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Asymptotic behaviour for the porous medium
equation posed in the whole space

Juan Luis Vázquez

Dédié à la mémoire de Philippe Bénilan, ami et maı̂tre

This paper is devoted to present a detailed account of the asymptotic behaviour as t → ∞
of the solutions u(x, t) of the equation

ut = �(um) (0.1)

with exponent m > 1, a range in which it is known as the porous medium equation, written
here PME for short. The study extends the well-known theory of the classical heat equation
(HE, the case m = 1) into a nonlinear situation, which needs a whole set of new tools. The
space dimension can be any integer n ≥ 1. We will also present the extension of the
results to exponents m < 1 (fast-diffusion equation, FDE). For definiteness we consider
the Cauchy Problem posed in Q = R

n × R
+ with initial data

u(x, 0) = u0(x), x ∈ R
n (0.2)

chosen in a suitable class of functions. In most of the paper we concentrate on the class X 0

of integrable and nonnegative data,

u0 ∈ L1(Rn), u0 ≥ 0, (0.3)

which is natural on physical grounds as the density or concentration of a diffusion process,
the height of a ground-water mound, or the temperature of a hot medium (see a comment on
the applications at the end). Consequently, we will deal mostly with nonnegative solutions
u(x, t) ≥ 0 defined in Q. An existence and uniqueness theory exists for this problem so that
for every data u0 we can produce an orbit {u(·, t) : t > 0} which lives in L1(Rn)∩L∞(Rn)

and describes the evolution of the process. The solution is not classical for m > 1, but it is
proved that there exists a unique weak solution for all m > 0. It is also unique in the sense of
mild solution, obtained as limit of the Implicit Time-Discretization Scheme, a method that
was carefully studied by Bénilan and Crandall [BC1, BC2]. They also proved that the mass,
M = ∫

u(x, t) dx, is an invariant of the motion for all t > 0 as long as m ≥ (n − 2)/n, a
number that will appear again below. The solution of the Cauchy Problem, (CP) for short,
has a number of useful additional properties, in particular it is continuous in Q and bounded
for t ≥ τ > 0.
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The investigation of the existence of generalized solutions of the initial and
boundary-value problems for the equations of nonlinear diffusion of this type and more
general forms, like

ut = ��(u) + f (0.4)

(with � a monotone nondecreasing function and f ∈ L1(Q)), was a main chapter of Ph.
Bénilan’s Thesis in 1972, [Be], and he continued during his life to enlarge the scope of
the investigation to the whole range of second-order nonlinear equations of parabolic or
hyperbolic-parabolic type. This is reflected in a large number of papers and in the book
[Bk], unfortunately still not available to the wide community of researchers and students.
In the best tradition of Applied Functional Analysis, Bénilan’s way of attacking these
equations was to provide an abstract framework, where the typical problems are well-posed
and generate semigroups or flows in Banach spaces, mainly L1(Rn). Concepts like integral
solutions, mild solutions, renormalized solutions, entropy solutions appear in the work of
Ph. Bénilan and his collaborators, many of the ideas were inspired by him and have become
standard today in the study of nonlinear parabolic and hyperbolic phenomena. His work and
teaching has illuminated the life of many friends and followers that contribute to this wide
subject at the intersection of PDE’s, Mechanics and Functional Analysis. Applications
to problems in the oil industry and biology played a role in formulating new problems
and questions in Bénilan’s research and that of his collaborators, but I will not pursue this
interesting direction here. Summing up this paragraph, I contend that the close combination
of very concrete and important equations and very abstract and powerful methods is a most
appealing way of doing PDEs, and we hope it will last in the work of younger generations.

The main part of the following material has been taught to graduate students at the Univ.
Autónoma de Madrid in 1997 [V5]. Further progress is reported here, and a number of
unpublished results are added at convenient places to close some arguments and solve some
open problems. Let us mention that the general picture for (CP) is now quite well known,
but some interesting problems still remain open!

1. Long-time asymptotics

Our main concern in this paper will be the study of the asymptotic behaviour of the
solutions of equation (0.1). This is still a quite large subject, hence we will concentrate
in the sequel on the initial-value problem (CP) posed in the whole space with integrable
data. The behaviour is different for other classes of data or for boundary-value problems.
A survey of results for the Dirichlet problem posed in a bounded domain is [V5], for the
Neumann problem see [AR], for the exterior Dirichlet problem [QV]. On a general level,
it has been pointed out in many papers and corroborated by numerical experiments that
similarity solutions furnish the asymptotic representation for solutions of a wide range of
problems in mathematical physics. The reader is referred to the book of G.I. Barenblatt
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[B2] for a detailed discussion of this subject. Self-similar solutions and the forthcoming
scaling techniques will play a prominent role in our asymptotic study.

The model. The asymptotic behaviour is a classical result for the linear heat equation,
m = 1, and is now well known for the PME, m > 1: this is the theory that we want to
present in a systematic way. In the first case, the classical result says that there is convergence
of any solution of the Cauchy problem under conditions (0.3) towards the Gaussian kernel

u(x, t) ∼ M

(4πt)n/2
exp (−x2/4t), (1.1)

where M = ∫
u0(x) dx is the mass of the solution (space integration is performed by default

in R
n). In the case m > 1 the behaviour of our class of solutions can be described for large

t by a one-parameter family of special solutions of (0.1)

U(x, t; C) = t−αF (xt−β; C), (1.2)

with parameter C > 0. The functions U(x, t; C) are variously called source-type solutions,
fundamental solutions, Barenblatt solutions, or BZKP solutions, cf. the original papers
[ZK], [B1], [Pa]. They are given by the explicit formula

F(η) = (C − k η2)
1

m−1+ , α = n

n(m − 1) + 2
, β = 1

n(m − 1) + 2
. (1.3)

F is called the profile, α and β are the similarity exponents (that we call Barenblatt
exponents). C > 0 is a free constant and k is fixed, k = (m − 1)β/2m. We have
Um−1 = (Ct 2β − k x2)+/t . The fact that the fundamental solutions are self-similar is
important in what follows, the fact that they are explicit is not.

Main result. We will prove that u(x, t) ∼ U(x, t; C) for large t . For a given u there is a
correct choice of the constant C = C(u0) in this asymptotic result which agrees with the
rule of mass equality:∫

R
n
u(x, t) dx =

∫
R

n
U(x, t; C) dx. (1.4)

It follows that C = c(m, n) M2(m−1)β . We also write UM for the solution with mass M and
FM for its profile. This is the precise statement of the asymptotic convergence result:

THEOREM 1.1. Let u(x, t) be the unique weak solution of problem (CP) with initial
data u0 ∈ L1(Rn), u0 ≥ 0. Let UM be the Barenblatt solution with the same mass as u0.
Then as t → ∞ we have

lim
t→∞ ‖u(t) − UM(t)‖1 = 0. (1.5)
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Convergence holds also in L∞-norm in the proper scale:

lim
t→∞ tα‖u(t) − UM(t)‖∞ = 0 (1.6)

with α = n/(n(m − 1) + 2). Moreover, for every p ∈ (1, ∞) we have

lim
t→∞ tα(p)‖u(t) − UM(t)‖Lp(Rn) = 0, (1.7)

with α(p) = α(p − 1)/p.

The last result follows from (1.5) and (1.6) by simple interpolation, but (1.6) and (1.5)
are (to an extent) independent. The main body of the paper is devoted to giving a detailed
proof of this theorem, and to report on its many extensions. We will follow the “four-step
method”, a general plan to prove asymptotic convergence devised by Kamin and Vazquez
in 1988, [KV1], who settled in this way the asymptotic behaviour both for the p-Laplacian
equation, ut = ∇ · (|∇u|p−2∇u), and for the PME. But the first proof of convergence for
the PME in several dimensions appeared in a celebrated paper by Friedman and Kamin in
1980 [FK]: it uses the method of lower barriers that will be presented in Section 14 and
gets uniform convergence on compact expanding sets of the form {|x| ≤ C tβ}, a weaker
form of (1.6). The initial data belong to L1 ∩ L2, but this is not a real restriction after
the regularizing effect of Bénilan [Be2] and Véron [Ve]. A previous proof in one space
dimension is due to S. Kamin, 1973 [K1].

The proof of the full result with uniform convergence in the whole space, formula
(1.6), has first appeared in the notes [V5]. There, six different proofs of the main result
are presented, all of them sharing a common 4-step basis, but concluding through quite
different ideas, thus summing up the state of asymptotic convergence methods for the PME
at the time. The interest in displaying all of these approaches lies in the fact that they call
on many of the asymptotic methods available in the study of nonlinear parabolic problems.
In the study of similar problems for other equations and/or classes of data some of these
techniques will be applicable and have in fact been applied, but the best technique has to
be chosen depending on the case.

Discussion. Immediate issues after Theorem 1.1. are discussing whether the class of data
may be extended with the same type of convergence, or the rate of convergence can be
improved. Both questions have been explored, but let us begin with two negative results.

For the first question, the restriction u0 ∈ L1(Rn) cannot be ignored if we want to keep
the asymptotic size, since non-integrable data have a different behaviour.

COROLLARY 1.2. If u is a nonnegative global solution of the PME with u0 ∈ L1
loc(R

n)

and
∫

u0 dx = ∞ then

lim
t→∞ tαu(y tβ, t) = ∞ (1.8)

uniformly on compact sets {y ∈ K} ⊂ R
n.
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The proof of this result is very easy after approximating u0 by an increasing sequence
of integrable data u0n, applying Theorem 1.1 and passing to the limit. Consequently, non-
integrable solutions have other asymptotic size and shape, which has been partially inves-
tigated in [AR2] and other papers. We recall that a theory of global solutions of the PME
with non-integrable data was constructed by Bénilan, Crandall and Pierre in [BCP] in 1984.
Let us also refer to asymptotic results with a completely different flavor from Theorem 1.1:
a general study of the asymptotic behaviour of the PME and other evolution equations in
the framework of X = L∞(Rn) has been performed recently in a paper with E. Zuazua
[VZ]; the situation is quite different, there is no simple model of asymptotic attractor, the
appropriate word is rather complexity, i.e., the possibility of chaos.

The second direction is improving the rates, and there we again find a limitation.

THEOREM 1.3. The rates of convergence of Theorem 1.1 are optimal in the class of
initial data X0 = {u0 ∈ L1(Rn), u0 ≥ 0}.

The main idea in constructing a counterexample consists of placing small bits of mass
far enough at t = 0. The detailed proof is presented in Section 11. Better rates can be
found if we restrict the class of data. This subject, which has been the object of an active
interest in recent years, will discussed in Sections 16 to 19. A first natural idea is to consider
initial data with compact support and to control the expansion of the support for large times.
Then it is proved that the support of the solution u(·, t) approaches the size of the support
of the source-type solution, a ball of radius R(t) = C0 tβ with C0 = c(m, N) M(m−1)β ,
cf. Section 9, Theorem 9.1. A larger class of solutions is considered in Section 19 using
so-called entropy methods.

Another idea is to extend the convergence to the derivatives, i.e., convergence in Ck . The
presence of a free boundary for compactly supported solutions makes the question tricky
because the variable domain of positivity: though it converges to the ball of the source-type
solution, it does not coincide with it. The question has been recently studied by Lee and
Vazquez [LV], see details in Section 18.

Extensions. We have also made progress in extending the asymptotic study to cover the
following three important directions:

(i) Signed solutions for the signed PME: ut = �(|u|m−1u), cf. Theorem 20.1 taken
from the paper [KV2].

(ii) Equations with forcing, where we present a new result, Theorem 20.2 which gives the
asymptotic behaviour for

ut = �(|u|m−1u) + f, f ∈ L1(Q) . (1.9)

This answers a question of Bénilan and is maybe the most natural extension of Theorem
1.1 in the spirit of his ideas.

(iii) Exponents m less than one (Fast Diffusion Equations). We introduce a new idea,
uniform convergence in relative error, Theorem 21.1.
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Though the theory has obvious counterparts for related equations, like the p-Laplacian
equation, ut = ∇ · (|∇u|p−2∇u), the general Filtration Equation ut = ��(u) with �

monotone nondecreasing, and reaction-diffusion equations like ut = �um − up, we will
not pursue these directions here. In the first case the similarity of methods and results
is impressive. The basic convergence result is proved in [KV1]. Rates of convergence
have been recently obtained, see [DP2]. The survey paper [Kl], though a bit old is very
informative about the theory of nonlinear diffusion equations.

Finally, the porous media equation looks like a variation of the heat equation, and per-
turbative techniques could be expected to be the way to the analysis. It must be stressed
that it is not so, and the study performed below relies on the ideas and machinery of non-
linear analysis. Indeed, the PME is a good benchmark for a number of important nonlinear
techniques.

Notation. In the whole paper n ≥ 1 is the space dimension, and the exponents α and β will
be fixed to the values (1.3): α = n/(2+n(m−1)) > 0, β = α/n. Given a solution u(x, t),
we will often write u(t) to denote the function t �→ u(·, t), as in ‖u(t)‖p = ‖u(·, t)‖Lp(Rn).

2. Definitions and preliminary results

Problem (0.1)–(0.2) does not possess classical solutions for general data in the class
X0 = {u0 ∈ L1(Rn), u0 ≥ 0} (or even in a smaller class, like the set of smooth nonnegative
and rapidly decaying initial data). This is due to the fact that the equation is parabolic only
where u > 0, but degenerates at the level u = 0. Therefore, we need to introduce a concept
of generalized solution and make sure that the problem is well-posed in that class.

Concept of solution. (I) By a solution of equation (0.1) we will mean a nonnegative function
u(x, t), defined for (x, t) ∈ Q such that: (i) viewed as a map t → u(·, t) = u(t) we have
u ∈ C((0, ∞) : L1(Rn)); (ii) the functions um, ut and �um belong to L1(t1, t2 : L1(Rn))

for all 0 < t1 < t2; and (iii) equation (0.1) is satisfied in the sense of distributions in Q.
(II) By a solution of problem (CP) we mean a solution of (0.1) such that the initial data

are taken in the following sense:

u(t) → u0 in L1(Rn) as t → 0. (2.1)

In other words, u ∈ C([0, ∞) : L1(Rn)) and u(0) = u0.
This definition is usually called in the literature a strong solution. It is suitable for our

purposes since problem (CP) is well-posed in this setting, but it is not the unique choice;
we could have used the concept of weak solution, where we merely ask um and ∇xu

m to
be locally integrable functions in R

n × [0, ∞) and the equation is satisfied in the sense that∫ ∫
{uϕt − ∇xu

m · ∇xϕ} dxdt +
∫

u0(x)ϕ(x, 0) dx = 0
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holds for every smooth test function ϕ ≥ 0 which vanishes for all large enough |x| and t .
See [V3] for a discussion of those equivalent alternatives. Viscosity solutions have been
discussed in [CV].

THEOREM 2.1. Problem (CP) is well-posed in the framework of strong solutions.
Moreover, the maps St : u0 �→ u(t) are order-preserving contractions on X0 = L1+(Rn).
More precisely,

‖(u1(t) − u2(t))+‖L1(Rn) ≤ ‖(u1(0) − u2(0))+‖L1(Rn), (2.2)

where (·)+ denotes positive part, max{·, 0}. In particular, plain L1-contraction holds

‖u1(t) − u2(t)‖L1(Rn) ≤ ‖u1(0) − u2(0)‖L1(Rn). (2.3)

The Maximum Principle also follows from property (2.2).

Property (2.2) is called T -contraction in Bénilan’s papers. Actually, the existence of a
semigroup of T -contractions is true in the more general framework of signed solutions for
the generalized PM equation ut = �(|u|m−1u), discussed in Section 20. Here are some
additional important properties of the solutions.

PROPERTY 1. The solutions of problem (CP) satisfy the law of mass conservation∫
R

n
u(x, t) dx =

∫
R

n
u0(x) dx (2.4)

When u ≥ 0 this means ‖u(t)‖1 = ‖u0‖1 for all t > 0.

The property will also be true for solutions of any sign, but then it does not imply
conservation of L1-norm. It is also true for 0 < m < 1 if m ≥ (n − 2)/n, but not below
that value.

PROPERTY 2. The solutions are bounded for t ≥ τ > 0. Moreover, there exists a
constant C = C(m, n) > 0 such that

0 ≤ u(x, t) ≤ C ‖u0‖2β

1 t−α . (2.5)

PROPERTY 3. Energy estimates. Another aspect of the regularization of the solutions
in time is obtained by multiplying the equation by um and formally integrating by parts.
We arrive at∫

R
n
um+1(x, t) dx + (m + 1)

∫ t

τ

∫
R

n
|∇(um)|2 dxdt ≤

∫
R

n
um+1(x, τ ) dx (2.6)

for all 0 < τ < t . Since we know by the previous properties that u(τ) ∈ Lp(Rn) for
all p > 1, in particular p = m + 1, we conclude that ∇um is uniformly bounded in



8 juan luis vázquez J.evol.equ.

L2(Rn × (τ, t)) in terms of the mass of the initial data. The justification of the calculation
can be found in [V4]. In the same spirit, multiplication by (um)t and integration by parts
gives

8m

(m + 1)2

∫ t

τ

∫
R

n

(
∂

∂t
u(m+1)/2(x, t)

)2

dxdt

+
∫

R
n
|∇um(x, t)|2 dx ≤

∫
R

n
|∇um(x, τ )|2 dx . (2.7)

Combining with the previous one, it gives a bound for ∂(u(m+1)/2)/∂t in L2(Rn × (τ, t))

in terms of the mass of the initial data, and a better bound for ∇um in L∞(τ, ∞ : L2(Rn)).
These and other gradient estimates were developed by Bénilan, cf. [Be3].

The next estimate is due to Aronson-Bénilan [AB] and plays a big role in the study of
the Cauchy problem for the PME.

PROPERTY 4. Fundamental regularity estimate and consequences. Any nonnegative
solution of the Cauchy problem (CP) satisfies the estimate

�(um−1) ≥ −C

t
, C = α (m − 1)

m
. (2.8)

This implies another interesting estimate: ut ≥ −α u/t . Moreover, conservation of mass
is equivalent to

∫
ut dx = 0, so that the last estimate leads to∫

|ut (x, t)| dx ≤ 2α

t

∫
u(x, t) dx . (2.9)

The one-sided estimate (2.8) is exact precesily for the source-type solutions that play a
key role in our theory. For a proof of all the above facts we refer to the text [V4] and its
references. In the proof of better convergence we will use a further regularity result that
can be found in [DB].

PROPERTY 5. Bounded solutions are uniformly Hölder continuous for t ≥ τ > 0.

Ph. Bénilan devoted much time to finding the best Hölder exponent and his Kentucky
Notes are a proof of his efforts. In one dimension the answer is α = min{1, 1/(m − 1)},
but the question is not completely settled for n > 1.

PROPERTY 6. Finite propagation property. If the initial function u0 is compactly sup-
ported so are the functions u(·, t) for every t > 0. Under these conditions there exists
a free boundary or interface which separates the regions {(x, t) ∈ Q : u(x, t) > 0} and
{(x, t) ∈ Q : u(x, t) = 0}. This interface is usually an n-dimensional hypersurface
in R

n+1.
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Let us conclude this section by pointing out that the source-type solutions U(x, t; C)

are strong solutions of (0.1), but, strictly speaking, they are not solutions of problem (CP)
because they do not take L1 initial data. Indeed, it is easy to check that U converges to a
Dirac mass as t → 0 (this is the reason for the name “source-type solutions”). We will use
this fact strongly in the first proof of asymptotic convergence, cf. Section 5. The reader
should note that the behaviour of a whole class of solutions of equation (0.1) is described
in terms of a simple family of functions which are not solutions in the same class, but in
a larger class. More precisely, the special solutions which represent the whole dynamics
at the asymptotic level exhibit a singularity (at x = 0, t = 0). This is a curious and quite
general feature in the theory of asymptotic analysis.

3. Outline of the next sections. Four-step method

Before proceeding with the actual proofs we explain the “four-step method” as a general
plan to prove asymptotic convergence in the form written down by Kamin and Vazquez
in 1988. The first three steps are the common basis of the different proofs of convergence
using similarity techniques and are worked out in detail in Section 4.. They allow to produce
out of the original orbit u(t) a family of rescaled orbits ũλ(t), which upon passage to the
limit λ → ∞ produces one or several limit orbits or limit solutions, U(t). These orbits
represent the asymptotic dynamics that we want to study. The proof of the convergence
results is then reduced to the identification of (a unique) limit orbit U(t) and the description
of the mode and rates of convergence.

The four-step method, which is a general procedure for the study of many asymptotic
problems, can be described as follows.

STEP 1. Rescaling. It produces out of an orbit u(t) a family of zoomed orbits, {̃uλ(t)}.
The orbit is viewed as a map u(t) : t �→ u(·, t) from [0, ∞) into a suitable functional space.

STEP 2. Estimates and compactness. Appropriate estimates allow to show that if we
choose the correct rescaling in Step 1, we obtain a family of uniformly compact orbits (in
suitable functional spaces). Failure of guessing the correct scaling size produces rescaled
orbits that grow to infinity or go to zero. In either case the method stops.

STEP 3. Passing to the limit. We replace the limit t → ∞ by the limit in the scaling
parameter λ for fixed t . We obtain one or several limit orbits U(t).

STEP 4. Identifying the limit. The function U obtained as a limit of the orbits in Step
3 has to be identified as a solution of an equation, usually (but not necessarily) the same
equation we started with. Some additional characteristics allow to determine the limit
function in a unique way.
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There is a final mini-step, 5. Rephrasing the result, that consists in undoing the
λ-transformation and stating the result in the original variables.

We will perform all these steps for the Cauchy problem for the PME. The first three
steps are common to all proofs below and, actually, these steps are applicable to a number
of problems sharing the two properties of scale-invariance and regularity (smoothness) of
the orbits. It is very important to make clear at this moment that the limit obtained after
Step 3 must be nontrivial: neither zero nor infinity. Otherwise (and this happens quite often
in preliminary analyses), we are missing the correct size of the asymptotic process and
(probably) no relevant information is obtained from the analysis.

It is at the level of Step 4 that we can find very different ways of identifying the limit
obtained in Step 3. Each of the different techniques will be discussed separately.

In Sections 5, 6 below we give the first proof of Theorem 1.1 by using the characterization
of the limit solutions U(t) through their initial data, which is shown to be a Dirac mass.
This idea was explained in the paper [KV1].

In Section 7 the basic L1 asymptotic result is improved into uniform convergence, which
is the second part of Theorem 1.1; the result was announced in [V5] and appears here with
a detailed proof using the local regularizing effect. We then estimate the asymptotics of
supports and interfaces for compactly supported solutions, Section 9.

In Section 10 we introduce the continuous rescaling as an alternative scaling method
that is used sometimes with advantage over the standard fixed-rate rescaling (i.e., the
λ-scaling). This part of the notes concludes with the proof of optimality of the convergence
rates, a question that has been a debated issue among experts: for restricted classes of data
the rates can be improved, but not for the whole class X0 (even if we take smooth data the
answer is still negative, it depends on the behaviour at infinity).

Subsequent sections are devoted to present alternative proofs of the main result: first,
we have two methods based on the existence of a Lyapunov functional and the use of the
Invariance Principle. Lyapunov methods are probably the most effective and popular tools
in the study of asymptotic problems. Section 14 presents the method of lower barriers used
by Friedman and Kamin [FK], a kind of nonstandard Lyapunov functional.

Afterwards, we turn to the ideas of asymptotic symmetry which allow to reduce the study
of asymptotic dynamics to conditions of radial symmetry in the spatial variable, Section 15.
There are then methods which use the special properties of one-dimensional problems. We
present two of them, the method of Concentration Comparison, Section 16, and the method
of Intersection Comparison, Section 17. For radial solutions good rates of convergence are
obtained, Theorems 16.4 and 17.3.

The rest of the notes contains the analysis of further progress as mentioned at the end of
Section 1. New results are presented in the three outlined directions.
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4. The first steps

1. Rescaling. In order to observe the asymptotic behaviour of the orbit of problem (CP)
we rescale it according to the Barenblatt exponents. Let us see the whole story of scaling
transformations in some detail. Let u = u(x, t) be a solution of (0.1). We apply the group
of dilations in all the variables

u′ = Ku, x′ = Lx, t ′ = T t, (4.1)

and impose the condition that u′ so expressed as a function of x′ and t ′, i.e.,

u′(x′, t ′) = Ku

(
x′

L
,

t ′

T

)
, (4.2)

has to be again a solution of (0.1). Then:

∂u′

∂t ′
= K

T

∂u

∂t

(
x′

L
,

t ′

T

)
, �x′(u′)m = KmL−2�x(u

m)

(
x′

L
,

t ′

T

)
.

Hence, (4.2) will be a solution if and only if KT −1 = KmL−2, i.e.,

Km−1 = L2T −1. (4.3)

We thus obtain a two-parametric transformation group acting on the set of solutions of (0.1).
Choosing as free parameters L and T it can be written as

u′(x′, t ′) = L
2

m−1 T
−1

m−1 u(x, t) =
(

L2

T

) 1
m−1

u

(
x′

L
,

t ′

T

)
.

Using standard letters for the independent variables and putting u′ = T u, we get:

(T u)(x, t) = L
2

m−1 T − 1
m−1 u

(
x

L
,

t

T

)
. (4.4)

Moreover, we can use one of the parameters to force T to preserve some important behaviour
of the orbit. Here we recall that UM(x, t) has a constant mass; actually, this characterizes
uniquely the solution (which is the ideal orbit we want to approach). Imposing thus the
condition of mass conservation at t = 0 we get∫

R
n
(T u0)(x) dx =

∫
R

n
u0(x) dx, (4.5)

namely,∫
R

n
Ku0

( x

L

)
dx =

∫
R

n
u0(x) dx.
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It easily follows that KLn = 1. This and (4.2) give the expressions

K = T −α, L = T β, (4.6)

with the exponents given by (1.3). The transformation we are going to use is finally

(T u)(x, t) = T −αu(x/T β, t/T ).

It is convenient to write the scaling factor in terms of λ = 1/T . Then, the solution is

ũλ(x, t) = (Tλu)(x, t) = λαu(λβx, λ t) (4.7)

with initial data ũ0,λ(x) = (Tλu0)(x) = λαu0(λ
βx).

Visualization. The scaled orbits at t = 1 are just a zoomed version of the original orbit at
t = λ.

Property. The source-type solutions are invariant under the λ-rescaling, i.e. UM(t) =
Tλ(UM(t)).

2a. Uniform estimates. The family ũλ(t), λ > 0, is uniformly bounded in L1(Rn) for t

positive:∫
R

n
ũλ(x, t)dx =

∫
Rn

λαu(λβx, λ t) dx =
∫

R
n
u(y, λ t) dy = M < ∞. (4.8)

Using now (2.5) we get

‖ũλ(·, 1)‖∞ = λα‖u(·, λ)‖∞ ≤ λα M2α/n

λα
C = CM2α/n (4.9)

independently of λ, and in the same way

‖ũλ(·, t0)‖∞ = λα‖u(·, t0λ)‖∞ ≤ λα M2α/n

λαtα0
C = CM2α/n t−α

0 . (4.10)

Control of the norms ‖ · ‖1 and ‖ · ‖∞ means control of all norms ‖ · ‖p for all p ∈ [1, ∞].
Thus, ‖ũλ(·, t)‖p are equi-bounded for all p ∈ [1, ∞].

Next, we take t0 > 0 so that, by the regularizing effect, u(t0) ∈ Lm+1(Rn). The energy
estimates of Section 2 give∫

R
n
|∇ũm

λ (x, t)|2dx ≤ C(t0, ‖ũλ(x, t0)‖Lm+1) (4.11)

for t ≥ t0 > 0. Now, the ‖ũλ(t)‖Lm+1 are equi-bounded, hence ‖∇ũm
λ (x, t)‖L2 are equi-

bounded (for t ≥ t0 > 0).
Moreover, by (2.9) of Property 5, Section 2,∥∥∥∥∂ũλ

∂t
(t)

∥∥∥∥
L1

≤ C
‖ũλ(t)‖L1

t
(4.12)
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Using the same argument we conclude that the norms ‖(̃uλ)t (t)‖L1 are equi-bounded if
t ≥ t0 > 0.

2b. Compactness. Let us recall the Rellich-Kondrachov Theorem. Let � be a bounded
domain with C1 boundary. Then

p < N ⇒ W 1,p(�) ⊂ Lq(�) for all q ∈ [1, p∗), 1

p∗ = 1

p
− 1

N
,

p = N ⇒ W 1,p(�) ⊂ Lq(�) for all q ∈ [1, +∞),

p > N ⇒ W 1,p(�) ⊂ C(�).

All these injections are compact. In particular, W 1,p(�) ⊂ Lp(�) with compact injection
for all p ≥ 1. In � = R

n, the above injections are compact in local topology (convergence
on compact subsets).

Let us now recall our situation for the family {̃uλ}λ≥1 for t ≥ t0 > 0:

ũλ(x, t) ∈ L∞
x,t ⊂ L1

loc,
∂ũλ

∂t
(x, t) ∈ L∞

t (L1
x) ⊂ L1

x,t (t ∈ (t0, t1)),

and

∇xũ
m
λ ∈ L2

x,t ⊂ L1
x,t .

All spaces in time are local in the sense that they exclude t = 0.

PROPOSITION 4.1. The family {̃uλ}λ>1 is relatively compact locally in L1
x,t . Also the

family {̃um
λ }λ>1.

3. Passage to the limit. We can now take a sequence λk → ∞ and assert that ũλk
converges

in L1
loc(Q) to some function U :

lim
λ→∞ ũλ(x, t) = U(x, t). (4.13)

We need to study the properties of such limit functions U(x, t).

LEMMA 4.2. Any limit U is a nonnegative weak and strong solution of (0.1) satisfying
uniform bounds in L1(Rn) and L∞(Rn) for all t ≥ τ > 0.

Proof. It is clear that, as a consequence of the passage to the limit U is nonnegative.
Also, U(t) is uniformly bounded in L1 and L∞ for t ≥ t0 > 0, according to formulas (2.4),
(2.5). In order to check that it is a weak solution we review the sense in which ũλ is a weak
solution:∫ ∫

{̃uλϕt − ∇ (̃um
λ ) · ∇ϕ} dxdt +

∫
ũ0λ(x)ϕ(x, 0) dx = 0
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for all ϕ test. We have already remarked that our uniform estimates are not good near t = 0.
In view of this, we restrict the test functions to the class

ϕ ∈ C∞
0 (Rn × (0, ∞)),

so that ϕ vanishes in a neighborhood of t = 0. Then∫ ∫
{̃uλϕt − ∇ũm

λ ∇ϕ}dxdt = 0. (4.14)

With our estimates


ũλ → U locally in L1
x,t

ũλ → U weak∗ in L∞
loc

∇ũm
λ → ∇Um in L2

x;t,loc
weak,

we may pass to the limit in this expression (along a subsequence λn → ∞) to get∫ ∫
{Uϕt − ∇xU

m · ∇xϕ} dxdt = 0. (4.15)

This means that U is a weak solution of equation (0.1). In fact, if τ > 0∫ ∞

τ

∫
Rn

{Uϕt − ∇xU
m · ∇xϕ} dxdt +

∫
U(x, τ)ϕ(x, τ ) dx = 0.

�

5. Identification of the limit. Compact support

Thus far, we have posed the dynamics in the form of an initial value problem and we
have introduced a method of rescaling which has allowed to obtain, after passage to the
limit, one or several new solutions of the original problem. These solutions, that we call
the asymptotic dynamics, form a special subset of the set of all orbits of our dynamical
system and represent the (scaled) asymptotic behaviour of the original orbits. Their complete
description becomes our main problem. The asymptotic dynamics turns out to be quite
simple in the present case. The general framework in which this kind of ideas are studied
is that of Dynamical Systems invariant under groups of transformations.

We proceed next with Step 4, i.e., the identification of the limit, in the form devised in
[KV1]. Several other options will be examined later. We want to prove that the limit U

along any sequence λn → ∞ is necessarily UM . Both U and UM are solutions of the PME
for t > 0, enjoying a number of similar bounds. In order to identify them we only need
to check their initial data and use a suitable uniqueness theorem for the Cauchy problem
(CP). The necessary uniqueness theorem is available thanks to M. Pierre’s work [Pi].
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THEOREM 5.1. Weak solutions of the PME in the class u ∈ C((0, ∞) : L1(Rn)),
u ≥ 0, which take a bounded and nonnegative measure µ(x) as initial data in the sense
that

lim
t→0

∫
R

n
u(x, t)ϕ(x) dx =

∫
R

n
ϕ(x) dµ(x), (5.1)

for all ϕ ∈ Cb(R
n), ϕ ≥ 0, are uniquely determined by the initial measure.

Let us then worry about the initial data. At first sight it looks easy:

LEMMA 5.2. If λ → ∞ ⇒ lim ũ0,λ(x) → Mδ(x) in the sense of bounded measures.

Proof. As λ → ∞, since α = n β > 0,∫
R

n
ũ0λ(x) ϕ(x) dx =

∫
R

n
λαu0(λ

βx)ϕ(x) dx =
∫

R
n
u0(y)ϕ(y/λβ) dy,

which converges to
∫

Rn u0(y) ϕ(0) dy for all ϕ ∈ C∞
c (Rn), ϕ ≥ 0. We have used the mass

value:
∫

R
n u0(y) dy = M. �

The problem of the double limit. Unfortunately, the fact that the initial data for ũλ

converge to M δ(x) does not justify by itself that U(t) takes initial data M δ(x), because
we do not control the evolution of the ũλ near t = 0 in a uniform way and a discontinuity
might be taking place near t = 0 in the limit λ → ∞. This is a typical case of double
limits,

lim
t→0

lim
λ→∞ ũλ(x, t) = lim

λ→∞ lim
t→0

ũλ(x, t) ?

Preparing for a correct analysis, the first thing to do is to check that U and UM have the
same mass, i.e., that U has mass M . Since∫

R
n
ũλ(x, t) dx = M,

and ũλk
converges to U in L1

x,t -strong locally, we have ũλk
(t) → U(t) for a.e. t in L1

x(R
n)

locally and a.e. in (x, t) ∈ Q. By Fatou’s Lemma∫
R

n
U(t) dx ≤ lim

k→∞

∫
R

n
ũλk

(x, t) dx = M,

hence the mass is equal or less. We have met again a difficulty. This difficulty is in principle
essential. There are examples for rather simple equations in the nonlinear parabolic area
where the initial data are not trivial but the whole solution disappears in the limit! Should
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such ‘disaster’ happen, we talk about an initial layer of discontinuity, an interesting object
of study.

Compactly supported solutions. Here the only way the discontinuity can happen is by
mass escaping to infinity, since there is only a mechanism at play, diffusion. In view of this
difficulty we change tactics and try to establish the result under additional hypothesis:

• Extra assumption. We take u0 a bounded, 0 ≤ u0 ≤ C, and compactly supported
function, supp(u0) ⊂ BR(0).

Then, supp(̃u0λ) ⊂ BR/λβ (0). Moreover, there exists a source-type solution of the form
V (x, t) = UM ′(x, t + 1) with M ′ >> M such that V (x, 0) = UM ′(x, 1) ≥ u0(x). Then,

ũλ(x, 0) = λαu0(xλβ, 0) ≤ λαUM ′(xλβ, 1) = UM ′
(

x,
1

λ

)
,

where in the last equality we have used the invariance of U under Tλ. We conclude from
the Maximum Principle that

ũλ(x, t) ≤ UM ′
(

x, t + 1

λ

)
, (5.2)

and in the limit U(x, t) ≤ UM ′(x, t). The bound solves all our problems since it implies that
the support of the family {̃uλ(t)} is uniformly small for all λ large and t close to zero. Indeed,
we observe the relation between the radii of the supports of a solution and its rescaling:

Rλ(t) = 1

λβ
R(λ t), (5.3)

It follows that the support of ũλ(t) is contained in a ball of radius

R = C (M ′)(m−1)β

(
t + 1

λ

)β

(5.4)

with C = C(m, n). Now we can proceed.

LEMMA 5.3. The limit U has mass M for all t > 0.

This is a consequence of the Dominated Convergence Theorem since U is bounded above
by a big source-type.

LEMMA 5.4. Under the present assumptions on u0 we have U(x, t) → Mδ(x) as
t → 0, i.e.,

lim
t→0

∫
R

n
U(x, t)ϕ(x) dx = Mϕ(0) (5.5)

for all test functions ϕ ∈ C∞
c (Rn).
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Proof. Since M = ∫
U(x, t) dx we have for t > 0

| ∫ U(x, t)ϕ(x) − Mϕ(0) dx| ≤ ∫ |U(x, t)‖ϕ(x) − ϕ(0)|dx

≤ ∫
|x|≤δ

|U(x, t)‖ϕ(x) − ϕ(0)|dx + ∫
|x|>δ

|U(x, t)‖ϕ(x) − ϕ(0)|dx ≤ (∗)

By continuity there exists δ > 0 such that |ϕ(x) − ϕ(0)| ≤ ε/2M if |x| ≤ δ. Besides, ϕ is
bounded so that

|ϕ(x) − ϕ(0)| ≤ 2C (ϕ ∈ C∞
c ) .

Since U vanishes for |x| ≥ δ if t is small enough we get

(∗) ≤ M
ε

2M
+ 2C

∫
|x|>δ

|U(x, t)| ≤ Kε .

�

Conclusion. Using the uniqueness result, Theorem 5.1, we can identify U . Hence, for
t = 1 we have ũλn(x, 1) → UM(x, 1) in L1

loc(R
n). Now, the ũλ have compact support

which is uniformly bounded in λ. It follows that

ũλn(x, 1) → UM(x, 1) in L1-strong.

(We pass from local to global convergence). The limit is thus independent of the sequence
λn. It follows that the whole family {̃uλ} converges to UM as λ → ∞.

5. Rephrasing the result. The argument has concluded, but we still have to write the
conclusion in the original variables and scales. Let FM(x) = UM(x, 1). We have just
proved that

lim
λ→∞ ‖λαu(λβx, λ) − FM(x)‖L1 = 0,

which means with y = λβ x that

lim
λ→∞

∫
λα|u(y, λ) − λ−αFM(y/λβ)|λ−βn dy = 0.

Noting that UM(y, λ) = λ−αFM(y/λβ) and that α = βn, we arrive at

lim
λ→∞

∫
|u(y, λ) − UM(y, λ)| dy = 0,

i.e., replacing λ by t

lim
t→∞ ‖u(y, t) − UM(y, t)‖L1

y
= 0.

This is the asymptotic formula (1.5). It has been proved for the class of bounded and
compactly supported initial data.
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6. General initial data

We now extend the result from compactly supported initial data to the whole class of
data u0 satisfying (0.3) by a general density argument. Given ε > 0 we construct an
approximation ũ0 which is bounded and compactly supported and such that

‖u0 − ũ0‖1 ≤ ε,

∫
R

n
ũ0(x) dx = M̃.

To prove formula (1.5) for u(x, t) we only have to use the triangle formula plus the con-
traction property (2.3):

‖u(t) − UM(t)‖1 ≤ ‖u(t) − ũ(t)‖1 + ‖ũ(t) − UM̃ (t)‖1 + ‖UM̃ (t) − UM(t)‖1.

Now, |M − M̃| ≤ ε, hence ‖UM̃ (t) − UM(t)‖1 ≤ ε. By the contraction principle,

‖u(t) − ũ(t)‖1 ≤ ‖u(0) − ũ(0)‖1 ≤ ε.

Thus, we get ‖u(t) − UM(t)‖1 ≤ ε + δ(t) + ε = 2ε + δ(t), where δ(t) → 0 as t → ∞
according to the result proved for the special solutions. As t → ∞ we get

lim
t→∞ ‖u(t) − UM(t)‖1 ≤ 2ε.

Since ε > 0 is arbitrary this completes the proof of the L1 estimate in Theorem 1.1.

Comment on the method. The method we have used so far in the proof of Theorem 1.1
can be applied to different equations and systems as long as they possess good scaling
properties that are relevant for the asymptotics, and as long as the identification step has
some nice characteristic which enables us to determine the solution obtained as limit. We
note that no essential use is made of the Maximum Principle, which is replaced as a main
argument by compactness. This makes the method in principle well suited for systems and
higher-order equations.

Alternative. In fact, we have used the maximum principle and the property of finite prop-
agation in Step 4 in the case of compact support. This can be avoided with no much effort.
We give next a direct proof of Step 4 suggested by the referee: the main point of the argu-
ment to show that the initial data are taken is to make sure that there is no mass escaping to
infinity. Such a property is ensured by the following result.

LEMMA 6.1. Let u be a solution with data u0 ∈ X0. For T , R > 0 we have

lim
R→∞ sup

λ≥1
sup

t∈(0,T )

∫
{|x|≥R}

ũλ(x, t) dx = lim
t→0,λ→∞

∫
{|x|≥R}

ũλ(x, t) dx = 0. (6.1)
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Proof. Take a C∞ cutoff function � = �(|x|) such that 0 ≤ � ≤ 1, �(x) = 0 for
|x| ≤ 1, �(x) = 1 for |x| ≥ 2. Let �R(x) = �(x/R). Multiplying the equation by �R and
integrating by parts we get

d

dt

∫
�Rũλ(t) dx ≤ 1

R2
‖��‖∞‖ũλ‖m−1∞ M ≤ C(m, n, �, M)

R2
t−α(m−1),

by Property 2 of Section 2. We have α(m − 1) < 1, hence integration in time from 0 to
t ≤ T gives∫

�Rũλ(t) dx ≤
∫

�Rũλ(0) dx + C(m, n, �, M)

R2
T 2β.

Moreover, for λ ≥ 1,
∫

�R(x)̃uλ(x, 0) dx = ∫
�(x/Rλβ)u0(x) dx ≤ ∫

|x|≥Rλβ u0(x) dx,

which goes uniformly to zero as Rλβ → ∞. The two results follow. �

With this result it is easy to check that the limit U has mass M for all t > 0, and with it
the identification of Step 4 follows.

7. Uniform convergence. Local regularizing effect

Once the basic L1- convergence result is proved, we turn next to the question of improved
convergence. We will show that the asymptotic convergence takes actually place in L∞,
i.e., uniformly. The improvement of convergence is a consequence of the smoothness of the
flow, in more precise form, of the local regularity properties which apply to our problem.

We know that the family {̃uλ} is bounded for all t ≥ t0 > 0. The local regularity theory
[DB] says that

LEMMA 7.1. Equi-bounded families of solutions of the PME are equi-continuous with
a uniform Hölder modulus of continuity, i.e., they are bounded in some space Cε(Q), ε > 0.

This is a local result. When we apply it to the family {̃uλ} it says that it is a bounded
family in Cε(�) for every compact subdomain of Q with

‖ũλ‖Cε ≤ C(‖ũλ‖∞, �) (7.1)

(where ‖·‖Cε is the Hölder norm of the space Cε(�)). The same result applies in a bounded
space-time domain and then C depends on the distance from � to the boundary of the total
domain. We recall the usual definition of the Hölder semi-norm in parabolic domains

[u]ε = sup
(x,t),(x′,t ′)∈�

|u(x, t) − u(x′, t ′)|
‖x − x′‖ε + |t − t ′|ε/2



20 juan luis vázquez J.evol.equ.

The space is also written as C
ε,ε/2
x,t . Returning to our family, boundedness in the Hölder

space implies equi-continuity. By the Ascoli-Arzelà theorem this implies compactness in
the uniform norm, but on compact domains. We thus have

ũλ(x, 1) → UM(x, 1) (7.2)

uniformly on compact subsets of Q. We again divide the end of the proof in two cases,
according to their difficulty.

I. If we consider as before the subclass of solutions with bounded and compactly supported
data we know that for t = 1 the ũλ have uniformly bounded supports, hence the convergence
(7.2) is uniform in x ∈ R

n. Rephrasing the result as before, we get

tα‖u(t, y) − t−αFM(t−βy)‖∞ → 0, t → ∞,

which is the asymptotic formula (1.6). The uniform convergence of Theorem 1.1 is proved
in this case.

II. For general u0 things are not so simple. Arguing as before we know that

(i) at t = 1 the rescaled family ũλ(x, 1) converges in L1(Rn) to UM ,
(ii) this convergence takes also place in the uniform norm on any ball BR(0) ⊂ R

n,
(iii) the same happens for every t ∈ (1/2, 2) uniformly in time.

As a consequence, we get the following picture. Take a very large radius R1 � 1, in
particular larger than the radius of the support of UM(x, 1). In the time interval 1/2 < t < 1
we have uniform convergence of ũλ towards UM in the ball of radius R1. Now we have to
examine the outer region, O1 = {|x| ≥ R1}. We know that uλ ≥ UM because UM vanishes
identically there. Moreover, the mass

∫
O1

ũλ(x, t) dx is less than ε in that outer domain:
the reason is that ũλ and UM have the same total mass and we have shown that they are
almost identical for |x| ≤ R1. Clearly, ε → 0 as λ → ∞. Under these circumstances we
want to prove that there is a function C(ε) with C(ε) → 0 as ε → 0 such that

ũλ(x, 1) ≤ C(ε) for |x| ≥ R1, (7.3)

and the proof of Theorem 1.1 will be complete. In other words, we want to translate small
L1-norms into small L∞-norms. The technical tool to do that is the following result that
has an interest in itself.

LEMMA 7.2. (Local regularizing effect) Let f be any nonnegative, smooth, bounded
and integrable function in B1 = BR(a) ⊂ R

n such that

�(f p) ≥ −K
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for some p > 0 and K > 0. Let B2 = BR/2(a). Then f ∈ L∞(B2) and ‖f ‖L∞(B2)

depends only on p, K , n, R and ‖f ‖L1(B1)
. If ‖f ‖1 is very small compared with R it takes

the form

‖f ‖L∞(B2) ≤ C(p, n) ‖f ‖ρ

L1(B1)
Kσ , (7.4)

with ρ = 2/(2 + pn) and σ = n/(2 + pn).

The exact condition for (7.4) to hold is ‖f ‖ρ p/2
1 � RKρ/2. In the application B1 is any

ball contained in {|x| ≥ R1}, and we take

f = u(t), p = m − 1, K = α (m − 1)

mt

in the case where the solution u is positive everywhere, hence smooth. The general case is
done by approximation. This completes the proof of Theorem 1.1.

Observe that the LRE implies the regularizing effect (2.5) when in the application we
take R = ∞.

8. A proof of the local regularizing effect

This is a kind of technical appendix that the reader may wish to jump in a first reading.
(i) To begin with, we may use scaling to reduce the number of parameters. Thus, if

f satisfies the assumptions in the ball B1 of radius R and center a, with constant K and
integral ‖f ‖L1(B1)

≤ M , then

f1(x) = A f (Rx + a), Ap = 1

KR2
,

satisfies the same assumptions with R = K = 1 and a = 0. Therefore, only this case must
be considered, bearing in mind the transformation and the fact that

‖f1‖L1(B1(0)) ≤ M1 = MK−1/pR−(np+2)/p.

(ii) Under those assumptions, let g(x) = f p(x). Then �g ≥ −1. Therefore, for every
x0 ∈ R

n the function

G(x) = g(x) + 1

2n
|x − x0|2

is subharmonic in B1 = B1(0). It follows that

G(x0) ≤
∮

B

G(x) dx,

where B is any ball Br(x0), r > 0 contained in B1, and
∮
B

denotes average on B. The
argument will continue in a different way for p > 1 and for 0 < p ≤ 1.
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(iii) If p ≤ 1, we can use the last formula to estimate g at an arbitrary point x0 ∈ B1/2(0)

as follows. If B = Br(x0) and 0 < r ≤ 1/2 then,

g(x0) ≤
∮

B

g(x)dx + 1

2n

∮
B

|x − x0|2dx ≤
(∮

B

g1/p dx

)p

+ r2

2(n + 2)
,

≤ ‖f ‖p

L1(B1)

(
1

ωn rn

)p

+ r2

2(n + 2)
.

where ωn denotes the volume of the unit ball. Minimization of the last expression with
respect to 0 < r < 1/2 gives the bound. In particular, when ‖f ‖1 is small enough the
minimum happens at an interior point of the r-interval and then

g(x0) ≤ C ‖f ‖
2p

pn+2
1 ,

Recall that this holds under the simplifying hypothesis, so that for K, R �= 1 we have to
undo the transformation. We ask the reader to check that it is really equivalent to (7.4).

iv) For p > 1 we proceed in two steps. In the first one we use the following result
which can be easily established by repeated (but finite) iteration of the Moser integration
technique.

LEMMA 8.1. Let G ≥ 0 be a locally integrable function in the ball B = BR(0) such
that �G ≥ 0 and G1/p ∈ L1(B) for some p > 1. Then∮

BR/2

G dx ≤ C

(∮
B

G1/p dx

)p

, (8.1)

where C > 0 depends on p and n.

Isf we prove it for R = 1 then it is easily translated to a ball of radius R �= 1 by scaling.
From this it follows that g = f p ∈ L1(Br) for all r < 1/2, and in fact∮

Br

f p dx ≤ C

(∮
B2r

f dx

)p

+ Cr2 (8.2)

with another C = C(p, n). Then, for every x0 ∈ B1/2(0) and B = Br(x0) and 0 < r ≤ 1/4
we have

g(x0) ≤
∮

B

f p(x) dx + 1

2n

∮
B

|x − x0|2dx ≤ Cr−np‖f ‖p

1 + Cr2.

The end is as before.
A related version of the local regularizing effect is due to [BCP]. The idea of the present

proof was announced in [V4], Chapter 3.
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9. Convergence of supports and interfaces

We assume in this section that u0 is compactly supported and describe the asymptotic
shape and size of the support as t → ∞. We may assume without loss of generality that
u0 is continuous and nontrivial and that 0 belongs to the positivity set of u0. We introduce
the minimal and maximal radius,{

r(t) = sup{r > 0 : u(x, t) > 0 in Br(0)},
R(t) = inf{r > 0 : supp(u(x, t)) ⊂ Br(0)}. (9.1)

Since the source-type solution UM(x, t) is given by formula (1.2)–(1.3), its support is the
ball of radius

R(t) = ξ0(m, n)(Mm−1 t)β = C0 tβ . (9.2)

THEOREM 9.1. As t → ∞ we have

lim
t→∞

r(t)

R(t)
= lim

t→∞
R(t)

R(t)
= 1. (9.3)

Proof. The fact that the limits in (9.3) are equal or larger than 1 is a direct consequence
of the uniform convergence of Theorem 1.1. On the contrary, the fact that for large t

R(t) ≤ (1 + ε) R(t)

needs a proof. Of course, we know that a large Barenblatt solution with some delay is a
super-solution, hence there is a constant C > 1 such that for all large t

R(t) ≤ CR(t).

On the other hand, we know that the mass contained in exterior sets of the form

�ε = {|x| > (1 + ε)R(t)}
is less than ε for all large t . By Lemma 7.2 there is uniform convergence to 0 in this region
as t → ∞, hence if the support is larger than the support of U the excess region takes the
form of a thin tail.

We will show that the possible tail must disappear as time grows by means of a comparison
with slow traveling waves. This is done as follows: if we define the ratio s(t) = R(t)/tβ ,
we must prove that

lim supt→∞s(t) = C0.

Assume by contradiction that this limit is C > C0 and take a very large time t1 for which
the ratio s(t1) ≥ C − ε, with ε very small. By scaling (4.7) we can reduce that time to
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t1 = 1. Since the ratio has limsup C we have R(1/2) ≤ (C + ε)/2β = d < C. On
the other hand, by the uniform convergence u → U , we may also assume that u ≤ ε for
|x| ≥ R(1) + ε = C0 + ε, and t ∈ [1/2, 1]. Let d1 = max{d, C0}, which we may take
such that d1 < C − 4ε for ε small. Now, we compare u with the explicit traveling wave
solution û with small speed ε defined as

ûm−1 = m − 1

m
(ε(t − 1/2) + ε + d1 − x1)+

where x1 is the first coordinate of x. Comparison takes place in the region: {t ∈ [1/2, 1],
x1 ≥ d1}. By inspecting the parabolic boundary, we easily show that u ≤ û there. Since û

vanishes for x1 ≥ d1 +ε+ε(t −1/2) we conclude that u vanishes at t = 1 for x1 ≥ d +2ε.
We may rotate the axes in the previous argument, hence we conclude that u(x, 1) = 0 for
|x| ≥ d1 + 2ε and this is a contradiction with R(1) ≥ C − ε. The tail is eliminated. �

Theorem 9.1 is a manifestation of the property of asymptotic symmetrization, which
will be discussed in greater detail in Sections 15 and following.

10. Continuous rescaling and stationary solutions

A different way of implementing the scaling of the orbits of problem (CP) and proving
the previous facts consists of using the continuous rescaling

θ(η, τ ) = tαu(x, t), η = x t−β, τ = log(t), (10.1)

with α and β the standard similarity exponents given by (1.3). The new orbit θ(τ ) satisfies
the equation

θτ = �(θm) + βη · ∇θ + αθ (10.2)

It is bounded uniformly in L1(Rn) ∩ L∞(Rn). The source-type solutions transform into
the stationary profiles FM in this transformation, i.e., F(η) solves the nonlinear elliptic
problem

�f m + βη · ∇f + αf = 0. (10.3)

The boundedness and compactness arguments of Section 4.3 apply and we may pass to
the limit and form the ω-limit, which is the set

ω(θ) = {f ∈ L1(�) : ∃τj → ∞ such that θ(τj ) → f }. (10.4)

The convergence takes place in the topology of the functional space in question, here any
Lp(�), 1 ≤ p < ∞ (strong). We have written a quite detailed account of this process in
the Notes on the Dirichlet problem, [V5].
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The rest of the proof consists in showing that the ω-limit is just the Barenblatt profile
FM . The argument can be translated in the following way. Corresponding to the sequence
of scaling factors λn of Section 4 we take a sequence of delays sn and define

θn(η, τ ) = θ(η, τ + sn). (10.5)

The family {θn} is precompact in L∞
loc(0, ∞ : L1(Rn)) hence, passing to a subsequence if

necessary we have

θn(η, τ ) → θ̂ (η, τ ). (10.6)

Again it is easy to see that θ̂ is a weak solution of (10.2) satisfying the same estimates. The
end of the proof is identifying it as a stationary solution, which was done in the previous
proof by the other scaling method (discrete rescaling).

Theorem 1.1 can now be used to characterize the stationary solutions.

THEOREM 10.1. The profiles FM can be characterized as the unique solutions of
equation (10.3) such that f ∈ L1(Rn), f m ∈ L1

loc(R
n) and f ≥ 0. The conditions

f m ∈ H 1(Rn), f ∈ C(Rn) are true, but not needed in the proof.

Proof. Any other solution f can be taken as initial data for the evolution equation (10.2)
and then Theorem 1.1 proves that the corresponding solution of (10.2) converges to the
source-type solution with the same mass, FM . Now, the solution u(x, t) = t−αf (x t−β)

is an admissible solution of the PME which converges in the rescaling to f . Therefore,
f = FM . �

11. Optimality of the convergence rates in X0

We devote this section to a first exploration of the sharpness of the convergence rates,
proving Theorem 1.3. A more precise formulation is as follows:

Counterexample. Given any decreasing function ρ(t) → 0, there exists a solution of the
Cauchy Problem with integrable and nonnegative initial data of mass M > 0 such that

lim sub
t→∞ (u(0, t) − U(0, t; M)) tα

ρ(t)
= ∞. (11.1)

Moreover, we can also get

lim sub
t→∞ ‖u(t) − U(t; M)‖1

ρ(t)
= ∞. (11.2)

We can also ask the solution to be radially symmetric with respect to the space variable.
Construction. (i) We recall that the proof need only be done for M = 1 since the scaling
transformation

ûc(x, t) = cm−1 u(x, c t) (11.3)



26 juan luis vázquez J.evol.equ.

reduces a solution of mass M > 0 to a solution of mass 1 if c = M−1/(m−1). We take an
initial function of the form

u0(x) =
∞∑

k=1

ck χk(x − ak),

where χk(x) is the characteristic function of the ball of radius rk centered at 0. The sequences
ak, ck and rk have to be determined in a suitable way. In the first place, we impose the
conditions ck, rk ≥ 0 and ck rn

k = 2−k/ω (where ω is the volume of the ball of radius 1).
Then, M = ω

∑∞
1 ck rn

k = 1 .
(ii) We construct solutions uk with initial data of the form

uk(x, 0) =
k∑
1

ci χi(x − ai), (11.4)

and we proceed to choose ck and ak in an iterative way. In any case the mass of uk is
Mk = 1 − 2−k , and we observe that (by the main convergence result) for every ε > 0 there
must be a time tk(ε) (which depends also on the precise choice of the initial data) such that

tα|uk(0, t) − U(0, t; Mk)| ≤ ε

for all t ≥ tk(ε). We now recall that U(0, t; M) = c M2β t−α , so that the difference
between tαU(0, t; M) and tαU(0, t; M ′) is constant in time, and in fact it can be estimated
as larger than

tα (U(0, t; M) − U(0, t; M ′)) ≥ k1 (M − M ′)

with the same constant k1 > 0 for all 1 ≥ M > M ′ ≥ 1/2.
(iii) The iterative construction of the uk starts as follows. We may take c1 as we like, e.g.,

c1 = 1, then r1 = (2ω)−1/n, and find the solution u1(x, t) with data u1(x, 0) = c1 χ1(x).

Its mass is M1 = 1/2 for all times. As said above, for sufficiently large times we have

tα|u1(0, t) − U(0, t; M1)| ≤ ε ,

We can also find t1 such that ρ(t1) < (1/2)k1 (M − M1) = k1/4. Using the estimate for
the difference of source-type solutions and the triangular inequality, and taking ε small
enough(ε ≤ k1/4), we get for all t ≥ t1

tα|u1(0, t) − U(0, t; 1)| ≥ tα|U(0, t; 1)

−U(0, t; M1)| − tα|u1(0, t) − U(0, t; M1)| (11.5)

≥ k1(1 − M1) − ε ≥ k1/4 ≥ ρ(t1) ≥ ρ(t) . (11.6)

(iv) Iteration step. Assuming that we have constructed u2, . . . , uk−1 by solving the
equation with data (11.4), we proceed to choose ck , and ak and construct uk as follows. We
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can take any ck > 0, and then find ak large enough so that the support of the solution vk

with initial data vk(x, 0) = χk(x − ak) does not intersect the support of uk−1 until a time
tk > 2 tk−1 (and we can even estimate how far ak must be located for large tk because we
have a precise control of the support of uk−1 for large times, thanks to Theorem 9.1). Then,
it is immediate to see that

uk(x, t) = uk−1(x, t) + vk(x, t)

for all x ∈ R
n and 0 ≤ t ≤ tk (i.e., superposition holds as long as the supports are disjoint).

Indeed, this means that for all 0 ≤ t ≤ tk−1 we also have uk(0, t) = uk−2(0, t), and by
iteration we conclude that

uk(0, t) = uj (0, t) for all 1 ≤ j < k and 0 ≤ t ≤ tj+1.

We now remark that tk can be delayed as much as we like (on the condition of taking ak

far away). If we choose tk large enough, the main asymptotic theorem implies the behaviour

tαk uk(0, tk) = tαk uk−1(0, tk) ∼ tαk U(0, tk; Mk−1)

We want the error to be less than k1(1 − Mk)/2 = 2−(k+1)k1. We also suggest to
wait until ρ(tk) ≤ 2−(2k+1) k1. Using again the triangle inequality: |uk − U(M)| ≥
|U(M) − U(Mk−1)| − |uk − U(Mk−1)| with M = 1, we get

tαk |uk(0, tk) − U(0, tk; 1)| ≥ 2−(k+1)k1 ≥ 2kρ(tk).

(v) In the final step we take the limit

u(x, t) = lim
k→∞ uk(x, t).

By what was said before we may conclude that for t ≤ tk we have u(0, t) = uk(0, t), so
that

lim
n→∞ tαk

u(0, tk) − U(0, tk; 1)

ρ(tk)
= ∞.

This concludes the proof of the L∞-estimate.
(vi) The construction can be easily modified so that the data u0 are radially symmetric by

defining χk to be the characteristic function of the annulus Ak = {x : ak ≤ |x| ≤ ak + rk}
and imposing that ck times the volume of Ak to equal 2−k . The construction is repeated
with the same attention to be given to ak , i.e., to the far location of the Ak .

(vii) For the L1 part we just observe that, taking tk large enough we have at time t = tk

and in a very large ball Bk (as large as we please by the iteration construction) the equality
u = uk and the approximation

‖uk − U(x, tk; 1)‖ ≥ ‖uk − U(x, tk; 1)‖L1({x /∈Bk}) ≥ 2−k,

since the mass of u contained outside this ball is known (2−k), and that of U is zero there.
The result follows if the tk have been chosen as before, ρ(tk)2k → 0.
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12. Proof of Theorem 1.1 by the Lyapunov method

We devote the next sections to derive alternative proofs of the main convergence result,
Theorem 1.1. Two of them are based on standard implementations of the idea of Lyapunov
functional. The third one introduces a non-standard version of this idea.

12.1. Lyapunov functional. Given an orbit {u(t)} with mass M > 0 we introduce the
functional

Ju(t) =
∫

R
n
|u(x, t) − UM(x, t)| dx. (12.1)

It is clear from the Contraction Property that J is nonincreasing in t . We get the following
result.

LEMMA 12.1. There exists the limit J∞ = limt→∞ J (t) ≥ 0.

Note that J (t) becomes zero only if u(t) coincides with the source-type solution for
some t1 > 0 and then the equality holds for all t ≥ t1 and the asymptotic result is trivial.
Otherwise J (t) > 0 for all t > 0. We have to examine this case.

12.2. Limit solutions. We perform Steps 1, 2 and 3 of the preceding proof to obtain a
sequence λk → ∞ such that

ũλk
(x, t) → U(x, t) (12.2)

in L1(Rn ×(t1, t2)). The limit U is again a solution of the PME. It is nontrivial and has mass
M (this is easy for compactly supported solutions and then true for the rest by approximation,
as we saw).

12.3. Invariance Principle. One of the key features of the use of Lyapunov functionals is
the following Asymptotic Invariance Property.

LEMMA 12.2. The Lyapunov functional is constant on limit orbits, i.e., JU does not
depend on t .

Proof. The Lyapunov functional is translated to the rescaled family ũλ by the formula

Jũλ(t) =
∫

R
n
|̃uλ(x, t) − UM(x, t)| dx = Ju(λt). (12.3)

It follows that for fixed t > 0 we have

lim
λ→∞ Jũλ(t) = lim

λ→∞ Ju(λt) = J∞.

On the other hand, we see that J depends in a lower-semicontinuous form on u. Moreover,
it is continuous under the passage to the limit that we have performed. That means that for
every t > 0 we have JU(t) = J∞. �
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12.4. A limit solution is a source-type. In order to identify U , the next result we need is
the following.

LEMMA 12.3. Let be an orbit u(t) with mass M > 0 and with connected support for
t ≥ t0. Then the function J (t) is strictly decreasing in any time interval (t1, t2), t0 < t1 < t2,
unless u = UM or both solutions have disjoint supports in that interval.

Proof. We consider for t ≥ t1 > 0 the solution w of the PME with initial data at t = t1

w(x, t1) = max{u(t1), v(t1)}, (12.4)

where we put v = UM for easier notation. Clearly, w ≥ u and w ≥ v, hence

w(t) ≥ max{u(t), v(t)}, t > t1.

Moreover, we have w(x, t1) − u(x, t1) = (v(x, t1) − u(x, t1))+ and w(x, t1) − v(x, t1) =
(u(x, t1) − v(x, t1))+ so that

Ju(t1) =
∫

R
n
(w(t1) − u(t1)) dx +

∫
R

n
(w(t1) − v(t1)) dx,

while for general t > t1

Ju(t) + 2
∫

R
n
(w(t) − max{u(t), v(t)}) dx =

∫
R

n
(w(t) − u(t)) dx

+
∫

R
n
(w(t) − v(t)) dx.

Both integrals on the right are nonincreasing in time by the contraction principle, hence
constancy of Ju in an interval [t1, t2] implies that

w(t2) = max{u(t2), v(t2)}. (12.5)

In order to examine the consequences of this equality we use the Strong Maximum Principle.
�

LEMMA 12.4. Two ordered solutions of the PME cannot touch for t > 0 wherever they
are positive.

This is a standard result for classical solutions of quasilinear parabolic equations, cf.
[LSU]. It follows that (12.5) is then possible on any connected open set � where w(·, t2) > 0
under three circumstances:

(i) w(t2) = u(t2) > v(t2), or
(ii) w(t2) = v(t2) > u(t2), or

(iii) w(t2) = u(t2) = v(t2).
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Since the support of the source-type solution is a ball and the support of u is also connected,
we conclude the result of Lemma 12.3.

Note. If M is not the mass of u there is still another possibility for constant J , namely that
the solutions are different but ordered: either u(t) ≥ UM(t) or u(t) ≤ UM(t).

We may now conclude the proof of Theorem 3.1 by this method in the case where u0

has compact support, so that by standard properties of the propagation of support, it is
connected after a certain time t0. Since the source-type solution penetrates into the whole
space eventually in time and U has a non-contracting support, it follows that for large t the
supports of U and UM do intersect. Since both solutions cannot be ordered because they
have the same mass, JU(t) must be zero since it is not strictly decreasing by Lemma 12.2.
We have thus proved that J∞ = 0 and

U = UM, (12.6)

which identifies all possible limits of rescalings as the unique source-type solution with the
same mass. This ends the proof (see Section 5). The extension to general data is done by
density as before.

12.5. Continuous rescaling. One way of proving the previous facts is by using the contin-
uous rescaling, formula (10.1). As explained in Section 10, taking a sequence of delays sn

we define

θn(η, τ ) = θ(η, τ + sn),

and passing to the limit

θn(η, τ ) → θ̂ (η, τ ). (12.7)

Again it is easy to see that θ̂ is a weak solution of (10.2) satisfying the same estimates. For
θ the Lyapunov functional is translated into

Jθ (t) =
∫

R
n
|θ(η, τ ) − FM(η)| dη, (12.8)

and we see that it is continuous under the passage to the limit we have performed. Let us
examine now the situation when J∞ > 0. Then θ̂ �= FM and the orbit of θ̂ has a strictly
decreasing functional, so that for τ2 = τ1 + h we have

Jθ̂ (τ1) − Jθ̂ (τ2) = c > 0.

Since θ̂ is the limit of the θn we get for all large enough n

Jθn(τ1) − Jθn(τ1 + h) ≥ c/2.
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But this means that for all n large enough

Jθ (τ1 + sn) − Jθ (τ1 + sn + h) ≥ c/2.

This contradicts the fact that Jθ has a limit. The proof is complete.

Comment. As we had announced, the proof of this section uses several steps of the former
with a completely different end. It contains some fine regularity results that can make
it difficult to apply in more general settings. However, some of these difficulties can be
overcome by other means. Lasalle’s Invariance Principle is a powerful tool in Dynamical
Systems [Ls], worth knowing also in this context.

13. Another Lyapunov approach

A different Lyapunov approach was proposed in 1984 by Newman and developed in
[N, R]. We can write the functional in continuously rescaled variables (cf. Section 10) as

Jθ (τ ) =
∫

R
n
{θ(η, τ )m + κ |η|2θ(x, τ )} dη, κ = 1

2
β(m − 1) , (13.1)

where β is the similarity exponent. The proof of convergence in this instance will be based
on the possibility of calculating the value of dJ /dτ along an orbit.

LEMMA 13.1. Let J be the Newman functional given by (13.1). Then for every rescaled
orbit of problem (CP) we have

dJ
dτ

= − m2

m − 1

∫
θ {∇(θm−1 + k η2)}2 dη. (13.2)

Proof. In order to analyze the evolution of J let us put for a moment

J (θ) =
∫

R
n
{θ(η, τ )m + λ |η|2θ(η, τ )} dη,

with λ > 0. Let us perform the following formal computations:

dJ /dτ =
∫

(mθm−1 + λ η2) θτ dη

=
∫

(mθm−1 + λ η2)(�θm + β∇ · (η θ)) dη

= −
∫

∇(mθm−1 + λ η2) (∇θm + βηθ) dη

= −
∫

θ ∇(mθm−1 + λ η2) ∇
(

m

m − 1
θm−1 + β

2
η2

)
dη.
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In case λ = β(m − 1)/2 we can write this quantity as (13.2), which proves that J is a
Lyapunov functional, i.e., it is monotone along orbits.

These computations are easily justified for classical solutions which decay quickly at
infinity. The result for general solutions is then justified by a density argument using the
regularity of the solutions of the PME. cf. [V4] (but we can also restrict the Lyapunov
analysis to the above mentioned class of solutions since the proof of convergence for general
solutions is then completed by a density argument as in Section 6). �

Limit orbits and invariance. As in the previous section we pass to the limit along sequences
θn(τ ) = θ(τ +sn) to obtain limit orbits θ̂ (τ ), on which the Lyapunov functional is constant,
hence dJθ̂ /dτ = 0.

Identification step. The proof of asymptotic convergence concludes in the present instance
in a new way, by analyzing when dJ /dτ is zero. Here is the crucial observation that ends
the proof: the second member of (13.2) vanishes if and only if θ is a Barenblatt profile.

The rate of convergence can be calculated by computing d2J /dt2, which is not easy.
We will continue with the subject in Section 19.

14. Proof of Theorem 3.1 using optimal barriers

14.1. We present still another kind of proof, based on the ideas of the paper of Friedman
and Kamin [FK]. Given a solution u(t) with mass M > 0 we consider for fixed t > 0 the
set of source-type solutions which lie below u(·, t) and define a functional

M(t; u) = sup{M ′ ≥ 0 : UM ′(x, t) ≤ u(x, t)} (14.1)

Thus, M(t; u) is the mass of a certain optimal barrier from below, a source-type solution
with mass M(t; u) which lies below u at time t . Indeed, the above definition is insufficient
and we have to introduce a modification of the class of admissible barriers. For τ ∈ R we
define

M(t; u, τ) = sup{M ′ ≥ 0 : UM ′(x, t + τ) ≤ u(x, t)} (14.2)

(if τ < 0 this definition applies for t > −τ ). The use of a delay τ is a tricky technicality
involved in the argument of strict monotonicity which is essential in the proof.

It is clear from the Maximum Principle that

LEMMA 14.1. For fixed u and τ the function M(t) = M(t; u, τ) is positive for every
t > 0 and M(t) ≤ M . It is also nondecreasing in t so that there exists the limit

M∞(u) = lim
t→∞ M(t; u, τ), 0 < M∞(u) ≤ M. (14.3)
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The monotonicity in time makes M(t) a kind of Lyapunov functional. Obviously, since
u(t) has mass M , the equality M(t) = M only happens if u is just the source-type solution
UM (with a delay). Otherwise, 0 < M(t) < M . It is also easy to prove that though M(t)

depends on τ the limit M∞ does not (hint: source-type solutions with same mass but some
delay are very similar for large t).

14.2. Repeating the process of rescaling, compactness and passage to the limit of
Section 4. on the orbit u(t), solution of problem (CP), we have that along a sequence
λn → ∞

ũλn → U, (14.4)

and U is a solution of equation (0.1). Note that the convergence is uniform on compact sets
of space-time, which will imply at the end of the proof (Step 5 of the general plan) uniform
convergence in sets of the form |x| ≤ Ctβ .

LEMMA 14.2. M(t; U, 0) is constant and equals M∞(u).

Proof. Let us put M̂(t) = M(t; U, 0), the mass of the optimal lower barrier for U .
Using the identity M(t; u, τ) = M(t/λ; ũλ, τ/λ), it is immediate from the passage to the
limit in the rescalings and that M̂(t) is equal or larger than M∞(u) for all t > 0. Note that
the delays scale like τ/λ, so that in passing to the limit the delay tends to 0.

Consider now for some t > 0 the barrier UM̂(t)(x, t) for U(t). Since the convergence
(14.4) is uniform on compact sets we conclude by approximation that for large λn there
exists a lower barrier with mass M̂(t)−ε. But the barrier for ũλn is approximately M∞(u).
Hence, M∞(u) ≥ M̂(t). �

14.3. We have to introduce the argument of strict monotonicity after which Lemma 14.2
cannot be true unless U is a source-type. We need first a lemma about the way source-type
solutions evolve in time.

LEMMA 14.3. Let R(t) = R(M)tβ be the radius of the support of the source-type
solution u = UM(x, t). There exists a radius R∗ smaller than R(M) such that

ut < 0 if |x| < R∗tβ , ut > 0 if R∗tβ < |x| < Rtβ. (14.5)

The proof of this result is a simple calculation with the explicit formula (1.2)–(1.3). We
can now prove the technical result which was a main point in the [FK] paper.

LEMMA 14.4. Let UM1(x, t + τ1) be a lower barrier for a solution u(x, t) at a time
t1 > 0. Then either both functions coincide at t = t1 or we can improve the barrier in the
following way: given a sufficiently close delay τ ≤ τ1 and a time t2 > t1 we can improve
the mass to some M > M1 and UM(x, t + τ) is a lower barrier for u at all times t ≥ t2.
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Proof. The inequality

u(x, t) ≥ U1(x, t) = UM1(x, t + τ1)

holds for all t ≥ t1. Let t2 > t1. Let B2 be the support of the solution U1 at t = t2 and
let R2 be its radius. Since u(x, t2) ≥ U1(x, t2) > 0 in B2 the Strong Maximum Principle
which holds for classical solutions of nonlinear parabolic equations implies that u must be
strictly larger than U1 at t2 inside B2.

We construct a barrier with a larger mass at t2 as follows. If the support of u(·, t2) contains
a larger ball than B2 then it is immediate that there exists a lower barrier of the form

UM(x, t2 + τ1)

for some M > M1. In case the ball cannot be expanded we have to perform the trick of
changing the delay. Using Lemma 14.3 we see that a small decrease in the delay (to a value
τ < τ1) produces a source-type (Barenblatt) profile that is larger in the middle and smaller
near the boundary with smaller support. This means that if τ is close enough to τ1 then
UM(x, t2 +τ) will be less than u(x, t2) inside the support the former. Hence, we can safely
increase slightly the mass to some M > M1 and the resulting function will still be a lower
barrier

u(x, t2) ≥ UM(x, t2 + τ). (14.6)

�

COROLLARY 14.5. We have M∞ = M and U = UM .

Proof. Suppose that this is not true and M∞ < M . Then we are in the situation where
the lower barrier for U can be increased from M∞ to M = M∞ + ε for t ≥ t2 > 0 with
some delay τ ≤ 0. The uniform convergence of ũλ → U on compact subsets means then
that for large enough λ the function ũλ admits a barrier of mass M′ ≥ M∞ + (ε/2) with
the same delay. In terms of u it means a barrier of mass M′ with a much larger delay τ .
But this would mean that

lim
t→∞ M(t; u, τ) > M∞,

a contradiction since M∞ does not depend on τ . �

After some rephrasing, Theorem 1.1 is proved.

15. Asymptotic symmetry

We now turn to a different trend of ideas based on the exploitation of the special properties
of the asymptotic dynamics, resuming the discussion started at the end of Section 4. The
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most general idea about asymptotic properties can be phrased as the obtention of symmetries
possessed by the equation but absent from the initial data. We recall the wide sense given by
physicists to the word ‘symmetry’. Thus, our equation is invariant under plane symmetries
and rotations in the space variable. This ‘symmetry’ is not true for general orbits because
of the influence of the initial data. However, we have asymptotic symmetry which derives
from the following monotonicity lemma, cf. [CVW].

LEMMA 15.1. Let u a solution of the Cauchy problem (CP) with initial data supported
in the ball BR(0), R > 0. Then for every x such that |x| > 2R and every r < |x| − 2R,
r > 0, we have

u(x, t) ≤ inf|y|=r
u(y, t) (15.1)

Proof. We use Alexandrov’s Reflection Principle. We draw the hyperplane H which
is mediatrix between the points x and y in the above situation. It is easy to see that H

divides the space R
n into two half-spaces, one �1 which contains y and the support of u0

and another one, �2, which contains x and where u0 = 0. We consider now the initial and
boundary-value problem in Q̂ = �1 × (0, ∞). Two particular solutions of this problem
are compared: one of them is u1, the restriction of u to Q̂, another one is

u2(z, t) = u(π(z), t), z ∈ �1.

where π is the specular symmetry with respect to the hyperplane H . Thus, if we orient the
coordinate axes so that H = {x1 = 0} then

π(x1, . . . , xn) = (−x1, . . . , xn).

Clearly, u1 and u2 are solutions of (0.1) in Q̂. Besides, u1 = u2 on the lateral boundary,
� = H × (0, ∞). Finally, u1 ≥ u2 for t = 0 since u2 = 0 in �1. By comparison for the
mixed problem we have

u1(z, t) ≥ u2(z, t) z ∈ �1, t > 0.

Putting z = y we have π(z) = x so that u(y, t) ≥ u(x, t) as desired. �

The conclusion for the asymptotic orbits is immediate.

THEOREM 15.2. Let U be a solution of problem (CP) obtained as limit of the rescaling
discussed in Section 4. Then U must be radially symmetric in the space variable, U =
U(r, t), r = |x|. It is also a nonincreasing function of r for fixed t .
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Proof. By density we may argue with an original orbit u(x, t) with initial data u0

supported in the ball of radius R > 0. But the use of Lemma 15.1 implies that for every
x ∈ R

n, x �= 0 we have

uλ(x, t) ≤ inf|y|=r
uλ(y, t)

as long as |x| ≥ 2R/λβ and 0 < r < |x| − (2R/λβ). In the limit λn → ∞ we get

U(x, t) ≤ inf|y|=r
U(y, t), 0 < r < |x|. (15.2)

The conclusion follows. The L1 continuity allows to extend the result to general data. �

Therefore, the asymptotic dynamics takes place under the conditions of radial symmetry
and monotonicity in the radial variable. Of course, the reader will object that in our problem
we already know, after Section 5, that U must be a source-type. There are two points we
want to make in this connection: (i) the proof of Section 5 was based on a strong uniqueness
result for the PME; (ii) the asymptotic property of Theorem 15.2 is a general fact that can be
established under quite general assumptions and can be the base for alternative convergence
proofs, applicable when uniqueness is not available in the form used in Section 5.

Let us also warn the reader that the influence of the initial data, though indirect, still
exists in the form of class of data for which this process is true, which is given by the
restriction (0.3). It is easy to see that other initial classes are incompatible with the process
of asymptotic symmetry in this sense. For instance, data which are monotone in one direction
preserve this property in time, and this is incompatible with radial symmetry.

Let us also mention another immediate consequence of Alexandrov’s Reflection
Principle.

LEMMA 15.3. With the assumptions and notations of Section 9, the difference of max-
imal and minimal support radius, R(t) − r(t), remains bounded in time.

16. Convergence rates for radially symmetric solutions.
Concentration comparison

16.1. The study of radially symmetric solutions u = u(r, t) has an interest because we can
use special techniques which produce error estimates with relative size O(1/t). Combined
with the idea of asymptotic symmetry of Section 15, it provides an alternative proof of the
convergence results of Section 3. The ideas have been first explained in the paper [KV1].
It works as follows:

End of proof of Theorem 1.1 by this method. The proof starts as in Section 4 and proceeds
through Steps 1, 2 and 3 so that we pass to the limit λn → ∞ and obtain an asymp-
totic solution, U , which is radially symmetric by the results of Section 15. Assume that
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Theorem 1.1 is proved for such solutions. Then we have convergence of U towards the
source-type solution UM(x, t). The triangle inequality gives then convergence along a
subsequence

u(x, tn) − UM(x, tn) → 0 in L1(Rn).

But the L1-contraction implies that the whole family {u(t)}t>0 converges. The proof is
complete.

16.2. Therefore, we consider in the sequel the asymptotic behaviour of solutions of the
Cauchy problem (CP) under the assumptions (0.3) plus

u0 is bounded, radially symmetric and compactly supported. (16.1)

A density argument allows to dispense with the later condition as in Section 6. The main
technical tool that we shall use is the comparison principle introduced in [V3] (see also
[V1]) and called Concentration Comparison. In the restricted form that we need here it
reads as follows

THEOREM 16.1. Let ui , i = 1, 2 be a pair of radially symmetric solutions of problem
(CP) with initial data u0i in the class (0.3). Assume that for every r > 0∫

Br(0)

u01(x) dx ≤
∫

Br(0)

u02(x) dx. (16.2)

Then for every time t > 0 and radius r > 0∫
Br(0)

u1(x, t) dx ≤
∫

Br(0)

u2(x, t) dx. (16.3)

In [V1], pp. 522, the notation u02 � u01 is introduced to represent the situation of
(16.2), and it is read as u02 is more concentrated than u01. The result can then be phrased
as saying that the concentration relation � is conserved in the evolution (Note: the general
formulation, [V3], allows to compare a non-symmetric solution u1(x, t) with a symmetric
solution u2(x, t), after symmetrizing the first one, but such generality is not needed here).

As an immediate consequence of this result we obtain comparison of supports.

LEMMA 16.2. Let u1 and u2 two solutions as before and let us assume that they are
compactly supported and have the same mass. If R1(t) and R2(t) are the radii of their
respective supports we have

R1(t) ≥ R2(t), for every t ≥ 0. (16.4)

We only need to observe that if the common mass is M , then

Ri(t) = sup

{
r > 0 :

∫
Br(0)

ui(x, t) dx < M

}
.
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16.3. Let us now proceed with the analysis of the long-time behaviour of solutions and
supports for compactly supported, radially symmetric solutions. To begin with, we have the
following improved asymptotics for the free boundary.

THEOREM 16.3. Let R(t) and R(t) the radii of the supports of u(t) and UM(t). Then
there exists t2 > 0 such that R(t) ≤ R(t) ≤ R(t + t2). Therefore,

R(t) = R(t)

(
1 + O

(
1

t

))
. (16.5)

Proof. It is easy to see that given an initial datum u0 as assumed in (16.1) with mass
M > 0 and such that u0 is positive near r = 0, there exist times 0 < t1 < t2 such that

UM(x, t1) � u0(x) � UM(x, t2). (16.6)

The result UM(x, t + t1) � u(x, t) � UM(x, t + t2) follows. Moreover, t1 can be taken as
small as we please. In case u0 is not positive at r = 0 we have to wait for a certain time
until the positivity set spreads to cover that point. According to Section 9 this happens after
some time t3. Then relation (16.6) holds with u0 replaced by u(x, t3). �

We derive next an L1-rate of convergence for the profiles.

THEOREM 16.4. As t → ∞ we have

‖u(t) − UM(t)‖1 = O

(
1

t

)
. (16.7)

Proof. We take for fixed t � 1 the source-type function Ũ (x, t) with interface at R(t).
According to Theorem 16.3 and the formula for the free boundary of the source-type solu-
tion, it has a mass

M̃(t) = M(1 + O(1/t))1/(β(m−1)) = M(1 + O(1/t)).

We have Ũ ≥ UM . It is clear that u(t) and Ũ (t) have the same support at time t , the ball
B̃ of radius R(t). Let φ(x) = um−1(x, t) − Ũm−1(x, t). According to the fundamental
estimate we have �φ ≥ 0 in B̃, i.e., φ is subharmonic. Since φ is zero on the boundary of
the ball, we conclude that u ≤ Ũ . Therefore,

‖(u(t) − UM(t))+‖1 ≤ ‖(Ũ(t) − UM(t))+‖1 = M̃ − M = O

(
1

t

)
.

Since u and UM have the same mass, estimate (16.7) follows. �
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17. The technique of intersection comparison

Another technique that can be used in the study of radially symmetric problems is the
extended version of the Maximum Principle which is called Intersection Comparison and
consists in counting the number of sign changes of the difference of two solutions.

DEFINITION. Given two radially symmetric solutions, u1 and u2, of problem (CP) and
for every time t ≥ 0 we consider finite sequences of radii 0 < r0 < r1 < · · · < rn (of
length n) such that

(u1(ri) − u2(ri)) (u1(ri+1) − u2(ri+1)) < 0 (17.1)

for every i = 0, . . . , n − 1. Then we define

N(t; u1, u2) = max{n : n is the length of a sequence satisfying (17.1)} (17.2)

It is also important to record the list of signs of u1 − u2. The main result of this theory is

THEOREM 17.1. For the solutions of the Cauchy problem for quasilinear parabolic
equations of the type of equation PME posed in the whole space the counter N is non-
increasing in time.

This result stems from Sturm [St] and has been extended in recent years to wide classes of
nonlinear parabolic equations by a number of authors, see the book [S4] and its references.
The principle is also known as lap number theory, cf. [Ma]. More precisely, the decrease
in N happens through loss of sign changes either at the boundary of the domain (if there is
one) or inside (in this case two sign changes are lost at least at every time a change happens).
The list of signs is conserved as long as N does not decrease.

By a careful geometrical inspection of our situation for the PME and using the regularity
of the solutions, we get the following result.

LEMMA 17.2. Given a radial solution u of problem (CP) with bounded, continuous
and compactly supported data u0 ≥ 0, there exist time delays 0 ≤ t1 < t2 such that if
ui(x, t) = UM(x, t + ti ), i = 1, 2, we have

N(t, u, u1) = N(t, u, u2) = 1 . (17.3)

Moreover, the list of signs of u − u1 is −+, while the list for u − u2 is +−. Therefore, for
all r ≈ 0 we have for all large t

u2(r, t) < u(r, t) < u1(r, t) . (17.4)
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Note that the counter N(t, u, u1) cannot decrease to 0 since that would imply the ordering
u ≤ u1, and by equality of mass u = u1. Even if this happens a small change in delay
would restore the value N = 1. The same applies to u2 − u.

As an immediate consequence of these estimates we obtain the support radius estimates
of Theorem 16.3. The proof of Theorem 16.4 remains unchanged. Moreover, the technique
of Intersection Comparison allows for a strong improvement of Theorem 16.4.

THEOREM 17.3. As t → ∞ we have

um−1(x, t) = Um−1
M (x, t) + O(t−γ ), γ = α(m − 1) + 1. (17.5)

Proof. Remark that O(t−γ ) = ‖UM(·, t)‖m−1∞ O(t−1), therefore this is another estimate
with relative error of size O(1/t). Note that the delayed source-type solutions show this
error, hence the stated convergence rate is optimal.

As for the proof, the estimate from above has been already established in the comparison
u ≤ Ũ of Theorem 16.4. In the estimate from below it is useful to write the error as
e(x, t) = um−1(x, t)−Um−1

M (x, t). For r ≈ 0 and large t , the estimate e ≤ O(t−γ ) follows
from (17.4). To extend it to all r we use the Aronson-Bénilan estimate that implies that
�e ≥ 0 as long as UM > 0. Since the function is radially symmetric, e = e(r, t), we have
for every fixed t > 0

e(0, t) = 0, er (0, t) = 0 and (rn−1er)r ≥ 0 for 0 < r < R(t).

This implies that e(r, t) ≥ e(0, t) for 0 < r < R(t). This and the estimate for R(t) end the
result. �

No uniform rate can be given for general solutions without a decay estimate on u0 at
infinity, as we have already shown in Section 11, which applies even with radial symmetry.
On the other hand, the convergence rates for radially symmetric solutions with compact
support obtained in these two sections are optimal.

One dimension without radial symmetry. The problem without radial symmetry is rather
well known in dimension n = 1, where we can still use the techniques of concentration
(mass) comparison and intersection comparison used in these two last sections. As a first
example of one-dimensional result, under the assumptions that u0 ∈ X0 is compactly
supported, not radially symmetric, it is proved in [V1] that there is an improved rate of
convergence if we first calculate the center of mass, which is an invariant of the motion,

xc = 1

M

∫
R

x u0(x) dx = 1

M

∫
R

x u(x, t) dx,

where as usual M = ∫
u0(x) dx > 0. Then, we have
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THEOREM 17.4. The left and right interfaces of u, r1(t) = inf{x : u(x, t) > 0},
r2(t) = sup{x : u(x, t) > 0}, satisfy

ri(t) = (−1)iR(t) + xc + o(1) (17.6)

as t → ∞. This implies an asymptotic error in the pressures of the form

um−1(x, t) − Um−1
M (x − xc, t) = O(t−m/(m+1)). (17.7)

18. Concavity and smooth convergence

The question of large time behaviour can be combined with the question of asymptotic
geometry to obtain better asymptotic results. The first paper in that direction for the PME
seems to be due to Bénilan and the author [BV], who prove that in dimension one and for
compactly supported solutions of the PME concavity of the pressure is preserved in time (if
v = um−1 and v0,xx ≤ 0 where v0 > 0, then vxx ≤ 0 where v > 0). Aronson and the author
then proved that all compactly supported solutions become eventually pressure-concave,
which allows for better convergence estimates in 1D, [AV], Section 4:

‖um−1(x, t) − Um−1
M (x − xc, t)‖L∞(Rn) = O(t−2m/(m+1)) . (18.1)

The result is inspired by the fact that in terms of the variable v = um−1 the source-type
solution is an inverted parabola. A more precise asymptotics says that

vxx(x, t) + m − 1

m(m + 1)t
= O

(
1

t2

)
. (18.2)

A simple geometrical argument shows that if such a function has the same mass as the
parabola of the source-type solution pressure the error in size must be of order O(1/t)

times the height of the parabola, and this gives O(t−2m/(m+1)) error for um−1. The error in
the interface size is also of the same order, hence

ri(t) = (−1)iR(t) + xc + O(t−m/(m+1)). (18.3)

This reproduces in 1D the results for radially symmetric solutions of previous sections. A
study of asymptotic geometry in 1D for more general diffusion equations is done in [GV]
using Intersection Comparison.

The recent work of Lee and Vazquez [LV] extends these ideas to all dimensions n ≥ 1:
after a finite time the pressure of any solution with compact support becomes a concave
function in the space variable, and it converges to all orders of differentiability to a truncated
parabolic shape, Barenblatt’s source-type profile. The assumptions on the initial data are u0

nonnegative, compactly supported and what is called non-degenerate initial data, a technical
condition. In particular, for large times the support of the solution is a convex subset of R

n

which converges to a ball, and the convergence is smooth. Estimates are optimal. Here is
a typical result from [LV].
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THEOREM 18.1. There is to > 0 such thatv(x, t) is concave in�(t) = {x : v(x, t) > 0}
for t ≥ to. More precisely,

lim
t→∞ t

∂2v

∂x2
i

= − (m − 1)β

m
(18.4)

for any coordinate direction xi , uniformly in x ∈ supp(v). The results also hold for the heat
equation (where the pressure is defined as v = log(u) and we get asymptotic log-concavity)
and fast diffusion (with v = 1/u1−m, (n − 2)/n < m < 1, and we get asymptotic pressure
convexity). In these cases supp (v(t)) = R

n.

19. Improved rates by the entropy method

Obtaining better convergence rates than the plain ones given by the main result needs
assumptions on the data, and this is the purpose of an extensive literature. We have seen
the rates of convergence obtained under the assumptions of radial symmetry and compact
support in Sections 16, 17 and 18. Without those assumptions, the Lyapunov approach
of Newman and Ralston [N, R] has been improved by means of ideas of entropy and
entropy-dissipation into a tool to obtain rates of convergence by a number of authors in
[CT, C5, DP, Ot] for data in the class X2 ⊂ X0 of initial data having also finite second
moment∫

|x|2 u0(x) dx < ∞. (19.1)

THEOREM 19.1. For every u0 ∈ X2 we have

‖u(x, t) − UM(x, t)‖L1(Rn) = O(t−κ) , (19.2)

where κ equals the Barenblatt exponent β for 1 < m ≤ 2, while κ = 2β/m is obtained
for m > 2.

This theorem has been proved in the above-mentioned references using different tech-
niques: entropy dissipation technique, mass transportation arguments, Riemannian calculus,
variational calculus. By checking the error committed by a source-type solution displaced in
space we can see that κ = β is the optimal rate to be expected (for all m ≥ 1). The argument
holds also for m < 1 (fast diffusion, to be treated below) if m > max{(n− 1)/n, n/n + 2}.
The extension to the lower part of the range, (n − 1)/n > m > (n − 2)/n, n ≥ 2, has
been done recently in [CVa], with rate κ = 1/2, thus completing the range of exponents
m where Barenblatt’s source-type solutions play a role. We refer to these works for further
references and to Section 21 for a general treatment of fast diffusion.
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20. Extensions. Sign change and forcing

The generalization of the porous medium equation and other simple models into a general
mathematical model was one of the leitmotives of Bénilan’s mathematical activity, since
in his opinion an analyst must always strive for the general ideas valid for wide classes of
differential operators acting in general spaces, in an effort to discover what is the powerful
mathematical idea and result. In that respect, he was always inclined to see the porous
medium equation in the form ut = ��(u), and � must be allowed to be an arbitrary
monotone function, or even a maximal monotone graph, like in the famous book [Br]. On
the other hand, this and more general forms, like ut = div a(x, t, u, Du), turned out to be
of interest for the applications.

Signed solutions. Going back to the simple porous medium, this trend of ideas favors
the elimination of the sign restriction on the solutions, so that the whole L1 may enter the
picture. In order to tackle negative values of u one must adapt the power in a convenient
way so that the equation continues to be degenerate parabolic. The preferred version has a
symmetrical nonlinearity:

ut = �(|u|m−1u) . (20.1)

(There is no a priori reason to do that, apart from mathematical simplicity, which is a strong
reason in itself). This equation is treated by Bénilan and Crandall [BC2] in the framework
of m-accretive operators in L1 to obtain a mild solution, and the integral conditions derived
by Bénilan in his thesis. The asymptotic behaviour of integrable solutions has been studied
by Kamin and Vazquez [KV2] and the result is

THEOREM 20.1. Let u0 ∈ L1(Rn) and let M = ∫
u0(x) dx. If M > 0 then

lim
t→∞ ‖u(t) − U(t; M)‖L1(Rn) = 0, (20.2)

If M = 0 the limit applies with U = 0. If M = −M ′ < 0 we put U(x, t; M) =
−U(x, t; M ′) and the result holds.

However, when the integral is zero the asymptotics is trivial in our scale, and the actual
scaling where the asymptotics is nontrivial depends on the subclass of initial data; this is
partially studied in [KV2] and [BHV], where a beautiful problem of anomalous exponents
appears.

Equations with forcing. Another interesting result concerns the influence of a forcing term
in the form of an integrable right-hand side in the equation.

THEOREM 20.2. Let u be the mild solution of the Cauchy problem for

ut = �(|u|m−1u) + f, (20.3)
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with initial data u0(x) ∈ L1(Rn) and f ∈ L1(Q) (no sign restriction is imposed). Then,

lim
t→∞ ‖u(t) − UM ′(t)‖1 = 0 , (20.4)

where

M ′ =
∫

u0(x) dx +
∫ ∫

Q

f dxdt. (20.5)

Proof. We consider the solution un(x, t) of the problem with same initial data and forcing
term fn such that

fn(x, t) = f (x, t) if t < n, fn(x, t) = 0 if t ≥ n .

The mild solution becomes a standard weak continuous solution for t ≥ n. We can think
of this solution as having initial data at t = n of the form un(x, n) = φn(x). According to
Bénilan’s analysis [Be]

Mn =
∫

φn(x) dx =
∫

u0(x) dx +
∫ n

0

∫
f (x, t) dxdt.

Hence, for t � n large enough, un approaches the source-type profile with mass

Mn =
∫

un(x, t) dx

(which is constant for t ≥ tn) with the modification explained above if Mn ≤ 0. This means
that

lim
t→∞ ‖un(t) − UMn(t)‖1 = 0.

On the other hand, limt→∞ Mn = M ′. Finally, the contraction property for mild solutions
(or bonnes solutions in the sense of [Be]) implies that

‖u − un‖1 ≤
∫ t

0

∫
|f − fn| dxdt =

∫ ∞

n

∫
R

n
|f | dxdt → 0

as n → ∞. The proof is complete. �

21. Improved convergence for fast diffusion

The extension of the asymptotic results proved above to exponent m = 1 gives as a
consequence results that are well-known for the classical heat equation. It is interesting
to remark that the proof given here applies (with inessential minor changes), and is very
different from the usual proofs based on the representation formula.

We can even go below m = 1 and prove similar results for some so-called fast-diffusion
equations which are just equation (0.1) with 0 < m < 1. To start with we need two basic
ingredients.
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(a) A theory of well-posedness for the Cauchy problem. The results of Section 1 apply
also in this case with minor easy changes. The main novelty is that solutions are
positive everywhere and C∞-smooth, which is rather good news in this context.

(b) The second ingredient is the model of asymptotic behaviour. The source-type solu-
tion exists just for m > mc = (n − 2)/n and it can be conveniently written in the
form

UM(x, t) =
(

Ct

|x|2 + At2β

)1/(1−m)

= K t−α

(A + (x t−β)2)1/(1−m)
(21.1)

where β = (2 − n(1 − m))−1 is positive precisely in that range, α = nβ, C =
2m/β(1 − m) is a fixed constant, K = C1/(1−m), and A > 0 is an arbitrary constant
that can be determined as a decreasing function of the mass M = ∫

U(x, t) dx,
A = k(m, n) M−γ with γ = 2(1 − m)β.

In dimensions n = 1, 2 the whole range 0 < m < 1 is covered. However, the critical
exponent, mc = 1 − (2/n), is larger than zero for n ≥ 3. It is then proved that for
0 < m < mc no solution of the Barenblatt type exists (i.e., self-similar with constant
positive mass). The value mc = (n − 2)/n is related to the Sobolev embedding exponents
as the reader will easily realize.

The authors of [FK] claim that their result of uniform convergence uniformly on sets of
the form |x| ≤ c tβ , is also true for m < 1 in the range mc < m < 1, where the Barenblatt
solution exists. Indeed, the convergence results of Theorem 1.1 hold true for m > mc and
the proofs given above are true but for minor details.

Relative error convergence. However, the fact that the solutions of the fast diffusion
equation do not have the property of conserving compact supports, but develop tails at
infinity of a certain form gives rise to a very interesting estimate formulated in terms of
relative error, or in other words, as weighted convergence, that we present next. It requires
a suitable behaviour of the initial data as |x| → ∞ (similar in decay to the Barenblatt
solution).

THEOREM 21.1. Under the assumption thatu0 is bounded andu0(x) = O(|x|−2/(1−m))

as |x| → ∞, we have the asymptotic estimate

lim
t→∞

|u(x, t) − U(x, t; M)|
U(x, t; M)

→ 0 (21.2)

uniformly in x ∈ R
n. The condition on the initial data can be weakened into the integral

estimate∫
|y−x|≤|x|/2

|u0(y)| dy = O(|x|n− 2
1−m ) as |x| → ∞ . (21.3)
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In particular, we have for ‖u(t) − U(t; M)‖1 → 0 as t → ∞ (like case p = 1 of
Theorem 1.1), and tα|u(x, t)−U(x, t; M)| → 0, as t → ∞ uniformly in x (case p = ∞),
but estimate (21.2) is much more precise because the convergence is uniform with weight

ρ = (|y|2 + c)1/(1−m) , y = x t−β.

Proof. (i) The standard theorem implies that we have uniform convergence

tα|u(x, t) − U(x, t; M)| → 0 ,

uniformly on sets of the form |x| ≤ C tβ . The problem is then to extend this estimate to
the outer region {|x| ≥ C tβ} by means of a so-called tail analysis. This analysis uses two
properties of the Barenblatt solutions. The first is the effect at infinity of a delay in time.
Thus, it is easy to see that U(x, t + τ ; M) grows with τ for large values of y = x t−β , and
precisely

U(x, t + τ ; M) − U(x, t; M) = τ

1 − m
U(x, t) t−1(1 + O(t−1)),

uniformly for |y| � 1 (on the contrary, for small values of y the variation is opposite,
∂U/∂τ < 0). Next, we recall the fact that the asymptotic behaviour as |x| → ∞ for fixed
t of the source-type solutions is independent of the mass of the solution

U(x, t; M) = (C t |x|−2)1/(1−m)(1 + O(M−1/γ y−2)) .

Next, we note that this kind of universal behaviour of some solutions of fast diffusion for
large |x| can be generalized to a general class of solutions u(x, t).

(ii) The tail analysis goes as follows. We examine first the existence of an upper bound
using the assumption in the strong form, u0(x) = O(|x|−2/(1−m)).

We have to use the trick of comparing our initial data with a source-type solution with
negative value of A. Then the denominator of (21.1) vanishes for some value of |y| = y0(A),
and the solution becomes infinite there (blow-up). It is finite for |x| ≥ y0 tβ , and indeed,
a smooth classical solution in that region. If we take any τ > 0 then there exists a large
value of A (hence a large value of y0), such that we have the comparison

u0(x) ≤ U(x, τ ; −A) |x| ≥ y0 τβ.

By comparison we have for all t > 0, |x| ≥ y0 (t + τ)β

u(x, t) ≤ U(x, t + τ ; −A).

In view of the behaviour of U as |y| → ∞ independently of A and letting τ → 0 we get
the estimate

lim sup
t→∞ u1−m x2

t
≤ C + ε ,
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uniformly for |x| t−β = |y| ≥ yε � 1. In view of the form of U , the reader will be able to
check that this is the upper bound needed in the tail part of (21.2).

(iii) Thanks to the L1-L∞ regularizing effect the general assumption (21.3) is converted
into the previous assumption for t1 > 0. Indeed, it is known that

u(x, t1) ≤ C t−α
1

∫
B|x|/2

u0(x) dx

Therefore, under assumption (21.3) we have u(x, t1) = O(|x|−2/(1−m)), and we can take
this function as initial function after displacing the axis of times.

(iv) We now turn to the lower bound at the tail. We will take a small τ > 0 and large
a > 0 and make a comparison of u(x, t) and U(x, t − τ ; M ′) in the region

R = {(x, t) : τ < t < 2τ, |x| ≥ a}.
It is clear that u(x, τ ) ≥ U(x, 0; M ′) for |x| ≥ a since the last quantity is zero. On the
other hand, by the continuity of u we can get u ≥ U on the parabolic boundary |x| = a

if the mass M ′ is chosen small enough. By the Maximum Principle we conclude that
u(x, t) ≥ U(x, t − τ ; M ′) in R. In particular,

u(x, 2τ) ≥ U(x, τ ; M ′) ∼ (Cτ/x2)1/(1−m) x → ∞.

But the positivity of u at τ > 0 implies that the inequality is true for all x ∈ R
n if M ′ is

small enough. Hence, the same comparison holds for all later times

u(x, t) ≥ U(x, t − τ ; M ′), x ∈ R
n .

The uniform behaviour of U as y → ∞ independently of M ′ and the fact that τ is arbitrary
allow us to conclude much as before that

lim inf
t→∞ u1−m x2

t
≥ C − ε ,

uniformly for |x| t−β = |y| ≥ yε � 1. �

We remark that our result implies a uniform behaviour at the space far-field for all
large t . More precisely,

COROLLARY 21.2. Under the above assumptions we have the asymptotic limit as
|y| → ∞, t → ∞ :

lim (|x|2/t)1/(1−m) u(x, t) = K = (2m/β(1 − m))1/(1−m).

Further improvements. When u0 has an exact decay at infinity, u0(x) ∼ a |x|−2/(1−m), we
have a precise x-asymptotics.
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LEMMA 21.3. If lim|x|→∞ |x|2/(1−m)u0(x) = a ≥ 0, then u satisfies

lim|x|→∞ x2 u1−m(x, t) = C (t + T ), (21.4)

locally uniformly in time t > 0, with T = a1−m/C and C as in (21.1). Moreover, there
exists to > 0 such that v(x, t) = um−1 is convex as a function of x for t ≥ to.

This is proved in [LV]. On the other hand, for radial data in the class of the Theorem,
Carrillo and Vazquez [CVa] show a relative rate of decay O(t−1) in the results of
Theorem 21.1, extending the results of Sections 16, 17 to fast diffusion.

Subcritical range. Let us briefly point out that the breakdown of the asymptotic model
implies in this case a complete change of asymptotic behaviour. Thus, it is proved that for
the critical exponent, m = mc, mass is conserved but the asymptotic behaviour is quite
involved, cf. [Ki, GPV]. For 0 < m < mc we get an even more drastic phenomenon:
bounded integrable solutions disappear (vanish identically) in finite time and the relevant
asymptotic profiles are self-similar solutions of the form

U(x, t) = (T − t)αF (x (T − t)β), (21.5)

cf. [GP] and [PS]. We realize at once the crucial role played in the dynamics of these
nonlinear heat equations by the existence of certain types of particular solutions.

On the other hand, in one space dimension, the standard theory of fast diffusion can
be extended to the extra range −1 < m ≤ 0 on the condition of writing the equation
in the modified form ut = (um−1ux)x (the original formula is not parabolic!). Source-
type solutions still exist and Theorems 1.1 and 21.3 hold on the condition of working
with the special class of maximal solutions, for which the problem is well posed. We
remind the reader that in this range of exponents the theory of the Cauchy Problem is
quite special because of non-uniqueness: there are other classes of solutions determined
by nontrivial Neumann conditions at infinity, cf. [ERV, RV]. For those other solutions
different asymptotic descriptions have to be found.

22. Final comments on the literature and results

The PME was derived by Boussinesq in 1903/4 in connection with flows in porous
media, [Bo]. Around 1950 Zel’dovich and his group studied this equation as a model for
heat propagation in plasma [ZR]; the source-type solutions were constructed in a particular
case by Zel’dovich and Kompaneets [ZK] and in all generality by Barenblatt [B1], 1952.
They were re-discovered in the West by Pattle [Pa] in 1959. The first proof of existence
and uniqueness of a generalized solution was done by Oleinik and collaborators [OKC] in
1958 (in one space dimension). There are many known applications of the PME: Muskat
considered it for the flow of gases in porous media in 1937 [Mu], it was studied by Gurtin
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and McCamy [GMC] in a model in population dynamics, and it appears in thin viscous
films moving under gravity studied by Buckmaster [Bu]. We refer to [Ar, Pe, V4, W4] for
details about the mathematical theory.

The basis of this paper is taken from the Course Notes [V5]. The scheme of the proof
of the main result follows [KV1], where convergence is proved in L1, i.e., as in (1.5), and
uniformly for solutions with compact support. This paper contains still another proof, based
on asymptotic symmetry, detailed in Section 16. Newman’s Lyapunov approach is studied
in [N, R]. The simpler Lyapunov approach of Section 12 using the L1-norm is more or less
folklore, but I have not found it written. The convergence of the supports for compactly
supported solutions is stated in [KV2]. This paper contains the proof of convergence for
solutions with changing sign.

Barrier methods, like the one used by [FK] have proved to be very suitable in the study
of nonlinear diffusion problems without a standard Lyapunov functional: a very interesting
application occurs in the study of the equation of elastoplastic filtration, in [KPV], where
no other method seems to be work by lack of known invariants.

Better rates of convergence for radial solutions are discussed in [V1] and [AV], but the
main results of Sections 16, 17 are new. In one space dimension finer asymptotic results
are known, cf. [ZB, V1, AV, An].

New developments include the optimality of the general rates in X0 and the weighted con-
vergence for fast diffusion. Full proofs are given for both. We mention the new
geometrical and smoothness developments in Section 18, the work by the energy method
of Section 19. The study of complexity in L∞ is only mentioned in passing. A number of
less related results have been left out by lack of space.
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Asintóticos en Ecuaciones de Evolución”, UAM, spring 1997, http://www.uam.es/˜juanluis.vazquez.

[VZ] Vazquez, J. L. and Zuazua, E., Complexity of large time behaviour of evolution equations with bounded
data, Chinese Annals of Mathematics, 23, 2, ser. B (2002), 293-310. Volume in honor of J.L. Lions.
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