z,0) >
u(z,0), hence by the Maximum Principle & > u in Q. Now differentiate (8.7) with respect
to Aat A =1. We get

d
0 < —a(z,t)a=r = ul, ) + (m = Dtuy(2, ),

namely (8.5). O

Remark. We can extend (8.5) to an L°-estimate down ¢ = 0 if Auy® is conveniently
controlled from below. In fact, if

(8.8) (m — 1)Aug® > —auyg
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for some constant a > 0, we may compare the functions z; = (m — 1)(at + 1)u; + au and
zo = 0: both are solutions of (8.6) in @ and z; > 29 on the parabolic boundary of Q.
Hence, by the maximum principle which is again justified by approximation, we obtain
21 Z 22, i.e.

au

(8.9) e e (N

Condition (8.8) is implied for instance by the pressure bound

mAul ! > —a.

In order to prove that u; is actually an integrable function we have to translate the
estimate for (u(™*1/2), into an estimate for u;. This is rather technical. We use the
following result.

Lemma 15. Let K be a subset of R® with finite measure, let I = [ty,t1] and assume that
v s a function defined in K x I that satisfies

i) ve L®(: LY(K)),v>0,v >0,
d
ii) v* and a(v’\) € L"(K x I) for some A\,r > 1.

d
Then pred € LP(K x I) for every p € [1,p1), where

A

r(A—1)+1 € (Lr).

p1 =

Proof. Without loss of generality we may assume that v > e > 0 in K x I by replacing v
by v + € since our estimates will not depend on €. Now, for any p € (1,7) and v € (0, p)

we have .
dv p 1 dv* i dv\"T"
2p =[] (s
dt A dt dt

where 1 — 0 =v(A —1)/(p — v). We choose v such that p — v + (v/r) = 1, that is

_(p=r
r—1 -
Clearly, 0 < v < p. Moreover, we obtain for ¢ the value
—1)(A—-1
boq_rp=DA-1)
r—p

so that o > 0 if p < p;. With the assumption we have in K x [

I < () ()™

Finally, the last integral is estimated as
1 o 1 l1-0o 7
— [ v?dx < —(meas K) vdz O
o o
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Corollary 16. For any weak solution of problem (1.1)-(1.3) u, € L} (Q) for any p €
[1,(m+1)/m) and T > 0.

Proof. Again we may restrict ourselves to classical solutions by approximation. If w is the
solution, then

v(z,t) = tu(z, t™ 1)

satisfies the conditions of Lemma 15. Observe in particular that v; > 0 is a consequence
of (8.5). By Proposition 13 we may take A = "1 r = 2, hence p; = (m+1)/m. O

As a consequence of Propositions 12, 14, and Corollary 16 we have

Corollary 17. For any weak solution tuy € L>(0,00 : L*(2)) and

2
(5.10) [umde<o. ol < o ol

Proof. In case u is smooth the first inequality follows from (8.1) for p = 1. Since u; =
[ug] ™ — [ug] ™, and |ug| = [ug] T + [ug] ™, we have

/[ut]+ < /[ut]_ and /|ut|d:v:/([ut]++[ut]_)dxg 2/[ut]_dx.

We now use (8.5) to obtain (8.10). O

Remark. Again if Auf' is bounded below as in (8.8) the bound (8.10)-right for u; can be
improved and u; € L>(0,00 : L1(Q)).

9. Strong solutions.

A nonnegative, locally integrable function u for which all the derivatives which appear in
an equation are functions rather than distributions and such that the equation is satisfied
a.e. in its domain is called a strong solution of that equation. For equation (1.1) these
requirements amount to the following:

i) u, u™, ug, A(u™) € L (Q),

loc
ii) uy = A(u™) as locally integrable functions in ).

A precise definition of strong solution for a problem, like (1.1)—(1.3), asks for functional
spaces which allow to define in what sense the initial and boundary data are taken. Again
a convenient choice of spaces should allow both for existence for a suitable class of data
and, on the other side, for uniqueness.

In our case the estimates obtained in the previous section imply the following result.

Theorem 18. For every ug € L*(Q) the weak solution to problem (1.1), (1.3) is a strong
solution in the following sense:

i) u™ € L?(1,00: H}(Q)) for every T > 0

i) uy and Au™ € LL (0,00: LY(Q)) and uy = A(u™) a.e. in Q

loc

iii) u € C([0,00) : L1(Q)) and u(0) = ug
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Proof. Conditions (i) and (iii) have been already established. As for ii), we have proved
that u; € L®(r,00 : LY(Q)) N LY (Q) for every 7 > 0 and 1 < p < p1 = (m + 1)/m.
Returning to equation (7.1) with ¢ € C2°(Q) we conclude that V(u™) has u; as its
divergence, hence A(u™) € L} (Q) for p as above. By standard theory, all the second
spatial derivatives of 4™ belong to L (Q). Moreover, (1.1) is satisfied in Q. O

loc

We give next a summary of the additional properties of the solution

Theorem 19. The strong solution of problem (1.1)-(1.3) also satisfies
(a) u € L>®(Q7) and (4.1) holds.
(b) V(uY) € L?(QT) for every v > m/2 and (3.10), (8.1) and (8.2) hold.
(c) tupg € L>®(0,00 : LY(Q))NLY (Q) for1 < p < py and (8.3), (8.4), (8.5) and (8.10)

loc
hold.
(d) For every two solutions u,t we have (6.1), (6.2). In particular ug < tg implies
u<uin@.

(e) For everyt > 71 >0 and every 1 < p < oo we have ||u(t)||, < [Ju(T)]]p.
(f) If up € C(Q),up(x) > 0 for z € Q and up(z) = 0 for x € T’ then u is a classical
solution, positive in ().

Remark. The condition u € C([0,00) : L1(Q)) does not look essential in the definition,
in the sense that we could replace it by u € L] .(Q) (and then write u(t) — uo in L'(£2)
instead of u(0) = wp in iii)) and get the same uniqueness result. Nevertheless, it is natural
since we want to view our solution as a continuous curve in some functional space, in
this case t € [0,00) — u(t) € L'(Q). This view leads to the concept of semigroup of
transformations with interesting consequences. Anyway, in our case it does not mean any
extra condition since u™ € L2 (0,00 : Hg(2)) clearly implies u € L% (0,00 : L'(Q))

which together with u; € Li (0,00 : LY(Q)) gives u € C((0,00) : L1(Q)). We make the

loc
assumption of continuity at ¢ = 0 in order to satisfy the initial condition u(0) = uo.

10. A comment on continuity.

A typical result of the quasilinear elliptic and parabolic theories says that solutions of
such equations which are bounded in some Lebesgue space, say L2, and satisfy in a weak
sense an equation with certain structural assumptions, are in fact Holder continuous with
Holder exponents and constants depending only on the L? norm of the solution and the
bounds in the structure assumptions. This is also true for the PME, notwithstanding the
degeneracy of the equation: using essentially variants of the Moser iteration technique and
some of the estimates established above, one can establish Holder continuity in z and ¢
for the solutions of the Dirichlet problem for the PME. The classical theory of quasilinear
equations allows moreover to prove that the solution is C°°-smooth in the open set where
it is positive. Finally, if the initial data have certain smoothness properties, these are
inherited by the solution at ¢ = 0. We do not have time in these lectures to go into
this interesting chapter of the theory, which can be found [GP]. Continuity of the weak
solutions was first established for the Cauchy Problem in [CF].

11. The special solution in separated variables. In Proposition 5 we have obtained
an absolute bound for the solutions of the Cauchy- Dirichlet Problem (1.1)-(1.3). This
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bound will be improved in this section. Indeed, we show that there exists a function
U which is the largest element in the class of functions which are weak solutions of the
Dirichlet Problem in ). We will call this solution the maximal solution of the Cauchy-
Dirichlet Problem. Moreover, U is a solution in separated-variables form. We have

Theorem 20. There exists a unique function U(x,t) which is a solution of the Dirichlet

problem in Q. for every T > 0 and takes initial values U(x,0) = 0o. This function has the
form

(11.1) Uz, t) =t"771 f(z).

Then U is the mazimal solution of the PME in Q with zero Dirichlet conditions and g = f™
1s the unique positive solution of the nonlinear eigenvalue problem

(11.2) Ag+ gt =0, ge HL®).

Proof. (i) For every integer n > 1 we solve the problem

(un)t =A™ inQ,
(P,) Un(2,0) =n in ),
up(z,t) =0 onX.

Let u,, be the solution to this problem. Clearly, the sequence {u,,} is monotone: w41 > wy,.
We also know from Proposition 5 that for every n

(11.3) Up (x,1) < Ct~Ym=D i Q.

Therefore, we may pass to the limit and find a function

U(z,t) = lim wu,(z,t)

n— 00

also satisfying (11.3). Now fix 7 > 0 and observe that, by (11.3), there exists n; = nq(7)
such that for every n > n;
Un (2, 7) < Ny = Uy, (,0).

By the Maximum Principle we conclude that
U (2,6 +7) < Uy, (2,t) In Q,

so that

(11.4) Uz, t +7) < up, (x,t) in Q.

As a monotone limit of bounded solutions u,, in (), such that the u;* are bounded above
by a function in L2(7,00 : H}(Q)), it is straightforward to conclude that U is a strong
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solution of the Cauchy-Dirichlet problem for the PME in any time interval (7,00). It is
also clear that it takes on the value U(z,0) = oc.

(ii) Let us now prove that U has the form (11.1). To do that we introduce the transfor-
mation

(11.5) (Tu)(z,t) = Au(z, "™ 1), A>0.

This transformation leaves the equation invariant. It is also clear that when applied to our
latter sequence {u,} we get

(11.6) (Tup)(x,t) = urp(z,t) in Q

(check the initial and boundary values). Passing to the limit n — oo in (11.6) we get

(11.7) (TU)(z,t) = U(x,t)
which holds for every (z,t) € Q and every A > 0. Fixing (z,t) and setting A = ¢~/ (m=1)
we get (11.1) with f(z) = U(x,1). The fact that g = f™ satisfies (11.2)-(11.3) is also

obvious.

(iii) Let us prove now that U is larger than any solution of the Cauchy-Dirichlet Problem
in Q. By Proposition 5 we know that every such solution satisfies

u(z, 7) < C(1) < 0.

It follows from the Maximum Principle that

w(z,t+7)<U(z,t) in Q.
Letting now 7 — 0 we get u(z,t) < U(z,t) in Q as desired.
(iv) Finally, we prove the uniqueness of the solution with u(x,0) = co. Assume that v is
another such solution. Since we assume that v(x,t+7) is a weak solution of problem (1.1)-
(1.3), v(z, 7) must be an element in Hg(2), hence v(x,27) is bounded (by Proposition 5),
and by comparison with the sequence u,, we conclude that v(z,t+ 27) < u,(z,t) in Q for
some n large enough. Letting 7 — 0 we get

(11.8) v(z,t) < Uz, t).

On the other hand, a function v which has infinity initial values is of course larger than
the solutions u,,, hence v > U. Therefore, v=U. 1
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COMMENTS

As we have explained above, solutions for the Cauchy, Dirichlet and Neumann Problems
were first announced by Oleinik [O] and explained in detail in [OKC], published in 1958.
The case of one space dimension was considered and a class of so-called generalized solutions
was introduced. The uniqueness result, Theorem 2, follows the proof in [OKC]. A study
of the properties of weak solutions to the Dirichlet Problem was done by Aronson and
Peletier in [AP], who use a definition similar to our Definition 1. Hélder continuity of the
solutions of this problem is proved by Gilding and Peletier in [GP]. Some of the estimates
are more or less classical in nonlinear parabolic equations. The first proof of the control
of u; from below follows the proof of Caffarelli and Friedman in [CF], while an argument
close to the second proof was used in [CVW] in the study of the regularity of the Cauchy
Problem. Proposition 13 and Lemma 15 are due to Bénilan [Be]. These estimates are
crucial in establishing that the solution is strong. The existence of the special solution
(11.1) is established in [AP] by a different method, consisting in studying the elliptic
equation (11.3). A more general result can be found in Dahlberg and Kenig [DK].
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CHAPTER III. THE CAUCHY PROBLEM. ! THEORY

In this chapter we study the initial-value problem for the PME in d-dimensional space,
d > 1, with integrable and nonnegative initial data, uo € L*(R%), up > 0. We establish
existence and uniqueness of a strong solution for the Cauchy Problem as well as its main
properties, among them the conservation of mass, the boundedness of the solutions for
t > 7 > 0 and a version of the finite propagation property.

In this chapter we will use the symbols Q@ = R% x Ry and Qr = R? x (0,7).

1. Definition of strong solutions. Uniqueness. We consider the problem:

(1.1) ur=A(u™) in @
(1.2) u(z,0) = up(z) for z € RY,

where m > 1 and ug € LY(RY), up > 0. No difficulties arise in restricting time to
the interval 0 < ¢ < T and replacing () by Q7. Following the motivation of the previous
chapter we will first give a suitable definition of strong solution for our initial-value problem
and then prove existence, uniqueness and a series of basic properties of such solutions. Here
we restrict ourselves to solutions which are integrable with respect to the space variables,
or solutions with finite mass, and develop the corresponding L!-theory.

Definition 1. We say that a nonnegative function u € C([0,00) : LY(R%)) is a strong
L-solution of problem (1.1), (1.2) if

i) u™, ug, A(u™) € LE (0,00 : LY(RY))

loc
i) up = A(u™) a.e. in Q
i) u(0) = ug.

In the rest of the chapter strong solution will always mean strong L!-solution. Our first
step in the study of strong solutions will be to establish the crucial L!-order-contraction
property similar to Proposition I1.7.

Lemma 1. Let uy, uy be two strong solutions of (1.1), (1.2) in Qr. For every 0 < t1 < to
we have

(1.3) /[ul(x,tz) — ug(x, to)]4dx < /[ul(x,tl) — ug(x, t1)]+dx.

Proof. Let p € C*(R) N L>®(R) be such that p(s) = 0 for s <0, p/(s) > 0 for s > 0 and

0 <p <1, andlet j(r) = [p(s)ds be a primitive of p. Since p will be an approximation
0

to the sign function

(1.4) signd (r) =1ifr >0, signd(r)=0ifr <0,

j will approximate the function s — [s].. Moreover, consider a cutoff function (y €
C®(R%) such that 0 < (o < 1, Co(x) = 1if |z| < 1, (o(z) = 0 if || > 2 and let
¢= Cn(x) = CO(J;/TL) Asn —00,(, T1.
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We subtract the equations satisfied by u; and wus, multiply by p(u]* —u3")¢ and integrate
on S = R% x [t1,t5] to obtain, with w = uT* — ul®

(1.5) [ [ = wyenwr = [ [ swpy

Now, approximate w by means of a smooth kernel sequence p,,. If w,, = w * p,, (x denotes
convolution) we have w, — w, Vw, — Vw and Aw, — Aw in L{_(Q) and almost
everywhere for a subsequence, so that p(w,) — p(w) a.e. Moreover,

[ [pwnavacs [ [pwywunpcs [ [ pn)ve. - vc=o.

Letting n — oo we observe that the second integral is uniformly bounded above. Moreover,
by Fatou’s lemma

(1.6) [ [rwiwurc< - [ [swauc- [ [pwve-ve.

Hence, returning to (1.5) we get

(1) [ = wpnic< = [ [orwurc- [ [owvn-ve
// w)Vuw - vc——//w‘( Ve = // AC<//|w||Ag|

where integration is understood on S. Letting now p tend to signar and observing that
L Tuy — up]y = signgd (uy — u) L (uy — uz), we get

/ i1 (2 £3) — wa(e, £2)] 4 i < / iy (7, £1) — (e, 1)]4.C ds
(18) + [|ACl oo // (z,t)| du dt.

Sn{|z|>n}

We let now n — oo to obtain (1.3), since w € L(ty,ts : L}(R%)) and ||Alullee =
1AGolo /n?. O

Again, as in Chapter II, we obtain uniqueness and comparison as simple consequences
of this result.

Theorem 2. Problem (1.1), (1.2) has at most one strong solution. If ui,uy are strong
solutions with initial data o1, gz resp. and ugr < uge are in RE, then u; < ug a.e. in Q.
In particular, if ugy = ug2 a.e. then uy = us a.e.

Remark. The proof of Lemma 1 actually uses the following requirements on w : u,u™,

ug, Au™ € L (Q) and

(1.9) // ul(z,t)dzdt = o(n?) as n — oo,
Sn
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where S, = {(z,t) : n < |z| < 2n,t; <t < ta} with 0 < ¢; < t, which are weaker than
our Definition 1. Therefore, Theorem 2 also holds under the above hypotheses, if (1.9)
holds uniformly for 0 < ¢ < t5 and if the initial data are taken continuously in Li _(R?).
We shall use this remark later on.

Ezample. Though the source-type solution U(z,t) fails to be a strong solution of the
Cauchy Problem because of the singularity of its initial data, any time-delayed version
u(z,t) = U(z,t +7) with 7 > 0 is indeed a strong solution.

2. Existence of Solutions. Conservation of mass. We begin this section by con-
structing solutions for bounded initial data by using an approximation process and the
results of the previous chapter. The existence result for general initial data in L'(R%) will
follow once we show that every solution is bounded for ¢ > 7 > 0, which will be done in
Section 4.

Theorem 3. For every nonnegative function ug € LY(R) N L (R?) there exists a strong
solution of problem (1.1), (1.2). Moreover uy € LY (Q) for 1 <p < (m+1)/m and

loc
u _ ,
(2.1) up > “m 1) in  D(Q),
2[|uollx
(2.2) e (-, ) ]|1 < (m— 1)t
If ug € LP(RY) for 1 < p < oo then u(t) € LP(R?) and
(2.3) lu(®)lp < lluollp -

Moreover, the map ug +— u(t) is an ordered contraction in L'(R?).

Proof. i) We begin by assuming that wg is not only bounded and integrable over R%, but
also that it is strictly positive, C*°-smooth and all its derivatives are bounded in R,
and finally (8.8) that holds. Under these conditions we construct a strong and classical
solution. For that we consider the Dirichlet problems

ug =AW™) in Q= B,(0) x(0,00),
(P,) u(z,0) = upp(z) for |z| <n,
u(z,t) =0 for |z|=mn,t>0,

where ug, = w(,, {(.} being a cutoff sequence with the following properties: (, €
C>®(RY), (u(z) =1 for || <n—1, ¢u(z) =0 for || >n, 0 < (u(z) <1 for n—1<
|z| < n, the derivatives of the (, up to second order are bounded uniformly in x € R9,
and n > 2. Finally, A((™™!) is uniformly bounded below.

By the results of Chapter II (Theorem 4 and Proposition 6), (P,) admits a unique
classical solution u, € C*(Q,) N C(Q,,) and u, >0 in @Q,. In particular, u,,; will be a
classical solution of the PME in (@),, with positive boundary data and initial data larger
than ug,. We conclude from the classical Maximum Principle that u,+1 > u, in Q,, i.e.,
the sequence {u,} is monotone. Moreover, we get from Chapter IT uniform estimates for

(a) u, in L*®(0,00: LP(B,(0)),1 < p < oo,
(b) (un): in L*>®(0,00: LY(B,(0))) N LY (Q,) for 1 <p < py,
(¢) u™ in L%(0,00: Hi(B,(0))).

n
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Since all of these estimates involve bounds which are independent of n, we may pass
to the limit n — oo and obtain a positive function u € L* (0,00 : LP(R%)) for every
p € [1,00), such that u, u™, Au™ belong to the same spaces to which (uy, )¢, un’, A(ull)
belonged, and equation (1.1) holds in Q.

To check the smoothness of u, we first observe that in a neighbourhood N C @ of any
point (zg,t) € Q,uy,(z,t) is defined and positive, say u,(z,t) > ¢ > 0 for every (z,t) € N
if n > mny. Since the sequence {u,} is monotone nondecreasing and bounded, the interior
regularity theory for uniformly parabolic quasilinear equations gives uniform bounds for
all the derivatives of w,,n > ng, in a smaller neighbourhood of (zg,t). In the limit we
conclude that u € C*°(Q). Moreover for t = 0 we get u(z,t) = up(z), r € R%

We have proved that w is classical solution of problem (1.1), (1.2). To comply with our
definition of strong solution we still have to check the continuity of u = u(t) : [0,00) —
LY(R%). It is a consequence of the fact that u € L>°(0,00 : L*(R%)) (by (I1.8.1)) and
ug € L>°(0,00 : LY(RY)) (cf. remark to Corollary I1.17) so that u is absolutely continuous
from [0, co0) into L(RY).

Estimates (2.1), (2.2), (2.3) are a consequence of similar estimates for the Dirichlet
problem. In particular we have 0 < u(z,t) < ||uo||so-

m
n

i) If up € LY (R4)NL>®(R?) does not fulfill the above requirements we approximate it by
a sequence {ugy} of such functions. We may always do in such a way that ||uon||1 < ||uol|1,
lwon oo < ||tollsos Uon — up in LY(R?). Let u, be the solution with data wug,. It follows
from Lemma 1 that u, converges in C([0,0) : L1(R%)) to a function u and u(0) = uy.

Again estimates (a), (b), (c) of the previous step will hold uniformly in n so that passing
to the limit n — oo produces a strong solution of (1.1), (1.2), which satisfies the estimates

(2.1), (2.2), (2.3). O

The solutions of the Cauchy problem (1.1), (1.2) have an important conservation prop-
erty, not enjoyed by the solutions of the Dirichlet problem.

Proposition 4 (Conservation of total mass). For everyt > 0
(2.4) /u(a:,t)da:: /uo(aj)daj.

Proof. We take a cutoff function (,,, as in Theorem 3, and integrate by parts as follows:

/u(x,t)(n(x)dx—/uo(x)Cn(x)dx = //utCn dxdt
://NWQMﬁ://M%@Mﬁ%O as  n — oo.

The calculation is justified if u is smooth and bounded. For general w it follows by approx-
imation, using Lemma 1. [J

3. The fundamental estimate for the Cauchy Problem.
Perhaps the most significant novelty of the Cauchy problem is the existence of a lower
bound for the Laplacian of the pressure. Indeed, we have

32



Proposition 5. Let v = mu™ 1/(m —1). Then

A . d
(3.1) Av > ; with )\_d(m—l)+2'

The inequality is understood in the sense of distributions in (). This bound will be used
so often that we consider it the fundamental estimate for the Cauchy problem. Estimates
of the form Av > —C play a role in the theory of Hamilton-Jacobi equations, cf. e.g. [Li].
Such functions are called semi-superharmonic functions. Let us also remark that (3.1) is
optimal in the sense that equality is actually attained by the source-type or Barenblatt
solutions, which are a kind of worst case with respect to this bound, a fact which has
interesting consequences.

As a consequence of (3.1) we have the following improvement of (2.1), (2.2).

Corollary 6. u; € L (0,00 : L'(R%)) and

A
(3.2) ug > — Tu i D'(Q),
(3.3) tllutlln < 2 [|uglls

Proof. The first inequality is a consequence of
vy = (m — )vAv + |[Vo|? > (m — 1)vAv,

together with v;/v = (m — 1)u;/u and (3.1). For the second one argue as in Corollary
I1.17. Again the calculations are justified for smooth solutions and hold in the limit for
every solution. [

Proof of Proposition 5. (i) The formal derivation of the estimate is very simple. We first
write the PDE satisfied by the pressure, v, i.e.

(3.4) vy = (m — 1)vAv + |Vu|?.

Then we write the equation satisfied by p = Av by differentiating (3.4) twice. We have

2
pe = (m — DvAp + 2mVov - Vp + (m — 1)p? +2Z<3$3$1> '
Since
1
Zazy >Za” ZE(ZCL”>7
’L,] '
we get

2
L(p) = ps — (m = vAp = 2mVv - Vp — <m—1+g>P220.
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Here L is a quasilinear parabolic operator with smooth, variable coefficients, since we
consider v as a fixed function of x and ¢. We now apply £ to the trial function

C
t+ 7

(3.5) P(z,t) = —

and observe that £(P) < 0 if and only if C > A = 1/(m -1+ 2). We fix C = . By
choosing 7 small enough we may also obtain

C
(3.6) p(z,0) = Av(z,0) > P(z,0) = ——,

-
from which the classical maximum principle should allow us to conclude that p > P in Q.
Letting 7 — 0 we would then obtain a pointwise inequality Av > —\/t.

(ii) The application of the maximum principle is justified when considering classical so-
lutions of (3.4) such that v, Vv and p = Av are bounded and v is bounded below away
from 0 so that the equation is uniformly parabolic. Therefore, we need to construct new
approzimate solutions. This we do as follows. We may always restrict ourselves to initial
data ug which are bounded, smooth and positive, thanks to Lemma 1. Consider now initial
data

(3.7) uoe(x) = up(z) +¢, €>0.

According to [LSU] there exists exactly one function u. € C°°(Q) that solves (1.1) with
initial data wo., and ¢ < ue < M + ¢, where M = ||ug||o. Moreover, by interior regularity
results all the derivatives of u. are bounded in ). In particular, equation (1.1) is uniformly
parabolic on u.. It follows that the fundamental estimate (3.1) holds for v., the pressure
of u,.

Now, if we prove that v. — v as e — 0 in L (Q), then (3.1) will still hold in the limit
for v, though only in distribution sense, i.e.

o 1] (v0-20) aair >

for every ¢ € C°(Q), ¢ > 0. Therefore, the proof is complete with the following conver-
gence result.

Lemma 7. Ase — 0 u:. — u locally uniformly in Q.

Proof. We first observe that by the maximum principle the family {u.} is nonincreasing
as € | 0. It is also easy to establish that every u. is above the solution u with initial data
uo (Hint: compare u. with the approximations u,, to u constructed in step 1 of Theorem
I1.4 in the domain Q,, and let n — 00). Since u is strictly positive in Q and u. > u, and
thanks again to the interior regularity results, not only {u.} converges to a function @, but
also the derivatives converge, so that 4 is a C° solution of (1.1) in @, 4(-,0) = up and
> u.

To conclude that & = u we still need some control of u™ as |z| — oo, as in (1.9), to be
able to apply Theorem 2. We use the following result
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Lemma 8. For everye andt > 0 we have

(3.9) /(ug(a:,t) —¢e)dx < /uo(aj)daj.
Proof. Formally, we have [u.;dz = [ Auldz = 0, hence

/(ue(a:,t) e)dz = /(UOE(x) —e)dz = /uo(:c) da.
More rigorously, we approximate u. with the solution u.,, of the following Dirichlet problem

up = A(u™)  in Q,
u(z,0) =ugpp(z) +¢  for|z| <n
u(z,t)=¢ for|z|=mnandt>0,

for which we argue as in Section I1.3 and get a contraction formula as (I1.6.1), which we
apply to ue, and 4, = ¢ to get (3.9) for ue,. Letting n — oo we obtain that u.,, converges
(the sequence is compact by the interior regularity theory) to a solution of (1.1) which is
ue by uniqueness. In the limit (3.9) holds.

Going back now to the main argument, we let ¢ — 0 to obtain

/ iz, t)dw < / uo(z)da.

It follows that d(t) € L (0,00 : L*(R?)) N L% (Q), hence by the Remark to Theorem 2 we
conclude that & = » in Q. This ends the proof of the fundamental estimate. [

4. Boundedness of the solutions. Existence with general data.
We are now in a position to prove that all solutions are bounded for ¢ > 7 > 0, the
so-called L'-L>° smoothing effect.

Theorem 9. For everyt > 0 we have
(4.1) u(w,t) < clluollF 7,

where « =2/(d(m —1)+2), A=d/(d(m —1)+2) and ¢ > 0 depends only on m and d.

The Theorem can be derived as a consequence of the fundamental estimate (3.1), thanks
to the following result.

Lemma 10. Let g be any nonnegative, smooth, bounded and integrable function in RY
such that

(4.2) A(g") > ~K
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for some r and K > 0. Then g € L™ (R?) and ||g||oo depends only on r,K, d and ||g||1 in
the form

(4.3) 9lloe < C(rd) [lg]lT K7,

with p=2/(2+rd) and o = d/(2 + rd).
Given Lemma 10, it suffices to fix ¢ > 0, and put

A(m —1)

r=m . g(z)=u(x,t) an -

to obtain Theorem 9 in the case where the solution u is positive everywhere, hence smooth.
The general case is done by approximation.

Proof of Lemma 10. Let f(x) = g". Then Af > —K. Therefore, for every zy € R the
function

Fla) = f(&) + 5ol — ol

is subharmonic in R<%. It follows that
(4.4) F(z0) < 7{ F(x)ds,
B

where B = Bg(z0), R > 0 and §, denotes average on B. The argument will continue in
a different way for » > 1 and for 0 < r < 1.

(i) In the latter case, r < 1, we can use (4.4) to estimate f at an arbitrary point zy as

follows:
LY 1r g K R*
f(a:o)gjif( Yz + f{|aj zol2da < ( }{f (d+2)

<|| ||7' ; T+Lm
=W\ GyRE) T 2@+ 2)

(wq denotes the volume of the unit ball). Minimization of the last expression with respect
to R > 0 gives

(4.5)

f(zo) < C gl 7 K

which is equivalent to (4.3).

ii) For r > 1 we modifiy the calculation as follows: for every z, € R?

1 K R?

Flo) < § g (o)t o ) fo—oPdr < gl § gdo+ g

B 2(d+2)
(4.6) )
< gl gl — + B A
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Taking the supremum in R? in the first member and putting y = ||g||s0, We can write (4.6)
in the form
y" < Ay"" '+ B with A =c[|g|1R™% B = c2KR?,

which after an elementary calculation gives
(47) ySA—i—Bl/r:Cl||g||1R_d+(CzKR2)l/r.

Minimization of this expression in R gives (4.3). O

Formula (4.1) not only asserts that solutions with L! data are bounded for positive times,
but also gives a very precise quantitative estimate of the bound. In fact, the exponents
appearing in the formula can be derived from the general boundedness statement thanks
to a scaling argument. Since this kind of argument has wider applicability we give here a
proof of this implication, as a small diversion.

Lemma 11. Suppose that for all solutions of (1.1), (1.2) with ||up||1 < 1 we have ||u(-,1)||
C =C(m,d) > 0. Then (4.1) necessarily holds.

Proof. Let u be any solution of (1.1), (1.2) with ||ug|ly = M > 0. Now, if we consider the
rescaled function
t(z,t) = Ku(Lx, Tt),
with constants K, L,T > 0,4 is again a solution of (1.1) if
K™ 'L[?>=T.
On the other hand ||4g|[y = 1 if
KM = L“
Both equalities are satisfied for T arbitrary, K = M—*T*, L = MPT* with 3 = (m—1)\/d,
p = A/d. Under these conditions our assumptions say that @(z,1) < C. Then
u(z,T) = K~ 'a(L™'z,1) < C/K = CM°T~> O

It is interesting to remark that if we calculate the decay rate of the Barenblatt solution
in sup norm we find that formula (4.1) holds with a certain precise constant. It can be
shown that the constant corresponding to the Barenblatt solution is the optimal constant
in inequality (4.1). This means that the Barenblatt solutions solve an extremal problem,
that of maximizing sup u(z,t) for given ¢ > 0 and given ||ug||[s = M. See in this respect
[Val].

The same techniques can be used to prove a more general version of the smoothing
effect
Proposition 12. For everyt >0 and 1 < p < q < oo we have
(4.8) [u()llg < Clluollyt™
whenever ug € LP(R®). The constants C,~ and o depend only m,p,q and d.

We leave it to the reader to fill in the details and also to calculate the explicit values of
~v and d, which are given again by a scaling argument.

We may now give our complete existence result
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Theorem 13. There exists a strong solution u of problem (1.1), (1.2) for every uy €
LY(R%), up > 0, u € C([0,00) : LY(R?)) NL>®(R? x (1,00)) for every 7 > 0, and satisfies
the estimates (2.1)—(2.4) and (3.1)—(3.3). If ug is strictly positive and continuous then u
is a classical solution of (1.1).

Proof. We only need to approximate ug with a sequence of functions wug, € L'(R%) N
L>®(R%) converging to ug, say uo,(r) = max(ug(z),n), apply the previous results to the
solutions u,, and observe that since ||ug,||1 < ||uol|1, the sequence {u,(-,%)} is bounded in
L*°(R%) uniformly in n and ¢ > 7 > 0. Therefore, uniform estimates hold for «™, u; and
Au™ similar to the ones in Theorem 3 for ¢ > 27 > 0, and we may pass to the limit n — oo
and obtain a strong solution u, which satisfies the above estimates. If uq is continuous and
positive u is classical by local regularity theory as in Proposition II.5. [

Proposition 14. Let uy € C(R%) N LY(R?) be strictly positive and let u be the strong

solution of (1.1), (1.2). Then u € C*(Q)NC(Q) and is strictly positive in Q.

Moreover, if ug is smooth this is reflected in the smoothness of v down to ¢t = 0.

5. Finite speed of propagation. The free boundary.

We have already remarked that the diffusivity D(u) = mu™~! vanishes in the PME
at the level v = 0. This degeneracy causes an important phenomenon to occur, i.e. finite
speed of propagation of disturbances from 0, or more briefly, Finite Propagation (F.P.).
We have observed this phenomenon on the source-type solutions in the form of compact
support of the solution at any time ¢ > 0. We are now in a position to establish the same
result for a wide class of solutions of the PME we have

Theorem 15. Let u be the strong solution to (1.1), (1.2) with initial data uy € L*(R%) N
L>®(R?), ug > 0 and such that ug is supported in a bounded set of R®. Then for every
t > 0 the support of u(-,t) is a bounded set.

The proof consists merely of noting that we can find a Barenblatt solution U(x — xg,t +
7; M) such that
uo(z) < U(z — w0, 73 M)

by suitably choosing x¢,7 and M. By Theorem 2 we get u(z,t) < U(z — xo,t + 73 M),
hence, if we denote by r(t) the radius of the support of U(x,t) at time ¢, cf. (0.3), (0.5),

(5.1) supp(u(t)) C zo + Byryr). O

Much more precise versions of the Finite Propagation Property can be established.
It can be proved that all the solutions are in fact continuous, cf. [CF]. Then the positivity
set

(5.2) P=P,={(z,t)€Q:u(x,t) >0}
is an open set in R%! an so are its sections
(5.3) P(t)y={z € R?: u(z,t) > 0}

in R?. Of course, the support of u(t) is the closure of P(t) in R%. We have
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Proposition 16. The family {P(t)}i>o0 is expanding, i.e. P(t1) C P(t2) for every 0 <
t1 < ta.

Proof. It follows from estimate (3.2), which just means that the function z(t) = u(x, )t}
is nondecreasing for every fixed z € R?. Hence if z(¢;) > 0 and t5 > t; we have z(t3) > 0,

ie.z € P(ty). O

Remark. This property of expanding supports is sometimes called retention property, since
u retains its positivity at any given point when time increases.

We may obtain a lower estimate for P(t) similar to (5.1) as follows: we fix 7 > 0. Since
u is continuous there exist z; € R% and M; and 7, > 0 such that

w(z, ) > U(x — 21,71 MY).

By the comparison theorem it follows that for every ¢ > 7 we have u(z,t) > U(x — x1,t +
11 — 73 M7), hence

(5.4) P(t) Dxy+ BT(t+T1—T)7

which gives the desired lower bound.

The boundary of the positivity set in Q,I' = 9P N Q, called the free boundary or
interface, is a very important object since it represents the region separating the “occupied
region”, [u > 0], from the “empty region”, [u = 0]. As a first result on the behaviour of
the interfaces we can combine estimates (5.1) and (5.4) to get the following asymptotic
expression

Proposition 17. There exist constants ci,co > 0 such that
(5.5) e tMt < || < ot @
holds for every (z,t) € T if t is large enough.

Proposition 17 implies in particular that every point of the space is eventually reached
by the diffusing substance, a property that was not a priori obvious. It also gives an
estimate of the speed of penetration of the substance into the empty region with exact
exponent in the dependence of the radius on time. An exact asymptotic value of the
constant can also be obtained, i.e we have |z| ~ ctM 4 with ¢ depending only on m,d and
the mass ||ugl|1. Actually, it can be proved that as ¢ — oo not only the solution but also its
interface converges to the unique source-type solution U (z, ¢; C') which has the same mass
as u, i.e. C is determined from [U(z,t;C)dx = [u(z,t)dz, see [FK], [Va2] and [KV].
In this way the asymptotic sizes can be determined in first approximation by just copying
from an explicit formula.

6. Local comparison.

Theorem 2 allows us to compare solutions of the Cauchy problem. However, in many
cases we will be interested in corresponding functions which either are defined in a sub-
domain of @ or are not exact solutions of (1.1). We will give here a variant of Lemma 1
which covers such situations.

A function u defined in a subdomain S of @ is called a (strong) supersolution of (1.1)
in S if u,u™,u; and Au™ € Ll (Q) and u; > Au™ a.e. in S. A subsolution is defined in

loc
a similar way, only u; < Au™. We have
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Lemma 18. Let Q be a bounded subset of R with C' boundary, let S = Q x I C Q, with
I = (t1,t2), and let uy be a subsolution, us a supersolution of (1.1) in S. Assume moreover
that uy and ug are continuous in S and uy < ug on dQ X I. Then for every t € [ty,ts]

(6.1) /[ul(a:,t) ()] o < /[u1($,t1) = (s 1)) da

In particular, if uy (-, t1) < us(-,t1) in Q we have uy < ug in S.

Proof. 1t follows the main lines of Lemma 1. We first select functions p and ¢ as follows:
p € CR)NL®R), 0 < p <1, p(s) =0for s <eandp'(s) >0 for s > e with ¢
small and positive. ¢ € C°(Q) is a cutoff function such that 0 < ¢ < 1. Moreover, we
may choose ¢ in such a way that whenever we have z € Q, ((z) < 1 and ¢ € I then
ul(z,t) < ud(x,t) +e.

We subtract the inequations satisfied by u; and up multiply by p(uf*—uf*)¢ and integrate
over S. Arguing as in Lemma 1 and observing that p(w)V( vanishes identically we get

J[ = wyentar — e <o

from which we easily obtain (6.1) in the limit ( — 1, p(s) — sign (s). O

Remark. We may combine Lemmas 1 and 18 to provide comparison for a subsolution and
a supersolution defined in unbounded domains, for instance when = (—o00,0) in one
space dimension, or 2 = R% — B, where B is a ball. We need to impose conditions on
the initial and lateral boundary as in Lemma 18 plus integrability on the supersolution as
|z| = oo, t > 0, like (1.9).

COMMENTS

As explained in the preceding chapter, pioneering work is due to Oleinik and collabora-
tors. Sabinina [Sa] made the extension to several dimensions. The fundamental estimate
is due to Aronson and Bénilan [AB]. The authors point out its optimality by checking it on
the Barenblatt solutions and use the estimate in establishing existence of a strong solution
of the Cauchy Problem with L!-data. The boundedness of the solutions was first obtained
by Véron [Ve] and Bénilan [Be]. The proof given here and based on the fundamental
estimate is new (and considerably shorter). The control of the growth of the support as
t — oo (formula (5.5)) was first obtained in d = 1 by Knerr [Kn]. Sharp results are due
to Vazquez [Va2] in d = 1 and [CVW] for d > 1, while the large-time behaviour of the
solution was described by Friedman and Kamin [FK]; cf. [KV] for recent results.
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